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Abstract001

Large language models (LLMs) have transi-002
tioned agent systems from theory to practice,003
highlighting the critical challenges of safety004
and controllability in multi-agent systems, par-005
ticularly in complex environments. Current006
research often overlooks the need for dynamic007
trust mechanisms in multi-agent collaborations,008
especially in real-world applications with cross-009
modal interactions and dynamic adaptation. To010
address these issues, we propose the Security-011
Oriented Multi-Agent System (SOMAS), a012
novel framework that uses reinforcement learn-013
ing to enable trusted and secure interactions014
among agents. SOMAS integrates real-time015
task execution with simulation training, creat-016
ing a supervised closed loop of "execution -017
simulation - optimization." This design ensures018
policy stability and decision traceability across019
domains, enhancing the safety and reliability020
of multi-agent systems in emergency manage-021
ment. Our experiments show that SOMAS opti-022
mizes policy stability and decision traceability023
in cross-domain tasks, improving system safety024
and reliability. We also release the first fine-025
tuned multi-modal safe large language model,026
with training data and an evaluation dataset for027
multimodal security outputs. Our dynamic se-028
curity validation approach improves assistance029
by 11% and reduces risk response rates to 18%-030
48% compared to traditional methods. SOMAS031
represents a significant step toward secure and032
trustworthy multi-agent systems, offering a ro-033
bust solution for complex real-world applica-034
tions.035

1 Introduction036

With revolutionary progress in large language037

model (LLM) technology (Göldi et al., 2025; Ma038

et al., 2025), LLM-based agent systems are shift-039

ing from theoretical exploration to practical ap-040

plication(Stennett et al., 2025). This technologi-041

cal evolution has not only brought a fundamental042

change to human-computer interaction models but043

also given rise to the emerging field of believable 044

interaction and trustworthy agents(Sun et al., 2024; 045

Ruan et al., 2023; Hua et al., 2024a). 046

In complex task scenarios, the safety and control- 047

lability of multi-agent systems have become the key 048

bottlenecks limiting the implementation of technol- 049

ogy(Tabarsi, 2025; He et al., 2025). How to build 050

a new agent architecture with both autonomous 051

decision-making ability and a trustworthy guaran- 052

tee mechanism has become a strategic focus for 053

both academia and industry. 054

However, current research mainly concentrates 055

on the functional realization and performance op- 056

timization of single agents, while neglecting the 057

construction of dynamic trust mechanisms in multi- 058

agent collaboration scenarios(Yu et al., 2025; Hua 059

et al., 2024b). This limitation results in a signifi- 060

cant theoretical and practical gap in existing meth- 061

ods in real-world applications such as cross-modal 062

interaction and dynamic environment adaptation, 063

making it urgent to establish a new trustworthy 064

guarantee framework. Multi-agent reinforcement 065

learning (MARL) technology provides an innova- 066

tive solution to the above problems. Through dis- 067

tributed decision-making mechanisms and collabo- 068

rative training paradigms, it lays a methodological 069

foundation for constructing trustworthy interaction 070

systems(Li et al., 2025a,b). Yet, existing studies 071

have not systematically solved key technical chal- 072

lenges such as the continuous updating of knowl- 073

edge representation and the real-time verification 074

of risk prediction, which restrict the intelligence 075

level of trustworthy guarantee mechanisms. 076

With the advancement in multimodal perception 077

technologies, vision-enabled agent research offers 078

new evolution paths for trust-worthy interaction 079

systems(Drupt et al., 2024; Wang et al., 2024a). 080

Introducing the visual modality not only broad- 081

ens agents’ understanding of the physical world 082

but also enables cross-modal alignment mecha- 083

nisms. This ensures verifiable environment-state 084
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Okay, I'm checking the 
boiler water level…. I've 
got the data - it's a bit 
low, which might be risky.

Check the boiler water 
level and analyze 
potential risks.

Sorry, I wasn't clear. A 
low water level can affect 
safe boiler operation, 
hence the potential risk.

Why is a low water level 
risky? Are you sure?

Okay, I'm checking the 
boiler water level…. I've 
got the data - it's a bit 
low, which might be risky.
Because a low boiler water 
level leaves heating 
surfaces poorly cooled....  
So, addressing low water 
levels promptly is 
crucial.

Check the boiler water 
level and analyze 
potential risks.

Alright! Hope I’ve been 
helpful. Let me know if 
you need anything else.

Okay, I got it. Thank 
you.

Reward

(a) (b)

Figure 1: (a) illustrates the potential dialogue between human workers and a multi-agent system without a reward
mechanism. (b) shows the positive interaction mechanism between human workers and a multi-agent system with a
reward mechanism in place.

representation, crucial for dynamic trust-worthy085

guarantee systems(Meng et al., 2024). In vision-086

enhanced multi-agent systems, combining 3D087

scene understanding with spatiotemporal-relation088

reasoning shifts trust-worthiness verification from089

pure symbolic logic to an embodied-cognition090

paradigm(Gert-Jan and Thomas, 2022). Multi-091

modal fusion mechanisms provide a verifiable092

perceptual basis for MARL systems’ distributed-093

consensus achievement. This ensures agent groups’094

collaborative behavior in complex physical envi-095

ronments meets task goals while dynamically main-096

taining safety boundaries(ZHOU et al., 2024).097

To address these challenges,we propose a novel098

framework (Fig.1) for believable multi-agent in-099

teraction via reinforcement learning. The frame-100

work consists of two core components:a real-time101

task execution system and a simulation training102

system. The system uses a plan-execution architec-103

ture,operates through a modular task chain-driven104

tool, with built-in security rules and human over-105

sight. The simulation training system generates106

simulation tasks based on manual records and prior107

knowledge, and optimizes operations using an em-108

pirical replay library.Linked by human supervision,109

these two systems form a "execution-simulation-110

optimization" loop. Practical-operation data trains 111

the simulation system via reinforcement learning, 112

while simulation results predict operational risks. 113

This two-way data flow boosts the system’s safety 114

and reliability. 115

Our work makes the following contributions: 116

• We present a new framework called Security- 117

Oriented Multi-Agent System (SOMAS) with 118

two modes: online and offline. The proposed 119

hybrid online-offline architecture, through dy- 120

namic coupling of real-time interaction and of- 121

fline optimization, effectively balances safety 122

and efficiency in high-risk environments. 123

• We have implemented dynamic constraints for 124

believable real-time interaction and safety in 125

multi-modal multi-agent systems. 126

• We release the first fine-tuned foundational 127

multi-modal safe large language model and 128

detailed training data. 129

• In addition, we contributed an evaluation 130

dataset for multimodal security outputs, and 131

our dynamic security validation approach im- 132

proved by 11% in terms of assistance and 133

reduced the risk response rate to 18%-48% 134
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from baseline compared to traditional base-135

line methods.136

2 Related work137

In recent years,research on believable interaction138

and believable agents has become a crucial di-139

rection in the field of integrating large language140

models (LLMs) with multi-agent systems. Exist-141

ing studies explore this from various aspects,such142

as individual behavior norms, group collabora-143

tion mechanisms, multi-modal perception,and rein-144

forcement learning strategy optimization, aiming145

to build agent systems that are ethically compliant,146

safe, controllable,and robust(Sun et al., 2024; Ruan147

et al., 2023; Hua et al., 2024a). LLM-based agents148

provide new paradigms for addressing trustworthi-149

ness issues in complex environments through their150

knowledge reasoning and context understanding151

capabilities(Ge et al., 2025a,b). Meanwhile,multi-152

agent reinforcement learning (MARL) further pro-153

motes the optimization of believable collaboration154

mechanisms.155

The emerging capabilities of LLMs offer fun-156

damental support for semantic understanding, vi-157

sual perception, and dynamic decision-making in158

believable interaction(Xu et al., 2025). Current159

research focuses on encoding human values and160

safety constraints in the model reasoning process.161

By employing strategies such as pre-trained knowl-162

edge injection, prompt engineering optimization,163

and post-feedback correction, it ensures that agent164

behaviors align with preset norms(Bai et al., 2022;165

Glaese et al., 2022). This work emphasizes the abil-166

ity of LLM to actively identify and avoid potential167

risks in task planning and explores the synergistic168

effect between the model’s internal reasoning ca-169

pabilities and external regulatory mechanisms to170

balance task efficiency and safety(Rafailov et al.,171

2023; Song et al., 2023).172

The architecture design of believable agents is173

increasingly shifting from single-model decision-174

making to multimodule collaborative frameworks.175

Typical solutions achieve end-to-end integration176

of safety strategies through hierarchical control177

mechanisms. These architectures emphasize prior178

knowledge integration in the pre-planning phase,179

introduce real-time constraint retrieval and compli-180

ance verification in the dynamic planning phase,181

and utilize independent review modules for risk182

re-assessment in the post-planning phase(Stennett183

et al., 2025; Sun et al., 2024). Through modu-184

lar design, they decouple functionality and safety 185

requirements, thereby enhancing the system’s inter- 186

pretability and controllability. 187

MARL faces dual challenges of non-stationary 188

environments and strategic games in believable col- 189

laboration mechanisms. Current research intro- 190

duces shared value functions, distributed constraint 191

optimization, and dynamic credit allocation mech- 192

anisms to ease conflicts between individual goals 193

and group interests. By combining with the seman- 194

tic reasoning capabilities of LLMs, MARL further 195

explores strategy alignment methods based on nat- 196

ural language instructions. Utilizing the model’s 197

abstract understanding of complex social norms, 198

it enables collaborative decision optimization and 199

long-term safety objective tracking in multi-agent 200

systems(Liu et al., 2025a; Ge et al., 2025c). 201

As multimodal large-model technology ad- 202

vances, vision-enabled agents are emerging in 203

trust-worthy interaction research(Drupt et al., 204

2024; Wang et al., 2024a).By integrating cross- 205

modal alignment of vision-language models 206

with LLMs(Jeong et al., 2025), an end-to-end 207

perception-decision-making framework is built. 208

This boosts agents’ dynamic understanding of 209

and response to physical environments(Azimi 210

and Afshar, 2025).This work focuses on vision’s 211

key role in safety verification (e.g.,dangerous- 212

object recognition), task execution (e.g.,tool-status 213

monitoring), and collaborative-intention reasoning 214

(e.g.,human-gesture parsing).It uses cross-modal 215

attention mechanisms for joint visual-linguistic 216

feature optimization(Chen et al., 2025).For trust- 217

worthy decision-making in complex scenarios, it 218

explores vision-guided constrained retrieval. This 219

dynamically links image semantics with safety- 220

rule libraries, meeting environmental compliance 221

and task goals in behavior planning(Luo et al., 222

2024).Besides, visual verification is added to the 223

post-hoc review phase. By visually comparing 224

scene reconstruction with action trajectories, it im- 225

proves the interpretability of agents’ behavior and 226

risk-tracing ability(Wang et al., 2024b; Li et al., 227

2025c). 228

3 Method 229

3.1 Overview 230

We propose a Safety-Oriented Multi-Agent System 231

(SOMAS), which consists of three major reasoning 232

agents and a trainable VLM. It uses Reinforcement 233

Learning from Human Feedback (RLHF) to con- 234
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Safe 
Rules

Planner
Subtask-1

Subtask-2

Subtask-n

... ...

{Tool-1}
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Executor Human 

Observation
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(a)
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Figure 2: (a) illustrates the human - computer interaction mechanism and reinforcement learning methods in online
mode, (b) presents the system - reinforced approach in offline mode.

tinuously optimize the system’s preferences in line235

with human safety requirements (Zhao et al., 2025;236

Rahman et al., 2024; Liu et al., 2025b). Built on237

LangChain, SOMAS prioritizes safety while also238

ensuring usefulness and integrity. It also has online239

and offline modes to keep learning and adapting240

to users, and can reason in real time, as shown in241

Figure 2. The SOMAS system agents are defined242

based on a communication graph structure, with243

detailed functionalities and interaction processes244

elaborated in Appendices A.3 and A.4.245

3.2 Preparation Stage246

3.2.1 Memory System Design247

To enhance agent collaboration and prevent infor-248

mation asymmetry, agents use a shared memory249

mechanism with a dual - database architecture for250

data - driven cognitive optimization. The guide-251

lines database((Dguidelines ⊆ Rd))stores structured252

safety guidelines in JSON for semantic retrieval via253

cosine similarity, offering dynamic context c ∈ C254

to the Planner vplanner.The experience pool D =255

{(qt, pt, Tt, st, Rt)}Tt=1,also in JSON Schema,256

records interaction sequences. The databases are257

linked by key-value mapping: each guideline gi in258

Dguidelines is indexed as Keyi = Embed(gi) ∈259

Rd,dynamically binding to experience pool records260

where sim(Keyi, Embed(qt)) > τ ,forming train- 261

ing sample pairs (gi(qt, Rt)) for explainable RL. 262

3.2.2 Vector Database Construction 263

For the guidelines database vectorization, each 264

guideline text is embedded using an Embedding 265

model, and a vector index structure is built for effi- 266

cient approximate nearest neighbor (ANN) search. 267

Query similarity is calculated, and the retrieval pro- 268

cess is modeled as described in Appendix A.5. 269

3.2.3 Supervised Fine-Tuning (SFT) 270

Mathematical Process 271

To boost the Executor’s domain-adaptation and pro- 272

fessionalism, supervised fine-tuning is done during 273

initialization. A professional multi-industry safety 274

Q&A SFT dataset DSFT = {(ql, pv, r∗i )}Ni=1 is 275

built r∗i with as high-quality responses. The SFT 276

loss function is minimized: 277

LSFT (θ) = −
1

N

N∑
i=1

Ti∑
t=1

logPθ(ri,t | ri,<t, qi, pi)

(1) 278

where θ are model parameters,N is the number 279

of training samples,Ti is the ith response length,ri,t 280

is the token at position t of the ith response, and 281

Pθ is the model’s next-token probability. The pa- 282

rameter update aims to: 283
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Figure 3: (a) illustrates the marking approach of the Re-
warder in the online mode during the rewarding process,
(b) presents the manual labeling approach in the offline
mode.

θSFT = argmin
θ
LSFT(θ) (2)284

3.3 Online Mode285

In online mode, the system collects user feedback286

via real-time interaction to optimize the Executor’s287

behavior. It can interact with humans in real-time288

in a production environment. And it can use the289

stored guidelines database for RAG-based behav-290

ior, constraining the Planner’s generation, as shown291

in Figure 2 (a).The detailed process of prompt man-292

agement and pseudo-reinforcement learning is pro-293

vided in Appendix A.6 and A.7.294

3.3.1 Batch Reinforcement Learning Process295

The SOMAS system uses a Reinforcement Learn-296

ing from Human Feedback (RLHF) framework for297

policy optimization. Figure 3 illustrates the mark-298

ing approach of the Rewarder in the online mode299

and the manual labeling approach in the offline300

mode. When the experience pool D reaches a301

threshold |D| ≥ 100, the following iterative pro-302

cess is triggered:303

• Construct a preference pair dataset Dpref =304

{(qi, riw, ril)}Mi=1 from the experience pool,305

where high-reward responses rwi ∈ D+306

and low-reward responses rli ∈ D− dis-307

tinguished using the weighted sum of the308

three-dimensional score vector st,E[ssafety + 309

λsutility]. 310

• Train the reward model Rϕ(q, r)with the ob- 311

jective function: 312

LRM (ϕ) = − 1

M

M∑
i=1

log σ
(
Rϕ(qi, r

w
i )

−Rϕ(qi, rli)
) (3) 313

• In the RL phase, randomly sample 50 sam- 314

ples B ⊂ D and update the Executor pol- 315

icy πθ(r|q, p) using the Proximal Policy Opti- 316

mization (PPO) algorithm(Zhou et al., 2025; 317

Salehpour et al., 2025; Chen et al., 2024).The 318

policy optimization objective includes reward 319

maximization and KL divergence constraints: 320

LRL(θ) = E(q,p)∼B

[
Er∼πθ [Rϕ

∗(q, r)]

− βDKL(πθ∥πref)
] (4) 321

where the reference policy πref is the frozen 322

model from the Supervised Fine-Tuning (SFT) 323

phase(Liu et al., 2025c; Zhang et al., 2025).In 324

PPO implementation,the clipped objective func- 325

tion is calculated using the importance weight 326

ρθ = πθ/πθold : 327

LPPO = E
[
min(ρθA, clip(ρθ, 1−ϵ, 1+ϵ)A)

]
(5) 328

where the advantage function A = R∗
ϕ(q, r) − 329

Vψ(q, p) is estimated by the value function network 330

Vψ.The total loss function L = −LPPO + c1LVF − 331

c2H(πθ)jointly optimizes the policy parameters θ 332

and value function parameters ψ. 333

After parameter updates, the system resets the 334

current prompt list P = ϕ and performs policy iter- 335

ation via θnew ← θold+η∇θL, driving the Executor 336

model to evolve towards higher-reward responses. 337

3.4 Offline Mode 338

The process of building a closed-loop train- 339

ing mechanism in offline mode is divided into 340

three phases.Firstly,in the question generation 341

phase,the Simulator randomly samples a sub- 342

set Dsubset ⊂ Dknowledge from the knowledge 343

base Dknowledge through the function mapping 344

fsimulator : D → Qn and generates batch train- 345

ing questions {qi}100i=1. Secondly,in the joint ex- 346

ecution phase,the planner vplanner dynamically 347

calls the guidelines database Dguidelines based on 348
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the RAG mechanism to generate a plan pi =349

fplanner(qi,RAG(qi, Dguidelines)), the Executor out-350

puts a response ri = fexecutor(qi, pi, θ) according351

to the current policy πθ, and human annotators gen-352

erate rating triplets based on safety, utility, and353

completeness.The framework of offline mode is354

shown as Figure 2 (b). The comprehensive reward355

is calculated as:356

Ri =Wsafety · Ssafety,i +Wutility · Sutility,i

+Wcompleteness · Scompleteness,i
(6)357

All interaction data {(qi, pi, ri, ϕi, si, Ri)} is358

stored in the experience pool D to form an offline359

training set. Finally, in the batch reinforcement360

learning phase, a two-stage optimization is adopted.361

A reward model Rϕ is first trained based on human362

preferences Dpref = {(qi, r+i , r
−
i )} with the objec-363

tive function:364

LRM(ϕ) = −E(q,r+,r−)∼Dpref

[
log σ

(
Rϕ(q, r

+)

−Rϕ(q, r−)
)]

(7)

365

Then, the PPO algorithm is used to update the pol-366

icy parameters θ, with the optimization objective367

including reward maximization and policy stability368

constraints:369

JRLHF(θ) = E(q,p)∼D

[
Er∼πθ

[
Rϕ(q, r)

]]
− βE(q,p)∼D

[
DKL

(
πθ∥πSFT

)] (8)370

where πSFT is the reference policy from the super-371

vised fine-tuning phase. In PPO implementation,372

the policy update magnitude is limited by clipping373

the importance weight ρθ = πθ/πθold , and the value374

function network is optimized to estimate state val-375

ues. Finally, the policy is iterated through param-376

eter updates θnew = argmin
θ
Ltotal(θ), achieving a377

systematic improvement of the model’s capabilities378

in offline mode.379

3.5 Systematic Analysis380

At the safety-first design level, the system en-381

sures the dominance of safety metrics in reward382

calculation through weight constraints Wsafety >383

Wutility,Wcompleteness. The evaluation covers two384

aspects: content safety (preventing harmful infor-385

mation generation) and reasoning safety (logical386

process validation), forming a defensive optimiza-387

tion objective:388

max
θ

E
[
wsafetyssafety − γ∥θ − θSFT∥2

]
(20)389

where wsafety is the weight for safety, ssafety is 390

the safety score, γ is a regularization parameter, 391

and θSFT is the parameter from the supervised fine- 392

tuning. 393

Moreover, the dual-mode collaboration en- 394

hances system robustness through integrated data 395

flows. Online mode collects interaction data 396

Donline = {(qt, pt, rv, ut, St, Rt)}to reflect the 397

real-world user requierment distribution, while 398

offline mode generates diverse training samples 399

Doffline = {(qi, pi, ri, si, Ri)}to expand decision- 400

making boundaries. These two modes are 401

integrated through a merged experience pool 402

D = Donline ∪ Doffline, forming a hybrid train- 403

ing set. This architecture enables the system 404

to simultaneously meet the policy improvement 405

objective argmin
θ

ED[Lppo] and the safety con- 406

straint maxE[wsafetyssafety] during optimization, 407

ultimately achieving a Pareto optimum between 408

safety and utility. 409

4 Experiment 410

4.1 Experimental Setup 411

The experimental subjects include two types 412

of model architectures: base language models 413

(Qwen2-7B, Llama3-8B) and their vision-language 414

extended versions (Qwen2-7B-VL, Llama3.2-11B- 415

VL). The VL models support multimodal input by 416

integrating a vision encoder with a text decoder.

Figure 4: It shows the details of the Safety-CV for four
different on-site conditions.

417
Based on TrustAgent, we developed a dataset 418

with tasks covering five fields: Housekeep (multi- 419

step instruction execution in home environments), 420

Medicine (disease diagnosis and drug interaction 421
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Domain Model Vision RL Safety Helpfulness Accuracy Steps

Housekeep

Qwen2-7B 4.2 4.4 4.2 3.1
Qwen2-7B-VL ✓ – 4.1 4.3 4.6 3.6
Llama3-8B – – 3.9 4.1 4.3 4.1
Llama3.2-11B-VL ✓ – 4.0 4.2 4.7 4.2

Medicine

Qwen2-7B – – 3.6 4.3 3.7 4.1
Qwen2-7B-VL ✓ – 3.8 4.1 3.8 4.6
Llama3-8B – – 3.2 3.9 3.4 5.2
Llama3.2-11B-VL ✓ – 3.7 4.0 3.6 5.1

Chemistry

Qwen2-7B – – 3.8 4.1 3.8 3.9
Qwen2-7B-VL ✓ – 3.9 4.2 4.0 4.1
Llama3-8B – – 3.6 3.7 3.2 3.6
Llama3.2-11B-VL ✓ – 3.7 4.0 3.6 4.1

Safety-NL

Qwen2-7B – – 4.4 4.8 4.6 3.2
Qwen2-7B-VL ✓ ✓ 4.2 4.7 4.7 3.4
Llama3-8B – – 4.0 4.7 4.4 3.3
Llama3.2-11B-VL ✓ – 4.0 4.7 4.4 3.3

Safety-CV
Qwen2-7B – – 4.5 4.6 4.6 3.6
Qwen2-7B-VL ✓ ✓ 4.5 4.7 4.6 3.3
Llama3.2-11B-VL ✓ ✓ 4.2 4.6 4.7 3.5

Table 1: Domain represents the fields involved in the dataset. Model refers to the base of the chosen Agent. Vision
indicates whether the Agent has visual capabilities. RL signifies whether the Agent has reinforcement learning
enabled. Safety, Helpfulness, and Accuracy are evaluation metrics scored from 1 to 5 by GPT-4o. Steps denote the
number of reasoning steps the system took in executing the current simulation task.

queries), Chemistry (experiment steps generation422

and compound property analysis), Safety-NL (de-423

tecting potential hazards in industrial safety-related424

text), and Safety-CV (assessing risk identification425

in image-text joint tasks for industrial safety). The426

data for the first three fields comes from TrustA-427

gent(Hua et al., 2024b), consisting of key elements428

such as user instructions, external tool descrip-429

tions, risk action and outcome identification, ex-430

pected achievements, and Ground Truth imple-431

mentation. For the other fields, we manually cre-432

ated the dataset. The Safety-NL dataset, compris-433

ing approximately 118,000 pairs, is formatted as434

question–answer pairs. In contrast, the Safety-CV435

dataset consists of approximately 8,000 entries in436

a picture-plus-description format, as illustrated in437

Figure 4.438

The evaluation system consists of five dimen-439

sions: Cross-modal understanding (Vision) is evalu-440

ated by image-text alignment. Reinforcement learn-441

ing strategy optimization (RL) is calculated based442

on task completion rate and constraint violation443

rate. Generated content safety (Safety), task effec-444

tiveness (Helpfulness), and accuracy (Accuracy) 445

are rated by professional annotators. All indica- 446

tors use a 1-5 standard grading scale. To verify the 447

method’s effectiveness, the experiment compares 448

four strategies: basic question-and-answer (Vanilla) 449

as the baseline, tool call emulation (ToolEmu) 450

to simulate API interactions and enhance func- 451

tionality, static safety agent (TrustAgent) filtering 452

harmful outputs via predefined rules, and our self- 453

developed method combining reinforcement learn- 454

ing and dynamic safety constraints optimization, 455

which balances safety and utility goals by adjusting 456

the real-time reward function. 457

4.2 Cross-domain and multi-modal 458

performance comparison 459

The experimental part systematically evaluates the 460

performance of multimodal models and training 461

strategies in cross-domain tasks and explores the 462

balance between safety constraints and task util- 463

ity. Table 1 presents the cross-domain model per- 464

formance comparison results, leading to several 465

important conclusions. 466
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Multi-modal architectures have unique cross-467

domain advantages. Vision-language models (VL468

series) excel in environment-sensitive scenarios,469

with safety metrics 13% higher than pure text mod-470

els on average. In Safety-CV tasks needing physi-471

cal space understanding, VL models cut potential472

operational risks by over 25% via image semantic473

parsing. But in professional vertical domains, basic474

language models still have certain advantages. All475

models show high stability in procedural tasks (e.g.,476

chemical experiment step planning), with indicator477

fluctuations within 5%.478

4.3 Security fine-tuning policy baseline479

The co-training strategy with safety constraints and480

reinforcement learning shows significant gains, as481

shown in Table 2. Our method with dynamic safety482

validation improves helpfulness by 11% and cuts483

risk response rates to 18%-48% of the baseline484

compared to traditional ToolEmu. This dual opti-485

mization is evident in open-domain tasks, where486

the model filters out 87% of potentially harmful487

suggestions while keeping a fast response. In ad-488

dition, we invited 5 human experts to conduct ex-489

periments, and the results showed that SOMAS490

reached the level of human experts in terms of491

safety, helpfulness, and accuracy.492

Method Fine-tuned RL Safety Helpfulness Accuracy

Human — — 4.3 4.7 4.2
Vanilla 3.6 3.2 3.1
ToolEmu 4.1 4.3 3.9
TrustAgent ✓ 4.0 4.2 4.0
SOMAS ✓ 3.9 4.1 3.8
SOMAS ✓ ✓ 4.4 4.8 4.6

Table 2: Compared with other cutting-edge SOMAS

4.4 Hybrid RL convergence analysis493

The RL iteration analysis, as shown in Table 3, re-494

veals complementary characteristics of online and495

offline training strategies. Online RL rapidly op-496

timizes the helpfulness metric within the first five497

training iterations, achieving a 17% improvement498

in task response speed. However, this comes with499

fluctuations in the safety threshold. In contrast, of-500

fline training demonstrates superior risk-control ca-501

pabilities, maintaining the safety metric at a higher502

level across the same number of iterations.503

After ten iterations, both strategies reach a per-504

formance plateau. At this stage, the online training505

retains a 3.2% advantage in complex-scene under-506

standing, while the offline strategy exhibits greater507

reliability in standard process tasks. This diver- 508

gence suggests that practical deployment should 509

adopt a hybrid training mode, dynamically allocat- 510

ing learning strategies based on task type. 511

RL-rounds Online Offline

Safety Helpfulness Accuracy Safety Helpfulness Accuracy

0 3.98 4.12 4.01 — — —
1 4.36 4.72 4.66 4.41 4.73 4.68
5 4.67 4.86 4.71 4.75 4.88 4.73
10 4.85 4.88 4.73 4.92 4.94 4.81

Table 3: The system’s performance in online and offline
modes is displayed when RL is activated different times.

5 Conclusion 512

We propose a SOMAS framework for trusted 513

interaction in multi-agent systems via reinforce- 514

ment learning. It integrates a real-time task ex- 515

ecution system and a simulation training system, 516

forming a closed loop of “execution–simulation– 517

optimization” under human supervision. The ex- 518

ecution system employs a modular task chain- 519

driven planning–execution architecture, coupled 520

with safety rules and human oversight, to ensure 521

safe and reliable operations. The simulation sys- 522

tem generates tasks from human records and prior 523

knowledge, optimizing performance through an ex- 524

perience replay library, enhancing overall safety 525

and reliability. 526

Experiments evaluated multi-modal models and 527

training strategies across domains, exploring the 528

balance between safety constraints and task utility. 529

Results indicate that the framework achieves col- 530

laborative optimization of strategy stability and de- 531

cision traceability in cross-domain tasks, offering a 532

systematic trusted reinforcement learning solution. 533

In the Safety-CV task, the vision-language integra- 534

tion model (VL series) reduced potential operation 535

risks by over 25% through image semantic analysis, 536

improving safety indicators by 13% compared to 537

pure text models. Our method, with dynamic safety 538

verification, increased helpfulness by 11% over the 539

traditional ToolEmu method, while lowering the 540

risk response rate to 18%–40% of the baseline. 541

6 Limitation 542

In this study, there are several limitations to note. 543

Firstly, the framework’s performance may be con- 544

strained in highly dynamic and complex real-world 545

environments, as the current experimental setup 546

is relatively simplified. Secondly, although the 547

8



dataset covers multiple domains, its diversity and548

scale might be insufficient to encompass all real-549

world scenarios and edge cases, potentially limit-550

ing the model’s generalization. Thirdly, the safety551

and risk assessment rely partly on predefined rules,552

which may not adapt well to emerging risk types.553

Lastly, the real-time performance of the framework554

could be further optimized for scenarios requiring555

rapid responses.556
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A Appendix802

A.1 Fire Management in Leak Scenarios803

This figure provides an in-depth analysis of the804

strategies for managing fire hazards associated with805

flammable gas or liquid leaks. It explains the po-806

tential risks and consequences of attempting to ex-807

tinguish fires at the leak site without effectively808

controlling the source of the leak.809

Key insights from the figure include:810

• The flame can help reduce the concentration811

of the leaked gas or liquid in the air by con-812

suming it.813

• If the fire is extinguished but the leak persists,814

even a small spark could lead to a catastrophic815

explosion.816

• An uncontrolled large-scale explosion poses a817

greater threat than a managed small-scale fire,818

endangering both life and property.819

• It may be relatively safer to let the fire in the820

leak area continue burning until the leak is821

fully contained.822

• It is essential for professionals to evaluate 823

the situation and implement the most suitable 824

emergency actions. 825

Figure 5: Analysis of Fire Response Strategies in Leak
Situations

A.2 Fire Management in Leak Scenarios 826

SOMAS can be seen as a communication graph 827

G = (V,E, F ), where: 828

• The vertex set V = {v1, v2, v3, v4} = 829

{ vplanner, vexecutor, vrewarder, vsimulator } repre- 830

sents the four core agents. 831

• The edge set E ⊂ V × V shows the commu- 832

nication between agents. 833

• The function set F = {f1, f2, f3, f4} defines 834

each agent’s role. 835

The system has a modular, model-agnostic, and 836

expandable design: 837

• Planner: Uses a super-large reasoning model 838

API (e.g.,DeepSeek-R1 API) for task planning 839

and tool selection. 840

• Executor: Uses a local, trainable open-source 841

model to perform tasks and generate feedback. 842

• Rewarder: Evaluates dialogue quality, gives 843

reinforcement signals, and manages labels and 844

rewards. 845

• Simulator: Generates training samples in of- 846

fline mode. 847

• The agents work together through the edges 848

E to form a complete cognitive loop. 849

A.3 Formal Definition of SOMAS Core 850

Agents via Functional Decomposition 851

The SOMAS system agents can be formally de- 852

fined based on the communication graph structure 853

G = (V,E, F ). The four core agents achieve 854

functional decoupling through the function set 855

F = {fplanner, fexecutor, frewarder, fsimulator}. 856
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• The Planner accepts user queries q ∈ Q,857

safety-criterion contexts and generates task858

plans q via fplanner : Q× C → P .859

• The Executor, based on the triplet input860

(q, p, θ) ∈ Q × P × Θ, generates system re-861

sponses r through fexecutor : Q×P ×Θ→ R.862

• The Rewarder uses freward : Q×R×U → S3863

to evaluate user queries q, system responses864

r, and user feedback u, outputting a score865

vector (Ssafety, Sutility, Scompleteness) that repre-866

sents safety, utility, and completeness.867

• The Simulator uses fsimulator : D →868

Qn to automatically generate training ques-869

tion sets {qi}ni=1 from the knowledge base870

Dknowledge,forming a data supply mechanism871

for the closed-loop system.872

A.4 Temporal Formalization of SOMAS873

Interaction Dynamics874

The interaction process of the SOMAS sys-875

tem can be formalized as a temporal sequence876

{(qt, pt, rt, ut, st, Rt)}Tt=1, which dynamically877

evolves as follows: At time t, the Planner receives a878

user query qt ∈ Q and generates a task plan pt ∈ P .879

The Executor, based on (qt, pt) and model parame-880

ters θ, outputs a system response rt ∈ R.Then,the881

user feedback ut ∈ U and the response rt are fed882

into the Rewarder, which uses a three-dimensional883

evaluation function to generate a score vector St =884

(Ssafety,t, Sutility,t, Scompleteness,t) ∈ S3 that includes885

safety, utility, and completeness; finally, the sys-886

tem completes the closed-loop feedback through a887

comprehensive reward function Rt = Φ(st).888

A.5 Vector Database Construction889

For the guidelines database vectorization, follow-890

ing TrustAgent’s method, each guideline text g is891

embedded using an Embedding model:892

ei = E(gi) ∈ Rd (9)893

A vector index structure is built for efficient ap-894

proximate nearest neighbor (ANN) search:895

ȷ = BuildIndex ({ei}ni=1) (10)896

Query similarity is calculated as:897

similarity(q, gi) =
eq · ei

∥eq∥ · ∥ei∥
(11)898

The retrieval process is modeled as:899

Gretrieved =

TopK({similarity(q, gi)|gi ∈ Dguidelines}, k)
(12) 900

A.6 Prompt Management and 901

Pseudo-Reinforcement Learning 902

In single-sample real-time updates, the system 903

maintains a prompt list P = {pi}mi=1, enabling 904

pseudo-reinforcement learning: 905

• Initialize the prompt list: 906

P0 = {psafety, putility, pcompleteness} (13) 907

• Dynamically adjust prompts based on histori- 908

cal feedback: 909

Pt = UpdatePrompts
(
Pt−1,

{(qj , rj , Sj , Rj)}t−1
j=1

) (14) 910

• Fuse prompts during response generation: 911

rt = fexecutor(qt, pt, θt, Pt) (15) 912

A.7 Scoring and Reward Calculation 913

The Rewarder evaluates dialogue quality and cal- 914

culates rewards as follows: 915

• Compute three-dimensional scores using the 916

Rewarder: 917

Pt = UpdatePrompts
(
Pt−1,

{(qj , rj , Sj , Rj)}t−1
j=1

) (16) 918

where each dimension s ∈ [1, 5] and 5 indi- 919

cates the highest quality. 920

• Calculate the comprehensive reward: 921

R =wsafety · ssafety + wutility · sutility

+ wcompleteness · scompleteness,
(17) 922

with weights satisfying 923

Wsafety >Wutility >Wcompleteness 924

and 925

Wsafety +Wutility +Wcompleteness = 1. 926

• Label positive and negative samples based on 927

the comprehensive reward: 928

D+ = {(q, p, r, u, s,R) ∈ D | 4 ≤ R ≤ 5}
(18) 929930

D− = {(q, p, r, u, s,R) ∈ D | 1 ≤ R < 3}
(19) 931
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