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ABSTRACT

Long-context video modeling is critical for multimodal large language models
(MLLMs), enabling them to process movies, online video streams, and so on.
Despite its advances, handling long videos remains challenging due to the difficulty
in efficiently understanding the extremely long video context. This paper aims to
address this issue from aspects of the model architecture, training data, training
strategy, and evaluation benchmark. First, we propose a novel Hierarchical video
token Compression (HiCo) method, which leverages visual redundancy in long
videos to compress long video context from Clip-level to Video-level, reducing the
computation significantly while preserving essential details, achieving an extreme
compression ratio of approximately 1/50 with almost no performance loss. Second,
we introduce a multi-stage short-to-long learning scheme, a large-scale dataset of
real-world long videos named LongVid, and a challenging “Multi-Hop Needle-In-
A-Video-Haystack” benchmark. Finally, we build a powerful video MLLM named
VideoChat-Flash, which shows a leading performance on both mainstream long
and short video benchmarks at the 2B and 7B model scales. It first gets 99.1%
accuracy over 10,000 frames in NIAH among open-source models.

1 INTRODUCTION

Long-context video modeling stands as one of the most crucial capabilities within multimodal large
language models (MLLMs). This capability empowers MLLMs to proficiently manage hours-long
movies, documentaries, and online video streams, all of which demand sophisticated long video
processing. Recent advances in MLLMs (Wang et al., 2022; 2024e; Li et al., 2023b; 2024c; Zhang
et al., 2023a; Cheng et al., 2024; Zhang et al., 2024c; Lin et al., 2024; Xu et al., 2024; Li et al.,
2024a; Bavishi et al., 2024; Li et al., 2023a) perform well in short video understanding. However, it
remains challenging to build MLLMs for processing extremely long videos (lasting for hours or even
longer). The difficulty lies in how to enable MLLMs to efficiently understand the extremely long
video context brought by long videos.

Inspired by large language models (LLMs) with long context, modeling multimodal long context is
widely studied from several perspectives. Some work (Reid et al., 2024; Xue et al., 2024) represented
by Gemini-1.5-Pro (Reid et al., 2024) address it by training well-performed MLLMs on long-form
corpus e.g. lengthy text and thousands of frames from videos, minimizing the gap between the
evaluation and learning. Although the progress in system construction and hardware has made
it possible to train and infer with super-long multimodal contexts, such super-long multimodal
contexts have significantly reduced the training and inference efficiency of models. (For Gemini-
1.5-Pro (Reid et al., 2024), a one-hour video will be converted into 921,600 tokens). Meanwhile,
the high redundancy in long video context makes it particularly difficult for models to understand.
Some previous efforts (Song et al., 2024; Li et al., 2024d; Shen et al., 2024) have been made to
compress video tokens in order to achieve higher training and inference efficiency for long videos.
However, the compression of visual content inevitably leads to the loss of detailed information. In
some long video understanding benchmarks, certain current long video models even perform worse
than some image MLLMs. Therefore, how to strike a balance between performance and efficiency
remains a significant challenge. In this paper, we attempts to address the above issues from the model
architecture, training data, training strategy and evaluation benchmark.
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Figure 1: Comparison results on various generic video-linguistic tasks.

First, we propose a novel Hierarchical video token Compression method (HiCo) to model the
long video context efficiently, which defines the compression of the long video context into two
stages. First, we segment the long video into multiple clips. Then, at the Clip-level, we utilize the
spatio-temporal attention of the video encoder and the similar token merging to aggregate the key
information between frames, thereby reducing the redundancy of inter-frame features. Subsequently,
we take advantage of the sparsity of attention when the LLM processes long video tokens, further
discard the video tokens that are irrelevant to the current task at the Video-level. HiCo could achieve
an extreme compression ratio of approximately 1/50 with almost no performance loss. Additionally,
we have conducted thorough explorations of other designs such as video sampling and timestamp
awareness prompt.

Second, to further enrich the existing long video training corpus, we construct LongVid, a dataset
that contains 114,228 long videos and 3,444,849 question-answering pairs. With LongVid, we have
designed a multi-stage training strategy named short-to-long learning. The main idea is to first
utilize image and short video data to learn basic visual perception abilities. Then, through the joint
training of short video and long video data, the model is enabled to handle videos of different lengths
and different types of tasks. In addition, we design a new evaluation benchmark named “Multi-Hop
Needle In A Video Haystack”. Which is more challenging and can better examine the model’s
complex reasoning abilities regarding long videos.

Finally, we develop a powerful video MLLM named VideoChat-Flash, as shown in fig. 1, which
achieves remarkably leading performance with extremely high efficiency on various video understand-
ing benchmarks. Even with a 7B size, it outperforms closed-source models such as GPT-4o (OpenAI,
2024) and Gemini-1.5-Pro (Reid et al., 2024).

2 RELATED WORK

Multimodal Large Language Models for Video Understanding. Recent advancements in multi-
modal large language models (MLLMs) have shown significant promise in video understanding. Most
of them (Li et al., 2023b; 2024c; Wang et al., 2024e; Lin et al., 2024; Zhang et al., 2023a; 2024c;d)
focus on the understanding of minute-level videos, and some works (Reid et al., 2024; Song et al.,
2024; Wang et al., 2024d; Shen et al., 2024; Xue et al., 2024; Shu et al., 2024; Huang et al., 2024)
have further tried to handle longer hour-level videos. To address the challenge of processing long
videos, researchers focus on two key strategies: (1) extending the context window of the LLM (Reid
et al., 2024; Zhang et al., 2024a; Xue et al., 2024; Wei & Chen, 2024) and (2) compressing the
video tokens (Li et al., 2024d; Fei et al., 2024; Weng et al., 2025; Tan et al., 2024; Song et al., 2024;
Shu et al., 2024; Zeng et al., 2024). For context extension, although the approach of expanding the
context window enable the possibility of long video understanding, it falls short of reducing the high
computational burden and processing costs induced by long videos, thereby imposing limitations
on its practical application. For token compression, Methods represented by Llama-Vid (Li et al.,
2024d) use a highly compact representation while preserving key information. The high compression
ratio makes it difficult for such methods to achieve excellent long video understanding performance,
and they may even be inferior to some MLLMs designed for image modeling. Therefore, how to
build a Video MLLM that can balance both efficiency and performance remains a difficult challenge.

Evaluation of Long Video Understanding. In order to evaluate the ability of Video MLLMs to
understand long videos, previous works (Song et al., 2024; Zhang et al., 2023b; Mangalam et al.,
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Figure 2: Framework of VideoChat-Flash with Hierarchical Video Token Compression. Video
tokens will be compressed at the Clip-level by leveraging the local redundancy of the video modality
during video encoding. Subsequently, during LLM processing, they will be compressed at the
Video-level by taking advantage of the sparsity in the interaction between the text and the video.

2023; Rawal et al., 2024; Wu et al., 2024; Zhou et al., 2024; Fu et al., 2024; Chandrasegaran et al.,
2024; Wang et al., 2024c) have achieved this by collecting long videos and then designing various
multiple-choice questions related to the content of these long videos. This approach is closer to
real-world applications and can effectively examine the model’s ability to understand and reason about
long videos. However, when it comes to examining the model’s capabilities for videos of different
lengths, this method is not intuitive enough. Inspired by the popular ”Needle in A Haystack” (NIAH)
evaluation in long text context evaluation, some recent works (Zhang et al., 2024a; Zhao et al., 2024)
have attempted NIAH for Video haystack. Nevertheless, it is difficult to assess complex reasoning
abilities, and there may be information leakage. In this paper, we propose a more challenging

“Multi-Hop Needle-In-A-Video-Haystack” is designed to address the above issues.

3 METHOD

3.1 HICO: EFFICIENT LONG VIDEO MODELING

To enable MLLMs to handle thousands of input frames, we propose a new video context compression
paradigm named hierarchical compression (HiCo). This paradigm decomposes video context com-
pression into two main stages: 1. Clip-level compression for unimodal visual redundancy during
the encoding of long videos. 2. Video-level compression for cross-modal visual redundancy
within the context interaction in the LLM. Based on this framework, we have designed an innovative
efficient Video MLLM architecture, VideoChat-Flash, as illustrated in fig. 2. Below, we elaborate on
our specific design details from data input to model output.

Duration-based Sampling. First, we need to perform frame sampling on the original video.
Specifically, we sample a raw video with a duration of D to obtain T frames as input. Considering
that the requirements for understanding short and long videos often differ, we aim to conduct dense
sampling on short videos to capture detailed motions and sparse sampling on long videos to focus on
event understanding. To this end, we have designed a Duration-based Sampling strategy:

T = min(Tmax,max (D,Tmin)). (1)

Simultaneously, we define the sampling density ϕ as follows:

ϕ(T,D) =
T

D
=

min(Tmax,max (D,Tmin))

D
. (2)

That is, for short videos where D < Tmin, ϕ = Tmin/D , which increases as the video length decreases.
For long videos where D > Tmax, ϕ = Tmax/D, which decreases as the video length increases.

Spatio-Temporal Compression Encoding for Clips. Considering the substantial redundant and
repetitive information, such as that of backgrounds and objects, present between adjacent frames in
natural videos, we segment the original video frames into several equally sized clips. Each clip is
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then encoded using a Video Encoder with Spatio-Temporal Attention, which effectively captures
both key information and temporal redundancies within the clips, thereby significantly improving
compression efficiency. We briefly offer some theoretical explanations here. First, we define the video
features within a clip of length T as Y = {Y1,Y2, · · · ,YT }, the compressed feature as Z = C(Y),
where C denotes a deterministic compression operation (e.g., average pooling). For commonly used
Image Encoder (such as SigLIP (Zhai et al., 2023), etc.), they assume inter-frame independence, i.e.,
p(Y1, · · · ,YT ) =

∏T
t=1 p(Yt). We can define the information loss caused by compression using

the conditional entropy of the original features given the compressed feature:

Limg
c = H(Yimg

1 ,Yimg
2 , · · · ,Yimg

T |Z) =
T∑

t=1

H(Yimg
t )−H(Z). (3)

For the Video Encoder, it models the joint distribution p(Y1, · · · ,YT ) using spatio-temporal atten-
tion, and its information loss can be expressed as:

Lvid
c = H(Yvid

1 ,Yvid
2 , · · · ,Yvid

T |Z) = H(Yvid
1 ,Yvid

2 · · · ,Yvid
T )−H(Z)

=

T∑
t=1

[H(Yvid
t )− I(Yvid

t ;Yvid
1 ,Yvid

2 , · · · ,Yvid
t−1)]−H(Z),

(4)

where I(Yvid
t ;Yvid

1 ,Yvid
2 , · · · ,Yvid

t−1) represents the mutual information between the t-th frame and
the previous t− 1 frames, i.e., the redundant information between the t-th frame and its preceding
frames. For most videos, it is evident that I(Yvid

t ;Yvid
1 ,Yvid

2 , · · · ,Yvid
t−1) > 0. Assuming the

same H(Z) and
∑T

t=1 H(Yimg
t ) ≈

∑T
t=1 H(Yvid

t ), we thus have Limg
c > Lvid

c . A detailed proof is
provided in the Appendix. In terms of specific implementation, we use ToMe (Bolya et al., 2022) as
C. Benefiting from the effectiveness of the video encoder in modeling spatio-temporal interactions,
we achieve an extremely heavy compression while well retaining the key information, with each
video frame being compressed to an average of only 16 tokens.

The compressed features from different clips are chronologically merged to form the final visual con-
text. This representation is then aligned with the feature space of the LLM through a video-language
projection. Furthermore, to reduce the cost of timestamp encoding, unlike previous approaches (Ren
et al., 2024; Chen et al., 2024e) that depend on auxiliary modules or insert textual annotations into
every frame, which introduces substantial computational overhead when processing long videos, we
introduce a lightweight timestamp prompt appended after the video context: “The video lasts for N
seconds, and T frames are uniformly sampled from it.” We find that this straightforward approach
is sufficient to enable the model to perceive the timestamps of the input video, achieving excellent
performance on timestamp sensitive tasks such as temporal grounding (see table 1). Finally, the entire
video context Xv can be represented as:

Xv = Concat(F(Z1),F(Z2), · · · ,F(ZNc
),Xtimestamp), (5)

Where Nc is the number of clips, F is a MLP projection serving as a video-language connector.

Progressive Visual Dropout in LLM. Although clip-level compression has been carried out before,
due to the possibility of longer-range visual redundancies in long videos (e.g. surveillance videos),
and when an LLM responds to specific instructions regarding the visual input, it may not be necessary
to continuously focus on the entire long video context. We consider conducting further video-level
compression during the LLM inference stage. Recent works (Chen et al., 2025; 2024b) have explored
acceleration strategies for MLLMs when processing short visual contexts. Most of them drop visual
tokens based on the correlation between text tokens and visual tokens. In contrast, we find that
when the LLM processes a long video context, it pays attention to the entire long video context at
the shallow layers of the LLM, while focusing on the details of certain local moments at the deep
layers (see the Appendix for specific visualizations). Based on this observation, we have designed
a progressive visual dropout strategy, which is divided into two stages. At the shallow layers of
the LLM, we uniformly drop a small number of video tokens (i.e. uniform drop), reducing the
computation while maintaining the original spatio-temporal structure of the video context. At the
deep layers of the LLM, we rely on the correlation between text tokens and video tokens to retain
the most critical relevant information (i.e. text-guided select). We have found that this operation not
only effectively improves the computational efficiency of the model but also slightly enhances the
understanding performance of the model by reducing irrelevant visual noise.
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3.2 LARGE-SCALE CORPUS FOR LONG VIDEO TRAINING

One of the challenges in long video model training is the shortage of large-scale, high-quality
data. Though recent advances have mitigated this by long-form datasets of video-text pairs, these
lack the instruction-following paradigm, such as (video, instruction, answer) triplets, crucial for
multimodal reasoning. To address this, we introduce a large-scale long video instruction-tuning
dataset named LongVid. It comprises 114,228 long videos (with an average duration of 367.3
seconds) and 3,444,849 question-answering (QA) pairs, covering five distinct task types: long video
captioning, temporal grounding, event relation recognition, scene relation recognition, and video
event counting. LongVid significantly surpasses previous datasets in both scale and average video
length, enabling models to tackle a wide range of long video scenarios.

To construct the LongVid dataset, we follow three core steps: (1) first, for data source selec-
tion, we leverage diverse existing long video datasets that include Ego4D (Grauman et al., 2022),
HowTo100M (Miech et al., 2019), HD-VILA (Xue et al., 2022), and MiraData (Ju et al., 2024); these
datasets collectively cover multiple video types (e.g., movies, egocentric videos, news, interviews,
how-to videos, and other in-the-wild long videos) to ensure the dataset’s diversity. (2) Second, for
event label curation, a key step that involves generating dense event labels for each long video, we
first utilize high-quality short video captions tailored to each source dataset (e.g., Panda-70M (Chen
et al., 2024c) for HD-VILA, CosMo (Wang et al., 2024a) for HowTo100M, Ego4D-HCap (Islam et al.,
2024) for Ego4D, and the original captions for MiraData), then filter consecutive short video segments
that can be reorganized into a single long video sequence, and subsequently construct timestamped
event label sequences for each long video based on the aforementioned captions; specifically, for
datasets with pre-existing high-quality event-level annotations (e.g., HT-Step (Afouras et al., 2024)
for HowTo100M, Ego4D-HCap for Ego4D), we directly leverage these annotations as event labels,
while for datasets lacking such annotations, we extract core events from the captions using a large
language model (LLM). (3) Finally, for QA pair construction, we build multiple types of long video
question-answering (QA) pairs using the video captions, event labels, and timestamps of the short
video segments, with further details about the entire construction process provided in the Appendix.

3.3 MULTI-STAGE SHORT-TO-LONG LEARNING

Unlike studies (Zhang et al., 2024a; Xue et al., 2024) that use long-form text to extend the context
window, we prefer that direct training on long-form videos minimizes the gap between training and
testing, leading to better downstream evaluations. The training data are detailed in the Appendix.

Stage-1: Video-Language Alignment. In this stage, we freeze the visual encoder and the large
language model while training the compressor and the MLP to align the language with the compressed
visual features. We use 0.5 million image-text pairs and 0.5 million short video-text pairs, and sample
4 frames from each video in training.

Stage-2: Short Video Pre-training. To enhance the model’s understanding of visual concepts, we
conduct visual pre-training using 3.5 million images and 2.5 million short video-text pairs. During
this stage, we sample 8 frames from each video.

Stage-3: Joint Short & Long Video Instruction Tuning. To enable the model to handle a wide
variety of video tasks, we collect 3.5 million instruction fine-tuning samples, including 1.1M images,
1.7M short videos (under 60 seconds), and 0.7M long videos (60∼3600 seconds). We mix the short
and long video data to ensure the model retains fine-grained understanding while expanding its
comprehension of long videos. The sampling method used is the duration-based sampling described
in section 3.1, with the number of sampled video frames ranging from 64 to 512.

Stage-4: Efficient Video Encoding Enhancement. To enable the model to perceive higher reso-
lutions, we employ an efficient post-finetuning strategy to adapt the original low-resolution video
encoder to higher-resolution inputs. Specifically, we increase the input resolution of the video encoder
from 224 to 448, freeze the LLM, and directly utilize 25% of the stage-3 data for post-finetuning the
video encoding. We find that this simple, full-data strategy effectively enhances the video encoder’s
adaptability to higher-resolution video inputs.
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Instructions:  Find a frame of {a desk with a computer and monitor}. Locate the final frame based 
on the instructions in the image, and answer the following question based on the final frame:

Q2. What is the bear on the left doing?
  (A) Eating             
         (B) Running
 (C) Looking around     
         (D) Sleeping

Q1. Choose the captions that best describe the frame.  
    (A) A small kid on a field with a bat. 

(B) Two standing black bears
    (C) A number of animals in a field of grass   
    (D) A bear rubs itself against a tree

Find a frame of two 
standing black bears

4X1 2 X2 X331

Find a frame of a 
bird perched on a 
branch

Find a frame of two people on a 
train with trays of food

Wrong 
needle

Figure 3: An example of our Multi-Hop Nee-
dle in a Video Haystack. The right path (1, 2, 3)
is for finding the needle while the wrong path
(X1, X2, X3) is for distraction. MLLMs are asked
to both find the needle (Q1) and answer its re-
lated question (Q2).
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Figure 4: Results on the Multi-Hop NIAH
with 10,000 frames. “CAP” represents the ac-
curacy of finding the correct needle, while “QA”
denotes the accuracy of answering the questions
related to the correct needle while also finding
the correct needle.

3.4 MULTI-HOP NEEDLE IN A VIDEO HAYSTACK

Previous works (Zhang et al., 2024a; Xue et al., 2024) utilize the “Needle in a Video Haystack”
(NIAH-Video) to evaluate the long video context understanding ability of models. Specifically, an
image (commonly referred to as the “needle”) was inserted into a long video and then the model under
test was required to input the entire video and answer questions related to the needle. NIAH-Video
assesses the model’s capability to retrieve information from long videos. However, it has several
drawbacks. Firstly, it is difficult to prevent images and questions similar to the needle from appearing
in the model’s training data, which leads to information leakage. Secondly, merely examining the
model’s visual retrieval ability is insufficient and lacks discrimination for evaluating its long video
context understanding ability (many models can achieve an accuracy rate over 99%). There is a need
to further evaluate its reasoning ability regarding the content.

To address the above issues, we have designed a new evaluation task called “Multi-Hop Needle in a
Video Haystack” (MH-NIAH-Video). As shown in fig. 3, we insert a reasoning path composed of
multiple images into the video haystack. Each image in this path has a randomly inserted position
and the corresponding textual clues to help find the next image. Given the starting point of the
reasoning path, the model needs to follow this path to find the needle and answer questions related
to it. What’s more, to prevent the model from skipping the step of finding the needle by relying on
information leakage or memorizing the content of all images, we insert multiple wrong reasoning
paths simultaneously while inserting the correct reasoning path. The model needs to find the correct
needle (Q1) along the correct reasoning path based on the given starting point and then answer
questions related to the needle (Q2). In a way, our multi-hop approach offers a much more robust
evaluation of the long context understanding ability in Multimodal Large Language Models (MLLMs)
compared to the previous NIAH-Video. In practice, all images are sourced from MS-COCO (Lin
et al., 2014), making use of its human-annotated captions and question-answer pairs. It should be
noted that even if the model can perfectly remember the content of MS-COCO, it will not be of much
help in finding the needle, significantly reducing the likelihood of successful “cheating”.

4 EXPERIMENTS

Implementation details. We employ UMT-L (Li et al., 2023c), token merging with MLP, and
Qwen2-7B as visual encoder, connector, and LLM, respectively. When processing a long video,
we divide it into shorter clips, each consisting of 4 frames. Each clip is compressed into 64 tokens,
meaning that, on average, each frame is represented by 16 tokens. Regarding video-level compression,
while we found that enabling it during training would slightly impair performance, so we only employ
it during inference. We use only one-fourth of the full dataset for ablation. See Appendix for details.
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Table 1: Results on comprehensive video-linguistic benchmarks.

Model Size Avg tokens MVBench PerceptionTest LongVideoBench MLVU VideoMME (w/o & w sub.) LVBench Charades-STA AuroraCap
per frame Avg Val Val M-Avg Overall Long Avg mIoU Avg

Avg. Duration 16s 23s 473s 651s 1010s 2386s 4101s 30s 28s

Proprietary Models
GPT-4V (OpenAI, 2023) - - 43.7 - 59.1 49.2 59.9/63.3 53.5/56.9 - - -
GPT-4o (OpenAI, 2024) - - 64.6 - 66.7 64.6 71.9/77.2 65.3/72.1 30.8 35.7 -
Gemini-1.5-Pro (Reid et al., 2024) - - 60.5 - 64.0 - 75.0/81.3 67.4/77.4 33.1 - 41.7

Small Size MLLMs
Qwen2-VL (Wang et al., 2024b) 2B 1924 63.2 - - - 55.6/60.4 - - - -
InternVL2.5 (Chen et al., 2024d) 2B 256 68.8 - 46.0 61.4 51.9/54.1 - - - -
VideoChat-Flash @448 2B 16 70.0 70.5 58.3 65.7 57.0/63.9 44.9/54.0 42.9 45.2 -

Open-Source MLLMs
VideoChat2-HD (Li et al., 2024c) 7B 72 62.3 - - 47.9 45.3/55.7 39.8/53.9 - 3.4 -
InternVideo2-HD (Wang et al., 2024e) 7B 72 67.2 63.4 - - 49.4/ - - - - -
LLaVA-OneVision (Li et al., 2024a) 7B 196 56.7 57.1 56.3 64.7 58.2/61.5 - - 13.5 37.5
LLaVA-OneVision (Li et al., 2024a) 72B 196 59.4 66.9 61.3 68.0 66.2/69.5 - - - -
LLaVA-Video (Zhang et al., 2024d) 7B 676 58.6 67.9 58.2 70.8 63.3/69.7 - - - 39.0
VITA1.5 (Fu et al., 2025) 7B 256 56.8 - - - 56.8/59.5 - - - - -
InternVL2 (Chen et al., 2024e) 8B 256 65.8 - 54.6 64.0 54.0/56.9 - - - 37.7
InternVL2 (Chen et al., 2024e) 76B 256 69.6 - 61.1 69.9 61.2/62.8 - - - -
InternVL2.5 (Chen et al., 2024d) 8B 256 72.0 - 60.0 68.9 64.2/66.9 - - - -
Qwen2-VL (Wang et al., 2024b) 7B 1924 67.0 66.9 - - 63.3/69.0 - - - 41.6
Qwen2.5-VL (Bai et al., 2025) 7B 1924 69.6 - 56.0 70.2 65.1/71.6 - 45.3 43.6 -

Open-Source Long Video MLLMs
LLaMA-VID (Li et al., 2024d) 7B 2 41.9 44.6 - 33.2 25.9/ - - 23.9 - 30.9
LongVU (Shen et al., 2024) 7B 64 66.9 - - 65.4 - /60.6 - /59.5 - - -
LongVA (Zhang et al., 2024a) 7B 144 - - - 56.3 52.6/54.3 46.2/47.6 - - 34.5
LongVILA (Xue et al., 2024) 7B 196 67.1 58.1 57.1 - 60.1/65.6 47.0/52.1 - - -
Kangaroo (Liu et al., 2024) 8B 256 61.0 - 54.8 61.0 56.0 / 57.6 46.7 / 49.3 39.4 - -
VideoChat-Flash @224 7B 16 73.2 75.6 64.2 74.5 64.0/69.4 53.6/61.9 47.2 48.4 -
VideoChat-Flash @448 7B 16 74.0 76.2 64.7 74.7 65.3/69.7 55.4/63.3 48.2 48.0 42.9
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(a) LongVA Zhang et al. (2024a),
accuracy=91.8% at 3k frames.
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(b) LLama-VID Li et al. (2024d),
accuracy=55.0% at 10k frames.
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(c) VideoChat-Flash (ours), accu-
racy=99.1% at 10k frames.

Figure 5: Results on the Single-Hop NIAH evaluation with 10,000 frames.

4.1 GENERAL VIDEO UNDERSTANDING EVALUATION

Leading performance. We evaluate our model on six general video understanding benchmarks in
question-answering format, including two short video benchmarks: MVBench (Li et al., 2024c) and
Perception Test (Patraucean et al., 2024), and three long video benchmarks: LongVideoBench (Wu
et al., 2024), MLVU (Zhou et al., 2024) and LVBench (Wang et al., 2024c), and a comprehensive
benchmark, VideoMME (Fu et al., 2024), covering videos ranging from minute-level to hour-
level durations. We further evaluate the temporal grounding and video caption tasks, using the
Charades-STA (Gao et al., 2017) and AuroraCap (Islam et al., 2024). As depicted in table 1, our
VideoChat-Flash achieves the best results on diverse VideoQA benchmarks within the 2B and 7B size
category, significantly outperforming other approaches. Remarkably, its performance even eclipses
that of models with substantially larger scales, such as InternVL2-76B, as well as proprietary models
like GPT-4o and Gemini-1.5-Pro. Even when merely supplying timestamp information via a text
prompt, our model has achieved remarkable performance in temporal grounding. Meanwhile, it also
significantly outperforms other models in the video captioning task, even surpassing the proprietary
GPT-4o and Gemini-1.5 Pro. This demonstrates the effectiveness of the comprehensive design of our
model, data, and training strategies.

4.2 LONG VIDEO CONTEXT EVALUATION

Baseline. LongVA (Zhang et al., 2024a) and LLama-VID (Li et al., 2024d) are used as baselines.
LongVA trains MLLMs using long text data, transfering the long context of LLM from text to video.
LLama-VID accomplishes efficient inference of long videos by compressing each frame to only two
tokens. Our model benefits from these two, so we take them as baselines.

Single-Hop NIAH. As shown in fig. 5, we follow the protocols in LongVA (Zhang et al., 2024a)
for Single-Hop NIAH, we source a long video and sample frames uniformly from it. Then we add
needles (indicating images) into the sampled image sequence at different positions. MLLMs are
fed with this long image sequence and answer the corresponding questions to the indicating images.
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Figure 6: Effect of compression ratio.

We evaluate all models over 10,000 frames. Note our VideoChat-Flash delivers a 99.1% success
rate in accurately retrieving the correct indicating image and answering the related question even
across 10,000 frames. In comparison, LongVA gives a decent result close to 92% within 3000 frames
while LLama-VID only achieves 55% accuracy. It demonstrates VideoChat-Flash’s state-of-the-art
performance in long multimodal context modeling.

Multi-Hop NIAH. In this evaluations, MLLMs need to trace along the chain of indicating images,
locate the needle, and answer its question. Two metrics “CAP” and “QA” are used to denote the
accuracy of finding the correct needle and the accuracy of answering the questions related to the
needle as well as finding the needle successfully, respectively. As shown in fig. 4, our VideoChat-
Flash still beats all baselines. Specifically, VideoChat-Flash gives 31.3% and 25.4% in “CAP” and
“QA” on average, higher than LongVA by around 8 points. It can be seen that compared with the
single-hop NIAH, the multi-Hop NIAH presents a much more difficult challenge, which can better
reflect the real gap between the capabilities of different models.

4.3 ABLATION & ANALYSIS

Effect of compression ratio. As shown in fig. 6a, a lower compression ratio (i.e., fewer encoded
visual tokens per frame on average) confers a substantial efficiency advantage for both short and
long video inputs, and this advantage becomes more pronounced as the input length increases.
Notably, as shown in fig. 6b, under our well-designed compression strategy, the detrimental impact
of compression on video task performance is less significant than anticipated. For both short-video
and long-video understanding tasks, appropriate compression can even enhance task performance;
even under an extreme compression ratio of 2%, the model can still retain 95% of its performance.
This finding gives us confidence in developing state-of-the-art video understanding models with low
compression ratios.

Table 2: Ablation of various designs on data ,
model , and resolution . The baseline employs

SigLiP-so400M (Zhai et al., 2023) as the vision
encoder and Spatial donwsampling (196 tokens per
frame) as the connector. It adopts a two-stage train-
ing strateay with image and short video following
LLaVA (Liu et al., 2023).

Settings MVB MLVU VMME Charades
Avg M-Avg Overall mIoU

Baseline 60.2 63.7 52.8
+ HiCo 61.1 60.6 53.2 -
+ short video pretraining 66.5 62.4 53.9 -
+ duration-based sampling 67.0 64.5 55.5 -
+ LongVid data 66.5 68.3 55.8 -
+ Joint short & long sft 73.2 74.5 64.0 48.4
+ High-res post ft 74.0 74.7 65.3 48.0
– timestamp prompt 73.4 73.2 63.4 44.2

Ablation of various designs. As shown in ta-
ble 2, we have conducted comprehensive ab-
lation studies on each design. In terms of the
model, it can be observed that HiCo significantly
reduces the computation (from 196 to 16 to-
kens per frame) while barely compromising the
performance. Meanwhile, duration-based sam-
pling and timestamp prompts play crucial roles
in enhancing the performance. The further leap
in performance mainly stems from the training
strategy in short-to-long learning and a better
mixture of training data.

Effectiveness of spatio-temporal compression
encoding. As shown in table 3, we have tested
the most popular image encoder, SigLIP (Zhai
et al., 2023), and the short video encoder,

8
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Table 3: Effectiveness of video encoder. We
use the popular image encoder (SigLIP (Zhai
et al., 2023)) and video encoder (UMT (Li et al.,
2023c)) for comparison.

Visual Encoder FLOPs Latency MVBench MLVU VideoMME
(G) (ms) Avg M-Avg Overall

#tokens per frame=16, training data size=2M
SigLIPSO400M@384 2679 79.7 60.2 62.0 53.5
UMT-L@224 596 11.8 61.1(+0.9) 60.0(-2.0) 53.2(-0.3)

#tokens per frame=16, training data size=8M
SigLIPSO400M@384 2679 79.7 71.2 70.8 62.4
UMT-L@224 596 11.8 73.5(+2.3) 73.7(+2.9) 62.7(+0.3)

Table 4: Effectiveness of visual dropout. The
Qwen2-7B we used has a total of 28 layers.
“Uni.” and “Attn.” represent uniform drop and
attention select respectively.

Drop type/keep ratio Drop layer FLOPs Latency MLVU VideoMME
(G) (s) M-Avg Overall

- - 341.4 2.6 71.8 61.2

Uni./0.5 4 242.8 1.9 71.2 60.4
Attn./0.5 4 242.8 1.9 70.7 60.8
Uni./0.5 18 295.2 2.2 71.7 61.8
Attn./0.5 18 295.2 2.2 72.1(+0.3) 61.7(+0.5)

Attn./0.75,Attn./0.25 4,18 245.8 1.9 71.4 60.9
Uni./0.75,Attn./0.25 4,18 245.8 1.9 72.0(+0.2) 61.1(-0.1)

UMT (Li et al., 2023c), for encoding clips with heavy compression. We found that even when
the computational cost is significantly lower, UMT can still achieve better performance on the short
video task MVBench. Moreover, as the size of the training data increases from 2 million to 8 million,
UMT outperforms SigLIP distinctly across various benchmarks. We believe that this is attributed
to the spatio-temporal attention employed by UMT, which can aggregate the key information from
different frames within a clip, thus enabling the learning of more compact compression features.

Effectiveness of progressive visual dropout. As shown in the table 4, at the shallow layers of the
LLM, uniform dropout performs better than attention select on long video tasks. However, at the
deep layers of the LLM, attention select shows better performance. Performing visual dropout at the
deep layers can not only improve the computational efficiency but also enhance the performance.
Combining uniform dropout and attention select can achieve a good balance between performance
and efficiency. More relevant analyses and comparative experiments can be found in the Appendix.
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Figure 7: Ablation of duration-based sampling.
Effectiveness of duration-based sampling. As shown in fig. 7, A relatively large Tmin (64) enables
the model to better learn to model the fine actions and rapid movements in short videos during
training, thereby enhancing the performance of short video understanding. Increasing Tmax from 64
to 256 leads to a stable improvement in the understanding performance of both short and long videos.
This indicates that more sampled frames can extract more accurate information from our long video
data. When Tmax reaches 512, there is a slight decline in the performance of short videos. Overall, it
achieves a balance between the performance of short and long videos.

5 CONCLUSIONS

In this paper, we address the challenge of long-context video modeling in MLLMs from the model
architecture, training data, training strategy and evaluation benchmark. We design an efficient
architecture for video MLLMs by introducing a hierarchical long video context compression method,
which achieves an extreme compression ratio with nearly no performance loss. Regarding data and
training, we propose a new long video training corpus and short-to-long learning strategy, which
effectively enhances the model’s understanding ability for videos of various lengths. Additionally,
we developed a new and more challenging long video context evaluation benchmark. Our model
demonstrated outstanding performance on various video understanding benchmarks, which validates
the effectiveness of our proposed methods.
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6 REPRODUCIBILITY STATEMENT

We provide all the necessary details to reproduce our experiments in section 4 and Appendix.
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A APPENDIX

In this appendix, we provide more details from the following aspects:

• § A.1: Statement on the Use of LLM.

• § A.2: Supplementary proof of Clip-Compression.

• § A.3: More Results & Discussions of VideoChat-Flash.

• § A.4: Implementation Details of VideoChat-Flash.
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• § A.5: Dataset Details of LongVid.
• § A.6: Results of Gemini2.5 Flash on Multi-Hop NIAH.
• § A.7: Qualitative Results of VideoChat-Flash.

A.1 STATEMENT ON THE USE OF LLM IN WRITING

LLM was used for polishing and review during the writing of this article.

A.2 SUPPLEMENTARY PROOF OF CLIP-COMPREESION

To complete the derivation of section 3.1, we elaborate on the key steps using fundamental information-
theoretic properties, including conditional entropy, joint entropy, and mutual information.

Step 1: Conditional Entropy for Compression Loss The information loss due to compression
is defined as the conditional entropy of the original features given the compressed feature, i.e.,
Lc = H({Yt} | Z). By the definition of conditional entropy, for any random variables A and B:

H(A | B) = H(A,B)−H(B), (6)

where H(A,B) is the joint entropy of A and B, and H(B) is the marginal entropy of B.

For our setting, let A = {Y1, . . . ,YT } (original features) and B = Z (compressed feature). The
information loss thus becomes:

Lc = H({Yt},Z)−H(Z). (7)

Step 2: Simplifying H({Yt},Z) for Deterministic Compression The compression operation C
is deterministic, meaning Z is uniquely determined by {Yt} (i.e., Z = C({Yt})). For deterministic
functions, the conditional entropy of the output given the input is zero:

H(Z | {Yt}) = 0, (8)

since no uncertainty remains about Z once {Yt} is known.

By the chain rule of joint entropy:

H({Yt},Z) = H({Yt}) +H(Z | {Yt}). (9)

Substituting H(Z | {Yt}) = 0, we get:

H({Yt},Z) = H({Yt}). (10)

Combining eq. (7) and eq. (10), the information loss simplifies to:

Lc = H({Yt})−H(Z). (11)

Step 3: Image Encoder Loss Derivation Image encoders assume inter-frame independence, i.e.,
the joint probability factorizes as:

p(Yimg
1 , . . . ,Yimg

T ) =

T∏
t=1

p(Yimg
t ). (12)

For independent random variables, the joint entropy equals the sum of marginal entropies:

H(Yimg
1 , . . . ,Yimg

T ) =

T∑
t=1

H(Yimg
t ). (13)

Substituting eq. (13) into eq. (11) (the general loss formula), the Image Encoder loss becomes:

Limg
c =

T∑
t=1

H(Yimg
t )−H(Z), (14)

which matches eq. (3).
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Step 4: Video Encoder Loss Derivation Video encoders model inter-frame dependencies via
spatiotemporal attention, so they do not assume independence. Their joint entropy is expanded using
the chain rule of joint entropy:

H(Yvid
1 , . . . ,Yvid

T ) =

T∑
t=1

H(Yvid
t | Yvid

1 , . . . ,Yvid
t−1), (15)

where H(Yvid
t | Yvid

1 , . . . ,Yvid
t−1) is the conditional entropy of the t-th frame given all previous

frames.

By the definition of mutual information, for random variables X and Y:

I(X;Y) = H(X)−H(X | Y)=⇒H(X | Y) = H(X)− I(X;Y). (16)

Applying this to the conditional entropy in eq. (15) (letting X = Yvid
t and Y = {Yvid

1 , . . . ,Yvid
t−1}):

H(Yvid
t | Yvid

1 , . . . ,Yvid
t−1) = H(Yvid

t )− I(Yvid
t ;Yvid

1 , . . . ,Yvid
t−1). (17)

Substituting eq. (17) into eq. (15), the joint entropy for Video Encoders becomes:

H(Yvid
1 , . . . ,Yvid

T ) =

T∑
t=1

[
H(Yvid

t )− I(Yvid
t ;Yvid

1 , . . . ,Yvid
t−1)

]
. (18)

Finally, substituting eq. (18) into eq. (11) (the general loss formula), the Video Encoder loss becomes:

Lvid
c =

T∑
t=1

[
H(Yvid

t )− I(Yvid
t ;Yvid

1 , . . . ,Yvid
t−1)

]
−H(Z), (19)

which matches eq. (4).

Step 5: Comparing Limg
c and Lvid

c For most videos, consecutive frames are correlated (e.g., static
backgrounds or smooth motion), so the cumulative mutual information is positive:

I(Yvid
t ;Yvid

1 , . . . ,Yvid
t−1) > 0 ∀t ≥ 2. (20)

This implies:
T∑

t=1

H(Yvid
t )−

T∑
t=1

I(Yvid
t ; . . . ) <

T∑
t=1

H(Yvid
t ). (21)

Given that Image and Video Encoders process the same video (so
∑T

t=1 H(Yimg
t ) ≈

∑T
t=1 H(Yvid

t ))
and share the same compressed feature Z (so H(Z) is identical), we conclude:

Limg
c > Lvid

c . (22)

A.3 MORE RESULTS & DISCUSSIONS OF VIDEOCHAT-FLASH

A.3.1 DETAILED RESULTS OF VISUAL COMPRESSION

Different connectors and compression ratio. As shown in the table 5, we consider three different
numbers of tokens per frame after compression (16, 49, 196) and four popular token compression
strategies: spatial downsampling (Zhang et al., 2024c; Chen et al., 2024e), uneven downsampling (Wei
& Chen, 2024), spatio-temporal resampler (Li et al., 2024c; Tan et al., 2024), and similar token
merging (Bolya et al., 2022; Weng et al., 2025) (more details can be found in the Appendix). It
can be seen that compared with other methods, the parameter-free similar token merging operation
can achieve a remarkably low compression ratio and even obtain better performance than without
compression. Even in the extreme case of a 2% compression ratio, it can still maintain most of the
performance.
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Table 5: Comparison of connectors.

Connector MVBench MLVU VideoMME AvgAvg M-Avg Overall

#tokens per frame=729, compression ratio=100%
MLP (Uncompressed) 59.4 64 55.3 59.6

#tokens per frame=196, compression ratio=27%
Spatial Downsampling 60.2 63.7 52.8 58.9(-0.7)
Uneven Downsampling 60.9 62.5 54.9 59.4(-0.2)
Spatio-temporal Resampler 59.5 61.9 51.9 57.8(-1.8)
Similar Token Merging 62.8 66.7 56.8 62.1(+2.5)

#tokens per frame=49, compression ratio=7%
Spatial Downsampling 60.2 61.8 53.6 58.5(-1.1)
Uneven Downsampling 59.8 62.8 54.3 59.0(-0.6)
Spatio-temporal Resampler 55.5 58.1 51.1 54.9(-4.7)
Similar Token Merging 61.4 63.3 55.3 60.0(+0.4)

#tokens per frame=16, compression ratio=2%
Spatial Downsampling 58.1 61.1 50.1 56.4(-3.2)
Uneven Downsampling 58.3 60.0 52.3 56.9(-2.7)
Spatio-temporal Resampler 51.4 54.7 47.7 51.3(-8.3)
Similar Token Merging 60.2 62.4 53.5 58.7(-0.9)

(𝑎𝑎) Spatial Downsampling (𝑏𝑏) Uneven 𝐷𝐷ownsampling

KV

(𝑑𝑑) Similar Token Merging

XAttn

(𝑐𝑐) Spatio-temporal Resampler

Q

Figure 8: Comparison of different connectors.

Training cost. The main training advantage of our method lies in the fact that compression reduces
the context sequence length fed into the LLM. First, we consider the impact of reduced context
sequence length on training under the condition of the same training data volume. Here, we cite the
comparison of training system throughput under different sequence lengths provided by the state-of-
the-art long video training system LongVILA Xue et al. (2024) as a reference—this comparison is
conducted on 64 H100 GPUs and measured in time per iteration (seconds).

As shown in table 7, it can be observed that despite the excellent acceleration optimizations for
long-sequence training, changes in sequence length still significantly impact training speed. Our
method can substantially reduce the training cost of long videos. Regarding the specific training cost,
our method roughly requires 32 A100 GPUs for 5 to 6 days of training, which is significantly lower
than that of mainstream models such as InternVL and QwenVL.

Inference cost. As in table 6, even when processing short videos, the compute load of our model
is only one-tenth that of previous models. Meanwhile, as the number of input frames increases, the
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Table 6: Comparison of FLOPs and Cuda memory. The FLOPs and inference memory is estimated
using one NVIDIA A100-80G GPU with one sample, and the training is estimated using 32 NVIDIA
A100-80G GPUs with DeepSpeed ZeRO-3 (Rasley et al., 2020). We assume that the visual features
have been extracted and stored in advance, so we only consider the FLOPs and memory of the LLM.

Input Model Avg tokens FLOPs Memory(G)
frames per frame (T) Train Infer

64
LongVILA (Xue et al., 2024) 196 224.8 15.4 16.7
LongVA (Zhang et al., 2024a) 144 155.9 12.3 16.3
VideoChat-Flash 16 14.8 4.8 15.4

256
LongVILA (Xue et al., 2024) 196 1467.5 50.1 21.0
LongVA (Zhang et al., 2024a) 144 930.4 37.8 19.5
VideoChat-Flash 16 63.0 7.6 15.7

1000
LongVILA (Xue et al., 2024) 196 14336.9 oom 37.7
LongVA (Zhang et al., 2024a) 144 8278.9 oom 31.8
VideoChat-Flash 16 303.3 18.6 17.1

10000
LongVILA (Xue et al., 2024) 196 1184250.0 oom oom
LongVA (Zhang et al., 2024a) 144 644632.0 oom oom
VideoChat-Flash 16 9969.5 oom 33.6

Table 7: Training system throughput comparison (cited from LongVILA). The data is measured
on 64 H100 GPUs, with the metric being time per iteration.

Model Token Per Frame Max Frames Sequence Length Training Time per Iteration (s)

VideoChat-Flash 16 512 8k Not provided in LongVILA
16 2048 32k 4.24

InternVL2.5 256 512 128k 16.0
256 2048 512k 66.1

difference becomes more and more pronounced. Only our model can complete the inference on
10,000 frames on a single A100-80G. Concretely, VideoChat-Flash’s compute load is two orders of
magnitude lower than that of LongVILA (Xue et al., 2024) (9,969.5 vs. 1,184,250.0 TFLOPs). We
also present the real inference costs using HuggingFace Pipeline and Flash-Attention2. As shown in
table 8, under the same video frame input and resolution, the FLOPs, GPU memory consumption,
and latency of our VideoChat-Flash are all significantly lower than those of Qwen2.5-VL—one of
the representative mainstream MLLMs—demonstrating the high efficiency of our method.

Table 8: Inference cost comparison (measured via HuggingFace Pipeline with Flash-Attention2).

Model Input Frames Num. Visual Tokens FLOPs GPU Memory latency (Vision Encoder) latency (LLM) latency (Total)

Qwen2.5-VL 64 8192 158.65 18.66 1.115 2.308 3.422
VideoChat-Flash 64 1024 44.32 16.54 0.323 0.096 0.419
Qwen2.5-VL 256 32768 632.29 28.07 4.621 6.211 10.832
VideoChat-Flash 256 4096 175.03 20.41 1.188 0.337 1.526
Qwen2.5-VL 1024 131072 2526.80 65.72 18.930 34.473 53.403
VideoChat-Flash 1024 16384 697.81 35.92 4.697 1.442 6.140

A.3.2 VISUAL DROPOUT IN LLM

Visual token redundancy in LLM inference. As shown in fig. 9, we find that even when half of the
tokens are discarded at the shallow layers of the LLM, the performance of long video understanding
only degrades marginally. This indicates that despite high compression at the clip level (encoding
each frame into only 16 tokens), there remains considerable redundancies between clips when
their representations are interacted in the LLM. Furthermore, we find the overall understanding
performance gets better as the dropout happens in the deeper layer of the model. Remarkably, at
approximately two-thirds of the LLM’s depth, the performance even surpasses that of the no-discard
baseline. This might suggest that in the deeper layers of the network, an excess of visual tokens may
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Figure 9: Visual redundancy in long context across layers. We conduct experiments on Qwen2-7B
(28 layers) and test the impact of dropping 50% of the visual tokens from shallow to deep layers.

interfere with the model’s reasoning process. For the drop type, we observe that uniform drop often
outperforms attention-based selection in the shallow layers. We suppose, at these layers, the LLM
has not yet fully determined the specific locations to focus on. As a result, relying on attention may
introduce bias.

Visualization of visual attention map. As shown in the fig. 10, for long video context, the
attention of text tokens is relatively dispersed in the shallow layers of the network. However, as the
layers deepen, the attention gradually becomes focused on specific regions. Thus, we believe that the
attention scores in the deeper layers are more reliable, while those in the shallow layers may be prone
to bias.

The Impact of progressive visual dropout on training. In our preliminary exploration, we were
indeed concerned that the mismatch between training and inference (i.e., training with dropout vs.
evaluating without) might negatively impact performance. Therefore, we conducted ablation studies
and found that it did not yield significant benefits. In fact, incorporating it during training even
resulted in a slight performance degradation.

Table 9: Ablation results of Progressive Visual Dropout in training/inference stages.

Training Evaluation VideoMME MVBench

No Dropout No Dropout 53.2 61.1
Progressive Visual Dropout No Dropout 53.6(+0.4) 58.4(-2.7)

Progressive Visual Dropout 52.2(-1.0) 57.9(-3.3)

We hypothesize that this degradation stems from the underlying mechanism of Visual Drop, which
relies on text-guided attention to identify and retain key visual tokens.

• The Premise: Effective dropping requires the model to accurately determine which visual
tokens are semantically relevant to the text.

• The Conflict: At the early stages of training, the MLLM has not yet established robust
alignment between textual and visual modalities. Consequently, it cannot reliably identify
”key” visual information. Forcing the model to drop tokens based on unlearned or unstable
attention weights prevents it from effectively learning the full video representation.
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Figure 10: Visualization of the attention scores from the last textual token to visual tokens at
each layer of the network.
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Therefore, based on these empirical results and analysis, we determined that applying Visual Drop
exclusively during the inference stage.

Table 10: Results with different video encoder.

Video encoder MVBench PerceptionTest LongVideoBench MLVU VideoMME (w/o sub.) LVBench
Avg Val Val M-Avg Overall Avg

Avg. Duration 16s 23s 473s 651s 1010s 4101s

UMT-L 73.2 75.6 64.2 74.5 64.0 48.4
InternVideo2-1B 74.3(+1.1) 76.3(+0.7) 64.5(+0.3) 73.4(-1.1) 65.2(+1.2) 48.7(+0.3)

A.3.3 RESULTS WITH INTERNVIDEO2

As shown in table 10, in addition to UMT (Li et al., 2023c), we also attempted to use the more
powerful InternVideo2-1B (Wang et al., 2024e) as the video encoder. As shown in Table 1, we found
that a stronger video encoder can lead to better compressed representations.

A.3.4 RESULTS ON IMAGE UNDERSTANDING BENCHMARKS

Our model is specifically designed for video understanding. However, according to the newly-
evaluated results of image benchmarks, our model can still outperform the strong image-based
MLLM, LLaVA-NeXT (Zhang et al., 2024c), with significantly lower computational cost: MMMU
(45.2 vs. 35.3), MME (1843.4 vs 1603.7).

A.3.5 THE IMPACT OF VISUAL COMPRESSION ON EFFICIENCY AND PERFORMANCE

we emphasize that the advantages of our compression strategy are twofold, benefiting both efficiency
and performance:

• From an efficiency perspective: With the same number of input frames, our method
significantly reduces computational costs without a marked decline in performance, as
demonstrated in the second row of table 2.

• From a performance perspective: In scenarios where computational resources and LLM
context length are constrained-a common bottleneck in long-video understanding where
standard sparse sampling often leads to severe information loss-compression allows the
model to ingest a much larger number of video frames. This enables the model to achieve
better performance by scaling up the input video context. To further empirically validate
this, we present the additional data below. As shown in the table 11, under a fixed budget
of total Vision Tokens (4,096), compressing the per-frame representation (from 256 to 64
tokens) allows us to significantly increase the number of input frames (from 16 to 64). This
enhanced temporal context leads to substantial performance gains.

Table 11: Performance results under different Token per frame and Input Frames configura-
tions.

Token Per Frame Input Frames Vision Token VideoMME MotionBench

256 16 4096 51.3 44.8
64 64 4096 59.3(+8.0) 46.2(+1.4)

A.3.6 FURTHER ELABORATION ON NOVELTY.

A critical distinction between our work and prior art lies in our objective: we pursue efficient
long-video modeling to build long-video MLLMs from scratch, whereas most existing works aim
to accelerate existing MLLMs (e.g., by freezing most modules or adopting training-free approaches).

We believe that learning native compressed representations for long-video modeling is essential. To
this end, we propose the Hierarchical Compression (HiCo) paradigm. This is an effective system-
level design rather than merely a specific component. HiCo decouples compression into two
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stages: handling visual redundancy at the Clip-level (within the ViT) and textual semantics at the
Video-level (within the LLM). Furthermore, regarding specific design details, our approach offers
key differences and novel insights compared to previous work:

• Clip-level Compression: We propose leveraging spatio-temporal attention to capture local
inter-frame redundancy. This allows the Video Encoder to learn how to compress representa-
tions via parameter updates, rather than relying on hand-crafted compression modules. This
self-adaptive mechanism is key to achieving our exceptionally high compression rate.

• Video-level Compression: We introduce a new improved visual drop scheme specifically
optimized for the long-video understanding domain.

• Timestamp Prompts: We demonstrate that concise text prompts remain highly effective
even under extreme visual compression. This avoids the computational overhead associated
with adding text timestamps to every frame, a common practice in prior work.

• Duration-based Sampling: We validate a more effective sampling strategy: applying
dense sampling for short videos and sparse sampling for long videos. This differs from
previous works, which predominantly utilize fixed FPS sampling or rely exclusively on
sparse sampling.

In summary, by combining these improvements, we are the first to demonstrate that heavy-
compression-based methods can achieve long-video understanding performance comparable to,
or even surpassing, closed-source context-extension-based models.

A.3.7 DISCUSSION ON THE TRAINING-FREE FRAME SELECTION METHOD

Numerous training-free frame selection approaches Tang et al. (2025); Zhu et al. (2025); Sun et al.
(2025) have been employed to enhance the long-video understanding of MLLMs. These methods
target the selection of key frames or clips most relevant to a specific task, thereby avoiding the
direct input of the full long-video context. This improves efficiency and often boosts performance,
particularly given that most MLLMs are currently optimized for short-context rather than long-context
tasks.

While we acknowledge that training-free frame selection is an effective, low-cost solution for specific
application scenarios, we argue that it possesses inherent limitations when viewed from the perspective
of constructing a general-purpose foundation model for long video understanding:

• Task Formulation & Intrinsic Capability: Fundamentally, frame selection simplifies a
long-video task into a short-context problem; it does not enhance the MLLM’s intrinsic
ability to process long temporal contexts. in contrast, our approach reduces the visual token
count via clip-level compression and employs a short-to-long training strategy. This allows
the MLLM to efficiently and holistically comprehend the compressed long-video context.

• Granularity & Precision: External selection modules typically have a limited performance
ceiling. A text-guided selector may struggle to accurately interpret complex instructions.
Conversely, our method utilizes video-level compression to leverage the LLM’s inherent
capabilities in identifying critical visual information. This achieves precise token-level
selection, which offers significantly finer granularity than coarse frame-level selection.

• Information Retention: Frame selection inevitably requires discarding a significant portion
of the raw data, making it unsuitable for tasks requiring dense, global understanding (e.g.,
dense video captioning or detailed video description). Our method retains essential semantic
information, demonstrating superior performance on these information-intensive tasks.

In summary, we regard frame selection and our proposed method as distinct paradigms tailored for
different objectives: the former is suitable for adapting MLLMs in a training-free manner, while the
latter is designed to train a native long-video MLLM.
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A.4 IMPLEMENTATION DETAILS OF VIDEOCHAT-FLASH

A.4.1 VIDEO-LANGUAGE CONNECTORS

As shown in fig. 8, we consider four popular token compression strategies to compress the features
from video clips:

• Spatial Downsampling. Applying spatial operations (pooling (Xu et al., 2024), interpola-
tion (Zhang et al., 2024c), and convolution (pixel shuffle) (Chen et al., 2024e)) to each video
frame for downsampling has been demonstrated in previous work (Xu et al., 2024; Maaz
et al., 2024) as an effective method to reduce the number of video tokens. However, due to
the lack of temporal interaction, this approach fails to leverage the relation between frames.
We use pixel shuffle in our experiments.

• Uneven Downsampling. Considering the similarities between adjacent frames, it is un-
necessary to retain full details for every frame. We can apply down-sampling operations
with different sizes across frames within a clip. Specifically, a lower down-sampling size
is applied to the first frame, while higher down-sampling sizes are used for the remaining
frames. Similar approaches have been validated in a recent study (Wei & Chen, 2024).

• Spatio-Temporal Resampler. Using a learnable compressor, such as a Q-Former (Li et al.,
2024c) or a cross-attention layer, to compress spatiotemporal tokens. However, this approach
requires a large amount of data for effective learning. In training, we observe that the Q-
Former barely converges well in our setting. So in our ablations, we adopt a single-layer
cross-attention instead.

• Similar Token Merging. We directly merge similar tokens, using the ToMe (Bolya et al.,
2022) approach.

A.4.2 VISUAL DROPOUT IN LLM

Herein, we present the detailed implementation of visual dropout in LLM: For uniform drop, we
uniformly drop a proportion of visual tokens and reassign position ids to the retained visual tokens.
For text-guided selection, since Flash-Attention2 Dao (2023) does not support returning valid attention
maps, we instead compute the attention scores between text tokens and vision tokens independently
for text-guided selection.

A.4.3 TRAINING HYPERPARAMETERS.

As shown in Table 1, the training details and hyperparameters for each stage of our VideoChat-Flash
model are presented.

Table 12: Training details of each training stage for the VideoChat-Flash-7B model.

Stage-1 Stage-2 Stage-3 Stage-4

Vi
si

on Resolution×Num. frames 224 224 ×8 224×(64∼512) 224×(64∼512)
#Tokens 16×4 16×8 16×(64∼512) 16×(64∼512)

D
at

a Dataset Image & Short Video Image & Short Video (Multi)-Image & Short/Long Video (Multi)-Image & Short/Long Video
#Samples 1M 4M 3.2M 0.3M

M
od

el Trainable Projector Full Model Full Model ViT&Projector
7.6B LLM 20.0M 7.9B 7.9B 0.3B

Tr
ai

ni
ng

Batch Size 512 256 256 256
LR of vision encoder 1×10−3 2×10−6 2×10−6 2×10−6

LR of connector & LLM 1×10−3 1 ×10−5 1 ×10−5 1 ×10−5

Epoch 1 1 1 1

A.4.4 TRAINING DATA

Stage 1: Video-Language Alignment. In this stage, we use 558k image-text pairs from LCS-
558K (Liu et al., 2023) and 481k short video-text pairs from S-MiT (Monfort et al., 2021).

Stage 2: Short Video Pre-training. To enhance the model’s understanding of visual concepts, we
conduct visual pre-training using 3.5 million images and 2.5 million short video-text pairs.
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• Video Description Data. We utilize the video description data recaptioned with
VideoChat2 (Li et al., 2024c) from WebVid2M (Bain et al., 2021).

• Detailed Video Description Data. We employ the 323k detailed video description data recap-
tioned with Gemini (Reid et al., 2024) from WebVid (Bain et al., 2021) and Kinetics (Kay
et al., 2017), as in previous work (Share, 2024).

• Detailed Image Description Data. We use the 3.5 million detailed image description
data recaptioned with LLava-NeXT-34B (Zhang et al., 2024c) from the following datasets:
COCO118K, BLIP558K, and CC3M, as provided by previous work (Li et al., 2024a).

• Text Data. To enhance the model’s language understanding capabilities, we incorporate
143K samples from the Evo-Instruct dataset (Chen et al., 2024a).

Stage 3: Joint Short & Long Video Instruction tuning. To enable the model to handle a wide
variety of video tasks, we collect 3.5 million instruction fine-tuning samples, including 1.1M images,
1.7M short videos (under 60 seconds), and 0.7M long videos (60∼3600 seconds).

• Long Video Instruction data. We primarily utilized long video instruction data from
MoiveChat (Song et al., 2024), Vript (Yang et al., 2024) and a subset of LongVid.

• Short Video Instruction data. We primarily utilized short video data from VideoChat2 (Li
et al., 2024c) and InternVideo2 (Wang et al., 2024e) for instruction fine-tuning. Addi-
tionally, we incorporated data annotated with GPT4-o from previous works, including
ShareGPT4o (Chen et al., 2024e; Wang et al., 2024e), VideoChatGPT-Plus (Maaz et al.,
2024), LLaVA-Video-178K (Zhang et al., 2024d) and LLava-Hound (Zhang et al., 2024b).

• Image Instruction data. We primarily utilized single-image instruction data from LLava-
NeXT (Zhang et al., 2024c), Allava (Chen et al., 2024a), and ShareGPT4-o (Chen et al.,
2024e; Wang et al., 2024e). Additionally, we incorporated multi-image data provided by
LLaVA-Interleave (Li et al., 2024b).

A.5 DATASET DETAILS OF LONGVID

The videos of LongVid are curated from 4 open-source video datasets: Ego4D (Grauman et al., 2022),
HowTo100M (Miech et al., 2019), HD-VILA (Xue et al., 2022), and MiraData (Ju et al., 2024). We
provide statistics and details of the data construction pipeline for each dataset as follows.

A.5.1 STATISTICS AND EXAMPLES

As shown in fig. 11, fig. 12 and fig. 13, we’ve shown the data and QA type distribution for LongVid.
Next, we will provide examples for the five tasks.

Task 1: Video Captioning
• Question: Which option best describe artistic style, visual and photographic aspects

for this video, such as realistic, cyberpunk, and cinematic style?
• Options&Answer:
(A) The video features a high-definition, realistic graphic style with detailed textures

and vibrant lighting effects, emphasizing a futuristic and immersive cyberpunk
aesthetic.

(B) The video features a high-definition, realistic graphic style with detailed textures and
dynamic lighting, emphasizing a gritty, futuristic aesthetic that is both immersive
and visually engaging.

(C) The video features a high-definition, realistic artistic style with a focus on
detailed textures and vibrant lighting, enhancing the immersive medieval
game setting.

(D) The video features a realistic yet distinctly stylized graphic design typical of
modern video games, with vibrant colors and detailed environments that enhance
the immersive experience.

Task 2: Temporal Grounding
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• Question: When does a person is walking down a street in a video game?
• Options&Answer:
(A) 00:08:56.833 - 00:09:56.367
(B) 00:03:03.033 - 00:04:09.367
(C) 00:07:21.900 - 00:08:07.633

Task 3: Event Relation Recognition
• Question:What is the event in the video between “fold the wrapper loosely around the

filling” and “repeat until there are three or four folds on each side”?
• Options&Answer:
(A) wrap the dough and let it sit 10–30 minutes
(B) mix the vegetables and ground meat together
(C) add the potstickers to the hot oil
(D) fold a piece of dough at one corner
(E) peel and chop other herbs and vegetables

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Task 4: Scene Relation Recognition
• Question: Which option can best describe the scenery of the video?
• Options&Answer:
(A) lush → forest → sun → sunset
(B) rural → suburban
(C) city night → streetlights → car → buildings → trees
(D) indoors → makeshift → operations room

Task 5: Video Event Counting
• Question: According to the video, how many steps does the chef take during cooking?
• Answer:
(A) 6

A.5.2 EGO4D

For ego-centric videos, we adopt 3,662 long videos from the Ego4d (Grauman et al., 2022) and lever-
age Ego4DHcap (Islam et al., 2024) as the corresponding captions. Ego4DHcap gives hierarchical
captions for short, medium, and long video segments. For the short video captioning task, we directly
utilize these captions, while for the dense caption task, we concatenate captions in the lower level to
form a dense one. For example, we merge all short video captions in a medium video segment to
create a dense medium-level one, and the dense caption of long video segments can be formed by
concatenating multiple medium-level video captions.

We also build event relation recognition and temporal grounding tasks based on captions of short
video segments. For the event relation recognition task, models are required to choose the right order
of an event sequence. Since we find the captions of short videos are highly concise and event-oriented,
we use them as the event labels and serially put the short captions in a medium-level video segment as
the ground-truth event relationship. For the temporal grounding task, we use the short video captions
with the corresponding timestamps as the ground-truth, and randomly select other timestamps in the
current medium video segments as the false options.

A.5.3 MIRADATA

MiraData (Ju et al., 2024) provides multi-level captions for large-scale minute-level movie segments.
Apart from short and dense captions that are used for short and dense video captioning tasks, it
also provides multiple fine-grained captions that focus on various specific perspectives, such as
the main object, background, camera movements, and video style. We use an open-source LLM
(Qwen-72b (Bai et al., 2023)) to extract the event and background labels from the main object and
background captions, respectively, and we put the labels of a long video in the right order as the
ground truth of the event/background relation recognition task. For the temporal grounding task, we
use the event label with the corresponding timestamp as the ground-truth option.

A.5.4 HOWTO100M

HowTo100M (Miech et al., 2019) includes more than 1 million long-duration how-to videos. We
adopt HowToInterlink7M (Wang et al., 2024a), a video captioning dataset that provides refined
interleaved video captions of HowTo100M videos as short and dense video captions. For the event
relationship recognition and temporal grounding tasks, we use HTStep (Afouras et al., 2024), a
large-scale dataset containing temporal annotations of instructional steps in HowTo100M videos.

A.5.5 HD-VILA

While previous datasets focus on long videos in specific domains, we also select part of the videos
from HD-VILA (Xue et al., 2022), a large-scale video dataset that includes various in-the-wild
videos. We argue that adding these videos into training could enhance the model’s ability to process
long videos in some uncommon domains. For HD-VILA videos, we adopt the captions of Panda-
70M (Chen et al., 2024c). Specifically, we filter consecutive video segments that can be re-constructed
into more than 60s long videos from the 10M training subset and utilize these captions as the video
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short/dense captioning and temporal grounding tasks. The event labels are also extracted from these
captions in the same way as MiraData (Ju et al., 2024).

A.6 RESULTS OF GEMINI2.5 FLASH ON MULTI-HOP NIAH

We have supplemented the results of Gemini 2.5 Flash and Gemini 2.5 Flash thinking on our MH-
NIAH benchmark. Due to budget constraints, we only evaluated its performance under the 1000-frame
setting, with an input token count of approximately 266k.

Table 13: Performance comparison on MH-NIAH benchmark. Evaluated under 1000-frame
setting with 266k input tokens. “Cap Score” denotes captioning score, and “QA Score” denotes
question answering score.

Model Thinking Token Per Frame Cap Score QA Score

random - - 25% 6.25%
LlamaVid × 2 20% 7%
LongVA × 144 25% 18%
VideoChat-Flash (Ours) × 16 33% 27%
Gemini2.5 Flash × 258 35% 31%

✓ 258 60% 54%

Surprisingly, without enabling the reasoning mode, Gemini 2.5 Flash achieved a score only slightly
higher than that of our VideoChat-Flash in the Multi-Hop NIAH test. However, its score significantly
improved when the thinking mode was activated. This further validates the fact that the Multi-Hop
NIAH task we designed truly requires more complex video reasoning capabilities rather than mere
retrieval abilities for successful completion.

A.7 QUALITATIVE RESULTS OF VIDEOCHAT-FLASH

We perform qualitative comparisons of our model with the proprietary model Gemini-1.5 Pro (Reid
et al., 2024)1 and the open-source LongVU (Shen et al., 2024) and VideoLLaMA2 (Cheng et al.,
2024) across three tasks: fine-grained understanding of short videos ( figs. 14 and 15) and long video
understanding ( figs. 16 and 17).

1We use the newest Gemini-1.5 Pro-002 for evaluation.
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The person uses multiple similar objects to play an occlusion game. Where is the hidden object at the 
end of the game from the person'spoint of view (left, middle or right)?

The hidden object at the end of the game is located on the right side 
from the person's point of view.

The hidden object is under the middle cup from the person's point of view.

𝑼𝑼𝑼𝑼𝑼𝑼𝑼𝑼

𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽 𝟐𝟐

𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽 −

𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮.𝟓𝟓 − 𝑷𝑷𝑷𝑷𝑷𝑷

𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳 

From the person's point of view, the hidden object is on the left side at the end of the game.

The hidden object is in the leftmost cup.

Time
00:01 00:02 00:04

Switch right & middle Switch left & middle Switch left & middle

Figure 14: Fine-grained Understanding of Short Videos: Fast Motion. By adopting a dense
sampling strategy for short videos, our model effectively captures fast motion within the video,
enabling it to accurately determine the final position of the object under the cup.

How many times did the person launch objects on the table?

The person in the video launched objects on the table a total of two times.

The person launched objects on the table three times.

𝑼𝑼𝑼𝑼𝑼𝑼𝑼𝑼

𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽 𝟐𝟐

𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽 −

𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮.𝟓𝟓 − 𝑷𝑷𝑷𝑷𝑷𝑷

𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳 

The person launched objects on the table twice according to the video.

The person launched an object on the table 4 times.

Time
00:04 00:06

Launch once Launch twice Launch three times

Figure 15: Fine-grained Understanding of Short Videos: Action Count. Our model can accurately
capture actions in short videos while also recording their occurrence frequency.
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Yes, it appears that an individual steals a catalytic converter from the silver Peugeot parked next to a black 
car. Catalytic converter theft is a type of property crime. Catalytic converters are valuable because they 

contain platinum, palladium, and rhodium. These metals are expensive, and catalytic converters are relatively 
easy to remove from a car. This means that they are a target for thieves who can sell them for a profit.

Is there any possible criminal behavior in this surveillance video? If there is, what type of criminal 
behavior is it?

The video does not show any explicit criminal behavior, but it does show a person walking 
on the sidewalk. However, it is unclear whether this person is engaged in any criminal 

activity or simply walking.

Yes, there is possible criminal behavior in this surveillance video. The person walking down the street and 
entering a house could be involved in a crime such as burglary or theft.

𝑼𝑼𝑼𝑼𝑼𝑼𝑼𝑼

𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽 𝟐𝟐

𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽 −

Based on the given information, there is no indication of any criminal behavior in this surveillance video. 
The video only shows cars parked along a street next to buildings.at night time.

𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮.𝟓𝟓 − 𝑷𝑷𝑷𝑷𝑷𝑷

𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳 

01:28 02:48

𝐁𝐁𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮

Time

Figure 16: Long video understanding: Anomaly Detection In Surveillance Videos. Our model
can detect anomalous behaviors in surveillance videos and provide corresponding inferences.

Here’s how the injured person got into the bed:The clip starts with the injured man being carried unconscious on horseback. When they reach 
their encampment, he is carried into a tent and placed on a bed. Another person with an injured shoulder and arm is also treated at the 

camp, with an assistant applying a hot compress to the wound. As the bandaged warrior rests, an older man enters and sits by the warrior’s 
bed. It turns out the older man is a doctor who has come to examine the wounded. After the two men chat for a moment, a third man returns to 
the camp, yelling and punching the older man in the stomach. After exchanging blows, the old man throws his assailant out of the tent.Night 
falls and the encampment is lit by torches and campfires. Someone spies on the camp from a dune, and soon the encampment is ablaze with fire 

and soldiers. The old doctor is killed and, as he dies, he gives the wounded warrior final instructions.

How did the person lying in the bed in the camp get there? 

The person lying in the bed in the camp was carried there by another person

The person was carried on a horse by another individual.

𝑼𝑼𝑼𝑼𝑼𝑼𝑼𝑼

𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽 𝟐𝟐

𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽 −

The video does not provide information on how the person lying in the bed arrived at the camp.

𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮.𝟓𝟓 − 𝑷𝑷𝑷𝑷𝑷𝑷

𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳 

00:40 01:08 Time

Carried on a horse by another individual

Figure 17: Long video understanding: Moive Understanding. Our model can understand the plot
of a movie and retain detailed visuals.
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