

VIDEOCHAT-FLASH: HIERARCHICAL COMPRESSION FOR LONG-CONTEXT VIDEO MODELING

000
001
002
003
004
005 **Anonymous authors**
006 Paper under double-blind review
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
559
560
561
562
563
564
565
566
567
568
569
569
570
571
572
573
574
575
576
577
578
579
579
580
581
582
583
584
585
586
587
588
589
589
590
591
592
593
594
595
596
597
598
599
599
600
601
602
603
604
605
606
607
608
609
609
610
611
612
613
614
615
616
617
618
619
619
620
621
622
623
624
625
626
627
628
629
629
630
631
632
633
634
635
636
637
638
639
639
640
641
642
643
644
645
646
647
648
649
649
650
651
652
653
654
655
656
657
658
659
659
660
661
662
663
664
665
666
667
668
669
669
670
671
672
673
674
675
676
677
678
679
679
680
681
682
683
684
685
686
687
688
689
689
690
691
692
693
694
695
696
697
698
699
699
700
701
702
703
704
705
706
707
708
709
709
710
711
712
713
714
715
716
717
718
719
719
720
721
722
723
724
725
726
727
728
729
729
730
731
732
733
734
735
736
737
738
739
739
740
741
742
743
744
745
746
747
748
749
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
799
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
899
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
989
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1098
1099
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1198
1199
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1298
1299
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1398
1399
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1498
1499
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1598
1599
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1698
1699
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1798
1799
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1898
1899
1899
1900
1901
1902
1903
1904
1905
1906
19

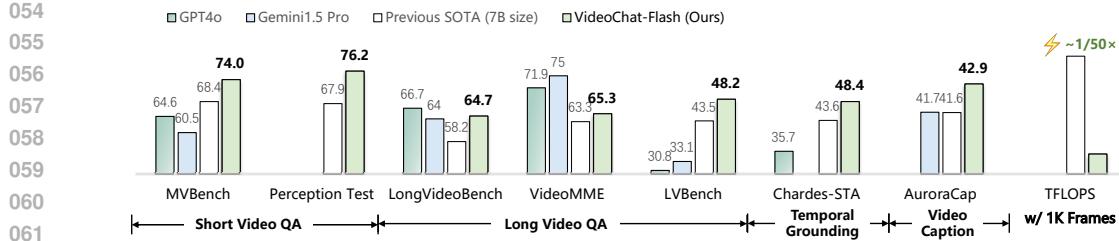


Figure 1: Comparison results on various generic video-linguistic tasks.

First, we propose a novel **Hierarchical** video token **Compression** method (**HiCo**) to model the long video context efficiently, which defines the compression of the long video context into two stages. First, we segment the long video into multiple clips. Then, at the Clip-level, we utilize the spatio-temporal attention of the video encoder and the similar token merging to aggregate the key information between frames, thereby reducing the redundancy of inter-frame features. Subsequently, we take advantage of the sparsity of attention when the LLM processes long video tokens, further discard the video tokens that are irrelevant to the current task at the Video-level. HiCo could achieve an extreme compression ratio of approximately 1/50 with almost no performance loss. Additionally, we have conducted thorough explorations of other designs such as video sampling and timestamp awareness prompt.

Second, to further enrich the existing long video training corpus, we construct **LongVid**, a dataset that contains 114,228 long videos and 3,444,849 question-answering pairs. With LongVid, we have designed a multi-stage training strategy named **short-to-long learning**. The main idea is to first utilize image and short video data to learn basic visual perception abilities. Then, through the joint training of short video and long video data, the model is enabled to handle videos of different lengths and different types of tasks. In addition, we design a new evaluation benchmark named “**Multi-Hop Needle In A Video Haystack**”. Which is more challenging and can better examine the model’s complex reasoning abilities regarding long videos.

Finally, we develop a powerful video MLLM named **VideoChat-Flash**, as shown in fig. 1, which achieves remarkably leading performance with extremely high efficiency on various video understanding benchmarks. Even with a 7B size, it outperforms closed-source models such as GPT-4o (OpenAI, 2024) and Gemini-1.5-Pro (Reid et al., 2024).

2 RELATED WORK

Multimodal Large Language Models for Video Understanding. Recent advancements in multimodal large language models (MLLMs) have shown significant promise in video understanding. Most of them (Li et al., 2023b; 2024c; Wang et al., 2024e; Lin et al., 2024; Zhang et al., 2023a; 2024c;d) focus on the understanding of minute-level videos, and some works (Reid et al., 2024; Song et al., 2024; Wang et al., 2024d; Shen et al., 2024; Xue et al., 2024; Shu et al., 2024; Huang et al., 2024) have further tried to handle longer hour-level videos. To address the challenge of processing long videos, researchers focus on two key strategies: (1) extending the context window of the LLM (Reid et al., 2024; Zhang et al., 2024a; Xue et al., 2024; Wei & Chen, 2024) and (2) compressing the video tokens (Li et al., 2024d; Fei et al., 2024; Weng et al., 2025; Tan et al., 2024; Song et al., 2024; Shu et al., 2024; Zeng et al., 2024). For context extension, although the approach of expanding the context window enable the possibility of long video understanding, it falls short of reducing the high computational burden and processing costs induced by long videos, thereby imposing limitations on its practical application. For token compression, Methods represented by Llama-Vid (Li et al., 2024d) use a highly compact representation while preserving key information. The high compression ratio makes it difficult for such methods to achieve excellent long video understanding performance, and they may even be inferior to some MLLMs designed for image modeling. Therefore, how to build a Video MLLM that can balance both efficiency and performance remains a difficult challenge.

Evaluation of Long Video Understanding. In order to evaluate the ability of Video MLLMs to understand long videos, previous works (Song et al., 2024; Zhang et al., 2023b; Mangalam et al.,

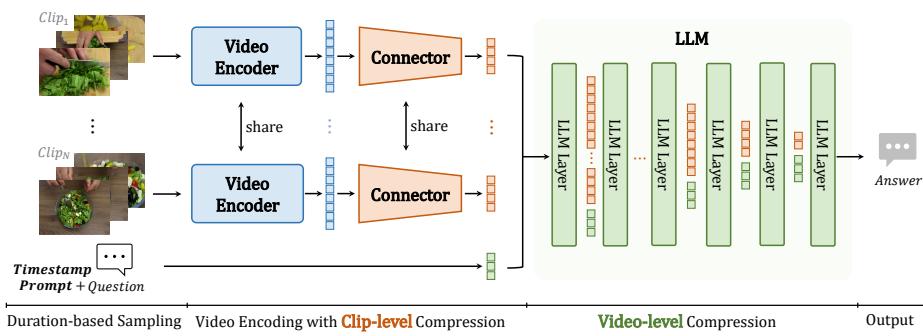


Figure 2: **Framework of VideoChat-Flash with Hierarchical Video Token Compression.** Video tokens will be compressed at the Clip-level by leveraging the local redundancy of the video modality during video encoding. Subsequently, during LLM processing, they will be compressed at the Video-level by taking advantage of the sparsity in the interaction between the text and the video.

2023; Rawal et al., 2024; Wu et al., 2024; Zhou et al., 2024; Fu et al., 2024; Chandrasegaran et al., 2024; Wang et al., 2024c) have achieved this by collecting long videos and then designing various multiple-choice questions related to the content of these long videos. This approach is closer to real-world applications and can effectively examine the model’s ability to understand and reason about long videos. However, when it comes to examining the model’s capabilities for videos of different lengths, this method is not intuitive enough. Inspired by the popular “Needle in A Haystack” (NIAH) evaluation in long text context evaluation, some recent works (Zhang et al., 2024a; Zhao et al., 2024) have attempted NIAH for Video haystack. Nevertheless, it is difficult to assess complex reasoning abilities, and there may be information leakage. In this paper, we propose a more challenging “Multi-Hop Needle-In-A-Video-Haystack” is designed to address the above issues.

3 METHOD

3.1 HiCo: EFFICIENT LONG VIDEO MODELING

To enable MLLMs to handle thousands of input frames, we propose a new video context compression paradigm named hierarchical compression (HiCo). This paradigm decomposes video context compression into two main stages: 1. **Clip-level compression for unimodal visual redundancy** during the encoding of long videos. 2. **Video-level compression for cross-modal visual redundancy** within the context interaction in the LLM. Based on this framework, we have designed an innovative efficient Video MLLM architecture, VideoChat-Flash, as illustrated in fig. 2. Below, we elaborate on our specific design details from data input to model output.

Duration-based Sampling. First, we need to perform frame sampling on the original video. Specifically, we sample a raw video with a duration of D to obtain T frames as input. Considering that the requirements for understanding short and long videos often differ, we aim to conduct dense sampling on short videos to capture detailed motions and sparse sampling on long videos to focus on event understanding. To this end, we have designed a Duration-based Sampling strategy:

$$T = \min(T_{\max}, \max(D, T_{\min})). \quad (1)$$

Simultaneously, we define the sampling density ϕ as follows:

$$\phi(T, D) = \frac{T}{D} = \frac{\min(T_{\max}, \max(D, T_{\min}))}{D}. \quad (2)$$

That is, for short videos where $D < T_{\min}$, $\phi = T_{\min}/D$, which increases as the video length decreases. For long videos where $D > T_{\max}$, $\phi = T_{\max}/D$, which decreases as the video length increases.

Spatio-Temporal Compression Encoding for Clips. Considering the substantial redundant and repetitive information, such as that of backgrounds and objects, present between adjacent frames in natural videos, we segment the original video frames into several equally sized clips. Each clip is

then encoded using a **Video Encoder with Spatio-Temporal Attention**, which effectively captures both key information and temporal redundancies within the clips, thereby significantly improving compression efficiency. We briefly offer some theoretical explanations here. First, we define the video features within a clip of length T as $\mathbf{Y} = \{\mathbf{Y}_1, \mathbf{Y}_2, \dots, \mathbf{Y}_T\}$, the compressed feature as $\mathbf{Z} = \mathcal{C}(\mathbf{Y})$, where \mathcal{C} denotes a deterministic compression operation (e.g., average pooling). For commonly used Image Encoder (such as SigLIP (Zhai et al., 2023), etc.), they assume inter-frame independence, i.e., $p(\mathbf{Y}_1, \dots, \mathbf{Y}_T) = \prod_{t=1}^T p(\mathbf{Y}_t)$. We can define the information loss caused by compression using the conditional entropy of the original features given the compressed feature:

$$L_c^{\text{img}} = H(\mathbf{Y}_1^{\text{img}}, \mathbf{Y}_2^{\text{img}}, \dots, \mathbf{Y}_T^{\text{img}} | \mathbf{Z}) = \sum_{t=1}^T H(\mathbf{Y}_t^{\text{img}}) - H(\mathbf{Z}). \quad (3)$$

For the Video Encoder, it models the joint distribution $p(\mathbf{Y}_1, \dots, \mathbf{Y}_T)$ using spatio-temporal attention, and its information loss can be expressed as:

$$\begin{aligned} L_c^{\text{vid}} &= H(\mathbf{Y}_1^{\text{vid}}, \mathbf{Y}_2^{\text{vid}}, \dots, \mathbf{Y}_T^{\text{vid}} | \mathbf{Z}) = H(\mathbf{Y}_1^{\text{vid}}, \mathbf{Y}_2^{\text{vid}}, \dots, \mathbf{Y}_T^{\text{vid}}) - H(\mathbf{Z}) \\ &= \sum_{t=1}^T [H(\mathbf{Y}_t^{\text{vid}}) - I(\mathbf{Y}_t^{\text{vid}}; \mathbf{Y}_1^{\text{vid}}, \mathbf{Y}_2^{\text{vid}}, \dots, \mathbf{Y}_{t-1}^{\text{vid}})] - H(\mathbf{Z}), \end{aligned} \quad (4)$$

where $I(\mathbf{Y}_t^{\text{vid}}; \mathbf{Y}_1^{\text{vid}}, \mathbf{Y}_2^{\text{vid}}, \dots, \mathbf{Y}_{t-1}^{\text{vid}})$ represents the mutual information between the t -th frame and the previous $t-1$ frames, i.e., the redundant information between the t -th frame and its preceding frames. For most videos, it is evident that $I(\mathbf{Y}_t^{\text{vid}}; \mathbf{Y}_1^{\text{vid}}, \mathbf{Y}_2^{\text{vid}}, \dots, \mathbf{Y}_{t-1}^{\text{vid}}) > 0$. Assuming the same $H(\mathbf{Z})$ and $\sum_{t=1}^T H(\mathbf{Y}_t^{\text{img}}) \approx \sum_{t=1}^T H(\mathbf{Y}_t^{\text{vid}})$, we thus have $L_c^{\text{img}} > L_c^{\text{vid}}$. A detailed proof is provided in the Appendix. In terms of specific implementation, we use ToMe (Bolya et al., 2022) as \mathcal{C} . Benefiting from the effectiveness of the video encoder in modeling spatio-temporal interactions, we achieve an extremely heavy compression while well retaining the key information, with each video frame being compressed to an average of only **16** tokens.

The compressed features from different clips are chronologically merged to form the final visual context. This representation is then aligned with the feature space of the LLM through a video-language projection. Furthermore, to reduce the cost of timestamp encoding, unlike previous approaches (Ren et al., 2024; Chen et al., 2024e) that depend on auxiliary modules or insert textual annotations into every frame, which introduces substantial computational overhead when processing long videos, we introduce a **lightweight timestamp prompt** appended after the video context: “*The video lasts for N seconds, and T frames are uniformly sampled from it.*” We find that this straightforward approach is sufficient to enable the model to perceive the timestamps of the input video, achieving excellent performance on timestamp sensitive tasks such as temporal grounding (see table 1). Finally, the entire video context \mathbf{X}_v can be represented as:

$$\mathbf{X}_v = \text{Concat}(\mathcal{F}(\mathbf{Z}_1), \mathcal{F}(\mathbf{Z}_2), \dots, \mathcal{F}(\mathbf{Z}_{N_c}), \mathbf{X}_{\text{timestamp}}), \quad (5)$$

Where N_c is the number of clips, \mathcal{F} is a MLP projection serving as a video-language connector.

Progressive Visual Dropout in LLM. Although clip-level compression has been carried out before, due to the possibility of longer-range visual redundancies in long videos (e.g. surveillance videos), and when an LLM responds to specific instructions regarding the visual input, it may not be necessary to continuously focus on the entire long video context. We consider conducting further video-level compression during the LLM inference stage. Recent works (Chen et al., 2025; 2024b) have explored acceleration strategies for MLLMs when processing short visual contexts. Most of them drop visual tokens based on the correlation between text tokens and visual tokens. In contrast, we find that when the LLM processes a long video context, it pays attention to the entire long video context at the shallow layers of the LLM, while focusing on the details of certain local moments at the deep layers (see the Appendix for specific visualizations). Based on this observation, we have designed a progressive visual dropout strategy, which is divided into two stages. At the shallow layers of the LLM, we uniformly drop a small number of video tokens (i.e. **uniform drop**), reducing the computation while maintaining the original spatio-temporal structure of the video context. At the deep layers of the LLM, we rely on the correlation between text tokens and video tokens to retain the most critical relevant information (i.e. **text-guided select**). We have found that this operation not only effectively improves the computational efficiency of the model but also slightly enhances the understanding performance of the model by reducing irrelevant visual noise.

216 3.2 LARGE-SCALE CORPUS FOR LONG VIDEO TRAINING
217218 One of the challenges in long video model training is the shortage of large-scale, high-quality
219 data. Though recent advances have mitigated this by long-form datasets of video-text pairs, these
220 lack the instruction-following paradigm, such as (video, instruction, answer) triplets, crucial for
221 multimodal reasoning. To address this, we introduce a large-scale long video instruction-tuning
222 dataset named **LongVid**. It comprises 114,228 long videos (with an average duration of 367.3
223 seconds) and 3,444,849 question-answering (QA) pairs, covering five distinct task types: *long video*
224 *captioning*, *temporal grounding*, *event relation recognition*, *scene relation recognition*, and *video*
225 *event counting*. LongVid significantly surpasses previous datasets in both scale and average video
226 length, enabling models to tackle a wide range of long video scenarios.
227228 To construct the LongVid dataset, we follow three core steps: **(1)** first, for data source selec-
229 tion, we leverage diverse existing long video datasets that include Ego4D (Grauman et al., 2022),
230 HowTo100M (Miech et al., 2019), HD-VILA (Xue et al., 2022), and MiraData (Ju et al., 2024); these
231 datasets collectively cover multiple video types (e.g., movies, egocentric videos, news, interviews,
232 how-to videos, and other in-the-wild long videos) to ensure the dataset’s diversity. **(2)** Second, for
233 event label curation, a key step that involves generating dense event labels for each long video, we
234 first utilize high-quality short video captions tailored to each source dataset (e.g., Panda-70M (Chen
235 et al., 2024c) for HD-VILA, CosMo (Wang et al., 2024a) for HowTo100M, Ego4D-HCap (Islam et al.,
236 2024) for Ego4D, and the original captions for MiraData), then filter consecutive short video segments
237 that can be reorganized into a single long video sequence, and subsequently construct timestamped
238 event label sequences for each long video based on the aforementioned captions; specifically, for
239 datasets with pre-existing high-quality event-level annotations (e.g., HT-Step (Afouras et al., 2024)
240 for HowTo100M, Ego4D-HCap for Ego4D), we directly leverage these annotations as event labels,
241 while for datasets lacking such annotations, we extract core events from the captions using a large
242 language model (LLM). **(3)** Finally, for QA pair construction, we build multiple types of long video
243 question-answering (QA) pairs using the video captions, event labels, and timestamps of the short
244 video segments, with further details about the entire construction process provided in the Appendix.
245246 3.3 MULTI-STAGE SHORT-TO-LONG LEARNING
247248 Unlike studies (Zhang et al., 2024a; Xue et al., 2024) that use long-form text to extend the context
249 window, we prefer that direct training on long-form videos minimizes the gap between training and
250 testing, leading to better downstream evaluations. The training data are detailed in the Appendix.
251252 **Stage-1: Video-Language Alignment.** In this stage, we freeze the visual encoder and the large
253 language model while training the compressor and the MLP to align the language with the compressed
254 visual features. We use 0.5 million image-text pairs and 0.5 million short video-text pairs, and sample
255 4 frames from each video in training.
256257 **Stage-2: Short Video Pre-training.** To enhance the model’s understanding of visual concepts, we
258 conduct visual pre-training using 3.5 million images and 2.5 million short video-text pairs. During
259 this stage, we sample 8 frames from each video.
260261 **Stage-3: Joint Short & Long Video Instruction Tuning.** To enable the model to handle a wide
262 variety of video tasks, we collect 3.5 million instruction fine-tuning samples, including 1.1M images,
263 1.7M short videos (under 60 seconds), and 0.7M long videos (60~3600 seconds). We mix the short
264 and long video data to ensure the model retains fine-grained understanding while expanding its
265 comprehension of long videos. The sampling method used is the duration-based sampling described
266 in section 3.1, with the number of sampled video frames ranging from 64 to 512.
267268 **Stage-4: Efficient Video Encoding Enhancement.** To enable the model to perceive higher reso-
269 lutions, we employ an efficient post-finetuning strategy to adapt the original low-resolution video
270 encoder to higher-resolution inputs. Specifically, we increase the input resolution of the video encoder
271 from 224 to 448, freeze the LLM, and directly utilize 25% of the stage-3 data for post-finetuning the
272 video encoding. We find that this simple, full-data strategy effectively enhances the video encoder’s
273 adaptability to higher-resolution video inputs.
274

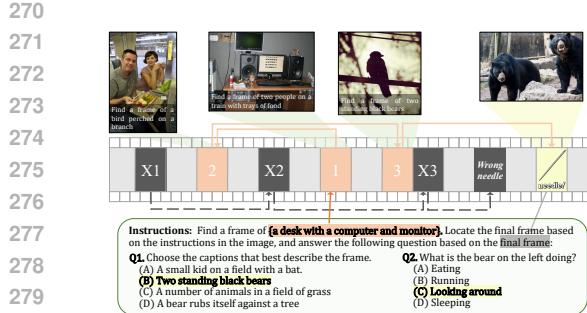


Figure 3: **An example of our Multi-Hop Needle in a Video Haystack.** The right path (1, 2, 3) is for finding the needle while the wrong path (X1, X2, X3) is for distraction. MLLMs are asked to both find the needle (Q1) and answer its related question (Q2).

3.4 MULTI-HOP NEEDLE IN A VIDEO HAYSTACK

Previous works (Zhang et al., 2024a; Xue et al., 2024) utilize the “Needle in a Video Haystack” (NIAH-Video) to evaluate the long video context understanding ability of models. Specifically, an image (commonly referred to as the “needle”) was inserted into a long video and then the model under test was required to input the entire video and answer questions related to the needle. NIAH-Video assesses the model’s capability to retrieve information from long videos. However, it has several drawbacks. Firstly, it is difficult to prevent images and questions similar to the needle from appearing in the model’s training data, which leads to information leakage. Secondly, merely examining the model’s visual retrieval ability is insufficient and lacks discrimination for evaluating its long video context understanding ability (many models can achieve an accuracy rate over 99%). There is a need to further evaluate its reasoning ability regarding the content.

To address the above issues, we have designed a new evaluation task called “Multi-Hop Needle in a Video Haystack” (MH-NIAH-Video). As shown in fig. 3, we insert a reasoning path composed of multiple images into the video haystack. Each image in this path has a randomly inserted position and the corresponding textual clues to help find the next image. Given the starting point of the reasoning path, the model needs to follow this path to find the needle and answer questions related to it. What’s more, to prevent the model from skipping the step of finding the needle by relying on information leakage or memorizing the content of all images, we insert multiple wrong reasoning paths simultaneously while inserting the correct reasoning path. The model needs to find the correct needle (Q1) along the correct reasoning path based on the given starting point and then answer questions related to the needle (Q2). In a way, our multi-hop approach offers a much more robust evaluation of the long context understanding ability in Multimodal Large Language Models (MLLMs) compared to the previous NIAH-Video. In practice, all images are sourced from MS-COCO (Lin et al., 2014), making use of its human-annotated captions and question-answer pairs. It should be noted that even if the model can perfectly remember the content of MS-COCO, it will not be of much help in finding the needle, significantly reducing the likelihood of successful “cheating”.

4 EXPERIMENTS

Implementation details. We employ UMT-L (Li et al., 2023c), token merging with MLP, and Qwen2-7B as visual encoder, connector, and LLM, respectively. When processing a long video, we divide it into shorter clips, each consisting of 4 frames. Each clip is compressed into 64 tokens, meaning that, on average, each frame is represented by 16 tokens. Regarding video-level compression, while we found that enabling it during training would slightly impair performance, so we only employ it during inference. We use only one-fourth of the full dataset for ablation. See Appendix for details.

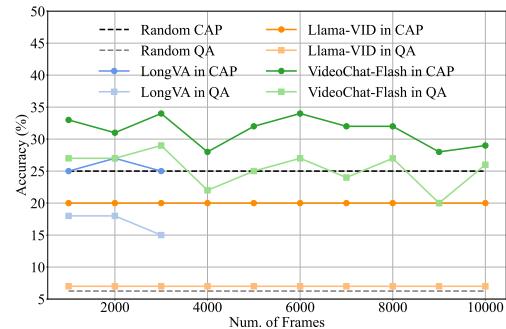
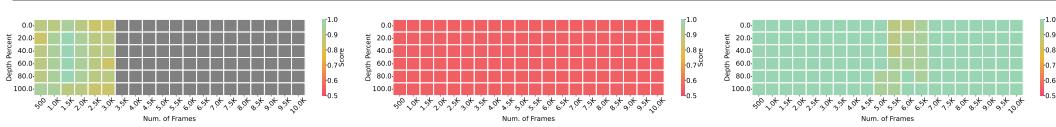


Figure 4: **Results on the Multi-Hop NIAH with 10,000 frames.** “CAP” represents the accuracy of finding the correct needle, while “QA” denotes the accuracy of answering the questions related to the correct needle while also finding the correct needle.

Table 1: Results on comprehensive video-linguistic benchmarks.

Model	Size	Avg tokens per frame	MVBBench	PerceptionTest	LongVideoBench	MLVU	VideoMME (w/o & w sub.)	LBench	Charades-STA	AuroraCap
Avg. Duration		Avg	16s	Val	Val	M-Avg	Overall	Long	Avg	mIoU
Proprietary Models										
GPT-4V (OpenAI, 2023)	-	-	43.7	-	59.1	49.2	59.9/63.3	53.5/56.9	-	-
GPT-4o (OpenAI, 2024)	-	-	64.6	-	66.7	64.6	71.9/77.2	65.3/72.1	30.8	35.7
Gemini-1.5-Pro (Reid et al., 2024)	-	-	60.5	-	64.0	-	75.0/81.3	67.4/77.4	33.1	-
Small Size MLMs										
Qwen2-VL (Wang et al., 2024b)	2B	1924	63.2	-	-	-	55.6/60.4	-	-	-
InternVL2.5 (Chen et al., 2024d)	2B	256	68.8	-	46.0	61.4	51.9/54.1	-	-	-
VideoChat-Flash @448	2B	16	70.0	70.5	58.3	65.7	57.0/63.9	44.9/54.0	42.9	45.2
Open-Source MLMs										
VideoChat2-HD (Li et al., 2024c)	7B	72	62.3	-	-	47.9	45.3/55.7	39.8/53.9	-	3.4
InternVideo2-HD (Wang et al., 2024e)	7B	72	67.2	63.4	-	-	49.4/-	-	-	-
LLaVA-OneVision (Li et al., 2024a)	7B	196	56.7	57.1	56.3	64.7	58.2/61.5	-	-	13.5
LLaVA-Vision (Li et al., 2024a)	72B	196	59.4	66.9	61.3	68.0	66.2/69.5	-	-	37.5
LLaVA-Videos (Zhang et al., 2024d)	7B	676	58.6	67.9	58.2	70.8	63.3/69.7	-	-	39.0
VITA1.5 (Fu et al., 2025)	7B	256	56.8	-	-	-	56.8/59.5	-	-	-
InternVL2 (Chen et al., 2024e)	8B	256	65.8	-	54.6	64.0	54.0/56.9	-	-	37.7
InternVL2 (Chen et al., 2024e)	76B	256	69.6	-	61.1	69.9	61.2/62.8	-	-	-
InternVL2.5 (Chen et al., 2024d)	8B	256	72.0	-	60.0	68.9	64.2/66.9	-	-	-
Qwen2-VL (Wang et al., 2024b)	7B	1924	67.0	66.9	-	-	63.3/69.0	-	-	41.6
Qwen2.5-VL (Bai et al., 2025)	7B	1924	69.6	-	56.0	70.2	65.1/71.6	-	45.3	43.6
Open-Source Long Video MLMs										
LLaMA-VID (Li et al., 2024d)	7B	2	41.9	44.6	-	33.2	25.9/-	-	23.9	-
LongVU (Shen et al., 2024)	7B	64	66.9	-	-	65.4	-/60.6	-/59.5	-	-
LongVA (Zhang et al., 2024a)	7B	144	-	-	-	56.3	52.6/54.3	46.2/47.6	-	34.5
LongVLA (Xue et al., 2024)	7B	196	67.1	58.1	57.1	-	60.1/65.6	47.0/52.1	-	-
Kangaroo (Liu et al., 2024)	8B	256	61.0	-	54.8	61.0	56.0/57.6	46.7/49.3	39.4	-
VideoChat-Flash @224	7B	16	73.2	75.6	64.2	74.5	64.0/69.4	53.6/61.9	47.2	48.4
VideoChat-Flash @448	7B	16	74.9	75.2	64.7	74.7	65.3/69.7	55.4/63.3	48.2	49.0



(a) LongVA Zhang et al. (2024a), (b) LLama-VID Li et al. (2024d), (c) VideoChat-Flash (ours), accuracy=91.8% at 3k frames. accuracy=55.0% at 10k frames. accuracy=99.1% at 10k frames.

Figure 5: Results on the Single-Hop NIAH evaluation with 10,000 frames.

4.1 GENERAL VIDEO UNDERSTANDING EVALUATION

Leading performance. We evaluate our model on six general video understanding benchmarks in question-answering format, including two short video benchmarks: MVBench (Li et al., 2024c) and Perception Test (Patraucean et al., 2024), and three long video benchmarks: LongVideoBench (Wu et al., 2024), MLVU (Zhou et al., 2024) and LVBench (Wang et al., 2024c), and a comprehensive benchmark, VideoMME (Fu et al., 2024), covering videos ranging from minute-level to hour-level durations. We further evaluate the temporal grounding and video caption tasks, using the Charades-STA (Gao et al., 2017) and AuroraCap (Islam et al., 2024). As depicted in table 1, our VideoChat-Flash achieves the best results on diverse VideoQA benchmarks within the 2B and 7B size category, significantly outperforming other approaches. Remarkably, its performance even eclipses that of models with substantially larger scales, such as InternVL2-76B, as well as proprietary models like GPT-4o and Gemini-1.5-Pro. Even when merely supplying timestamp information via a text prompt, our model has achieved remarkable performance in temporal grounding. Meanwhile, it also significantly outperforms other models in the video captioning task, even surpassing the proprietary GPT-4o and Gemini-1.5 Pro. This demonstrates the effectiveness of the comprehensive design of our model, data, and training strategies.

4.2 LONG VIDEO CONTEXT EVALUATION

Baseline. LongVA (Zhang et al., 2024a) and LLama-VID (Li et al., 2024d) are used as baselines. LongVA trains MLLMs using long text data, transferring the long context of LLM from text to video. LLama-VID accomplishes efficient inference of long videos by compressing each frame to only two tokens. Our model benefits from these two, so we take them as baselines.

Single-Hop NIAH. As shown in fig. 5, we follow the protocols in LongVA (Zhang et al., 2024a) for Single-Hop NIAH, we source a long video and sample frames uniformly from it. Then we add needles (indicating images) into the sampled image sequence at different positions. MLLMs are fed with this long image sequence and answer the corresponding questions to the indicating images.

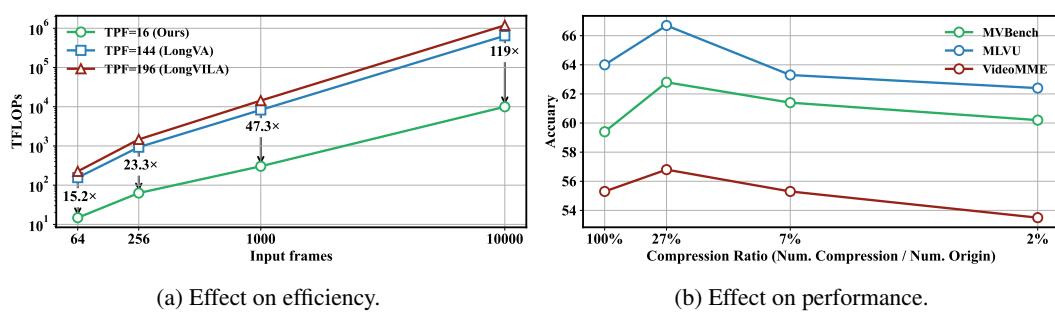


Figure 6: Effect of compression ratio.

We evaluate all models over 10,000 frames. Note our VideoChat-Flash delivers a 99.1% success rate in accurately retrieving the correct indicating image and answering the related question even across 10,000 frames. In comparison, LongVA gives a decent result close to 92% within 3000 frames while LLama-VID only achieves 55% accuracy. It demonstrates VideoChat-Flash’s state-of-the-art performance in long multimodal context modeling.

Multi-Hop NIAH. In this evaluations, MLLMs need to trace along the chain of indicating images, locate the needle, and answer its question. Two metrics “CAP” and “QA” are used to denote the accuracy of finding the correct needle and the accuracy of answering the questions related to the needle as well as finding the needle successfully, respectively. As shown in fig. 4, our VideoChat-Flash still beats all baselines. Specifically, VideoChat-Flash gives 31.3% and 25.4% in “CAP” and “QA” on average, higher than LongVA by around 8 points. It can be seen that compared with the single-hop NIAH, the multi-Hop NIAH presents a much more difficult challenge, which can better reflect the real gap between the capabilities of different models.

4.3 ABLATION & ANALYSIS

Effect of compression ratio. As shown in fig. 6a, a lower compression ratio (i.e., fewer encoded visual tokens per frame on average) confers a substantial efficiency advantage for both short and long video inputs, and this advantage becomes more pronounced as the input length increases. Notably, as shown in fig. 6b, under our well-designed compression strategy, the detrimental impact of compression on video task performance is less significant than anticipated. For both short-video and long-video understanding tasks, appropriate compression can even enhance task performance; even under an extreme compression ratio of 2%, the model can still retain 95% of its performance. This finding gives us confidence in developing state-of-the-art video understanding models with low compression ratios.

Ablation of various designs. As shown in table 2, we have conducted comprehensive ablation studies on each design. In terms of the model, it can be observed that HiCo significantly reduces the computation (from 196 to 16 tokens per frame) while barely compromising the performance. Meanwhile, duration-based sampling and timestamp prompts play crucial roles in enhancing the performance. The further leap in performance mainly stems from the training strategy in short-to-long learning and a better mixture of training data.

Effectiveness of spatio-temporal compression encoding. As shown in table 3, we have tested the most popular image encoder, SigLIP (Zhai et al., 2023), and the short video encoder,

Table 2: **Ablation of various designs** on data, model, and resolution. The baseline employs SigLiP-so400M (Zhai et al., 2023) as the vision encoder and Spatial donwsampling (196 tokens per frame) as the connector. It adopts a two-stage training strateay with image and short video following LLaVA (Liu et al., 2023).

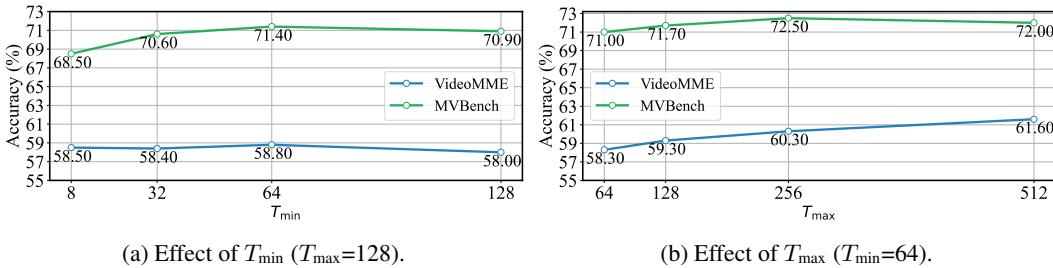
Settings	MVB Avg	MLVU M-Avg	VMME Overall	Charades mIoU
Baseline	60.2	63.7	52.8	
+ HiCo	61.1	60.6	53.2	-
+ short video pretraining	66.5	62.4	53.9	-
+ duration-based sampling	67.0	64.5	55.5	-
+ LongVid data	66.5	68.3	55.8	-
+ Joint short & long sft	73.2	74.5	64.0	48.4
+ High-res post ft	74.0	74.7	65.3	48.0
- timestamp prompt	73.4	73.2	63.4	44.2

432
 433 **Table 3: Effectiveness of video encoder.** We
 434 use the popular image encoder (SigLIP (Zhai
 435 et al., 2023)) and video encoder (UMT (Li et al.,
 436 2023c)) for comparison.

Visual Encoder	FLOPs (G)	Latency (ms)	MVBBench Avg	MLVU M-Avg	VideoMME Overall
<i>#tokens per frame=16, training data size=2M</i>					
SigLIP _{SO400M} @384	2679	79.7	60.2	62.0	53.5
UMT-L@224	596	11.8	61.1(+0.9)	60.0(-2.0)	53.2(-0.3)
<i>#tokens per frame=16, training data size=8M</i>					
SigLIP _{SO400M} @384	2679	79.7	71.2	70.8	62.4
UMT-L@224	596	11.8	73.5(+2.3)	73.7(+2.9)	62.7(+0.3)

443 UMT (Li et al., 2023c), for encoding clips with heavy compression. We found that even when
 444 the computational cost is significantly lower, UMT can still achieve better performance on the short
 445 video task MVBBench. Moreover, as the size of the training data increases from 2 million to 8 million,
 446 UMT outperforms SigLIP distinctly across various benchmarks. We believe that this is attributed
 447 to the spatio-temporal attention employed by UMT, which can aggregate the key information from
 448 different frames within a clip, thus enabling the learning of more compact compression features.
 449

450 **Effectiveness of progressive visual dropout.** As shown in the table 4, at the shallow layers of the
 451 LLM, uniform dropout performs better than attention select on long video tasks. However, at the
 452 deep layers of the LLM, attention select shows better performance. Performing visual dropout at the
 453 deep layers can not only improve the computational efficiency but also enhance the performance.
 454 Combining uniform dropout and attention select can achieve a good balance between performance
 455 and efficiency. More relevant analyses and comparative experiments can be found in the Appendix.
 456

467 **Figure 7: Ablation of duration-based sampling.**

468 **Effectiveness of duration-based sampling.** As shown in fig. 7, A relatively large T_{\min} (64) enables
 469 the model to better learn to model the fine actions and rapid movements in short videos during
 470 training, thereby enhancing the performance of short video understanding. Increasing T_{\max} from 64
 471 to 256 leads to a stable improvement in the understanding performance of both short and long videos.
 472 This indicates that more sampled frames can extract more accurate information from our long video
 473 data. When T_{\max} reaches 512, there is a slight decline in the performance of short videos. Overall, it
 474 achieves a balance between the performance of short and long videos.
 475

476 5 CONCLUSIONS

477 In this paper, we address the challenge of long-context video modeling in MLLMs from the model
 478 architecture, training data, training strategy and evaluation benchmark. We design an efficient
 479 architecture for video MLLMs by introducing a hierarchical long video context compression method,
 480 which achieves an extreme compression ratio with nearly no performance loss. Regarding data and
 481 training, we propose a new long video training corpus and short-to-long learning strategy, which
 482 effectively enhances the model’s understanding ability for videos of various lengths. Additionally,
 483 we developed a new and more challenging long video context evaluation benchmark. Our model
 484 demonstrated outstanding performance on various video understanding benchmarks, which validates
 485 the effectiveness of our proposed methods.

432
 433 **Table 4: Effectiveness of visual dropout.** The
 434 Qwen2-7B we used has a total of 28 layers.
 435 “Uni.” and “Attn.” represent uniform drop and
 436 attention select respectively.

Drop type/keep ratio	Drop layer	FLOPs (G)	Latency (s)	MLVU M-Avg	VideoMME Overall
-	-	341.4	2.6	71.8	61.2
Uni./0.5	4	242.8	1.9	71.2	60.4
Attn./0.5	4	242.8	1.9	70.7	60.8
Uni./0.5	18	295.2	2.2	71.7	61.8
Attn./0.5	18	295.2	2.2	72.1(+0.3)	61.7(+0.5)
Attn./0.75,Attn./0.25	4,18	245.8	1.9	71.4	60.9
Attn./0.75,Attn./0.25	4,18	245.8	1.9	72.0(+0.2)	61.1(-0.1)

486

6 REPRODUCIBILITY STATEMENT

487
488 We provide all the necessary details to reproduce our experiments in section 4 and Appendix.
489490

REFERENCES

492 Triantafyllos Afouras, Effrosyni Mavroudi, Tushar Nagarajan, Huiyu Wang, and Lorenzo Torresani.
493 Ht-step: Aligning instructional articles with how-to videos. *Advances in Neural Information
494 Processing Systems*, 36, 2024.

495 Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
496 Yu Han, Fei Huang, et al. Qwen technical report. *arXiv preprint arXiv:2309.16609*, 2023.
497

498 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
499 Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. *arXiv preprint arXiv:2502.13923*,
500 2025.

501 Max Bain, Arsha Nagrani, GüL Varol, and Andrew Zisserman. Frozen in time: A joint video and
502 image encoder for end-to-end retrieval. In *Proceedings of the IEEE/CVF international conference
503 on computer vision*, pp. 1728–1738, 2021.

504 Rohan Bavishi, Erich Elsen, Curtis Hawthorne, Maxwell Nye, Augustus Odena, Arushi Somanı,
505 and Sađgnak Tasırlar. Fuyu-8b: A multimodal architecture for ai agents, 2024. URL <https://www.adept.ai/blog/fuyu-8b>.

508 Daniel Bolya, Cheng-Yang Fu, Xiaoliang Dai, Peizhao Zhang, Christoph Feichtenhofer, and Judy
509 Hoffman. Token merging: Your vit but faster. *arXiv preprint arXiv:2210.09461*, 2022.

510 Keshigeyan Chandrasegaran, Agrim Gupta, Lea M Hadzic, Taran Kota, Jimming He, Cristóbal
511 Eyzaguirre, Zane Durante, Manling Li, Jiajun Wu, and Li Fei-Fei. Hourvideo: 1-hour video-
512 language understanding. *arXiv preprint arXiv:2411.04998*, 2024.

514 Guiming Hardy Chen, Shunian Chen, Ruifei Zhang, Junying Chen, Xiangbo Wu, Zhiyi Zhang,
515 Zhihong Chen, Jianquan Li, Xiang Wan, and Benyou Wang. Allava: Harnessing gpt4v-synthesized
516 data for a lite vision-language model. *arXiv preprint arXiv:2402.11684*, 2024a.

517 Jieneng Chen, Luoxin Ye, Ju He, Zhao-Yang Wang, Daniel Khashabi, and Alan Yuille. Lla-
518 volta: Efficient multi-modal models via stage-wise visual context compression. *arXiv preprint
519 arXiv:2406.20092*, 2024b.

521 Liang Chen, Haozhe Zhao, Tianyu Liu, Shuai Bai, Junyang Lin, Chang Zhou, and Baobao Chang.
522 An image is worth 1/2 tokens after layer 2: Plug-and-play inference acceleration for large vision-
523 language models. In *European Conference on Computer Vision*, pp. 19–35. Springer, 2025.

524 Tsai-Shien Chen, Aliaksandr Siarohin, Willi Menapace, Ekaterina Deyneka, Hsiang-wei Chao,
525 Byung Eun Jeon, Yuwei Fang, Hsin-Ying Lee, Jian Ren, Ming-Hsuan Yang, et al. Panda-70m:
526 Captioning 70m videos with multiple cross-modality teachers. In *Proceedings of the IEEE/CVF
527 Conference on Computer Vision and Pattern Recognition*, pp. 13320–13331, 2024c.

528 Zhe Chen, Weiyun Wang, Yue Cao, Yangzhou Liu, Zhangwei Gao, Erfei Cui, Jinguo Zhu, Shenglong
529 Ye, Hao Tian, Zhaoyang Liu, et al. Expanding performance boundaries of open-source multimodal
530 models with model, data, and test-time scaling. *arXiv preprint arXiv:2412.05271*, 2024d.

532 Zhe Chen, Weiyun Wang, Hao Tian, Shenglong Ye, Zhangwei Gao, Erfei Cui, Wenwen Tong,
533 Kongzhi Hu, Jiapeng Luo, Zheng Ma, Ji Ma, Jiaqi Wang, Xiaoyi Dong, Hang Yan, Hewei Guo,
534 Conghui He, Botian Shi, Zhenjiang Jin, Chao Xu, Bin Wang, Xingjian Wei, Wei Li, Wenjian
535 Zhang, Bo Zhang, Pinlong Cai, Licheng Wen, Xiangchao Yan, Min Dou, Lewei Lu, Xizhou Zhu,
536 Tong Lu, Dahua Lin, Yu Qiao, Jifeng Dai, and Wenhui Wang. How far are we to gpt-4v? closing
537 the gap to commercial multimodal models with open-source suites. *CoRR*, abs/2404.16821, 2024e.

538 Zesen Cheng, Sicong Leng, Hang Zhang, Yifei Xin, Xin Li, Guanzheng Chen, Yongxin Zhu, Wenqi
539 Zhang, Ziyang Luo, Deli Zhao, and Lidong Bing. Videollama 2: Advancing spatial-temporal
modeling and audio understanding in video-llms. *CoRR*, abs/2406.07476, 2024.

540 Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. *arXiv*
 541 *preprint arXiv:2307.08691*, 2023.
 542

543 Jiajun Fei, Dian Li, Zhidong Deng, Zekun Wang, Gang Liu, and Hui Wang. Video-ccam: Enhancing
 544 video-language understanding with causal cross-attention masks for short and long videos. *arXiv*
 545 *preprint arXiv:2408.14023*, 2024.

546 Chaoyou Fu, Yuhan Dai, Yondong Luo, Lei Li, Shuhuai Ren, Renrui Zhang, Zihan Wang, Chenyu
 547 Zhou, Yunhang Shen, Mengdan Zhang, et al. Video-mme: The first-ever comprehensive evaluation
 548 benchmark of multi-modal llms in video analysis. *arXiv preprint arXiv:2405.21075*, 2024.

549 Chaoyou Fu, Haojia Lin, Xiong Wang, Yi-Fan Zhang, Yunhang Shen, Xiaoyu Liu, Yangze Li, Zuwei
 550 Long, Heting Gao, Ke Li, et al. Vita-1.5: Towards gpt-4o level real-time vision and speech
 551 interaction. *arXiv preprint arXiv:2501.01957*, 2025.

553 Jiyang Gao, Chen Sun, Zhenheng Yang, and Ram Nevatia. Tall: Temporal activity localization via
 554 language query. In *Proceedings of the IEEE international conference on computer vision*, pp.
 555 5267–5275, 2017.

556 Kristen Grauman, Andrew Westbury, Eugene Byrne, Zachary Chavis, Antonino Furnari, Rohit
 557 Girdhar, Jackson Hamburger, Hao Jiang, Miao Liu, Xingyu Liu, et al. Ego4d: Around the world in
 558 3,000 hours of egocentric video. In *Proceedings of the IEEE/CVF Conference on Computer Vision*
 559 and *Pattern Recognition*, pp. 18995–19012, 2022.

560 Zhenpeng Huang, Xinhao Li, Jiaqi Li, Jing Wang, Xiangyu Zeng, Cheng Liang, Tao Wu, Xi Chen,
 561 Liang Li, and Limin Wang. Online video understanding: A comprehensive benchmark and
 562 memory-augmented method. *arXiv preprint arXiv:2501.00584*, 2024.

564 Md Mohaiminul Islam, Ngan Ho, Xitong Yang, Tushar Nagarajan, Lorenzo Torresani, and Gedas
 565 Bertasius. Video recap: Recursive captioning of hour-long videos. In *Proceedings of the IEEE/CVF*
 566 *Conference on Computer Vision and Pattern Recognition*, pp. 18198–18208, 2024.

567 Xuan Ju, Yiming Gao, Zhaoyang Zhang, Ziyang Yuan, Xintao Wang, Ailing Zeng, Yu Xiong, Qiang
 568 Xu, and Ying Shan. Miradata: A large-scale video dataset with long durations and structured
 569 captions. *arXiv preprint arXiv:2407.06358*, 2024.

571 Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang, Chloe Hillier, Sudheendra Vijayanarasimhan,
 572 Fabio Viola, Tim Green, Trevor Back, Paul Natsev, et al. The kinetics human action video dataset.
 573 *arXiv preprint arXiv:1705.06950*, 2017.

574 Bo Li, Peiyuan Zhang, Jingkang Yang, Yuanhan Zhang, Fanyi Pu, and Ziwei Liu. Otterhd: A
 575 high-resolution multi-modality model. *arXiv preprint arXiv:2311.04219*, 2023a.

576 Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng Li, Hao Zhang, Kaichen Zhang, Yanwei Li,
 577 Ziwei Liu, and Chunyuan Li. Llava-onevision: Easy visual task transfer. *CoRR*, abs/2408.03326,
 578 2024a.

580 Feng Li, Renrui Zhang, Hao Zhang, Yuanhan Zhang, Bo Li, Wei Li, Zejun Ma, and Chunyuan Li.
 581 Llava-next-interleave: Tackling multi-image, video, and 3d in large multimodal models. *arXiv*
 582 *preprint arXiv:2407.07895*, 2024b.

584 KunChang Li, Yinan He, Yi Wang, Yizhuo Li, Wenhui Wang, Ping Luo, Yali Wang, Limin Wang, and
 585 Yu Qiao. Videochat: Chat-centric video understanding. *arXiv preprint arXiv:2305.06355*, 2023b.

586 Kunchang Li, Yali Wang, Yizhuo Li, Yi Wang, Yinan He, Limin Wang, and Yu Qiao. Unmasked
 587 teacher: Towards training-efficient video foundation models. In *ICCV*, 2023c.

588 Kunchang Li, Yali Wang, Yinan He, Yizhuo Li, Yi Wang, Yi Liu, Zun Wang, Jilan Xu, Guo Chen, Ping
 589 Lou, Limin Wang, and Yu Qiao. Mybench: A comprehensive multi-modal video understanding
 590 benchmark. In *CVPR*, pp. 22195–22206. IEEE, 2024c.

592 Yanwei Li, Chengyao Wang, and Jiaya Jia. Llama-vid: An image is worth 2 tokens in large language
 593 models. In *ECCV*, volume 15104 of *Lecture Notes in Computer Science*, pp. 323–340. Springer,
 2024d.

594 Bin Lin, Yang Ye, Bin Zhu, Jiaxi Cui, Munan Ning, Peng Jin, and Li Yuan. Video-llava: Learning
 595 united visual representation by alignment before projection. In *EMNLP*, pp. 5971–5984.
 596 Association for Computational Linguistics, 2024.

597 Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
 598 Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In *ECCV*, pp.
 599 740–755. Springer, 2014.

600 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. In *NeurIPS*,
 601 2023.

602 Jiajun Liu, Yibing Wang, Hanghang Ma, Xiaoping Wu, Xiaoqi Ma, Xiaoming Wei, Jianbin Jiao,
 603 Enhua Wu, and Jie Hu. Kangaroo: A powerful video-language model supporting long-context
 604 video input. *arXiv preprint arXiv:2408.15542*, 2024.

605 Muhammad Maaz, Hanoona Rasheed, Salman Khan, and Fahad Khan. Videogpt+: Integrating image
 606 and video encoders for enhanced video understanding. *arXiv preprint arXiv:2406.09418*, 2024.

607 Kartikeya Mangalam, Raiymbek Akshulakov, and Jitendra Malik. Egoschema: A diagnostic
 608 benchmark for very long-form video language understanding. *Advances in Neural Information
 609 Processing Systems*, 36:46212–46244, 2023.

610 Antoine Miech, Dimitri Zhukov, Jean-Baptiste Alayrac, Makarand Tapaswi, Ivan Laptev, and Josef
 611 Sivic. Howto100m: Learning a text-video embedding by watching hundred million narrated
 612 video clips. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp.
 613 2630–2640, 2019.

614 Mathew Monfort, SouYoung Jin, Alexander Liu, David Harwath, Rogerio Feris, James Glass, and
 615 Aude Oliva. Spoken moments: Learning joint audio-visual representations from video descriptions.
 616 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 617 14871–14881, 2021.

618 OpenAI. GPT-4 technical report. *CoRR*, abs/2303.08774, 2023.

619 OpenAI. Gpt-4o. <https://openai.com/index/hello-gpt-4o/>, May 2024.

620 Viorica Patraucean, Lucas Smaira, Ankush Gupta, Adria Recasens, Larisa Markeeva, Dylan Banarse,
 621 Skanda Koppula, Mateusz Malinowski, Yi Yang, Carl Doersch, et al. Perception test: A diagnostic
 622 benchmark for multimodal video models. In *NIPS*, volume 36, 2024.

623 Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. Deepspeed: System optimiza-
 624 tions enable training deep learning models with over 100 billion parameters. In *Proceedings of
 625 the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining*, pp.
 626 3505–3506, 2020.

627 Ruchit Rawal, Khalid Saifullah, Miquel Farré, Ronen Basri, David Jacobs, Gowthami Somepalli, and
 628 Tom Goldstein. Cinepile: A long video question answering dataset and benchmark. *arXiv preprint
 629 arXiv:2405.08813*, 2024.

630 Machel Reid, Nikolay Savinov, Denis Teplyashin, Dmitry Lepikhin, Timothy P. Lillicrap, Jean-
 631 Baptiste Alayrac, Radu Soricut, Angeliki Lazaridou, Orhan Firat, Julian Schrittwieser, Ioannis
 632 Antonoglou, Rohan Anil, Sebastian Borgeaud, Andrew M. Dai, Katie Millican, Ethan Dyer, Mia
 633 Glaese, Thibault Sottiaux, Benjamin Lee, Fabio Viola, Malcolm Reynolds, Yuanzhong Xu, James
 634 Molloy, Jilin Chen, Michael Isard, Paul Barham, Tom Hennigan, Ross McIlroy, Melvin Johnson,
 635 Johan Schalkwyk, Eli Collins, Eliza Rutherford, Erica Moreira, Kareem Ayoub, Megha Goel,
 636 Clemens Meyer, Gregory Thornton, Zhen Yang, Henryk Michalewski, Zaheer Abbas, Nathan
 637 Schucher, Ankesh Anand, Richard Ives, James Keeling, Karel Lenc, Salem Haykal, Siamak
 638 Shakeri, Pranav Shyam, Aakanksha Chowdhery, Roman Ring, Stephen Spencer, Eren Sezener,
 639 and et al. Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context.
 640 *CoRR*, abs/2403.05530, 2024.

641 Shuhuai Ren, Linli Yao, Shicheng Li, Xu Sun, and Lu Hou. Timechat: A time-sensitive multimodal
 642 large language model for long video understanding. In *Proceedings of the IEEE/CVF Conference
 643 on Computer Vision and Pattern Recognition*, pp. 14313–14323, 2024.

648 Share. Sharegemini: Scaling up video caption data for multimodal large language models, June 2024.
 649 URL <https://github.com/Share14/ShareGemini>.
 650

651 Xiaoqian Shen, Yunyang Xiong, Changsheng Zhao, Lemeng Wu, Jun Chen, Chenchen Zhu, Zechun
 652 Liu, Fanyi Xiao, Balakrishnan Varadarajan, Florian Bordes, et al. Longvu: Spatiotemporal adaptive
 653 compression for long video-language understanding. *arXiv preprint arXiv:2410.17434*, 2024.

654 Yan Shu, Peitian Zhang, Zheng Liu, Minghao Qin, Junjie Zhou, Tiejun Huang, and Bo Zhao.
 655 Video-xl: Extra-long vision language model for hour-scale video understanding. *arXiv preprint*
 656 *arXiv:2409.14485*, 2024.

657

658 Enxin Song, Wenhao Chai, Guanhong Wang, Yucheng Zhang, Haoyang Zhou, Feiyang Wu, Haozhe
 659 Chi, Xun Guo, Tian Ye, Yanting Zhang, et al. Moviechat: From dense token to sparse memory for
 660 long video understanding. In *Proceedings of the IEEE/CVF Conference on Computer Vision and*
 661 *Pattern Recognition*, pp. 18221–18232, 2024.

662 Guangyu Sun, Archit Singhal, Burak Uzkent, Mubarak Shah, Chen Chen, and Garin Kessler. From
 663 frames to clips: Efficient key clip selection for long-form video understanding. *arXiv preprint*
 664 *arXiv:2510.02262*, 2025.

665

666 Reuben Tan, Ximeng Sun, Ping Hu, Jui-hsien Wang, Hanieh Deilamsalehy, Bryan A Plummer, Bryan
 667 Russell, and Kate Saenko. Koala: Key frame-conditioned long video-llm. In *Proceedings of the*
 668 *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 13581–13591, 2024.

669

670 Xi Tang, Jihao Qiu, Lingxi Xie, Yunjie Tian, Jianbin Jiao, and Qixiang Ye. Adaptive keyframe
 671 sampling for long video understanding. In *Proceedings of the Computer Vision and Pattern*
 672 *Recognition Conference*, pp. 29118–29128, 2025.

673

674 Alex Jinpeng Wang, Linjie Li, Kevin Qinghong Lin, Jianfeng Wang, Kevin Lin, Zhengyuan Yang,
 675 Lijuan Wang, and Mike Zheng Shou. Cosmo: Contrastive streamlined multimodal model with
 676 interleaved pre-training. *arXiv preprint arXiv:2401.00849*, 2024a.

677

678 Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,
 679 Jialin Wang, Wenbin Ge, et al. Qwen2-vl: Enhancing vision-language model’s perception of the
 680 world at any resolution. *arXiv preprint arXiv:2409.12191*, 2024b.

681

682 Weihan Wang, Zehai He, Wenyi Hong, Yean Cheng, Xiaohan Zhang, Ji Qi, Xiaotao Gu, Shiyu Huang,
 683 Bin Xu, Yuxiao Dong, et al. Lvbench: An extreme long video understanding benchmark. *arXiv*
 684 *preprint arXiv:2406.08035*, 2024c.

685

686 Xidong Wang, Dingjie Song, Shunian Chen, Chen Zhang, and Benyou Wang. Longllava: Scaling
 687 multi-modal llms to 1000 images efficiently via hybrid architecture. *CoRR*, abs/2409.02889, 2024d.

688

689 Yi Wang, Kunchang Li, Yizhuo Li, Yinan He, Bingkun Huang, Zhiyu Zhao, Hongjie Zhang, Jilan
 690 Xu, Yi Liu, Zun Wang, et al. Internvideo: General video foundation models via generative and
 691 discriminative learning. *arXiv preprint arXiv:2212.03191*, 2022.

692

693 Yi Wang, Kunchang Li, Xinhao Li, Jiashuo Yu, Yinan He, Guo Chen, Baoqi Pei, Rongkun Zheng,
 694 Jilan Xu, Zun Wang, et al. Internvideo2: Scaling video foundation models for multimodal video
 695 understanding. In *ECCV*, 2024e.

696

697 Hongchen Wei and Zhenzhong Chen. Visual context window extension: A new perspective for long
 698 video understanding. *arXiv preprint arXiv:2409.20018*, 2024.

699

700 Yuetian Weng, Mingfei Han, Haoyu He, Xiaojun Chang, and Bohan Zhuang. Longvlm: Efficient
 701 long video understanding via large language models. In *ECCV*, pp. 453–470. Springer, 2025.

702

703 Haoning Wu, Dongxu Li, Bei Chen, and Junnan Li. Longvideobench: A benchmark for long-context
 704 interleaved video-language understanding. *arXiv preprint arXiv:2407.15754*, 2024.

705

706 Lin Xu, Yilin Zhao, Daquan Zhou, Zhijie Lin, See-Kiong Ng, and Jiashi Feng. Pllava : Parameter-free
 707 llava extension from images to videos for video dense captioning. *CoRR*, abs/2404.16994, 2024.

702 Fuzhao Xue, Yukang Chen, Dacheng Li, Qinghao Hu, Ligeng Zhu, Xiuyu Li, Yunhao Fang, Haotian
 703 Tang, Shang Yang, Zhijian Liu, et al. Longvila: Scaling long-context visual language models for
 704 long videos. *arXiv preprint arXiv:2408.10188*, 2024.

705 Hongwei Xue, Tiankai Hang, Yanhong Zeng, Yuchong Sun, Bei Liu, Huan Yang, Jianlong Fu, and
 706 Baining Guo. Advancing high-resolution video-language representation with large-scale video
 707 transcriptions. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
 708 Recognition*, pp. 5036–5045, 2022.

710 Dongjie Yang, Suyuan Huang, Chengqiang Lu, Xiaodong Han, Haoxin Zhang, Yan Gao, Yao Hu, and
 711 Hai Zhao. Vript: A video is worth thousands of words. *arXiv preprint arXiv:2406.06040*, 2024.

712 Xiangyu Zeng, Kunchang Li, Chenting Wang, Xinhao Li, Tianxiang Jiang, Ziang Yan, Songze
 713 Li, Yansong Shi, Zhengrong Yue, Yi Wang, et al. Timesuite: Improving mllms for long video
 714 understanding via grounded tuning. *arXiv preprint arXiv:2410.19702*, 2024.

715 Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and Lucas Beyer. Sigmoid loss for language
 716 image pre-training. In *ICCV*, 2023.

717 Hang Zhang, Xin Li, and Lidong Bing. Video-llama: An instruction-tuned audio-visual language
 718 model for video understanding. *arXiv preprint arXiv:2306.02858*, 2023a.

719 Hongjie Zhang, Yi Liu, Lu Dong, Yifei Huang, Zhen-Hua Ling, Yali Wang, Limin Wang, and Yu Qiao.
 720 Movqa: A benchmark of versatile question-answering for long-form movie understanding. *arXiv
 721 preprint arXiv:2312.04817*, 2023b.

722 Peiyuan Zhang, Kaichen Zhang, Bo Li, Guangtao Zeng, Jingkang Yang, Yuanhan Zhang, Ziyue
 723 Wang, Haoran Tan, Chunyuan Li, and Ziwei Liu. Long context transfer from language to vision.
 724 *CoRR*, abs/2406.16852, 2024a.

725 Ruohong Zhang, Liangke Gui, Zhiqing Sun, Yihao Feng, Keyang Xu, Yuanhan Zhang, Di Fu,
 726 Chunyuan Li, Alexander Hauptmann, Yonatan Bisk, et al. Direct preference optimization of video
 727 large multimodal models from language model reward. *arXiv preprint arXiv:2404.01258*, 2024b.

728 Yuanhan Zhang, Bo Li, haotian Liu, Yong jae Lee, Liangke Gui, Di Fu, Jiashi Feng, Ziwei Liu, and
 729 Chunyuan Li. Llava-next: A strong zero-shot video understanding model, April 2024c. URL
 730 <https://llava-vl.github.io/blog/2024-04-30-llava-next-video/>.

731 Yuanhan Zhang, Jinming Wu, Wei Li, Bo Li, Zejun Ma, Ziwei Liu, and Chunyuan Li. Video
 732 instruction tuning with synthetic data. *arXiv preprint arXiv:2410.02713*, 2024d.

733 Zijia Zhao, Haoyu Lu, Yuqi Huo, Yifan Du, Tongtian Yue, Longteng Guo, Bingning Wang, Weipeng
 734 Chen, and Jing Liu. Needle in a video haystack: A scalable synthetic framework for benchmarking
 735 video mllms. *arXiv preprint arXiv:2406.09367*, 2024.

736 Junjie Zhou, Yan Shu, Bo Zhao, Boya Wu, Shitao Xiao, Xi Yang, Yongping Xiong, Bo Zhang,
 737 Tiejun Huang, and Zheng Liu. Mlvu: A comprehensive benchmark for multi-task long video
 738 understanding. *arXiv preprint arXiv:2406.04264*, 2024.

739 Zirui Zhu, Hailun Xu, Yang Luo, Yong Liu, Kanchan Sarkar, Zhenheng Yang, and Yang You. Focus:
 740 Efficient keyframe selection for long video understanding. *arXiv preprint arXiv:2510.27280*, 2025.

741 A APPENDIX

742 In this appendix, we provide more details from the following aspects:

- 743 • § A.1: Statement on the Use of LLM.
- 744 • § A.2: Supplementary proof of Clip-Compression.
- 745 • § A.3: **More Results & Discussions of VideoChat-Flash.**
- 746 • § A.4: **Implementation Details of VideoChat-Flash.**

756 • § A.5: Dataset Details of LongVid.
 757 • § A.6: **Results of Gemini2.5 Flash on Multi-Hop NIAH.**
 758 • § A.7: Qualitative Results of VideoChat-Flash.

760 A.1 STATEMENT ON THE USE OF LLM IN WRITING

762 LLM was used for polishing and review during the writing of this article.

764 A.2 SUPPLEMENTARY PROOF OF CLIP-COMPRESION

766 To complete the derivation of section 3.1, we elaborate on the key steps using fundamental information-
 767 theoretic properties, including conditional entropy, joint entropy, and mutual information.

769 **Step 1: Conditional Entropy for Compression Loss** The information loss due to compression
 770 is defined as the conditional entropy of the original features given the compressed feature, i.e.,
 771 $L_c = H(\{\mathbf{Y}_t\} \mid \mathbf{Z})$. By the **definition of conditional entropy**, for any random variables A and B :

$$772 \quad H(A \mid B) = H(A, B) - H(B), \quad (6)$$

774 where $H(A, B)$ is the joint entropy of A and B , and $H(B)$ is the marginal entropy of B .

776 For our setting, let $A = \{\mathbf{Y}_1, \dots, \mathbf{Y}_T\}$ (original features) and $B = \mathbf{Z}$ (compressed feature). The
 777 information loss thus becomes:

$$778 \quad L_c = H(\{\mathbf{Y}_t\}, \mathbf{Z}) - H(\mathbf{Z}). \quad (7)$$

780 **Step 2: Simplifying $H(\{\mathbf{Y}_t\}, \mathbf{Z})$ for Deterministic Compression** The compression operation \mathcal{C}
 781 is **deterministic**, meaning \mathbf{Z} is uniquely determined by $\{\mathbf{Y}_t\}$ (i.e., $\mathbf{Z} = \mathcal{C}(\{\mathbf{Y}_t\})$). For deterministic
 782 functions, the conditional entropy of the output given the input is zero:

$$783 \quad H(\mathbf{Z} \mid \{\mathbf{Y}_t\}) = 0, \quad (8)$$

784 since no uncertainty remains about \mathbf{Z} once $\{\mathbf{Y}_t\}$ is known.

786 By the chain rule of joint entropy:

$$787 \quad H(\{\mathbf{Y}_t\}, \mathbf{Z}) = H(\{\mathbf{Y}_t\}) + H(\mathbf{Z} \mid \{\mathbf{Y}_t\}). \quad (9)$$

788 Substituting $H(\mathbf{Z} \mid \{\mathbf{Y}_t\}) = 0$, we get:

$$789 \quad H(\{\mathbf{Y}_t\}, \mathbf{Z}) = H(\{\mathbf{Y}_t\}). \quad (10)$$

791 Combining eq. (7) and eq. (10), the information loss simplifies to:

$$793 \quad L_c = H(\{\mathbf{Y}_t\}) - H(\mathbf{Z}). \quad (11)$$

794 **Step 3: Image Encoder Loss Derivation** Image encoders assume **inter-frame independence**, i.e.,
 795 the joint probability factorizes as:

$$797 \quad p(\mathbf{Y}_1^{\text{img}}, \dots, \mathbf{Y}_T^{\text{img}}) = \prod_{t=1}^T p(\mathbf{Y}_t^{\text{img}}). \quad (12)$$

800 For independent random variables, the **joint entropy equals the sum of marginal entropies**:

$$802 \quad H(\mathbf{Y}_1^{\text{img}}, \dots, \mathbf{Y}_T^{\text{img}}) = \sum_{t=1}^T H(\mathbf{Y}_t^{\text{img}}). \quad (13)$$

805 Substituting eq. (13) into eq. (11) (the general loss formula), the Image Encoder loss becomes:

$$807 \quad L_c^{\text{img}} = \sum_{t=1}^T H(\mathbf{Y}_t^{\text{img}}) - H(\mathbf{Z}), \quad (14)$$

809 which matches eq. (3).

810
 811 **Step 4: Video Encoder Loss Derivation** Video encoders model **inter-frame dependencies** via
 812 spatiotemporal attention, so they do not assume independence. Their joint entropy is expanded using
 813 the **chain rule of joint entropy**:

814
 815
$$H(\mathbf{Y}_1^{\text{vid}}, \dots, \mathbf{Y}_T^{\text{vid}}) = \sum_{t=1}^T H(\mathbf{Y}_t^{\text{vid}} \mid \mathbf{Y}_1^{\text{vid}}, \dots, \mathbf{Y}_{t-1}^{\text{vid}}), \quad (15)$$

 816

817 where $H(\mathbf{Y}_t^{\text{vid}} \mid \mathbf{Y}_1^{\text{vid}}, \dots, \mathbf{Y}_{t-1}^{\text{vid}})$ is the conditional entropy of the t -th frame given all previous
 818 frames.

819 By the **definition of mutual information**, for random variables X and \mathcal{Y} :

820
 821
$$I(X; \mathcal{Y}) = H(X) - H(X \mid \mathcal{Y}) \implies H(X \mid \mathcal{Y}) = H(X) - I(X; \mathcal{Y}). \quad (16)$$

 822

823 Applying this to the conditional entropy in eq. (15) (letting $X = \mathbf{Y}_t^{\text{vid}}$ and $\mathcal{Y} = \{\mathbf{Y}_1^{\text{vid}}, \dots, \mathbf{Y}_{t-1}^{\text{vid}}\}$):

824
 825
$$H(\mathbf{Y}_t^{\text{vid}} \mid \mathbf{Y}_1^{\text{vid}}, \dots, \mathbf{Y}_{t-1}^{\text{vid}}) = H(\mathbf{Y}_t^{\text{vid}}) - I(\mathbf{Y}_t^{\text{vid}}; \mathbf{Y}_1^{\text{vid}}, \dots, \mathbf{Y}_{t-1}^{\text{vid}}). \quad (17)$$

 826

827 Substituting eq. (17) into eq. (15), the joint entropy for Video Encoders becomes:

828
 829
$$H(\mathbf{Y}_1^{\text{vid}}, \dots, \mathbf{Y}_T^{\text{vid}}) = \sum_{t=1}^T [H(\mathbf{Y}_t^{\text{vid}}) - I(\mathbf{Y}_t^{\text{vid}}; \mathbf{Y}_1^{\text{vid}}, \dots, \mathbf{Y}_{t-1}^{\text{vid}})]. \quad (18)$$

 830

831 Finally, substituting eq. (18) into eq. (11) (the general loss formula), the Video Encoder loss becomes:

832
 833
$$L_c^{\text{vid}} = \sum_{t=1}^T [H(\mathbf{Y}_t^{\text{vid}}) - I(\mathbf{Y}_t^{\text{vid}}; \mathbf{Y}_1^{\text{vid}}, \dots, \mathbf{Y}_{t-1}^{\text{vid}})] - H(\mathbf{Z}), \quad (19)$$

 834

835 which matches eq. (4).

836
 837 **Step 5: Comparing L_c^{img} and L_c^{vid}** For most videos, consecutive frames are correlated (e.g., static
 838 backgrounds or smooth motion), so the cumulative mutual information is positive:

839
 840
$$I(\mathbf{Y}_t^{\text{vid}}; \mathbf{Y}_1^{\text{vid}}, \dots, \mathbf{Y}_{t-1}^{\text{vid}}) > 0 \quad \forall t \geq 2. \quad (20)$$

 841

842 This implies:

843
 844
$$\sum_{t=1}^T H(\mathbf{Y}_t^{\text{vid}}) - \sum_{t=1}^T I(\mathbf{Y}_t^{\text{vid}}; \dots) < \sum_{t=1}^T H(\mathbf{Y}_t^{\text{vid}}). \quad (21)$$

 845

846 Given that Image and Video Encoders process the same video (so $\sum_{t=1}^T H(\mathbf{Y}_t^{\text{img}}) \approx \sum_{t=1}^T H(\mathbf{Y}_t^{\text{vid}})$)
 847 and share the same compressed feature \mathbf{Z} (so $H(\mathbf{Z})$ is identical), we conclude:

848
 849
$$L_c^{\text{img}} > L_c^{\text{vid}}. \quad (22)$$

 850

851 A.3 MORE RESULTS & DISCUSSIONS OF VIDEOCHAT-FLASH

852 A.3.1 DETAILED RESULTS OF VISUAL COMPRESSION

853 **Different connectors and compression ratio.** As shown in the table 5, we consider three different
 854 numbers of tokens per frame after compression (16, 49, 196) and four popular token compression
 855 strategies: spatial downsampling (Zhang et al., 2024c; Chen et al., 2024e), uneven downsampling (Wei
 856 & Chen, 2024), spatio-temporal resampler (Li et al., 2024c; Tan et al., 2024), and similar token
 857 merging (Bolya et al., 2022; Weng et al., 2025) (more details can be found in the Appendix). It
 858 can be seen that compared with other methods, the parameter-free similar token merging operation
 859 can achieve a remarkably low compression ratio and even obtain better performance than without
 860 compression. Even in the extreme case of a 2% compression ratio, it can still maintain most of the
 861 performance.

Table 5: Comparison of connectors.

Connector	MVBench Avg	MLVU M-Avg	VideoMME Overall	Avg
<i>#tokens per frame=729, compression ratio=100%</i>				
MLP (Uncompressed)	59.4	64	55.3	59.6
<i>#tokens per frame=196, compression ratio=27%</i>				
Spatial Downsampling	60.2	63.7	52.8	58.9(-0.7)
Uneven Downsampling	60.9	62.5	54.9	59.4(-0.2)
Spatio-temporal Resampler	59.5	61.9	51.9	57.8(-1.8)
Similar Token Merging	62.8	66.7	56.8	62.1(+2.5)
<i>#tokens per frame=49, compression ratio=7%</i>				
Spatial Downsampling	60.2	61.8	53.6	58.5(-1.1)
Uneven Downsampling	59.8	62.8	54.3	59.0(-0.6)
Spatio-temporal Resampler	55.5	58.1	51.1	54.9(-4.7)
Similar Token Merging	61.4	63.3	55.3	60.0(+0.4)
<i>#tokens per frame=16, compression ratio=2%</i>				
Spatial Downsampling	58.1	61.1	50.1	56.4(-3.2)
Uneven Downsampling	58.3	60.0	52.3	56.9(-2.7)
Spatio-temporal Resampler	51.4	54.7	47.7	51.3(-8.3)
Similar Token Merging	60.2	62.4	53.5	58.7(-0.9)

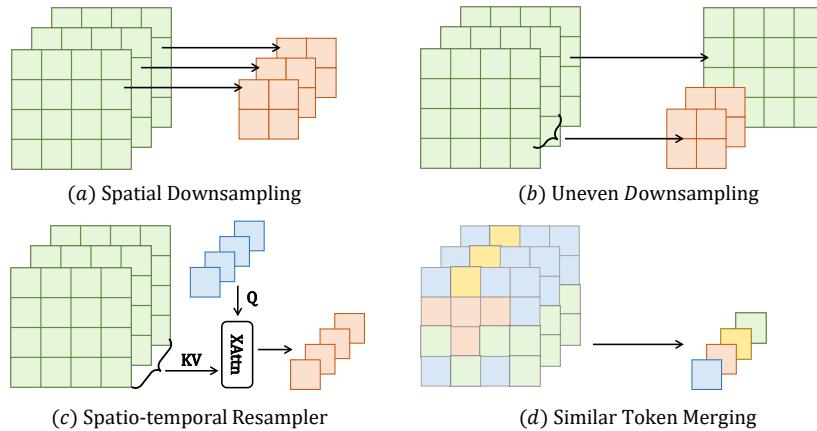


Figure 8: Comparison of different connectors.

Training cost. The main training advantage of our method lies in the fact that compression reduces the context sequence length fed into the LLM. First, we consider the impact of reduced context sequence length on training under the condition of the same training data volume. Here, we cite the comparison of training system throughput under different sequence lengths provided by the state-of-the-art long video training system LongVILA Xue et al. (2024) as a reference—this comparison is conducted on 64 H100 GPUs and measured in time per iteration (seconds).

As shown in table 7, it can be observed that despite the excellent acceleration optimizations for long-sequence training, changes in sequence length still significantly impact training speed. Our method can substantially reduce the training cost of long videos. Regarding the specific training cost, our method roughly requires 32 A100 GPUs for 5 to 6 days of training, which is significantly lower than that of mainstream models such as InternVL and QwenVL.

Inference cost. As in table 6, even when processing short videos, the compute load of our model is only one-tenth that of previous models. Meanwhile, as the number of input frames increases, the

Table 6: Comparison of FLOPs and Cuda memory. The FLOPs and inference memory is estimated using one NVIDIA A100-80G GPU with one sample, and the training is estimated using 32 NVIDIA A100-80G GPUs with DeepSpeed ZeRO-3 (Rasley et al., 2020). We assume that the visual features have been extracted and stored in advance, so we only consider the FLOPs and memory of the LLM.

Input frames	Model	Avg tokens per frame	FLOPs (T)	Memory(G)	
				Train	Infer
64	LongVILA (Xue et al., 2024)	196	224.8	15.4	16.7
	LongVA (Zhang et al., 2024a)	144	155.9	12.3	16.3
	VideoChat-Flash	16	14.8	4.8	15.4
256	LongVILA (Xue et al., 2024)	196	1467.5	50.1	21.0
	LongVA (Zhang et al., 2024a)	144	930.4	37.8	19.5
	VideoChat-Flash	16	63.0	7.6	15.7
1000	LongVILA (Xue et al., 2024)	196	14336.9	<i>oom</i>	37.7
	LongVA (Zhang et al., 2024a)	144	8278.9	<i>oom</i>	31.8
	VideoChat-Flash	16	303.3	18.6	17.1
10000	LongVILA (Xue et al., 2024)	196	1184250.0	<i>oom</i>	<i>oom</i>
	LongVA (Zhang et al., 2024a)	144	644632.0	<i>oom</i>	<i>oom</i>
	VideoChat-Flash	16	9969.5	<i>oom</i>	33.6

Table 7: **Training system throughput comparison (cited from LongVILA)**. The data is measured on 64 H100 GPUs, with the metric being time per iteration.

Model	Token Per Frame	Max Frames	Sequence Length	Training Time per Iteration (s)
VideoChat-Flash	16	512	8k	Not provided in LongVILA 4.24
	16	2048	32k	
InternVL2.5	256	512	128k	16.0 66.1
	256	2048	512k	

difference becomes more and more pronounced. Only our model can complete the inference on 10,000 frames on a single A100-80G. Concretely, VideoChat-Flash’s compute load is two orders of magnitude lower than that of LongVILA (Xue et al., 2024) (9,969.5 vs. 1,184,250.0 TFLOPs). **We also present the real inference costs using HuggingFace Pipeline and Flash-Attention2.** As shown in table 8, under the same video frame input and resolution, the FLOPs, GPU memory consumption, and latency of our VideoChat-Flash are all significantly lower than those of Qwen2.5-VL—one of the representative mainstream MLLMs—demonstrating the high efficiency of our method.

Table 8: Inference cost comparison (measured via HuggingFace Pipeline with Flash-Attention2).

Model	Input Frames	Num. Visual Tokens	FLOPs	GPU Memory	latency (Vision Encoder)	latency (LLM)	latency (Total)
Qwen2.5-VL	64	8192	158.65	18.66	1.115	2.308	3.422
VideoChat-Flash	64	1024	44.32	16.54	0.323	0.096	0.419
Qwen2.5-VL	256	32768	632.29	28.07	4.621	6.211	10.832
VideoChat-Flash	256	4096	175.03	20.41	1.188	0.337	1.526
Qwen2.5-VL	1024	131072	2526.80	65.72	18.930	34.473	53.403
VideoChat-Flash	1024	16384	697.81	35.92	4.697	1.442	6.140

A.3.2 VISUAL DROPOUT IN LLM

Visual token redundancy in LLM inference. As shown in fig. 9, we find that even when half of the tokens are discarded at the shallow layers of the LLM, the performance of long video understanding only degrades marginally. This indicates that despite high compression at the clip level (encoding each frame into only 16 tokens), there remains considerable redundancies between clips when their representations are interacted in the LLM. Furthermore, we find the overall understanding performance gets better as the dropout happens in the deeper layer of the model. Remarkably, at approximately two-thirds of the LLM’s depth, the performance even surpasses that of the no-discard baseline. This might suggest that in the deeper layers of the network, an excess of visual tokens may

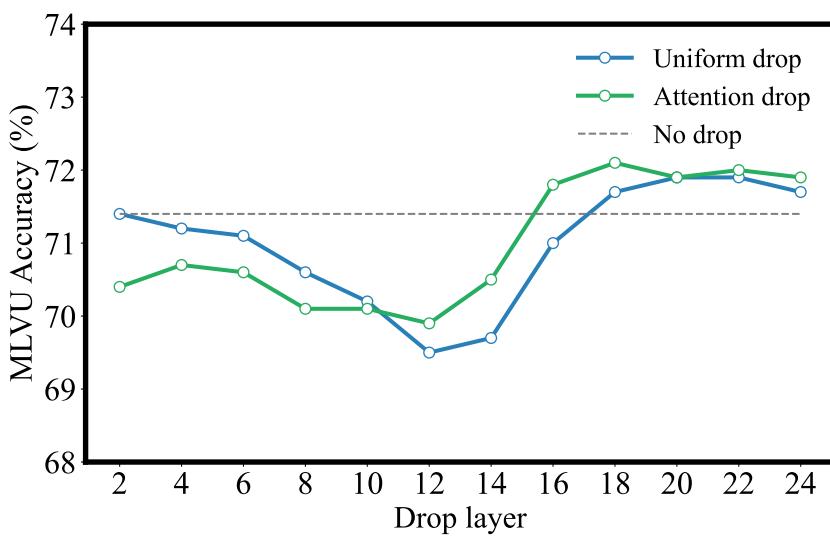


Figure 9: **Visual redundancy in long context across layers.** We conduct experiments on Qwen2-7B (28 layers) and test the impact of dropping 50% of the visual tokens from shallow to deep layers.

interfere with the model’s reasoning process. For the drop type, we observe that uniform drop often outperforms attention-based selection in the shallow layers. We suppose, at these layers, the LLM has not yet fully determined the specific locations to focus on. As a result, relying on attention may introduce bias.

Visualization of visual attention map. As shown in the fig. 10, for long video context, the attention of text tokens is relatively dispersed in the shallow layers of the network. However, as the layers deepen, the attention gradually becomes focused on specific regions. Thus, we believe that the attention scores in the deeper layers are more reliable, while those in the shallow layers may be prone to bias.

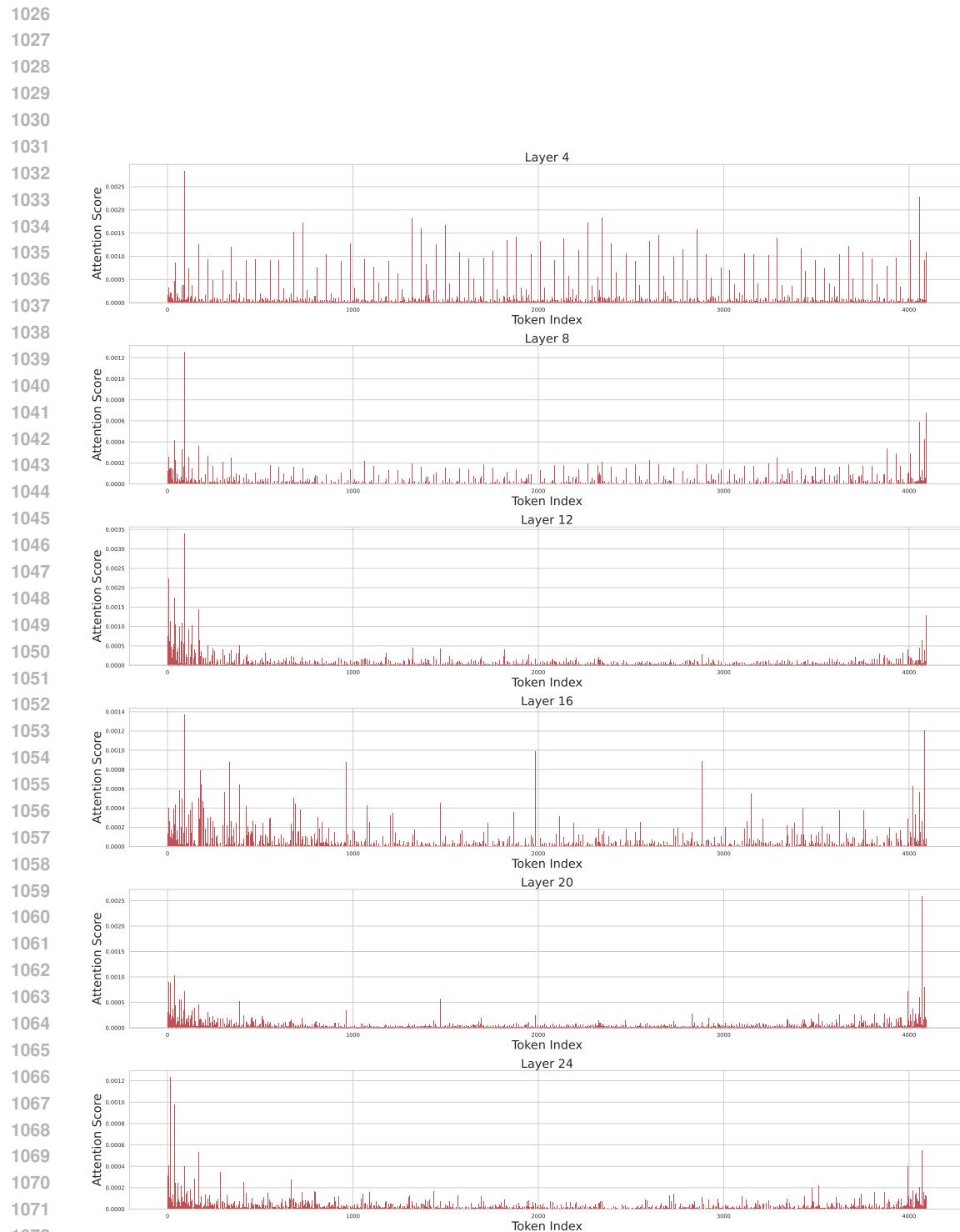
The Impact of progressive visual dropout on training. In our preliminary exploration, we were indeed concerned that the mismatch between training and inference (i.e., training with dropout vs. evaluating without) might negatively impact performance. Therefore, we conducted ablation studies and found that it did not yield significant benefits. In fact, incorporating it during training even resulted in a slight performance degradation.

Table 9: **Ablation results of Progressive Visual Dropout in training/inference stages.**

Training	Evaluation	VideoMME	MVBench
No Dropout	No Dropout	53.2	61.1
Progressive Visual Dropout	No Dropout	53.6(+0.4)	58.4(-2.7)
	Progressive Visual Dropout	52.2(-1.0)	57.9(-3.3)

We hypothesize that this degradation stems from the underlying mechanism of Visual Drop, which relies on **text-guided attention** to identify and retain key visual tokens.

- **The Premise:** Effective dropping requires the model to accurately determine which visual tokens are semantically relevant to the text.
- **The Conflict:** At the early stages of training, the MLLM has not yet established robust alignment between textual and visual modalities. Consequently, it cannot reliably identify “key” visual information. Forcing the model to drop tokens based on unlearned or unstable attention weights prevents it from effectively learning the full video representation.



1073 **Figure 10: Visualization of the attention scores from the last textual token to visual tokens at
 1074 each layer of the network.**

1080
1081 Therefore, based on these empirical results and analysis, we determined that applying Visual Drop
1082 exclusively during the inference stage.

1083 Table 10: Results with different video encoder.
1084

1085 Video encoder	1086 MVBench	1087 PerceptionTest	1088 LongVideoBench	1089 MLVU	1090 VideoMME (w/o sub.)	1091 LVBench
1092 Avg. Duration	1093 Avg	1094 Val	1095 Val	1096 M-Avg	1097 Overall	1098 Avg
1099 UMT-L	1100 73.2	1101 75.6	1102 64.2	1103 74.5	1104 64.0	1105 48.4
1106 InternVideo2-1B	1107 74.3(+1.1)	1108 76.3(+0.7)	1109 64.5(+0.3)	1110 73.4(-1.1)	1111 65.2(+1.2)	1112 48.7(+0.3)

1100 A.3.3 RESULTS WITH INTERNVIDEO2

1101 As shown in table 10, in addition to UMT (Li et al., 2023c), we also attempted to use the more
1102 powerful InternVideo2-1B (Wang et al., 2024e) as the video encoder. As shown in Table 1, we found
1103 that a stronger video encoder can lead to better compressed representations.

1104 A.3.4 RESULTS ON IMAGE UNDERSTANDING BENCHMARKS

1105 Our model is specifically designed for video understanding. However, according to the newly-
1106 evaluated results of image benchmarks, our model can still outperform the strong image-based
1107 MLLM, LLaVA-NeXT (Zhang et al., 2024c), with significantly lower computational cost: MMMU
1108 (45.2 vs. 35.3), MME (1843.4 vs 1603.7).

1109 A.3.5 THE IMPACT OF VISUAL COMPRESSION ON EFFICIENCY AND PERFORMANCE

1110 we emphasize that the advantages of our compression strategy are twofold, benefiting both efficiency
1111 and performance:

- 1112 • **From an efficiency perspective:** With the same number of input frames, our method
1113 significantly reduces computational costs without a marked decline in performance, as
1114 demonstrated in the second row of table 2.
- 1115 • **From a performance perspective:** In scenarios where computational resources and LLM
1116 context length are constrained-a common bottleneck in long-video understanding where
1117 standard sparse sampling often leads to severe information loss-compression allows the
1118 model to ingest a much larger number of video frames. This enables the model to achieve
1119 better performance by scaling up the input video context. To further empirically validate
1120 this, we present the additional data below. As shown in the table 11, under a fixed budget
1121 of total Vision Tokens (4,096), compressing the per-frame representation (from 256 to 64
1122 tokens) allows us to significantly increase the number of input frames (from 16 to 64). This
1123 enhanced temporal context leads to substantial performance gains.

1124 Table 11: Performance results under different Token per frame and Input Frames configura-
1125 tions.

1126 Token Per Frame	1127 Input Frames	1128 Vision Token	1129 VideoMME	1130 MotionBench
1131 256	1132 16	1133 4096	1134 51.3	1135 44.8
1136 64	1137 64	1138 4096	1139 59.3(+8.0)	1140 46.2(+1.4)

1141 A.3.6 FURTHER ELABORATION ON NOVELTY.

1142 A critical distinction between our work and prior art lies in our objective: **we pursue efficient**
1143 **long-video modeling to build long-video MLLMs from scratch**, whereas most existing works aim
1144 to accelerate existing MLLMs (e.g., by freezing most modules or adopting training-free approaches).

1145 We believe that learning native compressed representations for long-video modeling is essential. To
1146 this end, we propose the Hierarchical Compression (HiCo) paradigm. This is an **effective system-**
1147 **level design rather than merely a specific component**. HiCo decouples compression into two

1134 stages: handling visual redundancy at the Clip-level (within the ViT) and textual semantics at the
 1135 Video-level (within the LLM). Furthermore, regarding specific design details, our approach offers
 1136 key differences and novel insights compared to previous work:
 1137

- 1138 • **Clip-level Compression:** We propose leveraging spatio-temporal attention to capture local
 1139 inter-frame redundancy. This allows the Video Encoder to learn how to compress representations
 1140 via parameter updates, rather than relying on hand-crafted compression modules. This
 1141 self-adaptive mechanism is key to achieving our exceptionally high compression rate.
 1142
- 1143 • **Video-level Compression:** We introduce a new improved visual drop scheme specifically
 1144 optimized for the long-video understanding domain.
 1145
- 1146 • **Timestamp Prompts:** We demonstrate that concise text prompts remain highly effective
 1147 even under extreme visual compression. This avoids the computational overhead associated
 1148 with adding text timestamps to every frame, a common practice in prior work.
 1149
- 1150 • **Duration-based Sampling:** We validate a more effective sampling strategy: applying
 1151 dense sampling for short videos and sparse sampling for long videos. This differs from
 1152 previous works, which predominantly utilize fixed FPS sampling or rely exclusively on
 1153 sparse sampling.
 1154

1155 In summary, by combining these improvements, we are the first to demonstrate that **heavy-
 1156 compression-based methods can achieve long-video understanding performance comparable to,
 1157 or even surpassing, closed-source context-extension-based models.**
 1158

1159 A.3.7 DISCUSSION ON THE TRAINING-FREE FRAME SELECTION METHOD

1160 Numerous training-free frame selection approaches Tang et al. (2025); Zhu et al. (2025); Sun et al.
 1161 have been employed to enhance the long-video understanding of MLLMs. These methods
 1162 target the selection of key frames or clips most relevant to a specific task, thereby avoiding the
 1163 direct input of the full long-video context. This improves efficiency and often boosts performance,
 1164 particularly given that most MLLMs are currently optimized for short-context rather than long-context
 1165 tasks.
 1166

1167 While we acknowledge that training-free frame selection is an effective, low-cost solution for specific
 1168 application scenarios, we argue that it possesses inherent limitations when viewed from the perspective
 1169 of constructing a general-purpose foundation model for long video understanding:
 1170

- 1171 • **Task Formulation & Intrinsic Capability:** Fundamentally, frame selection simplifies a
 1172 long-video task into a short-context problem; it does not enhance the MLLM’s intrinsic
 1173 ability to process long temporal contexts. in contrast, our approach reduces the visual token
 1174 count via clip-level compression and employs a short-to-long training strategy. This allows
 1175 the MLLM to efficiently and holistically comprehend the compressed long-video context.
 1176
- 1177 • **Granularity & Precision:** External selection modules typically have a limited performance
 1178 ceiling. A text-guided selector may struggle to accurately interpret complex instructions.
 1179 Conversely, our method utilizes video-level compression to leverage the LLM’s inherent
 1180 capabilities in identifying critical visual information. This achieves precise token-level
 1181 selection, which offers significantly finer granularity than coarse frame-level selection.
 1182
- 1183 • **Information Retention:** Frame selection inevitably requires discarding a significant portion
 1184 of the raw data, making it unsuitable for tasks requiring dense, global understanding (e.g.,
 1185 dense video captioning or detailed video description). Our method retains essential semantic
 1186 information, demonstrating superior performance on these information-intensive tasks.
 1187

1188 In summary, we regard frame selection and our proposed method as distinct paradigms tailored for
 1189 different objectives: the former is suitable for adapting MLLMs in a training-free manner, while the
 1190 latter is designed to train a native long-video MLLM.
 1191

1188 A.4 IMPLEMENTATION DETAILS OF VIDEOCHAT-FLASH
11891190 A.4.1 VIDEO-LANGUAGE CONNECTORS
11911192 As shown in fig. 8, we consider four popular token compression strategies to compress the features
1193 from video clips:

- **Spatial Downsampling.** Applying spatial operations (pooling (Xu et al., 2024), interpolation (Zhang et al., 2024c), and convolution (pixel shuffle) (Chen et al., 2024e)) to each video frame for downsampling has been demonstrated in previous work (Xu et al., 2024; Maaz et al., 2024) as an effective method to reduce the number of video tokens. However, due to the lack of temporal interaction, this approach fails to leverage the relation between frames. We use pixel shuffle in our experiments.
- **Uneven Downsampling.** Considering the similarities between adjacent frames, it is unnecessary to retain full details for every frame. We can apply down-sampling operations with different sizes across frames within a clip. Specifically, a lower down-sampling size is applied to the first frame, while higher down-sampling sizes are used for the remaining frames. Similar approaches have been validated in a recent study (Wei & Chen, 2024).
- **Spatio-Temporal Resampler.** Using a learnable compressor, such as a Q-Former (Li et al., 2024c) or a cross-attention layer, to compress spatiotemporal tokens. However, this approach requires a large amount of data for effective learning. In training, we observe that the Q-Former barely converges well in our setting. So in our ablations, we adopt a single-layer cross-attention instead.
- **Similar Token Merging.** We directly merge similar tokens, using the ToMe (Bolya et al., 2022) approach.

1213 A.4.2 VISUAL DROPOUT IN LLM
12141215 Herein, we present the detailed implementation of visual dropout in LLM: For uniform drop, we
1216 uniformly drop a proportion of visual tokens and reassign position ids to the retained visual tokens.
1217 For text-guided selection, since Flash-Attention2 Dao (2023) does not support returning valid attention
1218 maps, we instead compute the attention scores between text tokens and vision tokens independently
1219 for text-guided selection.1220 A.4.3 TRAINING HYPERPARAMETERS.
12211222 As shown in Table 1, the training details and hyperparameters for each stage of our VideoChat-Flash
1223 model are presented.
12241225 Table 12: Training details of each training stage for the VideoChat-Flash-7B model.
1226

	Stage-1	Stage-2	Stage-3	Stage-4
<i>Vision</i>				
Resolution × Num. frames	224 16×4	224×8 16×8	224×(64~512) 16×(64~512)	224×(64~512) 16×(64~512)
<i>Data</i>				
Dataset	Image & Short Video 1M	Image & Short Video 4M	(Multi)-Image & Short/Long Video 3.2M	(Multi)-Image & Short/Long Video 0.3M
<i>Model</i>				
Trainable	Projector 20.0M	Full Model 7.9B	Full Model 7.9B	ViT&Projector 0.3B
<i>Training</i>				
Batch Size	512	256	256	256
LR of vision encoder	1×10^{-3}	2×10^{-6}	2×10^{-6}	2×10^{-6}
LR of connector & LLM	1×10^{-3}	1×10^{-5}	1×10^{-5}	1×10^{-5}
Epoch	1	1	1	1

1236 A.4.4 TRAINING DATA
12371238 **Stage 1: Video-Language Alignment.** In this stage, we use 558k image-text pairs from LCS-
1239 558K (Liu et al., 2023) and 481k short video-text pairs from S-MiT (Monfort et al., 2021).1240 **Stage 2: Short Video Pre-training.** To enhance the model’s understanding of visual concepts, we
1241 conduct visual pre-training using 3.5 million images and 2.5 million short video-text pairs.

- **Video Description Data.** We utilize the video description data recaptioned with VideoChat2 (Li et al., 2024c) from WebVid2M (Bain et al., 2021).
- **Detailed Video Description Data.** We employ the 323k detailed video description data recaptioned with Gemini (Reid et al., 2024) from WebVid (Bain et al., 2021) and Kinetics (Kay et al., 2017), as in previous work (Share, 2024).
- **Detailed Image Description Data.** We use the 3.5 million detailed image description data recaptioned with LLava-NeXT-34B (Zhang et al., 2024c) from the following datasets: COCO118K, BLIP558K, and CC3M, as provided by previous work (Li et al., 2024a).
- **Text Data.** To enhance the model’s language understanding capabilities, we incorporate 143K samples from the Evo-Instruct dataset (Chen et al., 2024a).

Stage 3: Joint Short & Long Video Instruction tuning. To enable the model to handle a wide variety of video tasks, we collect 3.5 million instruction fine-tuning samples, including 1.1M images, 1.7M short videos (under 60 seconds), and 0.7M long videos (60~3600 seconds).

- **Long Video Instruction data.** We primarily utilized long video instruction data from MoiveChat (Song et al., 2024), Vript (Yang et al., 2024) and a subset of LongVid.
- **Short Video Instruction data.** We primarily utilized short video data from VideoChat2 (Li et al., 2024c) and InternVideo2 (Wang et al., 2024e) for instruction fine-tuning. Additionally, we incorporated data annotated with GPT4-o from previous works, including ShareGPT4o (Chen et al., 2024e; Wang et al., 2024e), VideoChatGPT-Plus (Maaz et al., 2024), LLava-Video-178K (Zhang et al., 2024d) and LLava-Hound (Zhang et al., 2024b).
- **Image Instruction data.** We primarily utilized single-image instruction data from LLava-NeXT (Zhang et al., 2024c), Allava (Chen et al., 2024a), and ShareGPT4-o (Chen et al., 2024e; Wang et al., 2024e). Additionally, we incorporated multi-image data provided by LLava-Interleave (Li et al., 2024b).

A.5 DATASET DETAILS OF LONGVID

The videos of LongVid are curated from 4 open-source video datasets: Ego4D (Grauman et al., 2022), HowTo100M (Miech et al., 2019), HD-VILA (Xue et al., 2022), and MiraData (Ju et al., 2024). We provide statistics and details of the data construction pipeline for each dataset as follows.

A.5.1 STATISTICS AND EXAMPLES

As shown in fig. 11, fig. 12 and fig. 13, we’ve shown the data and QA type distribution for LongVid. Next, we will provide examples for the five tasks.

Task 1: Video Captioning

- **Question:** Which option best describe artistic style, visual and photographic aspects for this video, such as realistic, cyberpunk, and cinematic style?
- **Options&Answer:**
 - (A) The video features a high-definition, realistic graphic style with detailed textures and vibrant lighting effects, emphasizing a futuristic and immersive cyberpunk aesthetic.
 - (B) The video features a high-definition, realistic graphic style with detailed textures and dynamic lighting, emphasizing a gritty, futuristic aesthetic that is both immersive and visually engaging.
 - (C) **The video features a high-definition, realistic artistic style with a focus on detailed textures and vibrant lighting, enhancing the immersive medieval game setting.**
 - (D) The video features a realistic yet distinctly stylized graphic design typical of modern video games, with vibrant colors and detailed environments that enhance the immersive experience.

Task 2: Temporal Grounding

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

Distribution by Category

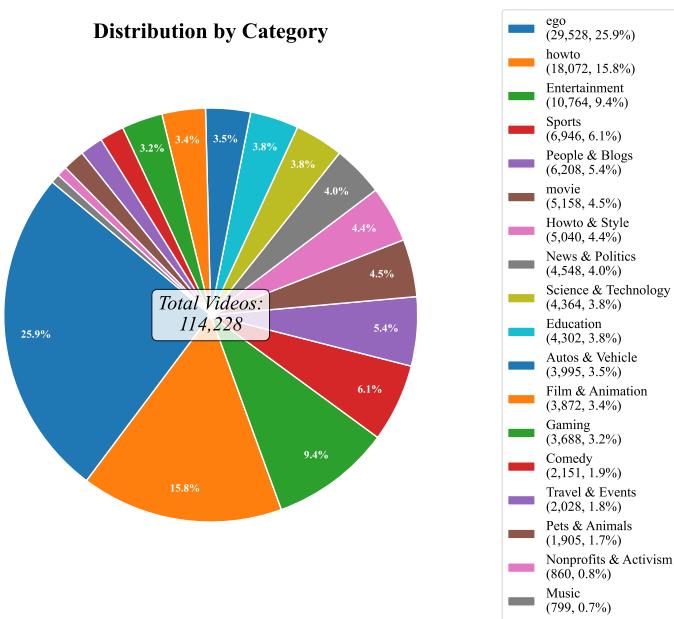


Figure 11: Distribution by category.

Distribution of Videos by Duration

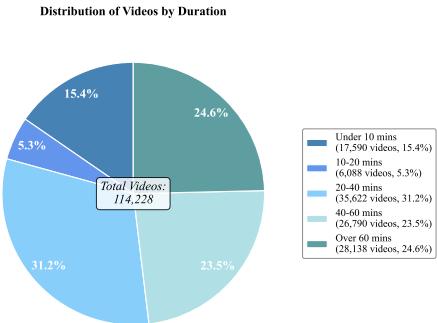


Figure 12: Distribution of videos by duration.

Distribution of Question-Answer Pairs by Task Category

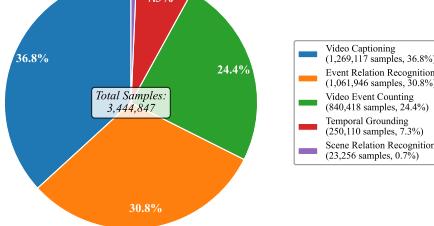


Figure 13: Distribution of Question-Answer Pairs by Task Category.

- **Question:** When does a person is walking down a street in a video game?

- **Options&Answer:**

- (A) **00:08:56.833 - 00:09:56.367**
- (B) 00:03:03.033 - 00:04:09.367
- (C) 00:07:21.900 - 00:08:07.633

Task 3: Event Relation Recognition

- **Question:** What is the event in the video between “fold the wrapper loosely around the filling” and “repeat until there are three or four folds on each side”?

- **Options&Answer:**

- (A) wrap the dough and let it sit 10–30 minutes
- (B) mix the vegetables and ground meat together
- (C) add the potstickers to the hot oil
- (D) **fold a piece of dough at one corner**
- (E) peel and chop other herbs and vegetables

1350 **Task 4: Scene Relation Recognition**

1351 • **Question:** Which option can best describe the scenery of the video?

1352 • **Options&Answer:**

1353 (A) **lush** → **forest** → **sun** → **sunset**

1354 (B) **rural** → **suburban**

1355 (C) **city** **night** → **streetlights** → **car** → **buildings** → **trees**

1356 (D) **indoors** → **makeshift** → **operations room**

1358 **Task 5: Video Event Counting**

1360 • **Question:** According to the video, how many steps does the chef take during cooking?

1361 • **Answer:**

1362 (A) **6**

1364 A.5.2 Ego4D

1366 For ego-centric videos, we adopt 3,662 long videos from the Ego4d (Grauman et al., 2022) and leverage Ego4DHcap (Islam et al., 2024) as the corresponding captions. Ego4DHcap gives hierarchical captions for short, medium, and long video segments. For the short video captioning task, we directly utilize these captions, while for the dense caption task, we concatenate captions in the lower level to form a dense one. For example, we merge all short video captions in a medium video segment to create a dense medium-level one, and the dense caption of long video segments can be formed by concatenating multiple medium-level video captions.

1373 We also build event relation recognition and temporal grounding tasks based on captions of short video segments. For the event relation recognition task, models are required to choose the right order of an event sequence. Since we find the captions of short videos are highly concise and event-oriented, 1374 we use them as the event labels and serially put the short captions in a medium-level video segment as 1375 the ground-truth event relationship. For the temporal grounding task, we use the short video captions 1376 with the corresponding timestamps as the ground-truth, and randomly select other timestamps in the 1377 current medium video segments as the false options.

1380 A.5.3 MIRADATA

1382 MiraData (Ju et al., 2024) provides multi-level captions for large-scale minute-level movie segments. 1383 Apart from short and dense captions that are used for short and dense video captioning tasks, it 1384 also provides multiple fine-grained captions that focus on various specific perspectives, such as 1385 the main object, background, camera movements, and video style. We use an open-source LLM 1386 (Qwen-72b (Bai et al., 2023)) to extract the event and background labels from the main object and 1387 background captions, respectively, and we put the labels of a long video in the right order as the 1388 ground truth of the event/background relation recognition task. For the temporal grounding task, we 1389 use the event label with the corresponding timestamp as the ground-truth option.

1390 A.5.4 HowTo100M

1392 HowTo100M (Miech et al., 2019) includes more than 1 million long-duration how-to videos. We 1393 adopt HowToInterlink7M (Wang et al., 2024a), a video captioning dataset that provides refined 1394 interleaved video captions of HowTo100M videos as short and dense video captions. For the event 1395 relationship recognition and temporal grounding tasks, we use HTStep (Afouras et al., 2024), a 1396 large-scale dataset containing temporal annotations of instructional steps in HowTo100M videos.

1397 A.5.5 HD-VILA

1399 While previous datasets focus on long videos in specific domains, we also select part of the videos 1400 from HD-VILA (Xue et al., 2022), a large-scale video dataset that includes various in-the-wild 1401 videos. We argue that adding these videos into training could enhance the model’s ability to process 1402 long videos in some uncommon domains. For HD-VILA videos, we adopt the captions of Panda- 1403 70M (Chen et al., 2024c). Specifically, we filter consecutive video segments that can be re-constructed 1404 into more than 60s long videos from the 10M training subset and utilize these captions as the video

short/dense captioning and temporal grounding tasks. The event labels are also extracted from these captions in the same way as MiraData (Ju et al., 2024).

A.6 RESULTS OF GEMINI2.5 FLASH ON MULTI-HOP NIAH

We have supplemented the results of Gemini 2.5 Flash and Gemini 2.5 Flash thinking on our MH-NIAH benchmark. Due to budget constraints, we only evaluated its performance under the 1000-frame setting, with an input token count of approximately 266k.

Table 13: **Performance comparison on MH-NIAH benchmark.** Evaluated under 1000-frame setting with 266k input tokens. “Cap Score” denotes captioning score, and “QA Score” denotes question answering score.

Model	Thinking	Token Per Frame	Cap Score	QA Score
random	-	-	25%	6.25%
LlamaVid	✗	2	20%	7%
LongVA	✗	144	25%	18%
VideoChat-Flash (Ours)	✗	16	33%	27%
Gemini2.5 Flash	✗	258	35%	31%
	✓	258	60%	54%

Surprisingly, without enabling the reasoning mode, Gemini 2.5 Flash achieved a score only slightly higher than that of our VideoChat-Flash in the Multi-Hop NIAH test. However, its score significantly improved when the thinking mode was activated. This further validates the fact that *the Multi-Hop NIAH task we designed truly requires more complex video reasoning capabilities rather than mere retrieval abilities for successful completion.*

A.7 QUALITATIVE RESULTS OF VIDEOCHAT-FLASH

We perform qualitative comparisons of our model with the proprietary model Gemini-1.5 Pro (Reid et al., 2024)¹ and the open-source LongVU (Shen et al., 2024) and VideoLLaMA2 (Cheng et al., 2024) across three tasks: fine-grained understanding of short videos (figs. 14 and 15) and long video understanding (figs. 16 and 17).

¹We use the newest Gemini-1.5 Pro-002 for evaluation.

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

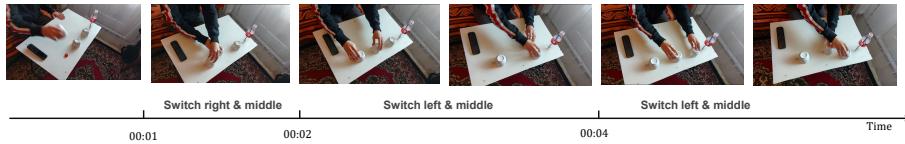
1476

1477

1478

1479

Figure 14: **Fine-grained Understanding of Short Videos: Fast Motion.** By adopting a dense sampling strategy for short videos, our model effectively captures fast motion within the video, enabling it to accurately determine the final position of the object under the cup.



The person uses multiple similar objects to play an occlusion game. Where is the hidden object at the end of the game from the person's point of view (left, middle or right)?

The hidden object is in the **leftmost cup**.

The hidden object at the end of the game is located on the **right side** from the person's point of view.

From the person's point of view, the hidden object is on the **left side** at the end of the game.

The hidden object is under the **middle cup** from the person's point of view.

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

How many times did the person launch objects on the table?

The person launched an object on the table **4 times**.

The person in the video launched objects on the table **a total of two times**.

The person launched objects on the table **twice** according to the video.

The person launched objects on the table **three times**.

Figure 15: **Fine-grained Understanding of Short Videos: Action Count.** Our model can accurately capture actions in short videos while also recording their occurrence frequency.

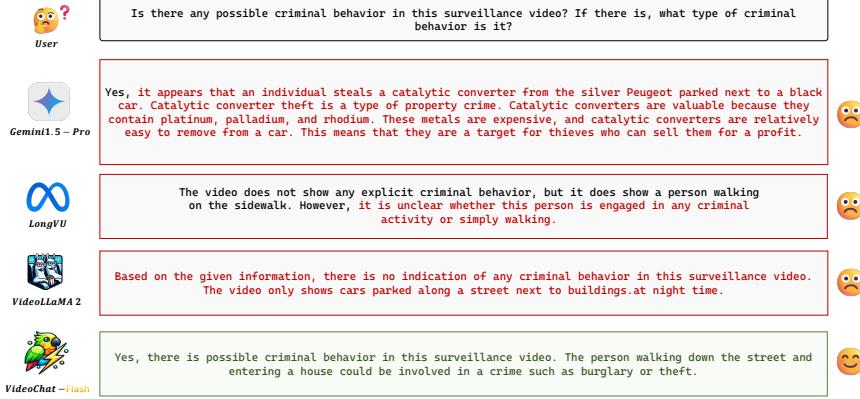


Figure 16: **Long video understanding: Anomaly Detection In Surveillance Videos.** Our model can detect anomalous behaviors in surveillance videos and provide corresponding inferences.

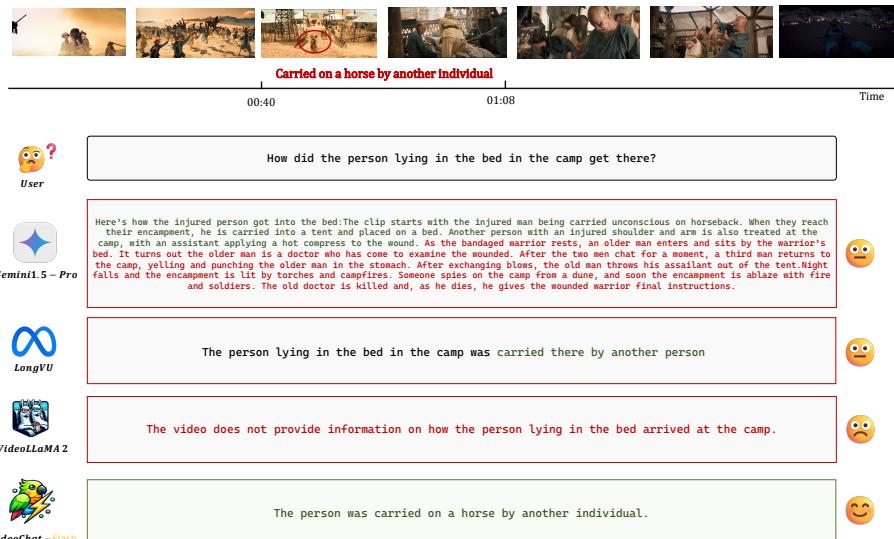


Figure 17: **Long video understanding: Movie Understanding.** Our model can understand the plot of a movie and retain detailed visuals.