
Transferring Hierarchical Structure with
Dual Meta Imitation Learning

Chongkai Gao
Department of Automation

Tsinghua University
gck20@mails.tsinghua.edu.cn

Yizhou Jiang
Department of Automation

Tsinghua University
jyz20@mails.tsinghua.edu.cn

Feng Chen
Department of Automation, Tsinghua University

LSBDPA Beijing Key Laboratory
chenfeng@mail.tsinghua.edu.cn

Abstract: Hierarchical Imitation Learning (HIL) is an effective way for robots to
acquire sub-skills from long-horizon unsegmented demonstrations. However, the
learned hierarchical structure lacks the mechanism to transfer across multi-tasks
or adapt to new tasks, which makes them have to learn from scratch when facing
a new situation. Transferring and reorganizing modular sub-skills require fast
adaptation abilities of both the high-level network and sub-skills to reschedule new
forms of sub-skills in new tasks. In this work, we propose Dual Meta Imitation
Learning (DMIL), a hierarchical meta imitation learning method where the high-
level network and sub-skills are iteratively meta-learned with model-agnostic meta-
learning (MAML [1]). DMIL uses the likelihood of state-action pairs from each sub-
skill as the supervision for the high-level network adaptation, and uses the adapted
high-level network to determine different data set for each sub-skill adaptation. We
theoretically prove the convergence of the iterative training process of DMIL and
establish the connection between DMIL and Expectation-Maximization algorithm.
Empirically, we achieve state-of-the-art few-shot imitation learning performance
on the Meta-world [2] benchmark and competitive results on long-horizon tasks of
Kitchen environments.

Keywords: Hierarchical Imitation Learning, Meta Learning

1 Introduction
Imitation learning (IL) has shown promising results for intelligent robots to conveniently acquire skills
from expert demonstrations [3, 4]. Nevertheless, imitating long-horizon unsegmented demonstrations
has been a challenge for IL algorithms, because of the well-known issue of compounding errors
[5]. This is one of the crucial problems for the application of IL methods to robots since plenty
of practical manipulation tasks are long-horizon. Hierarchical Imitation Learning (HIL) aims to
tackle this problem by decomposing long-horizon tasks with a hierarchical model, in which a set of
sub-skills are employed to accomplish specific parts of the long-horizon task, and a high-level network
is responsible for determining the switching of sub-skills along with the task. Such a hierarchical
structure is usually modeled with Options trained with Expectation-Maximization algorithm [6, 7, 8]
or goal-conditioned IL paradigms [9]. HIL expresses the nature of how humans solve complex tasks,
and has been considered to be a valuable direction for IL algorithms [10].

However, most current HIL methods have no explicit mechanism to transfer previously learned
sub-skills to new tasks with few-shot demonstrations. This requirement comes from that the learned
hierarchical structure may conflict with discrepant situations in new tasks. As shown in fig. 1(a), both
the high-level network and sub-skills need to be transferred to new forms to satisfy new requirements:
the high-level network needs new manners to schedule sub-skills in new tasks (for example, calling
different sub-skills pulling or pushing at the same state), and each sub-skill needs to adapt to new
specific forms in new tasks (for example, grasping different kinds of objects). This drives us to
develop new methods to endow HIL with the ability to simultaneously transfer both the high-level
network and sub-skills with few-shot new task demonstrations.

6th Conference on Robot Learning (CoRL 2022), Auckland, New Zealand.

𝜃ℎ

𝜃𝑙1

𝜃𝑙2

𝜃𝑙3

𝑆𝑡 𝐴𝑡

transfer

new forms of sub-skill pick-placetrained sub-skill
pick-place

trained high-level policy:
“Call sub-skill pull in this state”

new requirement of high-level scheduling
“Call sub-skill push in this state”

few-shot

new task

demonstrations

HIL

old task
demonstrations

transfer

(a) Illustration of the bi-level transfer problem of HIL in new tasks.

Adaptable Hierarchical Structure

Adaptable Monolithic Network

META

𝑆𝑡 𝐴𝑡

Fine-tune

Multi-task

Demonstrations

𝜃

DMIL

Fine-tune

𝜃𝑙1

𝜃𝑙2

𝜃𝑙3

One-Shot
Demonstration

One-Shot
Demonstration

Multi-task
Demonstrations

𝑆𝑡 𝐴𝑡

(b) Comparison of MIL and DMIL.
Figure 1: (a) Both the high-level network and sub-skills need to be transferred to new tasks. Above:
when the robot arm is over a half-open drawer, the task can be either opening or closing the drawer,
which requires the high-level network to call different sub-skills. Below: the same sub-skill pick-place
may exhibit different specific forms in new tasks. (b) DMIL aims to integrate MAML into HIL with
a novel iterative optimization procedure that meta-learns both the high-level network and sub-skills.

Recently, meta imitation learning (MIL) [11, 12, 13] employs model-agnostic meta-learning (MAML)
[1] into the imitation learning procedure to enable the learned policy to quickly adapt to new tasks
with few shot demonstrations. MAML first fine-tunes the policy network in the inner loop, then
evaluates the fine-tuned network to update its initial parameters with end-to-end gradient descent
at the outer loop. The success of MIL inspires us to integrate MAML into HIL to transfer the
hierarchical structure in new tasks. However, this is not straightforward. HIL is a bi-level structure
that is trained in an iterative and self-supervised paradigm [6], thus both the high-level network and
sub-skills need to be meta-learned by MAML. Intuitively, the question is: should sub-skills choose
the fine-tuned high-level network or the original high-level network for their inner loops and outer
loops? The same question applies to the high-level network. This is a dual meta learning problem,
and we need to explore appropriate methods for MAML to schedule the fine-tune steps (inner loops)
and meta-update steps (outer loops) of the bi-level network in HIL to ensure convergence.

In this work, we propose a novel hierarchical meta imitation learning framework called Dual Meta
Imitation Learning (DMIL) to incorporate MAML into the iterative training process of HIL, as
shown in fig. 1(b). Based on the common EM-like HIL structure [6, 7] we design an elaborate
bi-level MAML procedure for this hierarchical structure to make it can be fully meta-learned. In
this procedure, we first fine-tune the high-level network and sub-skills in sequence at inner loops,
then meta-update them simultaneously at outer loops. We theoretically prove the convergence of this
special training procedure by leveraging previous results from [14, 15, 16] to reframe both MAML
and DMIL as hierarchical Bayes inference processes and get the convergence of DMIL according
to the convergence of MAML from previous results [17]. We test our method on the challenging
meta-world benchmark environments [2] and the Kitchen environment of D4RL benchmarks [18].
In our experiments, we successfully acquire a set of meaningful sub-skills from a large scale of
manipulation tasks, and achieve state-of-the-art few-shot imitation learning abilities in the ML45
suite. In summary, the main contributions of this paper are:

• We propose DMIL, a novel hierarchical meta imitation learning framework that meta-learns
both the high-level network and sub-skills from unsegmented multi-task demonstrations in a
general EM-like fashion, and theoretically prove its convergence.

• We achieve state-of-the-art few-shot imitation learning performance on meta-world bench-
mark environments and competitive results in the Kitchen environment.

2 Related Work
2.1 Hierarchical Imitation Learning
Recovering inherent sub-skills contained in expert demonstrations and reusing them with hierarchical
structures has long been an interesting topic in the hierarchical imitation learning (HIL) domain.
According to whether there are pretraining tasks, we can divide HIL methods into two categories.
The first one employs a set of manually designed pretraining tasks that encourage distinct skills

2

or primitives, then learn a high-level network to master the switching of primitives to accomplish
complex tasks [19, 20, 21, 22, 9]. However, for unsegmented demonstrations where no pretraining
tasks are provided, which is more common in the real world, these methods can not be applied.

The second kind of methods aim to learn sub-skills with unsupervised learning methods. Daniel et al.
[6], Krishnan et al. [7] acquire Options [23] from demonstrations with an Expectation-Maximization-
like procedure and use the Baum-Welch algorithm to estimate the parameters of different options.
Henderson et al. [24], Jing et al. [8] integrate generative adversarial networks into the option discovery
process. Li et al. [25], Sharma et al. [26], Lee and Seo [27] incorporate generative-adversarial
imitation learning [28] framework and an information-theoretic metric [29] to simultaneously imitate
the expert and maximize the mutual-information between latent sub-skill categories and corresponding
trajectories to acquire decoupled sub-skills. There are also some methods called mixture-of-expert
(MoE) that compute the weighted sum of all primitives to get the action rather than only using one
of them at each time step [30, 31, 32]. Other methods aim to seek an appropriate latent space that
can map sub-skills into it and then condition a policy on the latent variable generated from the latent
space to reuse sub-skills [33, 34, 35, 36, 37]. In this work, we use the EM-like HIL methods used in
[6, 7] as they can acquire semantic and separated sub-skill networks which have shown better results
in recent works [38], and compare other kinds of HIL methods as baselines to show the superiority of
our method in experiments. None of above HIL methods do not take the fast adaptation ability into
consideration: they assume testing tasks are in the same distribution of training tasks. Although some
work fine-tune the whole structure in new tasks [36], the performance of fine-tuning all depends on
the generalization of deep networks, which may vary among different tasks and network designs.
Thus we aim to enhance HIL methods with meta learning abilities, as described below.

2.2 Meta Imitation Learning
Meta imitation learning, or one-shot imitation learning, leverages various meta-learning methods
and multi-task demonstrations to meta-learn a policy that can be quickly adapted to a new task with
few-shot new task demonstrations. Duan et al. [39], Cachet et al. [40] employ self-attention modules
to process the whole demonstration and the current observation to predict the current action. Yu et al.
[13], Finn et al. [12], Yu et al. [11] use model-agnostic meta-learning (MAML) [1] to achieve one-shot
imitation learning ability for various manipulation tasks with robot or human visual demonstrations.
Xu et al. [41], Yu et al. [42] propose to meta-learn a robust reward function that can be quickly
adapted to new tasks and then use it to perform IRL in new tasks. However, they need downstream
inverse reinforcement learning after the adaptation of reward functions, thus conflicts with our goal
of few-shot adaptation. Most above methods only learn one monolithic policy, lacking the ability
to model multiple sub-skills in long-horizon tasks. Some works aim to tackle the multi-modal data
problem in meta-learning by avoiding single parameters initialization across all tasks [43, 44, 45, 46],
but they lack the mechanism to schedule the switching of different sub-skills over time. There are
some works that also meta-learn a set of sub-skills in a hierarchical structure [13, 45], but they either
use manually designed pretraining tasks or relearn the high-level network in new tasks, which is not
appropriate in few-shot imitation learning settings.

3 Method
3.1 Meta Imitation Learning
We denote a discrete-time finite-horizon Markov decision process (MDP) as a tuple (S,A, T, P, r, ρ0),
where S is the state space,A is the action space, T is the time horizon, P : S ×A×S → [0, 1] is the
transition probability distribution, r : S ×A → R is the reward function, and ρ0 is the distribution of
the initial state s0. The goal of meta imitation learning is to extract some common knowledge from a
set of robot manipulation tasks {Ti} that come from the same task distribution p(T), and adapt it
to new tasks quickly with few shot new task demonstrations. As in model-agnostic meta-learning
algorithm (MAML) [1], we formalize the common knowledge as the initial parameter θ of the policy
network πθ that can be efficiently adapted with new task gradients.

For each task Ti ∼ p(T), a set of demonstrations Di is provided, where Di consists of N
demonstration trajectories: Di = {τij}Nj=1, and τij consists of a sequence of state-action pairs:

τij = {(st, at)}
Tij
t=1, where Tij is the length of τij . EachDi is randomly split into support setDtri and

query set Dvali for meta-training and meta-testing respectively. During the training phase, we sample
m tasks from p(T), and in each task Ti, we use Dtri to fine-tune πθ to get the adapted task-specific
parameters λi with gradient descent, and then evaluate it withDvali to get the meta-gradient of Ti, and
we optimize the initial parameters θ with the average of meta-gradients from all m tasks. The policy

3

𝑠𝑡
High-level

network

Sub-skill 0 Sub-skill 1 Sub-skill 2

𝑎𝑡

ො𝑎𝑡0 ො𝑎𝑡1 ො𝑎𝑡2

𝑠𝑡
High-level

network

Sub-skill 0 Sub-skill 1 Sub-skill 2

ො𝑎𝑡0 ො𝑎𝑡1 ො𝑎𝑡2

𝑎𝑡ො𝑎𝑡0

Meta-learning
process

Forward process

Multiply with
hard selecting

ℒℎ

ℒ𝑙
ℒℎ

Sub-skill category
with the highest

probability

Sub-skill category
with low

probability

Figure 2: The iterative meta-learning process of DMIL at each iteration. Left: the supervision of
high-level network (sub-skill categories) comes from the most accurate sub-skill (the green one,
sub-skill 1 here). Right: the sub-skill updated at current step (the green one, sub-skill 0 here) is
determined by the fine-tuned high-level network.

πθ : S → A is trained to maximize the likelihood such that θ∗ = arg maxθ
∑N
i=1 log πθ(ai|si),

whereN is the number of provided state-action pairs. We denote the loss function of this optimization
problem as LBC(θ,D), and the general objective of meta imitation learning problem is:

min
θ

m∑
i=1

LBC
(
λi,Dval

i

)
, (1)

where λi = θ − α∇θLBC(θ,Dtri), and α is a hyper-parameter which represents the inner-update
learning rate.
3.2 Dual Meta Imitation Learning (DMIL)
In this work we assume at each time step t, the robot may switch to different sub-skills to accomplish
the task. We define the sub-skill category at each time step t as zt = 1, · · · ,K, where K is the
maximum number of sub-skills. We assume a successful trajectory τij of a task Ti is generated
from several (at least one) sub-skill policies, i.e., τij =

∑Tij
t=1{(st, πE(st|zt))}, where πE represents

the expert policy. Our goal is to learn a hierarchical structure from multi-task demonstrations
{D1, · · · ,Dm} in an unsupervised fashion. The high-level network πθh that parameterized by θh
determines the sub-skill category ẑt at each time step t, and the z-th sub-skill among K different
sub-skills πθl1 , · · · , πθlK will be called to predict the corresponding action ât of state st, where
the hat symbol denotes the predicted result. We use λh and λl1, · · · , λlk to represent the adapted
parameters of θh and θl1, · · · , θlK respectively. We condition the high-level network only on states,
i.e., ẑt = πθh(st), to fit the actual situation at the testing phase.

DMIL aims to first fine-tune both πθh and πθl0 , · · · , πθlK and then meta-update them. In a new task,
πθh may not provide correct sub-skill categories as stated in the introduction. However, sub-skills
still retain the ability to give out supervision for the high-level network with knowledge learned from
previously learned tasks and few-shot demonstrations. This is because most robot manipulation tasks
are made up of a set of shared basis skills like reach, push and pick-place. As shown on the left side
of fig. 2, the sub-skill that gives out the closet ât to at can be seen as supervision for the high-level
network to classify st into this sub-skill. On the other hand, the adapted high-level network can
classify each data point in provided demonstrations to different sub-skills for them to perform fine-
tuning, as shown on the right side of fig. 2. In summary, DMIL contains four steps for one training
iteration. We call them High-Inner-Update (HI), Low-Inner-Update (LI), High-Outer-Update
(HO), and Low-Outer-Update (LO), which represents the fine-tuning and meta-updating process of
the bi-level networks respectively. The key problem is how to arrange these optimization orders to
ensure convergence. We first introduce these steps formally here, then discuss why they can achieve
convergence in the next section. The whole procedure is summarized in algorithm 1 in appendix.

HI: For each sampled task Ti, we sample the first batch of trajectories {τi1} from Dtri . The
principle of this step is to use sub-skill that can predict the closest action to the expert action to
provide self-supervised category ground truths for the training of high-level network, which is a
classifier in form. We make every state-action pair passed directly to each sub-skill and compute
LBC(θlk, τi1), k = 1, · · · ,K, and choose the ground truth at each time step as the sub-skill category
k that minimizes LBC(θlk, (st, at)) :

p(zi1t = k) =

{
1, if k = arg mink LBC(θlk, (st, at))
0, else . (2)

4

Then we get predicted sub-skill categories from the high-level network: ˆzi1t = πθh(st), and use a
cross-entropy loss to train the high-level network:

Lh(θh, τi1) = − 1

Ti1

Ti1∑
t=1

K∑
k=1

p(zi1t = k) log p(ˆzi1t = k). (3)

Finally we perform gradient descent on the high-level network and get λh = θh − α∇θhLh(θh, τi1).
Note θl1, · · · , θlk are freezed here.

LI: We sample the second batch of trajectories {τi2} from Dtri . The adapted high level network πλh
will process each state in τi2 to get sub-skill category ˆzi2t = πλh(st) at each time step, thus we get
K separate data sets for different sub-skills: D2k = {(si2t, ai2t)| ˆzi2t = k}, k = 1, · · · ,K. Then we
compute the adaptation loss for each sub-skill with the corresponding dataset. In case of continuous
action space, we assume that actions belong to Gaussian distributions, so we have:

LBC(θlk,D2k) = − 1

Nk

Nk∑
t=1

(at − πθlk(st))
2, (4)

whereNk is the number of state-action pairs inD2k. Finally we perform gradient descent on sub-skills
and get λlk = θlk − α∇θlkLBC(θlk,D2k). Note πλh is frozen in this process.

HO: We sample the third batch of trajectories {τi3} from Dtri and get L(λh, τi3) as in the HI process.
Then we use it to compute the meta-gradient∇θhL(λh, τi3) which equals to:

∇λhL(λh, τi3)|λh=θh−α∇θhL(θh,τi2) ∗ ∇θhλh. (5)
LO: We sample τi4 and get L(λlk,D4k), k = 1, · · · ,K as in the LI process, then we use it to
compute the meta-gradient∇θlkL(λlk,D4k) which equals to:

∇λlkL(λlk,D4k)|λlk=θlk−α∇θlkL(θlk,D1k) ∗ ∇θlkλlk. (6)

Note after the training of m tasks, we average all meta-gradients from m tasks and perform gra-
dient descents on the initial parameters together to update high-level parameters θ′h = θh −
β
∑m
i=1∇θhL(λh, τi3) and sub-skill policies parameters θ′lk = θlk − β

∑m
i=1∇θlkL(λlk, τi4),

k = 1, · · · ,K, i.e., we do not update them at step 5 and 6. This is crucial to ensure convergence.

For testing, although our method needs two batches of trajectories for one round of adaptation, in
practice we find only using one trajectory to perform HI and LI also works well in new tasks, thus
DMIL can satisfy the one-shot imitation learning requirement. Besides the above process, we also
add an auxiliary loss to better drive out meaningful sub-skills to avoid the excessively frequently
switching between different sub-skills along with time. Detailed information can be found in C.

4 Theoretical Analysis
In this section, we show the above algorithm can converge by rewriting both MAML and DMIL
as hierarchical variational Bayes problems to establish the equivalence between them since the
convergence of MAML can be proved in Fallah et al. [17]. Proofs of all theorems are in Appendix D.

4.1 Hierarchical Variational Bayes Formulation of MAML

According to [14], MAML is a hierarchical variational Bayes inference process. The general meta-
learning objective (1), which can be rewritten as Lg = L(θ, λ1, · · · , λm) = log

∏m
i=1 p (Di|θ), can

be formulated as follows:

Lg ≥
m∑
i=1

{KL(q(φi;λi)‖p(φi|Di, θ) + Eq(φi;λi)[log p(Di, φi|θ)− log q(φi;λi)]}, (7)

where φi, i = 1, · · · ,m represent the local latent variables for task Ti, and λ1, · · · , λM are the
variational parameters of the approximate posteriors over φ1, · · · , φM . We denote λi as λi(Di, θ)
and p(φi|Di, θ) as p(φi|Dtri , θ) to mean that λi and φi are determined with prior parameters θ and
support data Dtri . First we need to minimize KL(q(φi;λi)‖p(φi|Dtri , θ)) w.r.t. λi. According to D.2,
we have:

λi(Dtri , θ) = arg max
λi

Eq(φi;λi)[log p(Dtri |φi)]−KL(q(φi;λi)‖p(φi|θ)), (8)

We can establish the connection between 8 and the inner loop in MAML by the following Lemma:

Lemma 1 In case q(φi;λi) is a Dirac-delta function and choosing Gaussian prior for p(φi|θ), equation
8 equals to the inner-update step of MAML, that is, maximizing log p(Dtri) w.r.t. λi by early-stopping
gradient-ascent with choosing µθ as initial point:

λi(Dtri ; θ) = µθ + α∇θ log p
(
Dtri |θ

)
|θ=µθ . (9)

5

Then we need to optimize L(θ, λ1, · · · , λM) w.r.t. θ. Since we evaluate p(Di|λi(Dtri , θ)) with only
Dvali , we assume p(Di|λi(Dtri , θ)) = p(Dvali |λi(Dtri , θ)). We give out the following theorem to
establish the connection between the meta-update process and the optimization of Lg:

Theorem 1 In case that Σθ → 0+, i.e., the uncertainty in the global latent variables θ is small, the
following equation holds:

∇θLg =

M∑
i=1

∇λi log p(Dvali |λi)∇θλi(Dtri , θ). (10)

A general EM algorithm will first compute the distribution of latent variables (E-step), then optimize
the joint distribution of latent variables and trainable parameters (M-step), and the likelihood of data
can be proved to be monotone increasing to guarantee the convergence since the evidence lower
bound of likelihood is monotone increasing. Here φi, i = 1, · · · ,M are the latent variables, and
θ corresponds to the trainable parameters. Lemma 1 and Theorem 1 correspond to the E-step and
M-step respectively. In the following part we establish the equivalence between 9 with 3 and 4, and
between 10 with 5 and 6 to prove the equivalence between DMIL and MAML.
4.2 Modeling DMIL with Hierarchical Variational Bayes Framework
For simplicity, here we only derive in one specific task Ti, since derivatives of parameters from
multi-task can directly add up. We first establish the connection between the maximization of
log p(Dtri |θh, θl1, · · · , θlK) with the particular loss functions in DMIL:

Theorem 2 In case of p(at|st, θlk) ∼ N (µθlk(st), σ
2), we have:

∇θh log p(Dtri |θh, θl1, · · · , θlK) = ∇θhLh(θh,Dtri), (11)

and ∇θlk log p(Dtri |θh, θl1, · · · , θlK) = ∇θlkLBC(θlk,D2k), (12)

where k = 1, · · · ,K. Note in 12, D2k corresponds to data sets determined by the adapted high
level network λh, and this connects with 3 and 4 in DMIL. According to 8, finding λi equals to
maximize log p (Dtri |θ) in specific conditions, and here in Theorem 2, we prove that maximize
log p(Dtri |θh, θl1, · · · , θlK) corresponds to 3 and 4 in DMIL. Thus theorem 2 corresponds to the E-
step of DMIL, where we take τi1 and τi2 as Dtri , and optimize arg maxλi Eq(φi;λi)[log p(Dtri |φi)]−
KL(q(φi;λi)‖p(φi|θ)) with coordinate descent method, which can be proved to be equal to 9 in D.5.

For the M-step, we take τi3 and τi4 as Dvali . According to Theorem 1, we can take the derivative of
λih, λil1, · · · , λilK to maximize the joint distribution of latent variables and trainable parameters to
maximize the likelihood of dataset, so we have:

∇θh,θl log p(Dvali |λih, λil) = [∇λih log p(Dvali |λih) ∗ ∇θhλih(Dtri , θh),

∇λil log p(Dvali |λil) ∗ ∇θlλil(Dtri , θl)]T
(13)

where θil = [θi1, · · · , θiK]T and λil = [λi1, · · · , λiK]T . This is exactly the gradients computed in
HO and LO steps. Note this computation process can be automatically accomplished with standard
deep learning libraries such as PyTorch [51]. To this end, we establish the equivalence between DMIL
and MAML, and the convergence of DMIL can be proved.

For a clearer comparison, MAML is an iterative process of θ → λ→ θ′, and DMIL is an iterative
process of θh, θl → λh, θl → λh, λl → θ′h, θ

′
l, where the posterior estimation stages θh, θl →

λh, θl → λh, λl has no effect on parameters θh, θl, thus can be divided to two steps as in DMIL. This
decoupled fine-tuning fashion is exactly what we need to first adapt the high-level network and then
adapt sub-skills. If we end-to-end fine-tune parameters like θh, θl → λh, λl, sub-skills will receive
supervisions from an unadapted high-level network, which may provide incorrect classifications.
Different to this, the meta-updating process λh, λl → θ′h, θ

′
l must be done at the same time, since

if we update θh and θl successively, the later one will receive different derivative (for example,
∇θl log p(Dvali |θ′ih, λil)) from derivatives in MAML (∇θl log p(Dvali |λih, λil)), and the equivalence
would not be proved.

5 Experiments
In experiments we aim to answer the following questions: (a) Can DMIL successfully transfer the
learned hierarchical structure to new tasks with few-shot new task demonstrations? (b) Can DMIL
achieve higher performance compared to other few-shot imitation learning methods? (c) What are the
effects of different parts in DMIL, such as the skill number K, the bi-level meta-learning procedure,
and the continuity constraint? Codes and video results are provided in supplementary materials.

6

Table 1: Success rates of different methods on Meta-world environments with K = 3. Each data
point comes from 20 random seeds.

ML10 ML45

Meta-training Meta-testing Meta-training Meta-testing
Methods 1-shot 3-shot 1-shot 3-shot 1-shot 3-shot 1-shot 3-shot

OptionGAIL 0.455±0.011 0.952±0.016 0.241±0.042 0.640±0.025 0.506±0.008 0.715±0.006 0.220±0.013 0.481±0.010
MIL 0.776±0.025 0.869±0.029 0.361±0.040 0.689±0.032 0.584±0.011 0.745±0.017 0.205±0.024 0.510±0.005

PEMIRL 0.598±0.023 0.810±0.007 0.162±0.003 0.256±0.009 0.289±0.051 0.396±0.024 0.105±0.005 0.126±0.008
MLSH 0.506±0.134 0.725±0.021 0.106±0.032 0.135±0.009 0.235±0.093 0.295±0.021 0.050±0.000 0.050±0.000
DMIL 0.775±0.010 0.949±0.009 0.396±0.016 0.710±0.021 0.590±0.010 0.859±0.008 0.376±0.004 0.640±0.009

Table 2: Cumulative rewards of different methods on four unseen tasks in Kitchen environment with
K = 4. Boldface indicates excluded objects during training.

Task (Unseen) FIST-no-FT SPiRL DMIL(ours)

Microwave, Kettle, Top Burner, Light Switch 2.0 ± 0.0 2.1 ± 0.48 1.5±0.48
Microwave, Bottom Burner, Light Switch, Slide Cabinet 0.0 ± 0.0 2.3 ± 0.49 2.35±0.39

Microwave, Kettle, Hinge Cabinet, Slide Cabinet 1.0 ± 0.0 1.9 ± 0.29 3.15±0.22
Microwave, Kettle, Hinge Cabinet, Slide Cabinet 2.0 ± 0.0 3.3 ± 0.38 2.95±0.44

5.1 Environments and Baselines
We choose to evaluate DMIL on two representative robot manipulation environments. The first one is
Meta-world benchmark environments [2], which contains 50 diverse robot manipulation tasks, as
shown in fig. 6 and fig. 7. We use both the ML10 suite (10 meta-training tasks and 5 meta-testing
tasks) and ML45 suite (45 meta-training tasks and 5 meta-testing tasks) to evaluate our method, and
collect 2K demonstrations for each task. We choose Meta-world since we think a large scale of
diverse manipulation tasks can drive semantic skills. We use the following approaches for comparison
in this environment: Option-GAIL: a hierarchical generative adversarial imitation learning method
to discover options from unsegmented demonstrations [8]. We use Option-GAIL to evaluate the effect
of meta-learning in DMIL. MIL: a transformer-based meta imitation learning method [40]. We use
MIL to evaluate the effect of hierarchical structures. MLSH: the meta-learning shared hierarchies
method [45] that relearns the high-level network in every new task. We use MLSH to evaluate
the effect of fine-tuning (rather than relearning) the high-level network in new tasks. PEMIRL: a
contextual meta inverse RL method which transfers the reward function in the new tasks [42]. We use
PEMIRL to show DMIL can transfer to new tasks that have significantly different reward functions.

The second one is the Kitchen environment of the D4RL benchmark [18], which contains five
different sub-tasks in the same kitchen environment. The accomplishment of each episode requires
sequentially completions of four specific sub-tasks, as shown in fig. 9. We use an open demonstration
dataset [48] to train our method. During training, we exclude interactions with selected objects and at
test time we use demonstrations that involve manipulating the excluded object to make them unseen
tasks. We choose this environment to show DMIL can be used in long-horizon tasks. We use two
approaches for comparison in this experiment: SPiRL: an extension of the skill extraction methods
to imitation learning over skill space [37]; FIST: an algorithm that extracts skills from offline data
with an inverse dynamics model and a distance function [36].

We use fully-connected neuron networks for both the high-level network and sub-skills. More details
of experiments can be found in appendix F.
5.2 Results
Table 1 shows success rates of different methods in ML10 and ML45 suites with sub-skill number
K = 3. We perform 1-shot and 3-shot experiments respectively to show the progressive few-shot
performance of different methods. DMIL achieves the best results in ML10 testing suite and ML45
training and testing suites. OptionGAIL achieves high success rates in both ML10 and ML45 training
suites. These results show the adequate capacity of hierarchical structures to fit potential multi-modal
behaviors in multi-task demonstrations. MIL achieves comparable results for all meta-testing tasks
but is worse than DMIL. This shows the necessity of meta-learning processes. Compared to them,
PEMIRL and MLSH are mediocre among all suites. This comes from that the reward functions across
different tasks are difficult to transfer with few shot demonstrations, and the relearned high-level
network of MLSH damages previously learned knowledge. We also illustrate t-sne results of these
methods in fig. 4(a) to further analyze them in appendix E.2.

Table 2 shows the rewards of different methods on four unseen tasks in the Kitchen environment.
FIST-no-FT refers to a variant of FIST that does not use future state conditioning, which makes the

7

Figure 3: The iterative meta-learning process of DMIL at each iteration. Left: the supervision of
high-level network (sub-skill category) comes from the most accurate sub-skill. Right: the sub-skill
updated at current step is determined by the fine-tuned high-level network.

comparison fairer. DMIL achieves higher rewards on two out of four tasks and comparable results
on the other two tasks, which exhibits the effectiveness of the bi-level meta-training procedure. The
poor performance of DMIL on the first task may come from the choice of skill number K or from
low-quality demonstrations. We perform ablation studies on K in the next section.

Fig. 3 shows curves of sub-skill probabilities along time of two tasks window-close and peg-insert-
side of Meta-world and the microwave-kettle-top burner-light task in Kitchen environment. We can
see the activation of sub-skills shows a strong correlation to different stages of tasks. In first two
tasks, πθl0 activates when the robot is closing to something, πθl1 activates when the robot is picking
up something, and πθl2 activates when the robot is manipulating something. In the third task, πθl2
activates when the robot is manipulating the microwave, πθl0 activates when the robot is manipulating
the kettle or the light switch, and πθl3 activates when the robot is manipulating the burner switch.
This shows that DMIL learns semantic sub-skills from unsegmented multi-task demonstrations.
5.3 Ablation Studies Table 3: Success rates of different sub-skill number

in Meta-world environments.
ML10 ML45

Meta-training Meta-testing Meta-training Meta-testing
K 1-shot 3-shot 1-shot 3-shot 1-shot 3-shot 1-shot 3-shot

2 0.76 0.955 0.32 0.72 0.563 0.818 0.44 0.67
3 0.775 0.949 0.396 0.71 0.59 0.859 0.376 0.64
5 0.795 0.94 0.52 0.57 0.713 0.92 0.21 0.48

10 0.8 0.975 0.38 0.62 0.736 0.931 0.34 0.64

In this part, we perform ablation studies on dif-
ferent skill numbersK. Due to the limited space,
we put ablations on different fine-tuning steps,
meta-training processes, continuity constraints,
and hard/soft EM choices in appendix E.

Effect of different skill number K: Table 3
shows the effect of different sub-skill number
K in Meta-world experiments. We can see that a larger K can lead to higher success rates on
meta-training tasks, but a smaller K can lead to better results on meta-testing tasks. This tells us that
an excessive number of sub-skills may result in over-fitting on training data, and a smaller K can
play the role of regularization. In Kitchen experiments, we can see similar phenomenons in Table 5.
It is worth noting in both environments, we did not encounter collapse problems, i.e., every sub-skill
gets well-trained even when K = 8 in kitchen environment or K = 10 in Meta-world environments.
This is because more sub-skills can help the whole structure get lower loss in the meta-training stage.
However, in our supplementary videos, we can see that sub-skills trained with a large K (for instance,
K = 10 in Meta-world environments) are not as semantic as sub-skills trained by a small K (for
instance, K = 3 in Meta-world environments) during the execution of a task.

6 Limitations
The limitations of DMIL come from several aspects, and future works can seek meaningful extensions
in these perspectives. Firstly, DMIL models all tasks as bi-level structures. However, in real-world
situations, tasks may be multi-level structures. One can extend DMIL to multi-level hierarchical
structures like done in recent works [49]. Secondly, DMIL does not capture temporal information
in demonstrations. Future state conditioning in Hakhamaneshi et al. [36] seems an effective tool
to improve few-shot imitation learning performance in long-horizon tasks such as in the Kitchen
environments. Future works can employ temporal modules such as transformer [50] as the high-level
network of DMIL to improve its performance.

8

Acknowledgments

We would like to thank Tianren Zhang and Haichuan Gao for their insightful comments of the whole
work, and Qualcomm China WRD UR Program. This work was supported by the National Natural
Science Foundation of China 62176133.

References
[1] C. Finn, P. Abbeel, and S. Levine. Model-agnostic meta-learning for fast adaptation of deep

networks. In Proceedings of the 34th International Conference on Machine Learning, 2017.

[2] T. Yu, D. Quillen, Z. He, R. Julian, K. Hausman, C. Finn, and S. Levine. Meta-world: A
benchmark and evaluation for multi-task and meta reinforcement learning. In 3rd Annual
Conference on Robot Learning, 2019.

[3] Y. Zhu, Z. Wang, J. Merel, A. A. Rusu, T. Erez, S. Cabi, S. Tunyasuvunakool, J. Kramár,
R. Hadsell, N. de Freitas, and N. Heess. Reinforcement and imitation learning for diverse
visuomotor skills. In Robotics: Science and Systems XIV, 2018.

[4] X. B. Peng, P. Abbeel, S. Levine, and M. van de Panne. Deepmimic: example-guided deep
reinforcement learning of physics-based character skills. ACM Trans. Graph., 2018.

[5] S. Ross, G. J. Gordon, and D. Bagnell. A reduction of imitation learning and structured predic-
tion to no-regret online learning. In Proceedings of the Fourteenth International Conference on
Artificial Intelligence and Statistics, 2011.

[6] C. Daniel, H. van Hoof, J. Peters, and G. Neumann. Probabilistic inference for determining
options in reinforcement learning. Machine Learning, 2016.

[7] S. Krishnan, R. Fox, I. Stoica, and K. Goldberg. DDCO: discovery of deep continuous options
for robot learning from demonstrations. In 1st Annual Conference on Robot Learning, 2017.

[8] M. Jing, W. Huang, F. Sun, X. Ma, T. Kong, C. Gan, and L. Li. Adversarial option-aware
hierarchical imitation learning. In Proceedings of the 38th International Conference on Machine
Learning, 2021.

[9] H. M. Le, N. Jiang, A. Agarwal, M. Dudı́k, Y. Yue, and H. D. III. Hierarchical imitation
and reinforcement learning. In Proceedings of the 35th International Conference on Machine
Learning, 2018.

[10] T. Osa, J. Pajarinen, G. Neumann, J. A. Bagnell, P. Abbeel, and J. Peters. An algorithmic
perspective on imitation learning. 2018.

[11] T. Yu, C. Finn, S. Dasari, A. Xie, T. Zhang, P. Abbeel, and S. Levine. One-shot imitation from
observing humans via domain-adaptive meta-learning. In Robotics: Science and Systems XIV,
2018.

[12] C. Finn, T. Yu, T. Zhang, P. Abbeel, and S. Levine. One-shot visual imitation learning via
meta-learning. In 1st Annual Conference on Robot Learning, 2017.

[13] T. Yu, P. Abbeel, S. Levine, and C. Finn. One-shot hierarchical imitation learning of compound
visuomotor tasks. arXiv preprint arXiv:1810.11043, 2018.

[14] S. Ravi and A. Beatson. Amortized bayesian meta-learning. In 7th International Conference on
Learning Representations, 2019.

[15] C. Finn, K. Xu, and S. Levine. Probabilistic model-agnostic meta-learning. In Advances in
Neural Information Processing Systems, 2018.

[16] Y. Zou and X. Lu. Gradient-em bayesian meta-learning. In Advances in Neural Information
Processing Systems 33: Annual Conference on Neural Information Processing Systems, 2020.

[17] A. Fallah, A. Mokhtari, and A. E. Ozdaglar. On the convergence theory of gradient-based
model-agnostic meta-learning algorithms. In The 23rd International Conference on Artificial
Intelligence and Statistics, 2020.

9

[18] J. Fu, A. Kumar, O. Nachum, G. Tucker, and S. Levine. D4rl: Datasets for deep data-driven
reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

[19] C. Florensa, Y. Duan, and P. Abbeel. Stochastic neural networks for hierarchical reinforcement
learning. In 5th International Conference on Learning Representations, 2017.

[20] X. B. Peng, M. Chang, G. Zhang, P. Abbeel, and S. Levine. MCP: learning composable hierar-
chical control with multiplicative compositional policies. In Advances in Neural Information
Processing Systems, 2019.

[21] L. Liu and J. K. Hodgins. Learning to schedule control fragments for physics-based characters
using deep q-learning. ACM Trans. Graph., 2017.

[22] J. Merel, A. Ahuja, V. Pham, S. Tunyasuvunakool, S. Liu, D. Tirumala, N. Heess, and G. Wayne.
Hierarchical visuomotor control of humanoids. In 7th International Conference on Learning
Representations, 2019.

[23] R. S. Sutton, D. Precup, and S. P. Singh. Between mdps and semi-mdps: A framework for
temporal abstraction in reinforcement learning. Artif. Intell., 1999.

[24] P. Henderson, W. Chang, P. Bacon, D. Meger, J. Pineau, and D. Precup. Optiongan: Learning
joint reward-policy options using generative adversarial inverse reinforcement learning. In
Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

[25] Y. Li, J. Song, and S. Ermon. Infogail: Interpretable imitation learning from visual demonstra-
tions. In Advances in Neural Information Processing Systems, 2017.

[26] M. Sharma, A. Sharma, N. Rhinehart, and K. M. Kitani. Directed-info GAIL: learning hierarchi-
cal policies from unsegmented demonstrations using directed information. In 7th International
Conference on Learning Representations, 2019.

[27] S. Lee and S. Seo. Learning compound tasks without task-specific knowledge via imitation
and self-supervised learning. In Proceedings of the 37th International Conference on Machine
Learning, 2020.

[28] J. Ho and S. Ermon. Generative adversarial imitation learning. In Advances in Neural Informa-
tion Processing Systems, 2016.

[29] X. Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever, and P. Abbeel. Infogan: Interpretable
representation learning by information maximizing generative adversarial nets. In Advances in
Neural Information Processing Systems, 2016.

[30] M. J. Hausknecht and P. Stone. Deep reinforcement learning in parameterized action space. In
4th International Conference on Learning Representations, 2016.

[31] G. Neumann, W. Maass, and J. Peters. Learning complex motions by sequencing simpler motion
templates. In A. P. Danyluk, L. Bottou, and M. L. Littman, editors, Proceedings of the 26th
Annual International Conference on Machine Learning, 2009.

[32] R. A. Jacobs, M. I. Jordan, S. J. Nowlan, and G. E. Hinton. Adaptive mixtures of local experts.
Neural Computing, 1991.

[33] C. Lynch, M. Khansari, T. Xiao, V. Kumar, J. Tompson, S. Levine, and P. Sermanet. Learning
latent plans from play. In 3rd Annual Conference on Robot Learning, 2019.

[34] T. Haarnoja, K. Hartikainen, P. Abbeel, and S. Levine. Latent space policies for hierarchical
reinforcement learning. In J. G. Dy and A. Krause, editors, Proceedings of the 35th International
Conference on Machine Learning, 2018.

[35] K. Hausman, J. T. Springenberg, Z. Wang, N. Heess, and M. A. Riedmiller. Learning an
embedding space for transferable robot skills. In 6th International Conference on Learning
Representations, 2018.

[36] K. Hakhamaneshi, R. Zhao, A. Zhan, P. Abbeel, and M. Laskin. Hierarchical few-shot imitation
with skill transition models. 2021.

10

[37] B. Price and C. Boutilier. Accelerating reinforcement learning through implicit imitation.
Journal of Artificial Intelligence Research, 19:569–629, 2003.

[38] S. Nasiriany, H. Liu, and Y. Zhu. Augmenting reinforcement learning with behavior primitives
for diverse manipulation tasks. arXiv preprint arXiv:2110.03655, 2021.

[39] Y. Duan, M. Andrychowicz, B. C. Stadie, J. Ho, J. Schneider, I. Sutskever, P. Abbeel, and
W. Zaremba. One-shot imitation learning. In Advances in Neural Information Processing
Systems, 2017.

[40] T. Cachet, J. Perez, and S. Kim. Transformer-based meta-imitation learning for robotic manipu-
lation. In Neural Information Processing Systems, Workshop on Robot Learning, 2020.

[41] K. Xu, E. Ratner, A. D. Dragan, S. Levine, and C. Finn. Learning a prior over intent via
meta-inverse reinforcement learning. In Proceedings of the 36th International Conference on
Machine Learning, 2019.

[42] L. Yu, T. Yu, C. Finn, and S. Ermon. Meta-inverse reinforcement learning with probabilistic
context variables. In Advances in Neural Information Processing Systems, 2019.

[43] R. Vuorio, S. Sun, H. Hu, and J. J. Lim. Multimodal model-agnostic meta-learning via task-
aware modulation. In Advances in Neural Information Processing Systems, 2019.

[44] F. Alet, T. Lozano-Pérez, and L. P. Kaelbling. Modular meta-learning. In 2nd Annual Conference
on Robot Learning, 2018.

[45] K. Frans, J. Ho, X. Chen, P. Abbeel, and J. Schulman. Meta learning shared hierarchies. In 6th
International Conference on Learning Representations, 2018.

[46] H. Yao, Y. Wei, J. Huang, and Z. Li. Hierarchically structured meta-learning. In Proceedings of
the 36th International Conference on Machine Learning, 2019.

[47] C. G. Atkeson and S. Schaal. Robot learning from demonstration. In Proceedings of the
Fourteenth International Conference on Machine Learning, 1997.

[48] A. Gupta, V. Kumar, C. Lynch, S. Levine, and K. Hausman. Relay policy learning: Solving
long-horizon tasks via imitation and reinforcement learning. arXiv preprint arXiv:1910.11956,
2019.

[49] T. Shu, C. Xiong, and R. Socher. Hierarchical and interpretable skill acquisition in multi-task
reinforcement learning. In 6th International Conference on Learning Representations, 2018.

[50] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and
I. Polosukhin. Attention is all you need. In Advances in Neural Information Processing Systems,
2017.

[51] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, et al. Pytorch: An imperative style, high-performance deep learning
library. Advances in neural information processing systems, 2019.

[52] E. Grant, C. Finn, S. Levine, T. Darrell, and T. L. Griffiths. Recasting gradient-based meta-
learning as hierarchical bayes. In 6th International Conference on Learning Representations,
2018.

[53] R. J. Santos. Equivalence of regularization and truncated iteration for general ill-posed problems.
Linear algebra and its applications, 1996.

[54] D. Duvenaud, D. Maclaurin, and R. Adams. Early stopping as nonparametric variational
inference. In Artificial Intelligence and Statistics. PMLR, 2016.

[55] R. Müller, S. Kornblith, and G. Hinton. When does label smoothing help? arXiv preprint
arXiv:1906.02629, 2019.

[56] I. Kostrikov, K. K. Agrawal, S. Levine, and J. Tompson. Addressing sample inefficiency and
reward bias in inverse reinforcement learning. arXiv preprint arXiv:1809.02925, 2018.

11

[57] S. K. S. Ghasemipour, S. Gu, and R. S. Zemel. Smile: Scalable meta inverse reinforcement
learning through context-conditional policies. In Advances in Neural Information Processing
Systems 32:, 2019.

12

	Introduction
	Related Work
	Hierarchical Imitation Learning
	Meta Imitation Learning

	Method
	Meta Imitation Learning
	Dual Meta Imitation Learning (DMIL)

	Theoretical Analysis
	Hierarchical Variational Bayes Formulation of MAML
	Modeling DMIL with Hierarchical Variational Bayes Framework

	Experiments
	Environments and Baselines
	Results
	Ablation Studies

	Limitations

