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ABSTRACT

The rejection of unknown devices outside the known categories is crucial for radio
frequency fingerprint identification (RFFI). Current open-set recognition (OSR)
methods rely on the uncertainty of the model output, where unknown classes ex-
hibit low confidence and vice versa for known classes. However, we demonstrate
that uncertainty-based methods face a significant challenge, particularly in RFFI,
which is termed “Overconfidence on Unknown Signal Segments” (OUSS), where
unknown signal segments are misclassified with high confidence, directly contra-
dicting the expected low-confidence characteristic for unknown classes. Inspired
by an interesting observation that predictions for unknown classes across multiple
models exhibit high inconsistency, while known classes exhibit the opposite, we
propose to leverage decision entropy and max-agreement consensus to quantify
the inconsistency. Based on the decision entropy and the max-agreement consen-
sus, we propose an inconsistency based open-set RFFI approach (IncOS-RFFI).
We conduct extensive experiments on the seven open-source radio frequency fin-
gerprint datasets with seventeen benchmarks and demonstrate the effectiveness of
our proposed IncOS-RFFI compared to existing OSR algorithms.

1 INTRODUCTION

Radio frequency fingerprint identification (RFFI) is a powerful technique for authenticating and
tracking wireless transmitters by leveraging subtle waveform distortions introduced by device-
specific hardware imperfections Zhang et al. (2023); Adesina et al. (2022). Early RFFI approaches
primarily relied on handcrafted signal features designed by experts, but such methods exhibit limited
scalability, poor robustness to environmental changes and insufficient generalizability to unknown
scenarios Sa et al. (2019); He & Wang (2020); Zhang & Li (2023). To overcome these limitations,
deep learning technology has been introduced into RFFI to automatically learn discriminative fea-
tures from radio frequency fingerprints for improved recognition capabilities Zhou et al. (2021);
Wang et al. (2020); Huang et al. (2017). Therefore, deep learning based RFFI has been widely stud-
ied under the closed-set assumption Zhou et al. (2021); Wang et al. (2020); Huang et al. (2017).
However, with the rapid development of wireless technology, unknown devices may cause models
trained only on known categories to fail. This challenge highlights that RFFI needs to not only iden-
tify known devices, but also be able to detect unknown devices to ensure the stability and security
of monitoring Naik et al. (2020); Park et al. (2014). The open-set recognition (OSR) methods lever-
age the uncertainty of the model output to solve this problem, where unknown classes show low
confidence while known classes show the oppsite Bendale & Boult (2016); Chen et al. (2021). Un-
fortunately, as shown in Figure 1 , we observed that these uncertainty based methods in RFFI suffer
from a significant “Overconfidence on Unknown Signal Segments” (OUSS) challenge. Specifically,
the uncertainty of model output for unknown classes is lower than expected, with up to 64.00% of
the signal segments from unknown devices having extremely high confidences (i.e., the maximum
softmax probabilities are > 0.96) and being misclassified. In contrast, this proportion is only 24.90%
in the CIFAR dataset.

Uncertainty based open-set RFFI methods can be categorized as single-model and multi-model ap-
proaches, all of which identify signal segments with high uncertainty in the output distribution as
unknown. Single-model methods include OpenMax, generative methods, and prototype learning
based methods. OpenMax Wu et al. (2023) extends the traditional softmax layer by fitting a Weibull
distribution using extreme value theory (EVT) to compute open-set probabilities. However, due to
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Figure 1: The Kernel Density Estimation of Confidence Distribution across Datasets. The CIFAR dataset is
from Computer Vision and the WiSig-ManyTx dataset is from RFFI.

difficulties in tail modeling, it often fails to correct low uncertainty estimates for unknown sig-
nal segments, which leads to the OUSS challenge. Generative methods, such as generative adver-
sarial networks (GAN) Guo et al. (2024) and variational autoencoders (VAEs) Karunaratne et al.
(2021), detect unknown signal segments by generating anomalous signal segments. However, their
limited representation of the unknown space fails to induce high uncertainty for unknown signal
segments, while unstable training further distorts uncertainty calibration, leading to the OUSS chal-
lenge. Prototype learning based methods Wang et al. (2023a) calculate the distance between signal
segments and class prototypes to perform open-set RFFI. However, ambiguous boundaries lead to
low distance-based uncertainty for the OUSS signal segments. Compared with single-model meth-
ods, multi-model methods, such as Monte Carlo (MC) Dropout Justamante & McClure (2024) and
deep ensembles Balasubramanian et al. (2021), detect unknown classes through the uncertainty of
the average output distribution of multiple models. MC Dropout uses multiple random forward prop-
agations, but the high correlation between propagations still leads to the OUSS challenge and the
unknown signal segments are always misclassified as the same class. Deep ensembles leverage mul-
tiple independently trained models, however, for unknown and low-confidence known signal seg-
ments, the averaged output distribution may lead to low confidence, making it difficult to distinguish
between unknown and low-confidence known signal segments.

We observe that predictions for unknown classes are often inconsistent across multiple independent
models, while those for known classes tend to be consistent, even in the case of the OUSS chal-
lenge or when the confidences for known classes were low. This observation motivates us to propose
an inconsistency based open-set RFFI method (IncOS-RFFI), as shown in Figure 3. In particular,
IncOS-RFFI quantifies the prediction inconsistency among multiple models via two mechanisms,
where decision entropy is utilized for comprehensive open-set detection and max-agreement con-
sensus is leveraged for efficient inference. Notably, IncOS-RFFI is simple but efficient, and exhibits
strong robustness to the OUSS signal segments.

The main contributions of this paper are summarized as follows.

• We first reveal and analyze the significant OUSS challenge in uncertainty based open-set
RFFI methods.

• We propose an inconsistency based open-set RFFI method (IncOS-RFFI) in the presence of
the OUSS challenge. IncOS-RFFI quantifies the prediction inconsistency across models by
two mechanisms, where the decision entropy achieves comprehensive open-set detection
(IncOS-RFFI-DE) and the max-agreement consensus achieves efficient inference (IncOS-
RFFI-MA).

• We conduct extensive experiments using seven open-source radio frequency fingerprinting
datasets to validate the effectiveness of the proposed approaches for open-set RFFI tasks.
Experimental results demonstrate that our approaches outperform existing OSR methods
in open-set detection metrics.
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2 RELATED WORK

2.1 OPEN-SET RFFI BASED ON UNCERTAINTY

OSR was first formalized in Scheirer et al. (2012). Later OpenMax is proposed by combining deep
learning with OSR Bendale & Boult (2016). Existing open-set RFFI has made significant progress by
exploiting the uncertainty of the model output distribution to discriminate unknown classes. These
schemes can be categorized into single-model and multi-model schemes.

2.1.1 SINGLE-MODEL OPEN-SET RFFI

Single-model open-set RFFI methods can be categorized into OpenMax-based, generative methods,
and prototype learning based methods. Inspired by OpenMax, an open-set RFFI framework was
proposed to combine feature distance, triplet loss, and EVT for open-set RFFI Wu et al. (2023).
Furthermore, slice-based preprocessing and noise augmentation are incorporated to enhance the
framework Zhang et al. (2022). Other studies, such as NS-RFF Xie et al. (2021) and HyperRSI Fu
et al. (2024), utilize hypersphere representations to enhance the ability to distinguish known from
unknown devices. Furthermore, generative methods Karunaratne et al. (2021); Wang et al. (2023b)
aim to enhance training by generating unknown data. Prototype learning based methods Wang et al.
(2023a) reject unknown devices through feature-prototype similarity and EVT modeling. However,
most uncertainty based single-model methods are prone to misclassification errors due to the OUSS
challenge. OpenMax-based confidence adjustment is less effective for the OUSS signal segments,
and generative models may fail to generate signals that truly represent the unknown space. Fur-
thermore, prototype learning based models are prone to ambiguous rejections on the OUSS signal
segments near the decision boundary. In contrast, our IncOS-RFFI approach based on inconsistency
leverages the decision entropy and the max-agreement consensus of multiple models to detect un-
known classes, avoiding reliance on distribution fitting, generative capability, or prototype distance.
This design enhances robustness to the OUSS challenge while minimizing inference overhead.

2.1.2 MULTI-MODEL OPEN-SET RFFI

Uncertainty based multi-model approaches are less explored and typically rely on averaging the
output distributions of multiple models. MC Dropout Justamante & McClure (2024) estimates the
uncertainty of the averaged output distribution through multiple random forward propagations. How-
ever, models are often highly correlated during random forward propagation, leading to the OUSS
challenge, where each model consistently misclassifies signal segments into the same class. In con-
trast, our IncOS-RFFI method leverages the inconsistency to effectively address this problem.

2.2 OSR IN COMPUTER VISION

In computer vision (CV), OSR primarily encompasses discriminative models, generative models,
and prototype based methods. Discriminative approaches, such as DOC Shu et al. (2017) and OLTR
Liu et al. (2019), primarily focus on boundary modeling for open-set detection. Generative ap-
proaches, such as OpenMatch Saito et al. (2021), OSRCI Neal et al. (2018), and CROSR Yoshihashi
et al. (2019), combine reconstruction or counterfactual generation to represent unknown spaces.
Prototype-based approaches, such as GCPL Yang et al. (2018), RPL Chen et al. (2020), ARPL
Chen et al. (2021), MPF, AMPF, and AMPF++ Xia et al. (2023), achieve effective OSR through
feature-prototype similarity and adversarial mechanisms. While these approaches perform well in
image classification tasks, they often perform poorly in RFFI due to the OUSS challenge, and suffer
high computational cost and unstable training. We also employ several CV based OSR methods as
baselines for comprehensive evaluation.

3 PROBLEM DEFINITION

Open-set RFFI can be formulated as a K + 1 classification problem to correctly classify signal
segments from K known classes while detecting signal segments from unknown classes. Let the
training dataset be denoted as Dtrain = {(xi, yi) | i ∈ 1, . . . , L, yi ∈ 1, . . . ,K}, where L is the
total number of labeled signal segments from known classes. The testing dataset is represented as
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Figure 2: The Data Characteristics of Radio Frequency Fingerprints Compared to Images.

Dtest = {xj | j ∈ 1, . . . , U}, which includes both signal segments from known classes {1, . . . ,K}
and signal segments from unknown classes. Here, U denotes the total number of test signal segments.
Each xi refers to the i-th signal segment in Dtrain with the corresponding label yi, while xj is the
j-th signal segment from Dtest. Both xi and xj are extracted from the received signal through
sampling. A typical signal segment xi can be written as

xi =

[
rI [1] rI [2] . . . rI [M ]
rQ[1] rQ[2] . . . rQ[M ]

]
, (1)

where M denotes the number of sampled points within a segment, and rI [·]/rQ[·] represent the
in-phase/quadrature components sampled from the received signal r(t). It is defined as

r(t) = hϕ(s(t)cos(ω0t+ θ)) + n(t), (2)

where s(t) is the baseband signal, cos(ω0t+ θ) is the carrier modulated by center frequency ω0 and
phase θ, the parameter h characterizes the wireless channel, n(t) is additive white Gaussian noise
(AWGN) with zero mean and variance σ2

n, The function ϕ(·) models the hardware-introduced signal
variations and captures the unique radio frequency fingerprint of the emitter.

4 METHODOLOGY

In this section, we explore the cause of the aforementioned OUSS challenge and introduce an incon-
sistency based open-set RFFI approach (IncOS-RFFI), where IncOS-RFFI quantifies the prediction
inconsistency among models via decision entropy and max-agreement consensus. For ease of un-
derstanding, we start with the exploration of the cause of the OUSS challenge, and then present an
overview of the proposed IncOS-RFFI, followed by the details of these approaches for OSR-RFFI
tasks.

4.1 CAUSE OF THE OUSS CHALLENGE

Visual classification often relies on compositionality, where an image I of class y, whose feature
representation is composed of multiple semantic parts (e.g., head, ear, tail) Lee et al. (2019). Let Pi

denote the i-th semantic part, and Q be the total number of parts. The overall feature representation
F(I) can be written as

F(I) =

Q⊕
i=1

φi(Pi)⊗Ψ({Pi}Qi=1), (3)

where φi(Pi) extracts the local feature of the i-th semantic part,
⊕

denotes the fusion operation,
and the operator ⊗ denotes a gating operation that modulates the part features according to the
compositional constraints Ψ, which evaluates the validity of the composition as

Ψ({Pi}) =
{
1 if the parts form a valid composition
0 otherwise (e.g., cat head + dog body)

. (4)
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When Ψ = 0, the composite feature is assigned a low confidence due to the invalid part combina-
tions.

The significant OUSS phenomenon in RFFI stems from the non-compositional entanglement char-
acteristics of the radio frequency fingerprints. As shown in Figure 2, unlike CV where objects ex-
hibit compositional strcuture (e.g., a cat typically consists of eyes, ears, and a tail), radio frequency
fingerprints arise from globally distributed and entangled hardware impairments without compo-
sitional constraints. The hardware impairment components of radio frequency fingerprints are not
completely orthogonal and may be entangled. Therefore, while the dominant impairment portion is
incomplete, it is sufficient for accurate closed-set classification. If the impairments of an unknown
signal segment are highly similar to the dominant impairment portion of a known class but also con-
tain other impairment components, the lack of componentional constraints may cause the classifier
to output high confidence in the the known class, which can easily lead to the OUSS challenge.

4.2 FRAMEWORK OVERVIEW

As shown in Figure 3, the proposed IncOS-RFFI framework consists of the independent expert
training, the open-set detection via decision entropy, and the open-set detection via max-agreement
consensus. For the independent expert training, a pool of Z deep classifiers with random initial-
ization, independent parameters, and independent data streams are trained on Dtrain to maximize
predictive diversity. For the open-set detection, decision entropy is used to quantify the inconsistency
among predictions from multiple models, where high entropy indicates unknown classes. Note that
for faster inference speed and lower computational overhead, we introduce the max-agreement con-
sensus to quantify the inconsistency, called IncOS-RFFI-MA.

4.3 INDEPENDENT EXPERT TRAINING

To improve the prediction diversity, a pool of Z deep classifiers {fz}Zz=1 with isolated dataflow and
identical architecture are independently trained on Dtrain. Specifically, the independent training
means that each model is initialized with distinct random seeds, and no parameter sharing or gra-
dient exchange occurs. Besides, the dataflow isolation means that each model has unique dataflow
sequence. Furthermore, identical architecture ensures that the diversity among models, so that mod-
els develop unique decision boundaries for the OUSS challenge.

4.4 OPEN-SET DETECTION VIA DECISION ENTROPY

For the j-th input signal segment xj ∈ Dtest, we denote the softmax output distribution of the z-th
model as p

(j)
z = fz(xj) and denote the prediction as y

(j)
z = argmax(p

(j)
z ). Each expert’s cat-

egory prediction provides a direct indicator of whether the models agree or disagree on the same
class. We define the decision frequency as a vector v = [v1, . . . , vK ], where each component
vk = 1

Z

∑Z
j=1 I(y

(j)
z = k) represents the prediction frequency for class k. And I(·) is the indi-

cator function. To quantify the inconsistency among predictions, we define decision entropy based
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on the decision frequency as

Hdec = −
K∑

k=1

vk log vk, (5)

where low entropy indicates known signal segments with high consistency, high entropy indicates
open-set signal segments with high inconsistency. Hence, the corresponding open-set detection rule
can be expressed as

Decision(xj) =

{
Known Class ŷ(j), Hdec < τH
Open-Set, Hdec ≥ τH

, (6)

where

ŷ(j) = argmax
k

Z∑
z=1

I(y(j)z = k), (7)

and τH denotes the entropy threshold.

4.5 MAX-AGREEMENT CONSENSUS

While the aforementioned decision entropy provides an effective criterion for open-set RFFI, its
computational cost can be prohibitive for resource-constrained deployment scenarios. Specifically,
the consensus score is defined as S(xj) = maxk∈1,...,K

∑Z
z=1 I(y

(j)
z = k), which is a substantially

simpler metric and can serve as an efficient surrogate while delivering comparable performance.
These two metrics, Hdec and S(xj), exhibit a strong inverse correlation; a high S(xj) (signifying
high consensus) corresponds to a low Hdec, and vice versa. This relationship is underpinned by the
theoretical lower bound of Hdec for a given S(xj), which can be expresses as

Hdec ≥− S(xj)

Z
log

S(xj)

Z

− Z − S(xj)

Z
log

Z − S(xj)

Z
. (8)

Consequently, under typical conditions where multiple models clearly distinguish between known
and open-set signal segments, a decision boundary for S(xj) can closely approximate for Hdec.

The primary advantage of this substitution is a significant gain in computational efficiency. Calcu-
lating S(xj) only involves integer counting and a max operation, with a time complexity of O(C).
In contrast, computing Hdec requires C logarithmic operations and floating-point multiplications,
which are computationally expensive on hardware such as edge devices or embedded systems.

Therefore, for applications where inference speed and power consumption are critical, we recom-
mend using S(xj) as a simplified and highly efficient alternative to Hdec. Therefore, the open-set
detection rule can be expressed as

Decision-Base(xj)=

Known Class ŷ(j), S(xj) ≥ τS
Open Set, S(xj) < τS

, (9)

where ŷ(j) is computed using (7), τS ∈ Z ∩ (1, Z) is a predefined consistency threshold.

4.6 DISCUSSION: WHY INCONSISTENCY HELPS ALLEVIATE THE OUSS CHALLENGE

4.6.1 LOCAL OPTIMA LEAD TO PREDICTIVE DIVERSITY.

The standard training paradigm for the RFFI classifier is to optimize the point estimate solution w∗,
and the objective function can be expressed as

min
w

E(xi,yi)∈Dtrain
[L(f(xi;w), yi)],

where f(·;w) is the RFFI classifier mapping parameterized by w, and L(·, ·) is the cross-entropy
loss function. During the non-convex optimization process for Z models, the optimization ultimately
converges to Z local minima {w∗

z}Zz=1, resulting in each model producing a different feature repre-
sentation. For Dtrain, despite good training performance, different models exhibit different feature

6
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representations. Besides, the decision boundary of the classifier gradually solidifies during the opti-
mization process, meaning that the model tends to classify the input as one of the known categories.
However, the unknown signal segments may overlap with different known classes in the feature
space of multiple models, so that different models classify unknown signal segments into different
known categories, which leads to the diversity of model predictions.

4.6.2 PREDICTION INCONSISTENCY IN UNKNOWN CLASSES.

As illustrated in Figure 4, the predictions of the 100 models for unknown signal segments exhibit no-
table inconsistency, suggesting the predictive diversity of unknown classes. In contrast, for known
signal segments, except for signal segments 0, 28, and 29, the predictions of the remaining ones
on the 100 models are consistent, which may indicate that the training process has enabled them
to capture stable feature representations and decision boundaries for known categories. These ob-
servations imply that predictive inconsistency could serve as a potential metric for distinguishing
between known and unknown classes, where lower consistency might be associated with signal
segments from unknown categories.
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Figure 4: A Swarm Plot of 100 Model-Predictions For Randomly Selected 30 Known Signal Segments and
30 Unknown Signal Segments.

4.6.3 ADVANTAGES OVER DEEP ENSEMBLES.

As shown in Figure 5, in deep ensembles (10 models), known signal segments with low confidence
(i.e., maximum softmax probability less than 0.8) account for 12.8% of all known classes. These
low-confidence known signal segments are more easily confused with unknown classes. Figure 6(a)
shows that the confidence scores of unknown signal segments are primarily distributed between
0.2 and 0.6, with values spread across the entire range from 0 to 1, while known signal segments
with low confidence are concentrated in the 0–0.2 interval. In contrast, as shown in Figure 6(b),
the inconsistency distribution exhibits an opposite trend: the maximum agreement count among the
10 models for unknown segments mostly ranges between 2 and 4, whereas that of low-confidence
known segments lies between 7 and 10, indicating significantly lower inconsistency in known classes
compared to unknown classes. This indicates that compared to deep ensembles, inconsistency based
methods can effectively alleviate the misclassification problem caused by easily confused signal
segments in deep ensembles.

5 EXPERIMENTS

5.1 DATASET

We evaluate the performance of our approaches for open-set RFFI tasks using various public RFFI
datasets shown in Table 1 of Appendix. As presented in Table 2 of Appendix, for each dataset, we
select a group of devices as known classes YK and set the other devices as unknown classes YU .
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Figure 6: Comparative Analysis of Confidence and Inconsistency Distributions on 10 Models Between
Unknown and Low-Confidence Known Signal Segments on WiSig-ManyTx.

5.2 EVALUATION METRICS AND IMPLEMENTATION DETAILS

Referring to the evaluation metrics in Chen et al. (2021); Lee et al. (2017); Dhamija et al. (2018),
the closed-set classification rate (CCR) for known class accuracy, the area under the receiver op-
erating characteristic (AUROC) and the open set classification rate (OSCR) for unknown detection
capability, the area under the precision-recall curve (AUPR) class-imbalance robustness, and the
detection accuracy (DTACC) for overall decision reliability are adopted. Besides, we leverage the
ResNeXt-50 Xie et al. (2017) network as the backbone.

5.3 BASELINES

We compare the proposed IncOS-RFFI and IncOS-RFFI-Base with seventeen baselines, which can
be grouped into five categories:

• Typical methods: the OpenMax Bendale & Boult (2016) based scheme, the DOC Shu et al.
(2017) based scheme and the OLTR Liu et al. (2019) based schemes.

• Prototype learning based methods: GCPL Yang et al. (2018), RPL Chen et al. (2020),
ARPL, ARPL with confusing samples (ARPL+CS) Chen et al. (2021), MPF, AMPF and
AMPF++ Xia et al. (2023) based schemes.

• Generative methods: the CROSR Yoshihashi et al. (2019), the OSRCI Neal et al. (2018)
and the OpenMatch Saito et al. (2021) based schemes.

• RFFI-specific methods: the NS-RFF Xie et al. (2021) and the HyperRSI Fu et al. (2024)
based schemes.

• Multi-model methods: the MC dropout scheme Justamante & McClure (2024) and the deep
ensembles.
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Methods ManyTx SingleDay ORACLE FIT/CorteXlab POWDER Augmentation BlueTooth
CCR AUROC CCR AUROC CCR AUROC CCR AUROC CCR AUROC CCR AUROC CCR AUROC

OpenMax 88.94 83.63 99.65 92.05 99.20 90.84 83.82 50.68 99.99 52.02 83.20 50.98 51.83 46.94
DOC 88.60 82.91 87.60 85.24 99.99 88.41 85.58 51.88 99.99 50.62 83.20 17.02 52.35 47.87
OLTR 89.80 84.07 99.80 92.62 99.12 89.32 85.20 51.14 99.99 38.91 78.40 47.80 51.60 44.76

GCPL 89.57 84.47 99.80 89.45 99.99 81.57 84.90 46.23 99.99 83.19 38.00 46.09 51.79 41.33
RPL 89.85 86.23 99.66 90.47 99.99 84.81 85.59 50.42 99.99 29.33 36.00 49.43 47.15 46.57
ARPL 90.13 85.43 99.82 95.26 98.47 76.04 85.01 48.28 99.99 69.77 37.40 45.30 51.77 45.16
ARPL+CS 89.12 73.85 99.43 95.48 99.54 89.96 68.39 50.20 99.99 41.06 24.80 81.06 6.52 64.18
MPF 89.04 74.86 99.47 95.51 99.48 89.49 63.81 50.13 99.50 52.36 31.60 86.61 6.68 65.73
AMPF 89.31 78.60 99.54 96.17 99.48 91.02 66.22 48.96 99.99 50.84 32.20 85.35 6.68 63.96
AMPF++ 89.66 79.76 99.61 96.12 99.60 91.80 70.70 51.57 99.99 71.42 27.00 81.47 7.19 64.34

CROSR 87.46 72.45 98.35 85.02 98.79 79.21 82.75 46.01 99.99 48.50 81.96 45.12 50.21 46.75
OSRCI 83.14 80.17 97.29 89.42 97.52 87.53 58.98 51.63 99.99 26.19 43.80 47.45 8.10 58.75
OpenMatch 84.26 74.69 81.31 71.41 99.93 87.99 75.52 39.56 99.99 28.60 67.30 20.80 28.63 88.54
NS-RFF 85.08 69.20 98.83 78.55 99.66 89.13 76.56 50.44 96.00 65.76 38.60 51.95 51.33 43.53
HyperRSI 84.19 50.00 99.71 67.03 99.91 90.41 97.11 51.04 99.99 44.08 77.60 43.73 48.06 50.00

MC Dropout 89.75 90.13 99.72 95.50 99.42 82.74 86.97 52.31 50.00 53.21 84.20 46.78 51.12 39.08
Ensemble 90.84 90.50 99.81 96.31 99.99 88.87 86.34 52.43 99.99 63.19 84.20 46.85 53.04 39.37

IncOS-RFFI-MA 90.21 91.04 99.72 96.41 99.99 91.97 86.32 52.77 99.99 75.00 84.20 50.78 52.98 48.23
IncOS-RFFI-DE 90.33 91.12 99.75 96.52 99.99 92.01 86.34 52.82 99.99 75.12 84.20 50.82 53.01 48.35

Table 1: CCR and AUROC Comparison on seven radio frequency fingerprint datasets. The best
method is emphasized in bold, and the underlined represents the second best result.

Methods CCR AUROC OSCR DTACC AUIN AUOUT
MC Dropout Consistency 26.50 50.00 13.25 50.00 72.26 77.74
Multi-Head Consistency 89.12 51.49 46.00 51.49 72.56 75.11

IncOS-RFFI-MA 90.21 91.04 86.31 90.20 91.68 89.51
IncOS-RFFI-DE 90.33 91.12 86.88 90.34 91.73 89.99

Table 2: Performance Comparison of MC Dropout Based Consistency, Multi-Head Based
Consistency and Our InOS-RFFI on WiSig-ManyTx.

5.4 OVERALL PERFORMANCE COMPARISON

As shown in Table 1, our proposed IncOS-RFFI consistently outperforms the open-set metrics. Al-
though deep ensembles are highly competitive, they are slightly inferior to our approach in terms
of AUROC while our approach achieves comparable CCR results to theirs, which shows that our
inconsistency based method has alleviated the confusion problem in deep ensembles to some ex-
tent. Moreover, RFFI-specific schemes exhibit suboptimal performance on these datasets, primarily
due to limited generalization of their signal-type tailored features. Furthermore, due to instability,
generative methods are not as effective as typical methods and prototype learning based methods.
Furthermore, the prototype learning based methods exhibit poor performance of CCR on the Aug-
mentation and BlueTooth datasets, which shows that inherent characteristics of different datasets
strongly affect the open-set discrimination capability of these methods. Although their AUROC is
higher, the goal of OSR is to improve the open-set detection ability without compromising the clas-
sification accuracy of known classes, rather than sacrificing the classification accuracy of known
classes.

6 CONCLUSION

In this paper, we have developed an InOS-RFFI approach to identify known devices, detect unknown
devices and mitigate the OUSS challenge in RFFI. We independently train a pool of deep classifiers
with independent parameters, isolated dataflow and identical architecture to promote predictive di-
versity. Moreover, to mitigate the confusion between unknown and low-confidence known classes,
we propose that the signal segment with adequately high decision entropy or max-agreement con-
sensus is indicated as known. Simulation results have demonstrated that our proposed InOS-RFFI-
MA and InOS-RFFI-DE significantly outperforms existing benchmark algorithms in open-set RFFI
tasks.
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A APPENDIX

In this section, we evaluate the effectiveness of IncOS-RFFI in open-set RFFI. We conduct extensive
experiments on a large-scale radio frequency fingerprinting datasets and compare our method with
several state-of-the-art open-set recognition approaches. The evaluation focuses on both closed-set
classification accuracy and the ability to detect unknown emitters.

A.1 DATASET

We evaluate the performance of our approaches for open-set RFFI tasks using various public RFFI
datasets shown in Table 5. As presented in Table 3, for each dataset, we select a group of devices as
known classes YK and set the other devices as unknown classes YU .

In order to mitigate the impact of varying emitter-receiver distances on the radio frequency finger-
print, we select only the 20ft data from the ORACLE dataset for experimentation. To avoid the
influence of different collection dates, we use only the data collected on January 8, 2019, from the
FIT dataset. For the BlueTooth dataset, we focus exclusively on the mobile data collected at 250
Msps for our experiments.

A.2 EVALUATION METRICS

Referring to the evaluation metrics in Chen et al. (2021); Lee et al. (2017); Dhamija et al. (2018),
the closed-set classification rate (CCR) for known class accuracy, the area under the receiver op-
erating characteristic (AUROC) and the open set classification rate (OSCR) for unknown detection
capability, the area under the precision-recall curve (AUPR) for class-imbalance robustness, and the
detection accuracy (DTACC) for overall decision reliability are adopted. Besides, we leverage the
ResNeXt-50 Xie et al. (2017) network as the backbone.

• CCR: Accuracy on test signal segments from known classes under a specified threshold.
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Dataset Classes Signal Segments

|YK| |YU | |Dtrain| |Dtest|

ManyTx Hanna et al. (2022) 120 30 327.4k 184.1k

SingleDay Hanna et al. (2022) 20 8 128k 96k

ORACLE Sankhe et al. (2019) 10 6 50k 46k

FIT/CorteXlab Morin et al. (2019) 15 6 45k 36.9k

POWDER Reus-Muns et al. (2020) 2 2 1k 1.4k

Augmentation Soltani et al. (2020) 5 5 2.5k 3.5k

BlueTooth Uzundurukan et al. (2020) 25 8 27.6k 12.2k

Table 3: A Summary of the Selection of Training and Testing sets.

• AUROC: AUROC is a widely used primary evaluation metric for evaluating OSR per-
formance by plotting the true positive rate against the false positive rate across varying
thresholds Neal et al. (2018); Fawcett (2006); Davis & Goadrich (2006); Lee et al. (2017).

• OSCR: OSCR evaluates the trade-off between classification accuracy on known classes
and the rejection rate of unknown classes, plotting CCR under various thresholds versus
the false positive rate of unknowns Dhamija et al. (2018).

• AUPR: The precision-recall curve is graph plotting precision = TP/(TP + FP ) against
recall = TP/(TP + FN) by varying a threshold. The AUIN (or AUOUT) is the AUPR
where the in- (or out-of-) distribution samples are specified as positive.

• DTACC: This metric corresponds to the maximum classification probability over all possi-
ble thresholds. We assume that both positive and negative examples have equal probability
of appearing in the test set, i.e., P (x ∈ Pin) = P (x ∈ Pout) = 0.5.

A.3 IMPLEMENTATION DETAILS

The detailed parameter settings of our experiments are shown in Table 4. Each signal segment has
the dimension of 2×256, where the two rows correspond to the sampled I / Q components and the
256 columns correspond to the number of sampling points.

Parameters Value

Signal segment dimension 2×256
Batch size 256

The number of epochs 20
Learning rate 0.01
Loss function Cross-entropy

Optimizer SGD
Momentum of optimizer 0.9

Weight decay of optimizer 0.00005

Table 4: Experimental Parameter Settings

Dataset Waveform Transmitters Receiver(s) Day(s) Sampling Rate Frequency Bandwidth Synthetic /Real-world
ManyTx Hanna et al. (2022) WiFi 150 WiFi 28 USRP 4 25Ms/s 2462MHz 20MHz Real-world

SingleDay Hanna et al. (2022) WiFi 28 WiFi 10 USRP 1 25Ms/s 2462MHz 20MHz Real-world

ORACLE Sankhe et al. (2019) WiFi 16 USRP X310 1 USRP B210 - 5Ms/s 2.45GHz 80MHz Synthetic

FIT/CorteXlab Morin et al. (2019) IEEE 802.15.4 21 USRP N2932 1 USRP N2932 5 5Ms/s 433MHz - Real-world

POWDER Reus-Muns et al. (2020) 4G, 5G, WiFi 4 base stations USRP B210 2 4G/5G:7.69Ms/s, WiFi: 5Ms/s 2.685GHz - Synthetic

Augmentation Soltani et al. (2020) WiFi 10 transmitters - - 5Ms/s - - Synthetic

BlueTooth Uzundurukan et al. (2020) BlueTooth 250Ms/s: 33 Smartphones Tektronix TDS7404 - 250Ms/s, 5Gs/s, 10Gs/s, 20Gs/s - 15MHz-100MHz Real-world

Table 5: Dataset Summary on Our Validation Experiments

Beside, we compare the proposed IncOS-RFFI and IncOS-RFFI-Base with seventeen baselines,
which can be grouped into five categories:

(1) Typical methods:

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

• OpenMax (Bendale & Boult (2016)): OpenMax extends the typical softmax function to
provide a confidence score for open-set recognition. It operates by calculating the distance
from a sample to the class prototypes of the training set. For an unknown sample, it as-
signs a low confidence score, signaling it as an outlier, rather than a member of any of the
known classes. This is effective in open-set recognition problems, where the model must
also identify unknown classes.

• DOC (Shu et al. (2017)): The Deep Open Classification (DOC) framework uses deep learn-
ing for open-set classification by learning a representation that can distinguish between
known and unknown classes. DOC works by introducing an open-set classification objec-
tive that encourages the model to reject outliers (unknown classes) while classifying known
classes accurately. It also uses a margin-based loss function for distinguishing between
classes.

• OLTR (Liu et al. (2019)): Open Long-Tailed Recognition (OLTR) is designed for handling
open-set problems with long-tailed data. It incorporates a method for dealing with both
class imbalance and open-set recognition by using memory-based prototypes and rejection
regions for unknown classes.

(2) Prototype learning based methods:

• GCPL (Yang et al. (2018)): Generalized Class Prototype Learning (GCPL) introduces the
concept of prototype learning to open-set recognition. It uses prototypes of classes and
classifies input samples based on their distance to the class prototypes, effectively distin-
guishing between known and unknown classes.

• RPL (Chen et al. (2020)): Relational Prototype Learning (RPL) extends prototype learning
by considering relational structures between classes. It is more flexible than traditional
methods because it learns to recognize not just individual class prototypes but also the
relationships between them, allowing for better open-set classification.

• ARPL (Chen et al. (2021)): The Adaptive Relational Prototype Learning (ARPL) method
adapts to the data by learning relational prototypes in an open-set scenario. It aims to im-
prove upon RPL by dynamically adjusting the prototype space based on incoming data,
effectively handling unknown classes.

• ARPL+CS (Chen et al. (2021)): This is an extension of ARPL, where Confusing Samples
(CS) are incorporated into the training to enhance the model’s robustness. These confusing
samples are added to the training set to challenge the model, making it more capable of
distinguishing between known and unknown classes.

• MPF (Xia et al. (2023)): Multi-Prototype Learning with Feature Expansion (MPF) utilizes
multiple prototypes for each class to capture diverse class characteristics. It helps in open-
set recognition by allowing each class to have several representative prototypes that can
better handle variations within classes.

• AMPF (Xia et al. (2023)): Adaptive Multi-Prototype Learning with Feature Expansion
(AMPF) is an improvement over MPF. It uses adaptive methods to refine prototypes during
the training process, dynamically adjusting them to accommodate variations in the data.

• AMPF++ (Xia et al. (2023)): This is an enhanced version of AMPF, further improving
the adaptability of prototypes by incorporating additional features or advanced learning
strategies to improve the discrimination between known and unknown classes.

(3) Generative methods:

• CROSR (Yoshihashi et al. (2019)): Class-Conditional Generative Model for Open-Set
Recognition (CROSR) uses a generative approach to model the distributions of known
classes and the unknown class. It generates samples from known classes and uses these
generated samples for recognition. For unknown classes, the model assigns a low likeli-
hood, indicating it is not part of the known classes.

• OSRCI (Neal et al. (2018)): Open-Set Recognition via Conditional Inference (OSRCI) is
a generative approach that learns a model capable of discriminating between known and
unknown classes by generating the conditional distribution of each class and applying it to
test samples.
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• OpenMatch (Saito et al. (2021)): OpenMatch is another generative-based approach for
open-set recognition that utilizes a generative model to generate representations of the
known and unknown classes. It adjusts the decision boundary by learning from both the
training samples and the generative model, improving open-set classification.

(4) RFFI-specific methods:

• NS-RFF (Xie et al. (2021)): The Noise Suppressed Radio Frequency Fingerprint (NS-RFF)
method is specifically designed for Radio Frequency Fingerprint Identification (RFFI).
It applies noise suppression techniques to enhance the performance of RFFI in open-set
recognition scenarios, ensuring better discrimination between known and unknown RF sig-
nals.

• HyperRSI (Fu et al. (2024)): HyperRSI is a specialized approach for RFFI that leverages
hyperparameter optimization to improve the model’s robustness and adaptability to differ-
ent RF signal conditions. It is tailored to work with the inherent challenges of RF finger-
printing, such as noise and interference.

(5) Multi-model methods:

• MC Dropout (Justamante & McClure (2024)): Monte Carlo (MC) Dropout is a regular-
ization technique where dropout is applied during both training and inference. This allows
the model to approximate uncertainty in its predictions, which can be useful for open-set
recognition. By using MC dropout, the model estimates the uncertainty for each class and
can reject samples with high uncertainty as unknown.

• Deep Ensembles: This method uses multiple models (often trained independently) and ag-
gregates their predictions to improve generalization and robustness. In open-set recogni-
tion, deep ensembles help reduce overconfidence in the prediction of unknown samples by
providing a more diverse set of predictions from multiple models.

The network architectures of these baseline were modified to accommodate the one-dimensional
structure of the signal.

Methods CCR AUROC OSCR DTACC AUIN AUOUT
OpenMax 88.94 83.63 85.27 77.48 78.34 86.04
DOC 88.60 82.91 82.97 84.29 66.02 88.54
OLTR 89.80 84.07 82.77 80.23 83.12 79.81

GCPL 89.57 84.47 82.28 84.51 78.71 80.71
RPL 89.85 86.23 84.31 85.61 85.20 80.57
ARPL 90.13 85.43 83.48 85.60 80.89 81.29
ARPL+CS 89.12 73.85 72.89 70.46 70.78 69.91
MPF 89.04 74.86 73.38 73.29 69.45 71.76
AMPF 89.31 78.60 77.52 75.58 76.85 73.05
AMPF++ 89.66 79.76 78.70 76.62 78.55 73.94

CROSR 87.46 72.45 71.74 67.12 67.2 75.85
OSRCI 83.14 80.17 76.21 78.30 82.63 73.03
OpenMatch 84.26 74.69 71.41 72.14 73.70 69.53

NS-RFF 85.08 69.20 64.18 67.21 57.49 70.62
HyperRSI 84.19 50.00 75.26 50.00 72.26 77.74

MC Dropout 89.75 90.13 85.48 85.15 83.43 78.41
Ensemble 90.84 90.50 85.51 89.62 91.12 81.02

IncOS-RFFI-MA 90.21 91.04 86.31 90.20 91.68 89.51
IncOS-RFFI-DE 90.33 91.12 86.88 90.34 91.73 89.99

Table 6: Performance Comparison on WiSig-ManyTx.

A.4 IN-DEPTH ANALYSIS ON OUSS SUBSET OF MANYTX DATASET

We analyzed the ManyTx dataset, which has the largest number of categories. As shown in Table 6,
our method outperforms other methods in open-set metrics. To validate our method’s performance
on OUSS signal segments, we select unknown signal segments with a confidence score exceeding
0.96 as unknown classes for experiments. As shown in Table 7, the results show that our method
outperforms other methods in all metrics. In particular, when compared to deep ensembles, our
AUOUT improves by over 10%, demonstrating the advantage of inconsistency based methods in
classifying known and unknown classes.
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Methods AUROC OSCR DTACC AUIN AUOUT

OpenMax 77.01 72.15 71.84 84.34 65.79
DOC 78.40 76.61 82.01 76.65 76.02
OLTR 80.31 79.51 76.38 89.12 56.87

GCPL 81.36 79.81 81.91 86.95 58.80
RPL 83.58 82.25 83.11 90.65 59.53
ARPL 81.67 80.21 79.00 87.55 59.59
ARPL+CS 65.47 59.28 61.07 77.56 53.02
MPF 66.62 65.60 66.24 78.29 44.70
AMPF 71.67 70.98 68.96 83.41 46.63
AMPF++ 73.45 72.82 70.63 84.71 48.22

CROSR 67.08 68.28 63.52 78.78 52.27
OSRCI 78.06 74.88 76.93 89.38 50.14
OpenMatch 85.48 80.87 85.70 94.32 58.06

NS-RFF 64.40 60.08 62.92 73.83 44.41
HyperRSI 50.00 73.62 50.00 83.52 50.91

MC Dropout 79.73 83.64 81.42 85.64 53.00
Ensemble 87.07 84.00 86.85 94.35 61.38

IncOS-RFFI-MA 87.03 84.79 87.15 94.46 71.5
IncOS-RFFI-DE 87.14 85.12 87.52 94.52 71.8

Table 7: Performance Comparison on 64.00% of OUSS from WiSig-ManyTx dataset.

A.5 ABLATION EXPERIMENTS

A.5.1 ABLATION ON CONSENSUS MECHANISMS.

To validate our proposed IncOS-RFFI, we conduct ablation experiments to evaluate the effectiveness
of our approach using inconsistency based MC Dropout and inconsistency based 10 different clas-
sification head models with the same backbone. We observe that the predictions of the two methods
are generally consistent, both for known and unknown classes, indicating that the predictive diversity
brought by multiple independently trained models is very necessary, as shown in the Table 2.

A.5.2 THE IMPACT OF THE NUMBER OF MODELS.

As shown in the Figure 7, we find that the performance of the inconsistency based method gradually
improves as the number of models increases. Notably, even when using only 5 models, our method
shows good results and performs better than the 5-model deep ensembles in distinguishing between
known and unknown classes, as illustrated in Table 8.
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Figure 7: Comparison of ROC, OSCR Curves, and DTACC Plots Across Different Model Sizes on the
WiSig-ManyTx.

Methods CCR AUROC OSCR DTACC AUIN AUOUT
Ensemble 90.67 89.51 87.06 89.57 91.07 80.97

IncOS-RFFI-MA 90.01 89.75 87.13 90.19 91.25 90.31
IncOS-RFFI-DE 90.15 90.03 87.20 90.31 91.51 90.43

Table 8: Comparison of Ours and the Deep Ensembles under five models
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