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ABSTRACT

This paper explores LLMs’ ability to perform consistent personalized generation
incorporating user feedback. We first show that it is challenging for LLMs to
(1) utilize feedback consistently in long conversations, (2) reason about multiple
partial or conflicting feedback, and (3) adapt to changing preferences within a
conversation. These challenges show that input information selection is crucial for
improving multi-turn LLM performance. We propose a novel solution of building
a CORESET of past conversations, a principled approach of personalization. In
addition to addressing the long history, conflict, and preference change challenges,
coresets are an effective way to reduce input tokens, making these services more
cost-effective. We show that our coreset algorithm improves upon state-of-the-art
methods on both synthetic and real-world ambiguity datasets compared to memory
and personalization benchmarks.

1 INTRODUCTION

Figure 1: A real-world inspired example showing
personalized disambiguation is needed for conver-
sations involving semantically similar entities.

Large language models (LLMs) have demon-
strated remarkable abilities in addressing a wide
range of tasks via natural language, which has
led to the vision of their use as interactive chat
assistants in many domains (Köpf et al., 2024;
Ross et al., 2023). Many of these agents function
in areas that utilize retrieval-augmented genera-
tion (RAG). However, LLMs face challenges
in tasks where personal knowledge acquired
through extended user interactions plays a sig-
nificant role in completion, such as counseling
or secretarial roles (Zhong et al., 2024).

We identify that many of the personalization can
be in the form of disambiguation. Ambiguity
is a natural phenomenon of language, allowing
speakers to balance efficiency and clarity in com-
munication (Piantadosi et al., 2012). However,
ambiguity in a user’s instructions can often be
a challenge for LLMs when the task requires
semantic parsing or reasoning. How can we pro-
vide feedback to an LLM to resolve ambiguities
and make the model remember my preferences,
or adapt as needed? In this work, we develop a
system to address these questions.

∗Work done when interning with Amazon Web Services.
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We identify that a specific kind of ambiguity often arises in QA and text2SQL. Cole et al. (2023)
formulates as “denotation uncertainty”, which is the ambiguity of the denotation of entities in the
question. For example, when we ask “Who won the Olympics in fencing?” the “Olympics” term can
mean different years, genders, and blades, resulting in a wide distribution of possibly correct answers.
After we clarify the question to “Who won the gold medal in the 2020 Olympics in the men’s foil?”,
we have eliminated the denotation uncertainty.

Note that this is different from the scenario when the question is unambiguous but the answer is
uncertain, such as “what are the causes of cancer?” or “name the most livable city in 10 years.” We
call this type epistemic uncertainty, which can only be reduced by obtaining clearer data.

Formally, we can represent epistemic uncertainty and denotation uncertainty by factoring them as
in the following equation, where q represents the user’s request, a the answer, z the denoted entity
( elements of the set z, the possible things that the question can be referring to) , and D a set of
documents provided to the model.

P (a|q,D) = Σz∈zP (a|z, q,D)P (z|q,D)

In summary, our contributions are:

• Formulating the Disambiguation through Personalization (DtP) problem. (Section 3)
We outline a common use case where a user will use a structured generation service such as
RAG or text-to-SQL multiple times and would provide feedback.

• Illustrate current inadequacies. (Section 4) We conduct extensive studies on a controlled
synthetic dataset, and identify current inadequacies with challenges current models face.
In summary, they are (1) utilize feedback consistently in long conversations, (2) reason
about multiple partial or conflicting feedback, and (3) adapt to changing preferences within
a conversation.

• CORESET algorithm to address challenges. (Section 5) We provide detailed algorithms
for our approach to address the 5 challenges, and verify our method on our synthetic dataset
and a real world dataset.

2 RELATED WORK

Method ↓ Capabilities→ Ambiguity Feedback Incorporation Feedback Persistence Changing Preferences

Uncertainty Quant.
Clarifying Questions

Memory
Conflict Resolution
CORESET (Ours)

Table 1: Comparing our method CORESET with Literature. The rows are existing methodologies
in our problem space elaborated in the Related Work section, and the columns are aspects in our
problem space elaborated in Section 4.

Uncertainty Quantification. Uncertainty quantification (UQ) is a crucial step for reliable and
trustworthy LLM deployment (see Geng et al. (2024) for a recent survey). Recent studies show
that the logits of out-of-the-box LMs tend to exhibit overconfidence, even when wrong (Desai &
Durrett, 2020; Vasconcelos et al., 2023). In tasks such as code generation and knowledge extraction,
detecting uncertainty can improve generation quality and mitigate potential hallucination. Commonly
approaches of UQ includes self-consistency (Manakul et al., 2023; Zhang et al., 2023), prompt
modification and ensembling (Tonolini et al., 2024), and leveraging surrogate models for classifiers
and filters (Quach et al., 2023; Shrivastava et al., 2023).

Recent works have sought to distinguish between the two types of uncertainty: aleatoric and epistemic.
Epistemic uncertainty arises from the lack of knowledge and can be decreased with knowledge,
whereas aleatoric uncertainty is the inherent noise of the data and is irreducible. Hou et al. (2023)
decomposes the two through adding contextual information into prompting. Ahdritz et al. (2024)
shows that aleatoric uncertainty can be calibrated via linear probes. We advocate that another for
looking at such distinction is ambiguity.
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Ambiguity. While uncertainty is quantifying the confidence in the outcome of a task, ambiguity
refers to the multiple possible interpretations or under-specification of the input instruction. From
a linguistics perspective, ambiguity is complex - Liu et al. (2023) identified 11 different sources in
natural language. For specific applications, on the other hand, researchers can prescribe the domain
of ambiguity: In open-domain question answering (QA), for example, a common source is the time
and location context (Min et al., 2020). In text-to-SQL (Bhaskar et al., 2023), ambiguity mostly arises
from which specific column, table, or join paths are being referred. In machine translation, it can be
pronoun and “it” resolution (Pilault et al., 2023).

Addressing Ambiguity. Ambiguity can be addressed by LLMs in various ways. For the goal of
complete representation, Lee et al. (2024); Amplayo et al. (2022) provides long-form answers to
disambiguate between entities; Sun et al. (2023); Kim et al. (2023) presents a list of answer candidates
with disambiguation; Cole et al. (2023) selects answers by evaluates scores for each candidate.

To resolve ambiguity, Asking clarifying questions to allow users to specify the intended interpretation
of the question (Zhang & Choi, 2023; Lee et al., 2023); we can also resolve ambiguity using
tools Gou et al. (2023), by de-biasing entity popularity Chen et al. (2021), or by reasoning about
environment constraints (Park et al., 2023a). Due to challenges in data collection, there are less work
on disambiguation that requires multi-turn interaction with users. In previous multi-turn benchmarks
Wang et al. (2023), we assume the agent giving feedback knows the ground truth answer.

Personalization. Extracting and learning user preferences have been explored in the space of LLM
Agents. Chain-of-Thought (Wei et al., 2022) and Scratchpads (Nye et al., 2021) encourage the LLM
to generate intermediate reasoning, using the LLM’s own context as a form of working memory.
Since our setting focuses on disambiguation and less on explicit memory, we refer readers to (Li
et al., 2024) for a survey in the Agent space. For learning user preference, Gao et al. (2024) query the
LLM to generate a preference summary that best explains user edits. Si et al. (2022) shows that LLM
can learn incorporated unseen knowledge via in context learning.

Positional Bias Retrieval Augmented Generation (RAG) is an effective solution to hallucinations,
and have achieved remarkable improvements by incorporating supporting knowledge into the input of
LLMs. One of the main challenges of RAG is long context: in Multi-document question answering
(Multi-doc QA), LLMs often fail to produce correct answers if related documents are located in the
middle of the context, called “lost in the middle” (Liu et al., 2024). Approaches to solve this problem
includes fine-tuning (Zhang et al., 2024) and multi-step prompting that identifies relevant documents
first (He et al., 2024).

In-context Conflict Changing user preference can also be seen in the lens of in-context information
conflict (see survey by Xu et al. (2024)). Previous research empirically demonstrates that the
performance of a language model can be significantly influenced by the presence of misinformation
Zhang & Choi (2021) or outdated information Du et al. (2022) within a specific context. Fact checking
Du et al. (2022) and credibility prediction Leite et al. (2023) are approaches to eliminate conflicts.
Approaches that are the closest to ours include prompt augmentation to improve robustness Weller
et al. (2022). Despite these advances, a unified and efficient approach to handle conflicts remains a
formidable challenge.

3 PROBLEM FORMULATION

This paper seeks to study how a chat assistant can utilize feedback to disambiguate user questions in
the setting of multi-turn user-LLM interactions.

In order to ground the notations, we consider an example of a chat system through which Human
Resources can retrieve information about employees. In this situation, the conversation will be about
‘entities’, which are unique identifiers of the employees. Each employee will have information about
them stored in relational tables and text documents. The chat system’s goal is to produce natural
language responses to the questions posed, by inferring the underlying entities. The entities may
change over time as the conversation naturally evolves, or as and when an interruption arrives.

Notations
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• E = {e1, e2, . . . , eN}: the set of all relevant entities. In the example above, these correspond
to an abstract index (such as an identification number) of each employee.

• D = {d1, d2, . . . , dK}: the set of all documents referring to the entities. Each “document”
is contains information regarding one or more entity. We do not assume that this information
to be structured in any specific way.

• qt, at, ft: We use subscript t to indicate conversation turn. At the t-th round, qt is the
question asked by the user, at the answer generated by the chat-system, and ft the feedback
given the user, if any. A conversation takes the form of {D, q1, a1, f1, q2, a2, . . .}.

• e∗t , a
∗
t : e∗t ∈ E is the entity the user has in mind for the question qt at round t. e∗t is not

necessarily directly expressed by the user in their questions or feedback, but to be inferred
by the system through conversations. Similarly, we mark a∗t as the true answer to question
qt, infromation from the document set D for the referred entity e∗t .

• M : the large language model. We use M(input) to denote the generated result.

Throughout this paper, we consider two types of user input, questions q, where the user solicits an
answer, and feedbacks f , where the user expresses preference about the answer. In reality, there can
be many other forms of input, but we omit them in our formulation for clarity of the system. We
assume that we can separate feedbacks ft and questions qt+1 even if the user input them in the same
round, through, for example, a LLM parser.

Goal of the chat system. The goal of the chat system is to produce the answer after round t as qt(e∗t ),
i.e., produce the answer to the question qt based on the (unknown) latent entity e∗t . However, the
answer at can only depend on the available information till time t, namely all of the questions, past
answers, and feedback, in addition to the document set.

4 CAN LLM EFFECTIVELY INCORPORATE FEEDBACK? AN EXPLORATION

We begin by illustrating what is lacking in the current state of the art LLMs’ ability in incorporating
feedback. We found that current LLMs, especially those smaller in size, fall short in tasks that involves
personalization and ambiguity in 5 aspects: detecting ambiguity, persisting feedback, incorporating
partial disambiguation, preference changes, and positional bias. We will illustrate these challenges
respectively on a very simple synthetic dataset.

4.1 EXPERIMENT SETUP

Dataset We synthetically created short biography paragraphs of people, similar to the Bios dataset
from Allen-Zhu & Li (2023). Each batch will consists of a few entries that share the same name, and
each entry contains 5 facts: birthday, hometown, alma matar, major, current city. The questions X
are about these five facts of this person, such as “When was Layla Gonzalez born?” or “What state is
Layla Gonzalez from?”. In a document batch, some facts can overlap as well, so both the name and
the facts can be a source of ambiguity. For example:

1. Layla Gonzalez was born on February 14, 1995. They were born and raised in San
Francisco, California. They went to University of Texas at Austin for higher education and
majored in Art History. They currently live in Philadelphia, Pennsylvania.
2. Layla Gonzalez was born on August 7, 1975. They were born and raised in San Antonio,
Texas. They went to UCSD for higher education and majored in Engineering. They currently
live in Los Angeles, California.
3. Layla Gonzalez was born on February 14, 1995. They were born and raised in Phoenix,
Arizona. They went to University of North Carolina at Chapel Hill for higher education and
majored in Nursing. They currently live in Phoenix, Arizona.

These bios are meant to represent retrieved content for an RAG task. We constructed the synthetic
data for clarity and simplicity (the bios are programmatically generated and not paraphrased as in
Allen-Zhu & Li (2023)), to minimize confounding and reduce cost of these experiments.

Conversation protocol. Our experiment consists of the following protocol. Before the first question,
we give the LLM all the documents serialized as a string, followed by a question. We prompt the
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LLM to provide a list of plausible answers for ambiguous questions. For example, with the above
set of docs and a question “When was Layla Gonzalez born?”, we want the LLM to answer a list of
two answers of [Feb 14 1995, Aug 7, 1975]. Subsequently, we either give the LLM feedback on the
correct answer and then ask a follow-up question, or we do not provide any feedback and continue
asking questions. In the case when feedback is given, we expect the LLM to be accurate in answering
follow-up questions, while in the absence of feedback, we expect the LLM to return a list of answers.
Conversations are in the form of {D, x1, a1, f1, x2, a2, f2, . . .}, as shown in Example 3.

4.2 FINDINGS, CHALLENGES FACED

We summarize the findings from our exploratory synthetic data experiments. We use the synthetic
dataset and targeted experimental design to show some of the challenges that different LLMs face for
the conversation assistant task. We presetn the full metrics, experiment details, and full results in
Appendix B.

Detecting ambiguity. Large models are better at detecting ambiguities. For smaller models,
the ability to correctly recognize the full scope of ambiguity decreases as the number of
candidates increases. (E.g. Lamma 3 70B achieves 45% precision with 3 documents, and
drops to 27% for 20. See table 4) in appendix B.1 for details.

Persisting disambiguating feedback. Smaller models Llama-8B-instruct can forget feedback
starting from the 3rd turn, greatly decreasing accuracy. Larger models retain feedback
consistently. (Appendix B.2 )

Reasoning about partial disambiguation. In the setting where ambiguous candidates are
ruled out one by one through feedback, performance degrades as the reasoning chain grows
longer. (Appendix B.3)

Reasoning about preference changes. We constructed a setting where the user indicates a
preference change at some time in the conversation. We found that for models large or small,
the performance degrades after the preference change. (Appendix B.4)

Position Bias. When multiple documents are presented to the model without disambiguation
information, the model will pick the first option with overwhelming odds if asked to provide
one answer only. (Appendix B.5)

Using a consistent subset of feedback improves accuracy compared to using all feedback.
(Appendix B.6)

5 PERSONALIZED FEEDBACK CORESET

5.1 DESIDERATA

In this section we present a novel system, CORESET, that addresses the challenges of ambiguity by
learning from user feedback. Specifically, the desiderata of the system’s behavior includes:

1. Ambiguity Quantification: When there are ambiguity in a given query, the model should
detect and be able to represent it.

2. Persistence: previous feedbacks should be remembered.

3. Consistency: feedbacks should not have conflict with each other.
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4. Recency: prioritizes feedback closer to the current interaction.
5. Robustness: if an adversarial feedback was introduced, we should be able to recover from it.

Among them, desiderata 4 and 5 may be in conflict. We will discuss the various design trade-offs in
detail in the following sections.

5.2 BACKGROUND: CORESET SELECTION

Building a system resembling human learning abilities to sustainably learn over a long-term period is
continual learning (Thrun, 1995). A naive continual learning method is maintaining and revisiting
a small replay buffer (Rolnick et al., 2019; Titsias et al., 2019) to mitigate catastrophic forgetting.
However, the majority of these methods store random-sampled or latest data as a proxy set, limiting
their practicality to real-world applications when all the training data are not equally useful, as some
of them can be less informative or even detrimental for the current task.

These challenges can be addressed by selecting data from the buffer by some criterion, known as
coreset selection. A coreset refers to a small, representative subset of a large dataset that approximately
preserves certain properties of the original dataset, such as its diversity or the results of a particular
optimization objective. Yoon et al. (2021) showed that online coreset selection improved model
performance in practical scenarios containing imbalanced, streaming, and noisy data. The method
considers the diversity, task informativity, and relevancy to the past tasks.

In our context of LLM structured generation, there many concepts that are similar to a replay buffer:
for example memories (Park et al., 2023b), scratchpads (Nye et al., 2021) and constitutions (Findeis
et al., 2024). In this work we will explore how to select user feedback from the buffer pertaining to
specific queries, and constructing a consistent and effective coreset for user queries.

5.3 CONSTRUCTING THE FEEDBACK CORESET

Given a question q, with the true right answer a∗, the optimal set of feedback denoted as s∗ ⊆ F =
{f1, f2, . . .} is defined as follows.

s∗(q, a∗) = argmin
s⊆F

l(M(q, s), {a∗})

Where l is a loss function that measures how much the generated answer using a feedback set s ⊆ F
denoted as M(a, s) deviates from the ground truth answer a∗. In practice, this can be a metric such
as the F1 score, or an LLM itself. For brevity, we omit the document dataset D in the input to M.

In reality, our algorithm does not have access to the ground truth response a∗. Therefore there is a
need to find approximation of s∗, which we will denote as ŝ. There will be some loss in answering
quality using the approximation ŝ as compared to the optimal feedback set s∗, which we call regret
for the QA pair (q, a∗). This regret given a specific (q, a∗) pair can be calculated as

l
(
M(q, ŝ(q)),M(q, s∗(q, a∗))

)
Observe that ŝ is chosen by the algorithm and is thus only a function of q and not a∗ as the true
answer is not known before the set ŝ is selected.

Online Setting We formulate the user preference as a distribution over the question space and
referred entities P : Q× E → [0, 1]. We generalize our setting to allow for user preference change
by making the preference distribution subscriptable by time: (qt, a∗t ) ∼ Pt. We are interested in
algorithms that choose ŝ as a function of q that can minimize regret on average over a QA work load,
i.e., we want an algorithm that selects ŝ such that the following is minimized over a conversation
horizon of T turns.

T∑
t=1

E
(q,a∗)∼Pt

l
(
M(q, ŝ(q)),M(q, s∗(q, a∗))

)
An example of a preference change is when the latent entity changes. In particular, we can partition
the time horizon into contiguous blocks of time, where in each block the latent entity is fixed, but
the latent entity changes across blocks. This is commonly referred to as ‘piece-wise stationary’
distribution in the literature.
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5.4 WHY DOES MINIMIZING REGRET IMPLY ACHIEVING THE DESIDERATA?

The loss function takes as input two sets of answers S1 and S2, where a member of the set is a string.
Then l(S1, S2) measures the precision and recall using the formula given before. Implementing the
loss function in practice requires a subroutine that checks whether a string is in a set. In the case of
structured outputs such as json, we can check for an exact match, and in the case of free-form strings,
this can be done using LLMs themselves. Now we show that minimizing our loss function yields our
desiderata. Let si ⊂ F denote the coreset we construct at the i-th turn for question qi.

• Persistence: if a feedback fj is useful in answering questions q1 . . . qt, then it should be in
the coreset fj ∈ si for i ∈ [1, . . . , t].

• Consistency: we show that inconsistent feedback decreases generation accuracy. Hence,
fi ∈ si should not contain information that contradicts any other fk ∈ si.

• Adaptivity: We seek to choose st be optimal with respect to Pt, rather than with respect
to the past distributions Pt−1, .., P1. In other words, when the distribution changes, that is,
Pt ̸= Pt−1, we want the system to optimize with respect to Pt and not with respect to the
old distribution.

The optimal set s∗ represents all the relevant information needed to answer question. For ambiguity
quantification, we want the model response M(q, s) to be ”more sure”, as we give more feedback.

5.5 CONSTRUCTING THE CORESET

Recency is a heuristic that is used when the underlying environments are slowly varying, i.e., in cases
when Pt−1 ≈ Pt, we want the feedback set ŝt to be similar or close to that of ŝt−1. For a query q, let
Fq = F|q ⊆ F denote the relevant feedbacks pertaining to query q (details on retrieval in section
4.4). Let D denote the set of documents given as context for query q. Based on our desiderata, we
have two ways of constructing the coreset s:

Robust Coreset. Where we extract the largest consistent set of feedbacks, where adversarial or
irrelevant feedbacks in memory will not be selected. This construction is closer to previous works
Yoon et al. (2021) on online coreset selection.

max |s| s.t. s is consistent, D|s ̸= ∅, fn ∈ s

Recency Coreset Where we always treat the most recent feedback fn as “correct” and find the
largest span of previous feedback that is consistent with it.

min
1≤i≤n

i s.t. s = {fi, . . . fa}, s is consistent, D|s ̸= ∅

We provide the pseudocode for the algorithm for a Recency Coreset in Algorithm 1. It ensures that
newly introduced feedback is integrated with the maximum contiguous recent subset of prior feed-
backs without introducing conflicts. It allows for continuous refinement of the model’s instructions
while maintaining consistency with existing feedback, supporting iterative model improvement.

The system of using the constructed Corset to generate disambiguated answers is illustrated in
figure 2. Note that to accomplish the pipeline we need to implement the feedback retrieval function
retrieve and the conflict checker function hasConflict. The conflict checker can be naively
implemented by calling a LLM and prompting it to return whether the feedbacks in s are consistent;
or, consistency can be measured as “similarity” between the embeddings of the feedbacks. We now
elaborate on how to use a RAG system for retrieval in section 4.4.
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Algorithm 1 Recency CORESET

1: Input: All previous feedbacks M , new user
query q

2: Output: Coreset s ⊆M
3: f ← retrieve(M, q)
4: sort f = [fn, fn−1, . . . , f1]
5: s← ∅
6: for fi ∈ [fn, fn−1, . . . , f1] do
7: if not hasConflict(s, fi) then
8: s← s ∪ {fi}
9: else

10: break // Stop when a conflict is
found

11: end if
12: end for
13: return s

Algorithm 2 Robust Recency CORESET

1: Input: All previous feedbacks M , new user
query q

2: Output: Coreset s ⊆M
3: f ← retrieve(M, q)
4: sort f = [fn, fn−1, . . . , f1]
5: s← ∅
6: for fi ∈ [fn, fn−1, . . . , f1] do
7: if not hasConflict(s, fi) then
8: s← s ∪ {fi}
9: else

10: continue // Don’t add conflicting
feedback to set, check previous ones

11: end if
12: end for
13: return s

5.6 IMPLEMENTATION OF HASCONFLICT

A key component of the algorithm is checking for conflicts between new feedback and the coreset,
which is abstracted as the hasConflict function in our presentation so far. There are many
approaches to implement hasConflict. A simple solution would be an LLM call containing the
coreset s and the new feedback ft, asking for a binary classification - we use this implementation in
our toy experiments, and include a discussion on prompt writing in appendix D. Another approach
could be comparing the distance of the embedding of s and ft (e.g. cosine similarity). We say a
conflict exists if the distance is below a threshold, which can be tuned online.

Because hasConflict is in nature a binary classifier, a natural question for extension arises: What
if the classification is ambiguous, or probabilistic? In principle, one could use the feedback to tune
the parameters of this classifier (such as a threshold), or use statistical techniques such as conformal
prediction Angelopoulos et al. (2022) or selective classification Geifman & El-Yaniv (2017) to make
guarantees to ensure that desired properties are satisfied by the final LLM output. We defer the design
and analysis of tuning the classifier parameters based on textual feedback to future work.

6 EXPERIMENTS

Datasets We evaluate the proposed personalized coreset approach on (1) our Bios synthetic dataset
and two public ambiguity benchmarks: (2) AmbigDocs (Lee et al., 2024) for contextual QA with
ambiguous document sources. The datasets are chosen with the focus on ambiguity and are modified
to a multi-turn setting.

AmbigDocs is constructed from Wikipedia disambiguation pages where multiple entities that can
be referred to by the same surface name. Each AmbigDocs instance consists of a question asking
about an ambiguous entity and a list of gold document-answer pairs for each disambiguated entity.

Figure 2: System design of CORESET. Orange cells are user input, Blue cells are LLM generations,
and Red cells are a part of our personalization algorithm.

8



Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

We generate a total of 36K examples, covering 102K unique entities over all domains. We augment
the dataset into a multi-turn disambiguation dataset DisAmbigDocs by repeating the process for
question-answer pair generation, leveraging Claude Sonnet 3.5. See figure 7 for an illustration of the
generation process. This is done by providing the documents and existing question to the LLM and
asking it to create a different question. We then verify the correctness and quality of the answer.

Baselines, models, and metrics The baseline methods are categorized into two groups: (a) generic
reasoning, which includes QA with in-context learning (ICL), Chain-of-Thought (Wei et al., 2022)
(CoT); and (b) Memory methods, which includes unfiltered memory, scratchpads (Nye et al., 2021),
and summarized memory (similar approach in Park et al. (2023b)).

We will continue to use top-K precision and recall as defined in section 4 and appendix B.1. In our
experiments, we use two LLaMA models by Dubey et al. (2024) (llama3-8b-instruct, llama3-70b-
instruct), and Claude 3 Sonnet. In the main paper, we omit the llama3-8b-instruct results as they do
not perform as well as llama3-70b-instruct. Examples of these prompts can be found in the Appendix.
Details regarding the LLM inference parameters and the number of demonstration samples used are
provided in the Appendix.

6.1 RESULTS

Table 2 presents the comparative performance of multiple baseline models across two distinct
disambiguation interactions. This analysis aims to highlight the effectiveness of each approach in
addressing the challenges posed by disambiguation tasks.

We see that our method CoreSet algorithm mostly outperforms all baselines, showing stronger
disambiguation and persistence performance, especially for the stronger Claude-3-Sonnet model. One
surprising finding is the low performance of Scratchpads, whose mechanism is similar to our method
in concept. A reason for this performance gap is due to conflicting information in the generated
scratchpads due to preference changes (see figure 8 for example).

Table 3 shows the number of average tokens for the 50-turn conversation experiment, to highlight
the computational advantage of CoreSet compared to other well-performing methods such as full
memory or summarized memory.

Method Bios AmbigDocs

Precision Recall Precision Recall

L
la

m
a-

3-
70

B

Reasoning Methods
ICL 0.69 0.72 0.65 0.71
CoT 0.36 0.68 0.34 0.42

Memory Methods
full memory 0.72 0.76 0.42 0.39
Scratchpads 0.16 0.29 0.12 0.23
Summarized Memory 0.72 0.77 0.44 0.57

CoreSet 0.79 0.83 0.66 0.60

C
la

ud
e-

3-
So

nn
et

Reasoning Methods
ICL 0.85 0.90 0.53 0.69
CoT 0.49 0.60 0.44 0.41

Memory Methods
full memory 0.94 0.95 0.60 0.70
Scratchpads 0.39 0.65 0.31 0.59
Summarized Memory 0.89 0.92 0.58 0.70

CoreSet 0.95 0.98 0.62 0.70

Table 2: Performance comparison across two
Datasets: Bios and AmbigDocs. The best results
are highlighted in bold.

Method Bios AmbigDocs

# in # out # in # out

L
la

m
a-

3-
70

B

Reasoning Methods
ICL 903 1274 1697 3277
CoT 936 10831 1185 36892

Memory Methods
unfiltered memory 747 1143 863 3234
Scratchpads 32755 9302 39132 10532
Summarized Memory 5944 7936 7827 8314

CoreSet 3736 7122 3652 8127

Table 3: Comparison of computational cost for
each baseline. We report the average number
of input and output tokens in one 50-question
conversation. Our method is more efficient than
memory methods.

7 DISCUSSION

In this work, we addressed the challenges of ambiguity and personalized feedback in LLMs by
proposing a novel system to dynamically construct a core set of relevant feedback, with a future
work extension leveraging Retrieval-Augmented Generation (RAG) explored in Appendix A. We
identified key issues that current LLMs face, such as inconsistent feedback utilization, difficulties
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in reasoning with multiple feedbacks, and adapting to evolving user preferences. To tackle these
problems, we introduced the CORESET algorithm, which effectively selects the most contextually
relevant feedback without conflicts, enhancing the model’s ability to persist user preferences over
time. Our approach demonstrated significant improvements over state-of-the-art methods on synthetic,
contextual QA, and text-to-SQL benchmarks, showing that incorporating structured, personalized
feedback can substantially enhance both the accuracy and robustness of LLMs. These results highlight
the importance of personalization and adaptability in LLMs, paving the way for more intelligent,
user-centric AI systems that can better handle real-world ambiguity and evolving user needs.

The limitation of our work is that we focus on a narrow scenario, where the model has access to
retrieved documents, source of ambiguity is limited to denotation, and that it receives ample user
feedback. Future work may extend this approach to more diverse forms of use cases and sources of
ambiguities.
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Köpf, A., Kilcher, Y., von Rütte, D., Anagnostidis, S., Tam, Z. R., Stevens, K., Barhoum, A., Nguyen,
D., Stanley, O., Nagyfi, R., et al. Openassistant conversations-democratizing large language model
alignment. Advances in Neural Information Processing Systems, 36, 2024.

Lee, D., Kim, S., Lee, M., Lee, H., Park, J., Lee, S.-W., and Jung, K. Asking clarification questions
to handle ambiguity in open-domain qa. arXiv preprint arXiv:2305.13808, 2023.

Lee, Y., Ye, X., and Choi, E. Ambigdocs: Reasoning across documents on different entities under the
same name. arXiv preprint arXiv:2404.12447, 2024.

Leite, J. A., Razuvayevskaya, O., Bontcheva, K., and Scarton, C. Detecting misinformation with
llm-predicted credibility signals and weak supervision. arXiv preprint arXiv:2309.07601, 2023.

Li, Y., Wen, H., Wang, W., Li, X., Yuan, Y., Liu, G., Liu, J., Xu, W., Wang, X., Sun, Y., et al.
Personal llm agents: Insights and survey about the capability, efficiency and security. arXiv
preprint arXiv:2401.05459, 2024.

Liu, A., Wu, Z., Michael, J., Suhr, A., West, P., Koller, A., Swayamdipta, S., Smith, N. A., and Choi,
Y. We’re afraid language models aren’t modeling ambiguity. arXiv preprint arXiv:2304.14399,
2023.

Liu, N. F., Lin, K., Hewitt, J., Paranjape, A., Bevilacqua, M., Petroni, F., and Liang, P. Lost
in the middle: How language models use long contexts. Transactions of the Association for
Computational Linguistics, 12:157–173, 2024.

Manakul, P., Liusie, A., and Gales, M. J. Selfcheckgpt: Zero-resource black-box hallucination
detection for generative large language models. arXiv preprint arXiv:2303.08896, 2023.

Min, S., Michael, J., Hajishirzi, H., and Zettlemoyer, L. Ambigqa: Answering ambiguous open-
domain questions. arXiv preprint arXiv:2004.10645, 2020.

Nye, M., Andreassen, A. J., Gur-Ari, G., Michalewski, H., Austin, J., Bieber, D., Dohan, D.,
Lewkowycz, A., Bosma, M., Luan, D., et al. Show your work: Scratchpads for intermediate
computation with language models. arXiv preprint arXiv:2112.00114, 2021.

Park, J., Lim, S., Lee, J., Park, S., Chang, M., Yu, Y., and Choi, S. Clara: classifying and disam-
biguating user commands for reliable interactive robotic agents. IEEE Robotics and Automation
Letters, 2023a.

Park, J. S., O’Brien, J., Cai, C. J., Morris, M. R., Liang, P., and Bernstein, M. S. Generative agents:
Interactive simulacra of human behavior. In Proceedings of the 36th annual acm symposium on
user interface software and technology, pp. 1–22, 2023b.

Piantadosi, S. T., Tily, H., and Gibson, E. The communicative function of ambiguity in language.
Cognition, 122(3):280–291, 2012.
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A FUTURE WORK: EXTRACTING FEEDBACK USING RAG

So far, we have assumed that the feedbacks users provided are explicit, accurate, and relevant to
the questions. In real-world conversations, however, these conditions might not be perfectly met.
Therefore, it would be necessary to extract accurate and relevant feedback to a question from past
interaction history through retrieval.

Retrieval-Augmented Generation (RAG) leverages dense embeddings to retrieve relevant past memo-
ries from a datastore to enhance the response generation process for a given user query. Given a user
query q, an embedding eq ∈ Rd is computed using a pretrained encoder E(·). The datastore consists
of a set of memory entries M = {f1, f2, . . . , fN}, where each memory fi is represented by its dense
embedding efi ∈ Rd. To retrieve relevant memories, the cosine similarity between eq and each efi is
computed as:

sim(eq, efi) =
eq · efi
∥eq∥∥efi∥

The top-k feedbacks with the highest similarity scores are selected as the relevant set R ⊂M . These
retrieved conversations can then be used as feedback input to our CoreSet algorithms.

B CAN LLM EFFECTIVELY INCORPORATE FEEDBACK? AN EXPLORATION

Performance Metrics. In tasks involving ambiguity, the algorithm will often return a set of answers
instead of only one. Following previous works in information retrieval and recommendation systems,
we use Top-k precision and recall to evaluate both the accuracy and the uncertainty quantification of
the model. Let z ∈ E be a set of entities returned by the algorithm, and z∗ ∈ E be the ground truth set
of relevant entities given previous feedbacks. If the previous feedbacks contain enough information
to disambiguate denotation, then z∗ = e∗.

Precision =
Number of relevant items in set

Size of set
=

∑
e∈z I(e ∈ z∗)

|z|

Recall =
Number of relevant items in set
Total number of relevant items

=

∑
e∈z I(e ∈ z∗)

|z∗|

Notations We formulate our task as follows.

• E = {e1, e2, . . . , eN}: relevant entities for the task.

• D = {d1, d2, . . . , dN}: documents, each for each entity

• X : the space of questions one can ask about the entities. We write x ∈ X as the question,
and x(e1) as the answer of question x for entity 1.

• z: a positive integer, indicating the user’s preferred entity

• t: subscript to indicate turn. The questions will be indexed as xt, the answers at, and the
feedbacks ft. A conversation, for example, can take the form of {D, x1, a1, f1, x2, a2, . . .}

• F : The feedback function. We define the feedback as a function of the true denotation and
past conversations, i.e. f1 = F (zt, x1:t, a1:t, f1:t−1)

B.1 CHALLENGE 0: DETECTING AMBIGUITY

We first look at the case without feedback. The prompt consists of the ambiguous documents, and we
ask the model k questions in conversation: {D, x1, a1} (see Example 1). The desired behaviour is that
the model returns a list of answers, one for each entity in the given set {x1(e1), x1(e2), . . . , x1(eN )}.
The problem of identifying ambiguity has been widely studied with approaches ranging from directly
asking the LLM if it is ambiguous (Zhang & Choi, 2023) to prompting the model multiple times
and evaluating the diversity of answers (Hou et al., 2023). Also see Lee et al. (2024) for a detailed
discussion.

13



Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

3 docs 10 docs 20 docs
Model Precision Recall Precision Recall Precision Recall

Llama 3 8B 0.21 0.66 0.18 0.39 0.21 0.35
Llama 3 70B 0.45 0.76 0.26 0.45 0.27 0.41

Claude 3 Sonnet 1.0 1.0 1.0 1.0 1.0 1.0

Table 4: Representing ambiguity

From the results in table 4), we can see the following: Large models are better at detecting ambiguities.
For smaller models, the ability to correctly recognize the full scope of ambiguity decreases as the
number of candidates increases. (E.g. Lamma 3 70B achieves 45% precision with 3 documents, and
drops to 27% for 20.

B.2 CHALLENGE 1: PERSISTENCE

In this task, we introduce feedback after one turn of conversation {D, x1, a1, f1}, in the form of
providing the correct answer to x1: f1 = x1(z) in natural language. Afterwards, for each turn t > 1,
we randomly choose a question from X (which includes x1), and evaluate the answers. We provide an
example conversation in the appendix in Example 2. Every time we ask a new question, all previous
conversation history is included in the prompt.

Figure 3 and table 6 illustrate how the accuracy decreases over time for as we ask questions. This be-
haviour of deteriorating persistence is exacerbated when the model is presented with more ambiguous
candidates (comparing the results for N = 3 candidate documents and N = 10 candidate documents.

(a) Llama: Precision (b) Llama: Recall (c) Llama: Error Types

(d) Claude: Precision (e) Claude: Recall (f) Claude: Error Types

Figure 3: Precision, recall, and error types over turn t for challenge 1. There is sharp decline in the
model’s ability to persist the instruction and feedback after a few turns.
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Turn 1 5 25 50
Precision Recall Prec Rec Prec Rec Prec Rec

3 documents
Claude-sonnet 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98
Llama3 70B 0.95 1.0 0.95 1.0 0.88 1.0 0.81 0.98

10 documents
Claude-sonnet 1.0 1.0 1.0 1.0 0.97 0.98 0.95 0.96
Llama3 70B 0.65 1.0 0.78 0.96 0.58 0.96 0.48 0.92

Table 5: The behaviour of deteriorating persistence, especially when exacerbated with more ambigu-
ous candidates, is evident across models.

B.3 CHALLENGE 2: INCORPORATING PARTIAL DISAMBIGUATION

We further expand the setting of challenge 1 to the case when one feedback does not fully disambiguate
the answer. We introduce the feedbacks sequentially, in the form of {D, x1, a1, f1, x2, a2, f2, . . .},
as shown in Example 3.

In this setting, we do not evaluate against the ground truth z∗ because there are not enough information
provided. Instead, we will use z∗t to denote the set of relevant entities given all previous feedbacks
f1:t. The key difference from challenge 1 is that the size of z∗t can be greater than one. We designed
the feedbacks to be always useful in narrowing down the set, i.e. · · · ⊂ z∗2 ⊂ z∗1 ⊂ E . In the following
experiment, we assume each feedback reduces the size of z∗t by 1.

Feedbacks 0 1 2 3
Precision Recall Prec Rec Prec Rec Prec Rec

3 documents
Claude 3 sonnet 1.00 1.00 1.00 0.92 1.00 1.00 / /

Llama 3 70B 0.90 0.90 0.88 0.87 0.89 0.91 / /

10 documents
Claude 3 sonnet 1.00 0.99 0.98 0.80 0.99 0.62 0.90 0.41

Llama 3 70B 0.95 0.95 0.81 0.88 0.80 0.92 0.73 0.96

Table 6: The behaviour of deteriorating persistence, especially when exacerbated with more ambigu-
ous candidates, is evident across models.

B.4 CHALLENGE 3: PREFERENCE CHANGES

For the third challenge, we study the effect of relaxing the assumption of the denotation being
consistent over time: instead of a single z∗, there can be a time step tc where the user’s preference
changes, i.e. z∗tc−1

̸= z∗tc . We present result in Figure 4 and analysize the error type in 5. In these
experiments, the denoted entity switches to a different random document at t = 25. The change is
conveyed through user feedback, similar to the exchange shown in figure 1.

We observe different behavioral patterns exhibited by the Llama and Claude models. For Llamma 3
70B, the new feedback from preference change reminds the model of the instruction, and improves
performance temporarily. For Claude, however, the feedback further decreases the accuracy of
returned answers.

15



Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

(a) Precision (b) Recall

Figure 4: Precision and recall over turn t for challenge 3 preference change experiments.

(a) Llama: Error types (b) Claude: Error types

Figure 5: Error types over turn t for challenge 3 preference change experiments.

B.5 CHALLENGE 4: POSITIONAL BIAS

Positional bias is a well-known behavior found in LLMs,
where when presented with a long context, the models fail
to utilize information in the middle of the context (Liu
et al., 2024; An et al., 2024). In this experiment, the setting
is the same as Challenge 2, where multiple documents are
presented to the model without disambiguation informa-
tion. Instead of reporting the entire ambiguous set, we ask
the model to pick an answer. Figure 6 shows our finding of
models preferring the first option over others consistently.
Positional bias is a motivation for uncertainty quantifica-
tion, because without specific prompting the models will
ignore information present in the context. Figure 6: Positional preference.

B.6 USING A SUBSET OF THE FEEDBACK IMPROVES ACCURACY COMPARED TO USING ALL
FEEDBACK

Convention tells us that throwing all the information to the LLM and let it figure out the useful ones.
However, LLMs inherently lack an explicit conception of temporal dynamics. Consequently, when
inundated with conflicting feedback within a single prompt, there is no guarantee that the model will
prioritize or adhere to the most recent directive a notion of time, throwing in conflicting feedback
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into the prompt will not automatically result in the LLM following the latest prompt. Even adding in
an instruction to follow the latest feedback, and then adding a numbering scheme to each feedback is
in-sufficient as seen in the prior section. Further, always adding all feedback into the prompt makes
inference cost prohibitive.

Consider for instance a conversation history, where the interactions are as follows.

User: Where was Maya born?

Assistant: There are two different persons with names Maya - Maya
Jones and James Maya.

User (Feedback): The one who is the younger of the two.

Assistant: James Maya was born in San Francisco.

User (feedback): What about the other Maya?

Assistant: Maya Jones was born in Seattle.

User: What is their education level?

Here, using all the conversation history in the prompt is not ideal as there is conflicting information
on which Maya (the entity) is being referred to in the last question.

Feedbacks All feedbacks Selected recent relevant feedbacks
Precision Recall Precision Recall

3 documents
Claude 3 sonnet 0.45 0.78 1.00 0.99

Llama 3 70B 0.39 0.54 0.92 0.99

10 documents
Claude 3 sonnet 0.33 0.79 0.98 1.00

Llama 3 70B 0.21 0.45 0.90 0.91

Table 7: Experiment results showing model behavior at t = 30 after 3 preference changes. The
results show that using a subset of the feedback improves accuracy compared to using all feedback.

C DATASET GENERATION

An illustration of our data augmentation process of the AmbigDocs benchmark can be found in figure
7.

D PROMPT AND INTERACTION EXAMPLES

D.1 EXPERIMENT-RELATED EXAMPLES

We include an example showing sample stratchpad and coreset output of the same interaction in 8.

D.2 CHALLENGE 0: AMBIGUITY

Example 1 (Ambiguity). Here are a list of biographies in our database.

Layla Gonzalez was born on October 9, 1967. They were born and
raised in San Diego, California. They went to University of Texas
at Austin for higher education and majored in Art History. They
currently live in Philadelphia, Pennsylvania.
-
Layla Gonzalez was born on August 7, 1975. They were born and
raised in San Antonio, Texas. They went to UCSD for higher
education and majored in Engineering. They currently live in Los
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Figure 7: Generation illustration for the AmbigDocs dataset used in our experiments, modified from
the original one from Lee et al. (2024).

(a) Scratchpads

(b) Coreset

Figure 8: An example of Scratchpads vs. CoreSet at conversation turn 25. The performance
improvement is due to the consistency property of CoreSet, which eliminates conflicts in the notes
provided back to the chat system.

Angeles, California.
-
Layla Gonzalez was born on February 14, 1995. They were born
and raised in Phoenix, Arizona. They went to University of
North Carolina at Chapel Hill for higher education and majored
in Nursing. They currently live in Phoenix, Arizona.

Answer the user queries with the answer only. When you are not
confident, answer a list of responses, one response per row.

User: when was Layla Gonzalez born?

Answer: October 9, 1967
August 7, 1975
February 14, 1995

D.3 CHALLENGE 1: PERSISTENCE

Example 2 (Persistence). Here are a list of biographies in our database.
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Layla Gonzalez was born on October 9, 1967. They were born and
raised in San Diego, California. They went to University of Texas
at Austin for higher education and majored in Art History. They
currently live in Philadelphia, Pennsylvania.
-
Layla Gonzalez was born on August 7, 1975. They were born and
raised in San Antonio, Texas. They went to UCSD for higher
education and majored in Engineering. They currently live in Los
Angeles, California.
-
Layla Gonzalez was born on February 14, 1995. They were born
and raised in Phoenix, Arizona. They went to University of
North Carolina at Chapel Hill for higher education and majored
in Nursing. They currently live in Phoenix, Arizona.

Answer the user queries with the answer only. When you are not
confident, answer a list of responses, one response per row.

User: when was Layla Gonzalez born?

Answer: October 9, 1967
August 7, 1975
February 14, 1995

User: Layla Gonzalez was born on August 7, 1975. Use this
information for your answer.

D.4 CHALLENGE 2: PARTIAL DISAMBIGUATION

Example 3 (Partial Disambiguation). Here are a list of biographies in our
database.

Mia Ramirez was born on February 2, 2000. They were born and
raised in San Diego, California. They went to Cornell University
for higher education and majored in Anthropology. They currently
live in San Diego, California.
-
Mia Ramirez was born on April 27, 1993. They were born and raised
in Washington, D.C.. They went to Yale University for higher
education and majored in Journalism. They currently live in
Austin, Texas.
-
Mia Ramirez was born on April 27, 1993. They were born and raised
in Seattle, Washington. They went to Massachusetts Institute
of Technology for higher education and majored in Nursing. They
currently live in Nashville, Tennessee.

Answer the user questions. When there is only one answer, return
the answer plainly, no extra information. When there are multiple
answers, provide the full list of answers, one answer per row.

User: Which university did Mia Ramirez attend?

Answer: Cornell University
Yale University
Massachusetts Institute of Technology

User: Mia Ramirez was born on April 27, 1993. Use this
information for your answers.

User: Where does Mia Ramirez live?
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Answer: Austin, Texas
Nashville, Tennessee

User: Mia Ramirez is from Seattle, Washington. Use this
information for your answers.

User: What subject did Mia Ramirez study?

Answer: Nursing
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