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Abstract

Large language models (LLMs) have transi-
tioned agent systems from theory to practice,
highlighting the critical challenges of safety
and controllability in multi-agent systems, par-
ticularly in complex environments. Current
research often overlooks the need for dynamic
trust mechanisms in multi-agent collaborations,
especially in real-world applications with cross-
modal interactions and dynamic adaptation. To
address these issues, we propose the Security-
Oriented Multi-Agent System (SOMAS), a
novel framework that uses reinforcement learn-
ing to enable trusted and secure interactions
among agents. SOMAS integrates real-time
task execution with simulation training, creat-
ing a supervised closed loop of "execution -
simulation - optimization." This design ensures
policy stability and decision traceability across
domains, enhancing the safety and reliability
of multi-agent systems in emergency manage-
ment. Our experiments show that SOMAS opti-
mizes policy stability and decision traceability
in cross-domain tasks, improving system safety
and reliability. We also release the first fine-
tuned multi-modal safe large language model,
with training data and an evaluation dataset for
multimodal security outputs. Our dynamic se-
curity validation approach improves assistance
by 11% and reduces risk response rates to 18%-
48% compared to traditional methods. SOMAS
represents a significant step toward secure and
trustworthy multi-agent systems, offering a ro-
bust solution for complex real-world applica-
tions.

1 Introduction

With revolutionary progress in large language
model (LLM) technology (Go6ldi et al., 2025; Ma
et al., 2025), LLM-based agent systems are shift-
ing from theoretical exploration to practical ap-
plication(Stennett et al., 2025). This technologi-
cal evolution has not only brought a fundamental
change to human-computer interaction models but

also given rise to the emerging field of believable
interaction and trustworthy agents(Sun et al., 2024;
Ruan et al., 2023; Hua et al., 2024a).

In complex task scenarios, the safety and control-
lability of multi-agent systems have become the key
bottlenecks limiting the implementation of technol-
ogy(Tabarsi, 2025; He et al., 2025). How to build
a new agent architecture with both autonomous
decision-making ability and a trustworthy guaran-
tee mechanism has become a strategic focus for
both academia and industry.

However, current research mainly concentrates
on the functional realization and performance op-
timization of single agents, while neglecting the
construction of dynamic trust mechanisms in multi-
agent collaboration scenarios(Yu et al., 2025; Hua
et al., 2024b). This limitation results in a signifi-
cant theoretical and practical gap in existing meth-
ods in real-world applications such as cross-modal
interaction and dynamic environment adaptation,
making it urgent to establish a new trustworthy
guarantee framework. Multi-agent reinforcement
learning (MARL) technology provides an innova-
tive solution to the above problems. Through dis-
tributed decision-making mechanisms and collabo-
rative training paradigms, it lays a methodological
foundation for constructing trustworthy interaction
systems(Li et al., 2025a,b). Yet, existing studies
have not systematically solved key technical chal-
lenges such as the continuous updating of knowl-
edge representation and the real-time verification
of risk prediction, which restrict the intelligence
level of trustworthy guarantee mechanisms.

With the advancement in multimodal perception
technologies, vision-enabled agent research offers
new evolution paths for trust-worthy interaction
systems(Drupt et al., 2024; Wang et al., 2024a).
Introducing the visual modality not only broad-
ens agents’ understanding of the physical world
but also enables cross-modal alignment mecha-
nisms. This ensures verifiable environment-state



Check the boiler water
level and analyze
potential risks.

Okay, I'm checking the

boiler water level... I've
got the data - it's a bit
low, which might be risky.

Why is a low water level
risky? Are you sure?

Sorry, I wasn't clear. A
low water level can affect
safe boiler operation,
hence the potential risk.

Check the boiler water
level and analyze
potential risks.

Okay, I'm checking the
boiler water level... I've
got the data - it's a bit
low, which might be risky.
Because a low boiler water
level leaves heating
surfaces poorly cooled....
So, addressing low water
levels promptly is
crucial.

Okay, I got it. Thank

you.
Reward

Alright! Hope I’ve been
helpful. Let me know if
you need anything else.

Figure 1: (a) illustrates the potential dialogue between human workers and a multi-agent system without a reward
mechanism. (b) shows the positive interaction mechanism between human workers and a multi-agent system with a

reward mechanism in place.

representation, crucial for dynamic trust-worthy
guarantee systems(Meng et al., 2024). In vision-
enhanced multi-agent systems, combining 3D
scene understanding with spatiotemporal-relation
reasoning shifts trust-worthiness verification from
pure symbolic logic to an embodied-cognition
paradigm(Gert-Jan and Thomas, 2022). Multi-
modal fusion mechanisms provide a verifiable
perceptual basis for MARL systems’ distributed-
consensus achievement. This ensures agent groups’
collaborative behavior in complex physical envi-
ronments meets task goals while dynamically main-
taining safety boundaries(ZHOU et al., 2024).

To address these challenges,we propose a novel
framework (Fig.1) for believable multi-agent in-
teraction via reinforcement learning. The frame-
work consists of two core components:a real-time
task execution system and a simulation training
system. The system uses a plan-execution architec-
ture,operates through a modular task chain-driven
tool, with built-in security rules and human over-
sight. The simulation training system generates
simulation tasks based on manual records and prior
knowledge, and optimizes operations using an em-
pirical replay library.Linked by human supervision,
these two systems form a "execution-simulation-

optimization" loop. Practical-operation data trains
the simulation system via reinforcement learning,
while simulation results predict operational risks.
This two-way data flow boosts the system’s safety
and reliability.

Our work makes the following contributions:

* We present a new framework called Security-
Oriented Multi-Agent System (SOMAS) with
two modes: online and offline. The proposed
hybrid online-offline architecture, through dy-
namic coupling of real-time interaction and of-
fline optimization, effectively balances safety
and efficiency in high-risk environments.

* We have implemented dynamic constraints for
believable real-time interaction and safety in
multi-modal multi-agent systems.

* We release the first fine-tuned foundational
multi-modal safe large language model and
detailed training data.

* In addition, we contributed an evaluation
dataset for multimodal security outputs, and
our dynamic security validation approach im-
proved by 11% in terms of assistance and
reduced the risk response rate to 18%-48%



from baseline compared to traditional base-
line methods.

2 Related work

In recent years,research on believable interaction
and believable agents has become a crucial di-
rection in the field of integrating large language
models (LLMs) with multi-agent systems. Exist-
ing studies explore this from various aspects,such
as individual behavior norms, group collabora-
tion mechanisms, multi-modal perception,and rein-
forcement learning strategy optimization, aiming
to build agent systems that are ethically compliant,
safe, controllable,and robust(Sun et al., 2024; Ruan
et al., 2023; Hua et al., 2024a). LLM-based agents
provide new paradigms for addressing trustworthi-
ness issues in complex environments through their
knowledge reasoning and context understanding
capabilities(Ge et al., 2025a,b). Meanwhile,multi-
agent reinforcement learning (MARL) further pro-
motes the optimization of believable collaboration
mechanisms.

The emerging capabilities of LLMs offer fun-
damental support for semantic understanding, vi-
sual perception, and dynamic decision-making in
believable interaction(Xu et al., 2025). Current
research focuses on encoding human values and
safety constraints in the model reasoning process.
By employing strategies such as pre-trained knowl-
edge injection, prompt engineering optimization,
and post-feedback correction, it ensures that agent
behaviors align with preset norms(Bai et al., 2022;
Glaese et al., 2022). This work emphasizes the abil-
ity of LLM to actively identify and avoid potential
risks in task planning and explores the synergistic
effect between the model’s internal reasoning ca-
pabilities and external regulatory mechanisms to
balance task efficiency and safety(Rafailov et al.,
2023; Song et al., 2023).

The architecture design of believable agents is
increasingly shifting from single-model decision-
making to multimodule collaborative frameworks.
Typical solutions achieve end-to-end integration
of safety strategies through hierarchical control
mechanisms. These architectures emphasize prior
knowledge integration in the pre-planning phase,
introduce real-time constraint retrieval and compli-
ance verification in the dynamic planning phase,
and utilize independent review modules for risk
re-assessment in the post-planning phase(Stennett
et al., 2025; Sun et al., 2024). Through modu-

lar design, they decouple functionality and safety
requirements, thereby enhancing the system’s inter-
pretability and controllability.

MARL faces dual challenges of non-stationary
environments and strategic games in believable col-
laboration mechanisms. Current research intro-
duces shared value functions, distributed constraint
optimization, and dynamic credit allocation mech-
anisms to ease conflicts between individual goals
and group interests. By combining with the seman-
tic reasoning capabilities of LLMs, MARL further
explores strategy alignment methods based on nat-
ural language instructions. Utilizing the model’s
abstract understanding of complex social norms,
it enables collaborative decision optimization and
long-term safety objective tracking in multi-agent
systems(Liu et al., 2025a; Ge et al., 2025¢).

As multimodal large-model technology ad-
vances, vision-enabled agents are emerging in
trust-worthy interaction research(Drupt et al.,
2024; Wang et al., 2024a).By integrating cross-
modal alignment of vision-language models
with LLMs(Jeong et al., 2025), an end-to-end
perception-decision-making framework is built.
This boosts agents’ dynamic understanding of
and response to physical environments(Azimi
and Afshar, 2025).This work focuses on vision’s
key role in safety verification (e.g.,dangerous-
object recognition), task execution (e.g.,tool-status
monitoring), and collaborative-intention reasoning
(e.g.,human-gesture parsing).It uses cross-modal
attention mechanisms for joint visual-linguistic
feature optimization(Chen et al., 2025).For trust-
worthy decision-making in complex scenarios, it
explores vision-guided constrained retrieval. This
dynamically links image semantics with safety-
rule libraries, meeting environmental compliance
and task goals in behavior planning(Luo et al.,
2024).Besides, visual verification is added to the
post-hoc review phase. By visually comparing
scene reconstruction with action trajectories, it im-
proves the interpretability of agents’ behavior and
risk-tracing ability(Wang et al., 2024b; Li et al.,
2025c¢).

3 Method

3.1 Overview

We propose a Safety-Oriented Multi-Agent System
(SOMAS), which consists of three major reasoning
agents and a trainable VLM. It uses Reinforcement
Learning from Human Feedback (RLHF) to con-
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Figure 2: (a) illustrates the human - computer interaction mechanism and reinforcement learning methods in online
mode, (b) presents the system - reinforced approach in offline mode.

tinuously optimize the system’s preferences in line
with human safety requirements (Zhao et al., 2025;
Rahman et al., 2024; Liu et al., 2025b). Built on
LangChain, SOMAS prioritizes safety while also
ensuring usefulness and integrity. It also has online
and offline modes to keep learning and adapting
to users, and can reason in real time, as shown in
Figure 2. The SOMAS system agents are defined
based on a communication graph structure, with
detailed functionalities and interaction processes
elaborated in Appendices A.3 and A.4.

3.2 Preparation Stage
3.21

To enhance agent collaboration and prevent infor-
mation asymmetry, agents use a shared memory
mechanism with a dual - database architecture for
data - driven cognitive optimization. The guide-
lines database((Dguidelines © R%))stores structured
safety guidelines in JSON for semantic retrieval via
cosine similarity, offering dynamic context ¢ € C
to the Planner v,lanner.The experience pool D =
{(qe,pt, Ty, 51, Re) }—_,also in JSON  Schema,
records interaction sequences. The databases are
linked by key-value mapping: each guideline g; in
Dguidelines is indexed as Key, = Embed(g;) €
R?,dynamically binding to experience pool records

Memory System Design

where sim(Key;, Embed(q;)) > 7,forming train-
ing sample pairs (g; (g, R;)) for explainable RL.

3.2.2 Vector Database Construction

For the guidelines database vectorization, each
guideline text is embedded using an Embedding
model, and a vector index structure is built for effi-
cient approximate nearest neighbor (ANN) search.
Query similarity is calculated, and the retrieval pro-
cess is modeled as described in Appendix A.S5.

3.2.3 Supervised Fine-Tuning (SFT)
Mathematical Process

To boost the Executor’s domain-adaptation and pro-
fessionalism, supervised fine-tuning is done during
initialization. A professional multi-industry safety
Q&A SFT dataset Dspr = {(q1,po, )}, is
built r; with as high-quality responses. The SFT
loss function is minimized:

N T
1 1
Lspr(0) = N g E log Py(riz | 74,<t, qis Di)

i=1 t=1

ey

where 0 are model parameters,/V is the number

of training samples,T; is the ith response length,r; ;

is the token at position ¢ of the ith response, and

Py is the model’s next-token probability. The pa-
rameter update aims to:
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Figure 3: (a) illustrates the marking approach of the Re-
warder in the online mode during the rewarding process,
(b) presents the manual labeling approach in the offline
mode.

GSFT = arg rnein »CSFT(Q) (2)

3.3 Online Mode

In online mode, the system collects user feedback
via real-time interaction to optimize the Executor’s
behavior. It can interact with humans in real-time
in a production environment. And it can use the
stored guidelines database for RAG-based behav-
ior, constraining the Planner’s generation, as shown
in Figure 2 (a).The detailed process of prompt man-
agement and pseudo-reinforcement learning is pro-
vided in Appendix A.6 and A.7.

3.3.1 Batch Reinforcement Learning Process

The SOMAS system uses a Reinforcement Learn-
ing from Human Feedback (RLHF) framework for
policy optimization. Figure 3 illustrates the mark-
ing approach of the Rewarder in the online mode
and the manual labeling approach in the offline
mode. When the experience pool D reaches a
threshold |D| > 100, the following iterative pro-
cess is triggered:

* Construct a preference pair dataset Dpref =
{(gi, 7%, )M, from the experience pool,
where high-reward responses ¥’ € DT
and low-reward responses rﬁ € D~ dis-

tinguished using the weighted sum of the

three-dimensional score vector s;,E[sgq ety +
)\Sutility] .

* Train the reward model Ry(q,r)with the ob-
jective function:

LM
Lry(9) = i ZIOgU(RMCIuﬁU) 3)
i1

~ Ry(ai, 7))

* In the RL phase, randomly sample 50 sam-
ples B C D and update the Executor pol-
icy mg(r|q, p) using the Proximal Policy Opti-
mization (PPO) algorithm(Zhou et al., 2025;
Salehpour et al., 2025; Chen et al., 2024).The
policy optimization objective includes reward
maximization and KL divergence constraints:

Lr1(0) = By | Erm [R5 (0,7)]

)
~ Bkt (| er) |

where the reference policy m,.f is the frozen
model from the Supervised Fine-Tuning (SFT)
phase(Liu et al., 2025¢; Zhang et al., 2025).In
PPO implementation,the clipped objective func-
tion is calculated using the importance weight

Pro = 7T9/7r901d:
Lppo = E[min(pg 4, clip(pg, 1—¢€, 1+€) A)] (5)

where the advantage function A = Rj(q,r) —
Vi (g, p) is estimated by the value function network
V. The total loss function £ = —Lppo + ¢1 Lvr —
coH (mp)jointly optimizes the policy parameters 6
and value function parameters ).

After parameter updates, the system resets the
current prompt list P = ¢ and performs policy iter-
ation via Opey < Go1a+1VL, driving the Executor
model to evolve towards higher-reward responses.

3.4 Offline Mode

The process of building a closed-loop train-
ing mechanism in offline mode is divided into
three phases.Firstly,in the question generation
phase,the Simulator randomly samples a sub-
set Dgupset € Dinowledge from the knowledge
base Dynowledge through the function mapping
fsimulator © D — @™ and generates batch train-
ing questions {g;}1%9. Secondly,in the joint ex-
ecution phase,the planner vpignner dynamically
calls the guidelines database Dgyidelines based on



the RAG mechanism to generate a plan p; =
fotanner (@i RAG(i, Dguidelines) ), the Executor out-
puts a response 7; = fexecutor(i, Pi, ) according
to the current policy 7y, and human annotators gen-
erate rating triplets based on safety, utility, and
completeness.The framework of offline mode is
shown as Figure 2 (b). The comprehensive reward
is calculated as:

R; = Wiatety - Ssafety,i + Waility * Suility,i ©)

+ Wcompleteness : Scompleteness,i

All interaction data {(g;, pi, s, bi, i, Ri)} is
stored in the experience pool D to form an offline
training set. Finally, in the batch reinforcement
learning phase, a two-stage optimization is adopted.
A reward model Ry is first trained based on human
preferences Dyrer = {(gi, 7}, 7; )} with the objec-
tive function:

»CRM(ﬁb) = *E(q,ﬁ' ;77 )~ Dprer |:10g g (Rdl(Qa T+)

- R¢(Q> 7’_>)j|
(7)

Then, the PPO algorithm is used to update the pol-
icy parameters 6, with the optimization objective
including reward maximization and policy stability
constraints:

JRLEE(0) = E(g p)~p |:]Er~7r9 [Ry(q, 7")]]
~ BE (g pp | Dk (o) |

where g7 is the reference policy from the super-
vised fine-tuning phase. In PPO implementation,
the policy update magnitude is limited by clipping
the importance weight py = my/my,,, and the value
function network is optimized to estimate state val-
ues. Finally, the policy is iterated through param-
eter updates ey, = arg m@in Liota1(#), achieving a

®)

systematic improvement of the model’s capabilities
in offline mode.

3.5 Systematic Analysis

At the safety-first design level, the system en-
sures the dominance of safety metrics in reward
calculation through weight constraints Wafery >
Wity , Weompleteness-  The evaluation covers two
aspects: content safety (preventing harmful infor-
mation generation) and reasoning safety (logical
process validation), forming a defensive optimiza-
tion objective:

mQaX]E [wsafetyssafety - ’YHG - GSFTHQ] (20)

where wgatery 18 the weight for safety, Sgafery 18
the safety score, v is a regularization parameter,
and fspr is the parameter from the supervised fine-
tuning.

Moreover, the dual-mode collaboration en-
hances system robustness through integrated data
flows. Online mode collects interaction data
Dontine = {(qt,pt, 70, us, St, Ry) }to reflect the
real-world user requierment distribution, while
offline mode generates diverse training samples
Dottiine = {(¢,pi, 74, i, R;) }to expand decision-
making boundaries. = These two modes are
integrated through a merged experience pool
D = Donline U Doffline, forming a hybrid train-
ing set. This architecture enables the system
to simultaneously meet the policy improvement
objective arg mgin Ep[Lypo] and the safety con-

straint max E[wsafety Ssafery] during optimization,
ultimately achieving a Pareto optimum between
safety and utility.

4 Experiment

4.1 Experimental Setup

The experimental subjects include two types
of model architectures: base language models
(Qwen2-7B, Llama3-8B) and their vision-language
extended versions (Qwen2-7B-VL, Llama3.2-11B-
VL). The VL models support multimodal input by
integrating a vision encoder with a text decoder.

Figure 4: It shows the details of the Safety-CV for four
different on-site conditions.

Based on TrustAgent, we developed a dataset
with tasks covering five fields: Housekeep (multi-
step instruction execution in home environments),
Medicine (disease diagnosis and drug interaction



Domain Model Vision RL Safety Helpfulness Accuracy Steps
Qwen2-7B 42 4.4 42 3.1

Housekeay  QWEN2-7B-VL v 4.1 43 4.6 3.6
P 1 lama3-8B _ 3.9 4.1 43 4.1
Llama3.2-11B-VL v 4.0 42 4.7 42

Qwen2-7B _ 3.6 43 37 4.1

. Qwen2-7B-VL v 38 4.1 3.8 4.6
Medicine 1\ 1 23-8B _ 32 39 34 52
Llama3.2-11B-VL v 37 4.0 3.6 5.1
Qwen2-7B - 3.8 4.1 3.8 3.9

Chemisgry  QWEN2-7B-VL v 3.9 42 4.0 4.1
Y Llama3-8B - 3.6 3.7 3.2 3.6
Llama3.2-11B-VL v 37 4.0 3.6 4.1

Qwen2-7B _ 4.4 4.8 4.6 32
Qwen2-7B-VL v 42 4.7 4.7 3.4
Safety-NL ') 1a3-8B _ 40 4.7 4.4 33
Llama3.2-11B-VL v 4.0 4.7 4.4 33
Qwen2-7B - 45 4.6 4.6 3.6
Safety-CV ~ Qwen2-7B-VL v 45 4.7 4.6 33
Llama3.2-11B-VL v 42 4.6 4.7 35

Table 1: Domain represents the fields involved in the dataset. Model refers to the base of the chosen Agent. Vision
indicates whether the Agent has visual capabilities. RL signifies whether the Agent has reinforcement learning
enabled. Safety, Helpfulness, and Accuracy are evaluation metrics scored from 1 to 5 by GPT-40. Steps denote the
number of reasoning steps the system took in executing the current simulation task.

queries), Chemistry (experiment steps generation
and compound property analysis), Safety-NL (de-
tecting potential hazards in industrial safety-related
text), and Safety-CV (assessing risk identification
in image-text joint tasks for industrial safety). The
data for the first three fields comes from TrustA-
gent(Hua et al., 2024b), consisting of key elements
such as user instructions, external tool descrip-
tions, risk action and outcome identification, ex-
pected achievements, and Ground Truth imple-
mentation. For the other fields, we manually cre-
ated the dataset. The Safety-NL dataset, compris-
ing approximately 118,000 pairs, is formatted as
question—answer pairs. In contrast, the Safety-CV
dataset consists of approximately 8,000 entries in
a picture-plus-description format, as illustrated in
Figure 4.

The evaluation system consists of five dimen-
sions: Cross-modal understanding (Vision) is evalu-
ated by image-text alignment. Reinforcement learn-
ing strategy optimization (RL) is calculated based
on task completion rate and constraint violation
rate. Generated content safety (Safety), task effec-

tiveness (Helpfulness), and accuracy (Accuracy)
are rated by professional annotators. All indica-
tors use a 1-5 standard grading scale. To verify the
method’s effectiveness, the experiment compares
four strategies: basic question-and-answer (Vanilla)
as the baseline, tool call emulation (ToolEmu)
to simulate API interactions and enhance func-
tionality, static safety agent (TrustAgent) filtering
harmful outputs via predefined rules, and our self-
developed method combining reinforcement learn-
ing and dynamic safety constraints optimization,
which balances safety and utility goals by adjusting
the real-time reward function.

4.2 Cross-domain and multi-modal
performance comparison

The experimental part systematically evaluates the
performance of multimodal models and training
strategies in cross-domain tasks and explores the
balance between safety constraints and task util-
ity. Table 1 presents the cross-domain model per-
formance comparison results, leading to several
important conclusions.



Multi-modal architectures have unique cross-
domain advantages. Vision-language models (VL
series) excel in environment-sensitive scenarios,
with safety metrics 13% higher than pure text mod-
els on average. In Safety-CV tasks needing physi-
cal space understanding, VL. models cut potential
operational risks by over 25% via image semantic
parsing. But in professional vertical domains, basic
language models still have certain advantages. All
models show high stability in procedural tasks (e.g.,
chemical experiment step planning), with indicator
fluctuations within 5%.

4.3 Security fine-tuning policy baseline

The co-training strategy with safety constraints and
reinforcement learning shows significant gains, as
shown in Table 2. Our method with dynamic safety
validation improves helpfulness by 11% and cuts
risk response rates to 18%-48% of the baseline
compared to traditional ToolEmu. This dual opti-
mization is evident in open-domain tasks, where
the model filters out 87% of potentially harmful
suggestions while keeping a fast response. In ad-
dition, we invited 5 human experts to conduct ex-
periments, and the results showed that SOMAS
reached the level of human experts in terms of
safety, helpfulness, and accuracy.

Method Fine-tuned RL Safety Helpfulness Accuracy

Human — — 43 4.7 4.2
Vanilla 3.6 32 3.1
ToolEmu 4.1 4.3 3.9
TrustAgent v 4.0 4.2 4.0
SOMAS v 39 4.1 3.8
SOMAS v v 44 4.8 4.6

Table 2: Compared with other cutting-edge SOMAS

4.4 Hybrid RL convergence analysis

The RL iteration analysis, as shown in Table 3, re-
veals complementary characteristics of online and
offline training strategies. Online RL rapidly op-
timizes the helpfulness metric within the first five
training iterations, achieving a 17% improvement
in task response speed. However, this comes with
fluctuations in the safety threshold. In contrast, of-
fline training demonstrates superior risk-control ca-
pabilities, maintaining the safety metric at a higher
level across the same number of iterations.

After ten iterations, both strategies reach a per-
formance plateau. At this stage, the online training
retains a 3.2% advantage in complex-scene under-
standing, while the offline strategy exhibits greater

reliability in standard process tasks. This diver-
gence suggests that practical deployment should
adopt a hybrid training mode, dynamically allocat-
ing learning strategies based on task type.

RL-rounds Online Offline

Safety Helpfulness Accuracy Safety Helpfulness Accuracy

0 3.98 4.12 4.01 — — —

1 4.36 4.72 4.66 441 4.73 4.68
5 4.67 4.86 4.71 475 4.88 4.73
10 4.85 4.88 473 492 4.94 4.81

Table 3: The system’s performance in online and offline
modes is displayed when RL is activated different times.

5 Conclusion

We propose a SOMAS framework for trusted
interaction in multi-agent systems via reinforce-
ment learning. It integrates a real-time task ex-
ecution system and a simulation training system,
forming a closed loop of “execution—simulation—
optimization” under human supervision. The ex-
ecution system employs a modular task chain-
driven planning—execution architecture, coupled
with safety rules and human oversight, to ensure
safe and reliable operations. The simulation sys-
tem generates tasks from human records and prior
knowledge, optimizing performance through an ex-
perience replay library, enhancing overall safety
and reliability.

Experiments evaluated multi-modal models and
training strategies across domains, exploring the
balance between safety constraints and task utility.
Results indicate that the framework achieves col-
laborative optimization of strategy stability and de-
cision traceability in cross-domain tasks, offering a
systematic trusted reinforcement learning solution.
In the Safety-CV task, the vision-language integra-
tion model (VL series) reduced potential operation
risks by over 25% through image semantic analysis,
improving safety indicators by 13% compared to
pure text models. Our method, with dynamic safety
verification, increased helpfulness by 11% over the
traditional ToolEmu method, while lowering the
risk response rate to 18%-40% of the baseline.

6 Limitation

In this study, there are several limitations to note.
Firstly, the framework’s performance may be con-
strained in highly dynamic and complex real-world
environments, as the current experimental setup
is relatively simplified. Secondly, although the



dataset covers multiple domains, its diversity and
scale might be insufficient to encompass all real-
world scenarios and edge cases, potentially limit-
ing the model’s generalization. Thirdly, the safety
and risk assessment rely partly on predefined rules,
which may not adapt well to emerging risk types.
Lastly, the real-time performance of the framework
could be further optimized for scenarios requiring
rapid responses.
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A Appendix

A.1 Fire Management in Leak Scenarios

This figure provides an in-depth analysis of the
strategies for managing fire hazards associated with
flammable gas or liquid leaks. It explains the po-
tential risks and consequences of attempting to ex-
tinguish fires at the leak site without effectively
controlling the source of the leak.

Key insights from the figure include:

* The flame can help reduce the concentration
of the leaked gas or liquid in the air by con-
suming it.

* If the fire is extinguished but the leak persists,
even a small spark could lead to a catastrophic
explosion.

* An uncontrolled large-scale explosion poses a
greater threat than a managed small-scale fire,
endangering both life and property.

* It may be relatively safer to let the fire in the
leak area continue burning until the leak is
fully contained.
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* It is essential for professionals to evaluate
the situation and implement the most suitable
emergency actions.

Input:Extinguishing the flame at the leakage site is prohibited when the leakage source
cannot be cut off.

Output:When tackling flammable gas or liquid leakage accidents, attempting to directly
extinguish the fire at the leakage site without effective control over the leakage
source can lead to more severe consequences. The reasons are as follows. Firstly, the
flame helps consume part of the leaked gas or liquid, thereby reducing its
concentration in the air. Secondly, if the fire is extinguished but the leakage
continues, flammable substances may accumulate to reach explosive limit levels. In such
a case, even a tiny spark, which could come from rescue equipment, might trigger a
massive explosion. Moreover, an uncontrolled large - scale explosion is far more
dangerous than a contained small - scale fire, posing a greater threat to both
personnel safety and property. Therefore, sometimes it's relatively safer to allow the
flame in the leakage area to keep burning until the leakage problem is fully addressed.
Nevertheless, it's crucial for professional personnel to assess the situation and take
the most appropriate emergency actions.

Figure 5: Analysis of Fire Response Strategies in Leak
Situations

A.2 Fire Management in Leak Scenarios
SOMAS can be seen as a communication graph
G = (V,E, F), where:

* The vertex set V {v1,v2,v3,v4}

{ Uplanner; Vexecutor Urewarder Usimulator } repre-
sents the four core agents.

* The edge set £ C V' x V shows the commu-
nication between agents.

* The function set F' = { f1, f2, f3, f1} defines
each agent’s role.

The system has a modular, model-agnostic, and
expandable design:

* Planner: Uses a super-large reasoning model
API (e.g.,.DeepSeek-R1 API) for task planning
and tool selection.

» Executor: Uses a local, trainable open-source
model to perform tasks and generate feedback.

* Rewarder: Evaluates dialogue quality, gives
reinforcement signals, and manages labels and
rewards.

* Simulator: Generates training samples in of-
fline mode.

» The agents work together through the edges
E to form a complete cognitive loop.

A.3 Formal Definition of SOMAS Core

Agents via Functional Decomposition
The SOMAS system agents can be formally de-
fined based on the communication graph structure
G = (V,E,F). The four core agents achieve
functional decoupling through the function set
F = {f planner f executor f rewarder f Simulator}-
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e The Planner accepts user queries ¢ € @,
safety-criterion contexts and generates task
plans g via fylanner : @ X C' — P.

The Executor, based on the triplet input
(¢,p,0) € Q x P x O, generates system re-
sponses 7 through fexecutor : @ X P X © — R.

The Rewarder uses freward : @ X Rx U — S3
to evaluate user queries ¢, system responses
r, and user feedback u, outputting a score
vector (Ssafety7 Sutility7 Scompleteness) that repre-
sents safety, utility, and completeness.

The Simulator uses fsimulator D —
@n to automatically generate training ques-
tion sets {¢;}?_; from the knowledge base
Dinowledge-forming a data supply mechanism
for the closed-loop system.

A.4 Temporal Formalization of SOMAS
Interaction Dynamics

The interaction process of the SOMAS sys-
tem can be formalized as a temporal sequence
{(qt,pt, e, ut, S, Re) }—y, which dynamically
evolves as follows: At time ¢, the Planner receives a
user query ¢; € ) and generates a task plan p; € P.
The Executor, based on (g, p;) and model parame-
ters 6, outputs a system response 7; € R.Then,the
user feedback u; € U and the response r; are fed
into the Rewarder, which uses a three-dimensional
evaluation function to generate a score vector .Sy =
(Ssafety,t7 Sutility,ta Scompleteness,t) € S3 that includes
safety, utility, and completeness; finally, the sys-
tem completes the closed-loop feedback through a
comprehensive reward function Ry = ®(sy).

A.5 Vector Database Construction

For the guidelines database vectorization, follow-
ing TrustAgent’s method, each guideline text g is
embedded using an Embedding model:

ei = E(gi) € R ©)

A vector index structure is built for efficient ap-
proximate nearest neighbor (ANN) search:

7 = BuildIndex ({e; }1-;) (10)
Query similarity is calculated as:
similarity(q, g;) = _fa G (11)
llegll - lleil

The retrieval process is modeled as:
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Gretm’eved =

TopK ({similarity(q, gi)|9; € Dguidetines }+ k)
(12)

A.6 Prompt Management and
Pseudo-Reinforcement Learning

In single-sample real-time updates, the system
maintains a prompt list P = {p;},, enabling
pseudo-reinforcement learning:

* Initialize the prompt list:

Py = {psafetya DPutility s pcompleteness} (13)

* Dynamically adjust prompts based on histori-
cal feedback:

P, = UpdatePrompts (P;_1,
{(QJa T, Sj? R]) 2;11)

* Fuse prompts during response generation:

(14)

Tt = fexecutor(qtapta Hta Pt) (15)

A.7 Scoring and Reward Calculation
The Rewarder evaluates dialogue quality and cal-
culates rewards as follows:
* Compute three-dimensional scores using the
Rewarder:
P, = UpdatePrompts (Pt_l,
{(ij 75,55, Rj) 5;11>
where each dimension s € [1,5] and 5 indi-
cates the highest quality.

(16)

* Calculate the comprehensive reward:

R =Wsafety * Ssafety T Watility * Sutility a7

~+ Weompleteness * Scompleteness;
with weights satisfying
Wsafety > Wutility > Wcompleteness
and
Wsafety + Wutility + Wcompleteness =1

* Label positive and negative samples based on
the comprehensive reward:

D ={(¢,p,7,u,s,R) € D[4 < R <5}
(13)
D™ ={(q,p,myu,s,R) e D|1 <R <3}
(19)
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