

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 FROM UNCERTAINTY TO INCONSISTENCY: OPEN-SET RF FINGERPRINT IDENTIFICATION

Anonymous authors

Paper under double-blind review

ABSTRACT

The rejection of unknown devices outside the known categories is crucial for radio frequency fingerprint identification (RFFI). Current open-set recognition (OSR) methods rely on the uncertainty of the model output, where unknown classes exhibit low confidence and vice versa for known classes. However, we demonstrate that uncertainty-based methods face a significant challenge, particularly in RFFI, which is termed “Overconfidence on Unknown Signal Segments” (OUSS), where unknown signal segments are misclassified with high confidence, directly contradicting the expected low-confidence characteristic for unknown classes. Inspired by an interesting observation that predictions for unknown classes across multiple models exhibit high inconsistency, while known classes exhibit the opposite, we propose to leverage decision entropy and max-agreement consensus to quantify the inconsistency. Based on the decision entropy and the max-agreement consensus, we propose an inconsistency based open-set RFFI approach (IncOS-RFFI). We conduct extensive experiments on the seven open-source radio frequency fingerprint datasets with seventeen benchmarks and demonstrate the effectiveness of our proposed IncOS-RFFI compared to existing OSR algorithms.

1 INTRODUCTION

Radio frequency fingerprint identification (RFFI) is a powerful technique for authenticating and tracking wireless transmitters by leveraging subtle waveform distortions introduced by device-specific hardware imperfections Zhang et al. (2023); Adesina et al. (2022). Early RFFI approaches primarily relied on handcrafted signal features designed by experts, but such methods exhibit limited scalability, poor robustness to environmental changes and insufficient generalizability to unknown scenarios Sa et al. (2019); He & Wang (2020); Zhang & Li (2023). To overcome these limitations, deep learning technology has been introduced into RFFI to automatically learn discriminative features from radio frequency fingerprints for improved recognition capabilities Zhou et al. (2021); Wang et al. (2020); Huang et al. (2017). Therefore, deep learning based RFFI has been widely studied under the closed-set assumption Zhou et al. (2021); Wang et al. (2020); Huang et al. (2017). However, with the rapid development of wireless technology, unknown devices may cause models trained only on known categories to fail. This challenge highlights that RFFI needs to not only identify known devices, but also be able to detect unknown devices to ensure the stability and security of monitoring Naik et al. (2020); Park et al. (2014). The open-set recognition (OSR) methods leverage the uncertainty of the model output to solve this problem, where unknown classes show low confidence while known classes show the opposite Bendale & Boult (2016); Chen et al. (2021). Unfortunately, as shown in Figure 1, we observed that these uncertainty based methods in RFFI suffer from a significant “Overconfidence on Unknown Signal Segments” (OUSS) challenge. Specifically, the uncertainty of model output for unknown classes is lower than expected, with up to 64.00% of the signal segments from unknown devices having extremely high confidences (*i.e.*, the maximum softmax probabilities are > 0.96) and being misclassified. In contrast, this proportion is only 24.90% in the CIFAR dataset.

Uncertainty based open-set RFFI methods can be categorized as single-model and multi-model approaches, all of which identify signal segments with high uncertainty in the output distribution as unknown. Single-model methods include OpenMax, generative methods, and prototype learning based methods. OpenMax Wu et al. (2023) extends the traditional softmax layer by fitting a Weibull distribution using extreme value theory (EVT) to compute open-set probabilities. However, due to

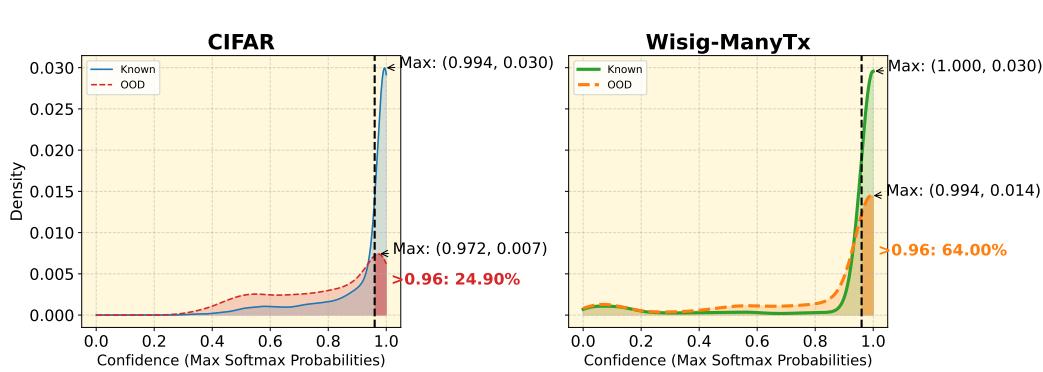


Figure 1: The Kernel Density Estimation of Confidence Distribution across Datasets. The CIFAR dataset is from Computer Vision and the WiSig-ManyTx dataset is from RFFI.

difficulties in tail modeling, it often fails to correct low uncertainty estimates for unknown signal segments, which leads to the OUSS challenge. Generative methods, such as generative adversarial networks (GAN) Guo et al. (2024) and variational autoencoders (VAEs) Karunaratne et al. (2021), detect unknown signal segments by generating anomalous signal segments. However, their limited representation of the unknown space fails to induce high uncertainty for unknown signal segments, while unstable training further distorts uncertainty calibration, leading to the OUSS challenge. Prototype learning based methods Wang et al. (2023a) calculate the distance between signal segments and class prototypes to perform open-set RFFI. However, ambiguous boundaries lead to low distance-based uncertainty for the OUSS signal segments. Compared with single-model methods, multi-model methods, such as Monte Carlo (MC) Dropout Justamante & McClure (2024) and deep ensembles Balasubramanian et al. (2021), detect unknown classes through the uncertainty of the average output distribution of multiple models. MC Dropout uses multiple random forward propagations, but the high correlation between propagations still leads to the OUSS challenge and the unknown signal segments are always misclassified as the same class. Deep ensembles leverage multiple independently trained models, however, for unknown and low-confidence known signal segments, the averaged output distribution may lead to low confidence, making it difficult to distinguish between unknown and low-confidence known signal segments.

We observe that predictions for unknown classes are often inconsistent across multiple independent models, while those for known classes tend to be consistent, even in the case of the OUSS challenge or when the confidences for known classes were low. This observation motivates us to propose an inconsistency based open-set RFFI method (IncOS-RFFI), as shown in Figure 3. In particular, IncOS-RFFI quantifies the prediction inconsistency among multiple models via two mechanisms, where decision entropy is utilized for comprehensive open-set detection and max-agreement consensus is leveraged for efficient inference. Notably, IncOS-RFFI is simple but efficient, and exhibits strong robustness to the OUSS signal segments.

The main contributions of this paper are summarized as follows.

- We first reveal and analyze the significant OUSS challenge in uncertainty based open-set RFFI methods.
- We propose an inconsistency based open-set RFFI method (IncOS-RFFI) in the presence of the OUSS challenge. IncOS-RFFI quantifies the prediction inconsistency across models by two mechanisms, where the decision entropy achieves comprehensive open-set detection (IncOS-RFFI-DE) and the max-agreement consensus achieves efficient inference (IncOS-RFFI-MA).
- We conduct extensive experiments using seven open-source radio frequency fingerprinting datasets to validate the effectiveness of the proposed approaches for open-set RFFI tasks. Experimental results demonstrate that our approaches outperform existing OSR methods in open-set detection metrics.

108 **2 RELATED WORK**
109110 **2.1 OPEN-SET RFFI BASED ON UNCERTAINTY**
111112 OSR was first formalized in Scheirer et al. (2012). Later OpenMax is proposed by combining deep
113 learning with OSR Bendale & Boult (2016). Existing open-set RFFI has made significant progress by
114 exploiting the uncertainty of the model output distribution to discriminate unknown classes. These
115 schemes can be categorized into single-model and multi-model schemes.
116117 **2.1.1 SINGLE-MODEL OPEN-SET RFFI**
118119 Single-model open-set RFFI methods can be categorized into OpenMax-based, generative methods,
120 and prototype learning based methods. Inspired by OpenMax, an open-set RFFI framework was
121 proposed to combine feature distance, triplet loss, and EVT for open-set RFFI Wu et al. (2023).
122 Furthermore, slice-based preprocessing and noise augmentation are incorporated to enhance the
123 framework Zhang et al. (2022). Other studies, such as NS-RFF Xie et al. (2021) and HyperRSI Fu
124 et al. (2024), utilize hypersphere representations to enhance the ability to distinguish known from
125 unknown devices. Furthermore, generative methods Karunaratne et al. (2021); Wang et al. (2023b)
126 aim to enhance training by generating unknown data. Prototype learning based methods Wang et al.
127 (2023a) reject unknown devices through feature-prototype similarity and EVT modeling. However,
128 most uncertainty based single-model methods are prone to misclassification errors due to the OUSS
129 challenge. OpenMax-based confidence adjustment is less effective for the OUSS signal segments,
130 and generative models may fail to generate signals that truly represent the unknown space. Fur-
131 thermore, prototype learning based models are prone to ambiguous rejections on the OUSS signal
132 segments near the decision boundary. In contrast, our IncOS-RFFI approach based on inconsistency
133 leverages the decision entropy and the max-agreement consensus of multiple models to detect un-
134 known classes, avoiding reliance on distribution fitting, generative capability, or prototype distance.
135 This design enhances robustness to the OUSS challenge while minimizing inference overhead.
136137 **2.1.2 MULTI-MODEL OPEN-SET RFFI**
138139 Uncertainty based multi-model approaches are less explored and typically rely on averaging the
140 output distributions of multiple models. MC Dropout Justamante & McClure (2024) estimates the
141 uncertainty of the averaged output distribution through multiple random forward propagations. How-
142 ever, models are often highly correlated during random forward propagation, leading to the OUSS
143 challenge, where each model consistently misclassifies signal segments into the same class. In con-
144 trast, our IncOS-RFFI method leverages the inconsistency to effectively address this problem.
145146 **2.2 OSR IN COMPUTER VISION**
147148 In computer vision (CV), OSR primarily encompasses discriminative models, generative models,
149 and prototype based methods. Discriminative approaches, such as DOC Shu et al. (2017) and OLTR
150 Liu et al. (2019), primarily focus on boundary modeling for open-set detection. Generative ap-
151 proaches, such as OpenMatch Saito et al. (2021), OSRCI Neal et al. (2018), and CROSR Yoshihashi
152 et al. (2019), combine reconstruction or counterfactual generation to represent unknown spaces.
153 Prototype-based approaches, such as GCPL Yang et al. (2018), RPL Chen et al. (2020), ARPL
154 Chen et al. (2021), MPF, AMPF, and AMPF++ Xia et al. (2023), achieve effective OSR through
155 feature-prototype similarity and adversarial mechanisms. While these approaches perform well in
156 image classification tasks, they often perform poorly in RFFI due to the OUSS challenge, and suffer
157 high computational cost and unstable training. We also employ several CV based OSR methods as
158 baselines for comprehensive evaluation.
159160 **3 PROBLEM DEFINITION**
161162 Open-set RFFI can be formulated as a $K + 1$ classification problem to correctly classify signal
163 segments from K known classes while detecting signal segments from unknown classes. Let the
164 training dataset be denoted as $\mathcal{D}_{train} = \{(\mathbf{x}_i, y_i) \mid i \in 1, \dots, L, y_i \in 1, \dots, K\}$, where L is the
165 total number of labeled signal segments from known classes. The testing dataset is represented as
166

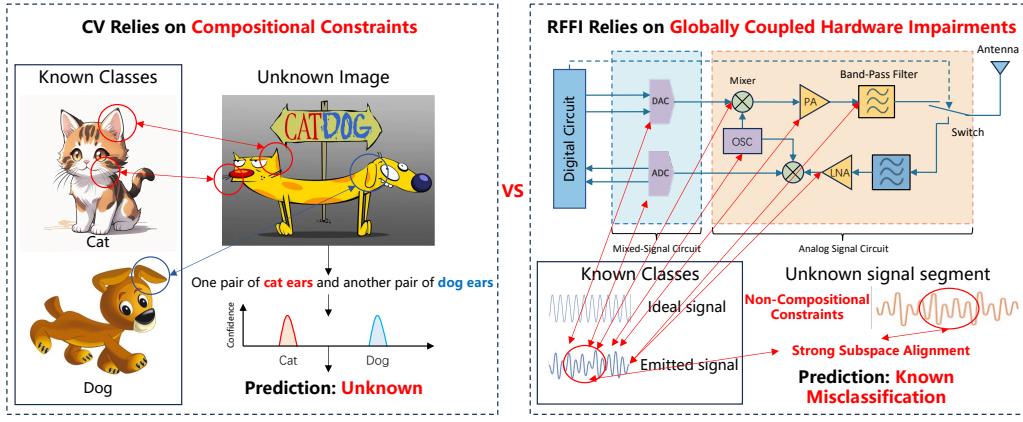


Figure 2: The Data Characteristics of Radio Frequency Fingerprints Compared to Images.

$\mathcal{D}_{test} = \{\mathbf{x}_j \mid j \in 1, \dots, U\}$, which includes both signal segments from known classes $\{1, \dots, K\}$ and signal segments from unknown classes. Here, U denotes the total number of test signal segments. Each \mathbf{x}_i refers to the i -th signal segment in \mathcal{D}_{train} with the corresponding label y_i , while \mathbf{x}_j is the j -th signal segment from \mathcal{D}_{test} . Both \mathbf{x}_i and \mathbf{x}_j are extracted from the received signal through sampling. A typical signal segment \mathbf{x}_i can be written as

$$\mathbf{x}_i = \begin{bmatrix} r_I[1] & r_I[2] & \dots & r_I[M] \\ r_Q[1] & r_Q[2] & \dots & r_Q[M] \end{bmatrix}, \quad (1)$$

where M denotes the number of sampled points within a segment, and $r_I[\cdot]/r_Q[\cdot]$ represent the in-phase/quadrature components sampled from the received signal $r(t)$. It is defined as

$$r(t) = h\phi(s(t)\cos(\omega_0 t + \theta)) + n(t), \quad (2)$$

where $s(t)$ is the baseband signal, $\cos(\omega_0 t + \theta)$ is the carrier modulated by center frequency ω_0 and phase θ , the parameter h characterizes the wireless channel, $n(t)$ is additive white Gaussian noise (AWGN) with zero mean and variance σ_n^2 . The function $\phi(\cdot)$ models the hardware-introduced signal variations and captures the unique radio frequency fingerprint of the emitter.

4 METHODOLOGY

In this section, we explore the cause of the aforementioned OUSS challenge and introduce an inconsistency based open-set RFFI approach (IncOS-RFFI), where IncOS-RFFI quantifies the prediction inconsistency among models via decision entropy and max-agreement consensus. For ease of understanding, we start with the exploration of the cause of the OUSS challenge, and then present an overview of the proposed IncOS-RFFI, followed by the details of these approaches for OSR-RFFI tasks.

4.1 CAUSE OF THE OUSS CHALLENGE

Visual classification often relies on compositionality, where an image \mathbf{I} of class y , whose feature representation is composed of multiple semantic parts (e.g., head, ear, tail) Lee et al. (2019). Let \mathcal{P}_i denote the i -th semantic part, and Q be the total number of parts. The overall feature representation $\mathcal{F}(\mathbf{I})$ can be written as

$$\mathcal{F}(\mathbf{I}) = \bigoplus_{i=1}^Q \varphi_i(\mathcal{P}_i) \otimes \Psi(\{\mathcal{P}_i\}_{i=1}^Q), \quad (3)$$

where $\varphi_i(\mathcal{P}_i)$ extracts the local feature of the i -th semantic part, \bigoplus denotes the fusion operation, and the operator \otimes denotes a gating operation that modulates the part features according to the compositional constraints Ψ , which evaluates the validity of the composition as

$$\Psi(\{\mathcal{P}_i\}) = \begin{cases} 1 & \text{if the parts form a valid composition} \\ 0 & \text{otherwise (e.g., cat head + dog body)} \end{cases}. \quad (4)$$

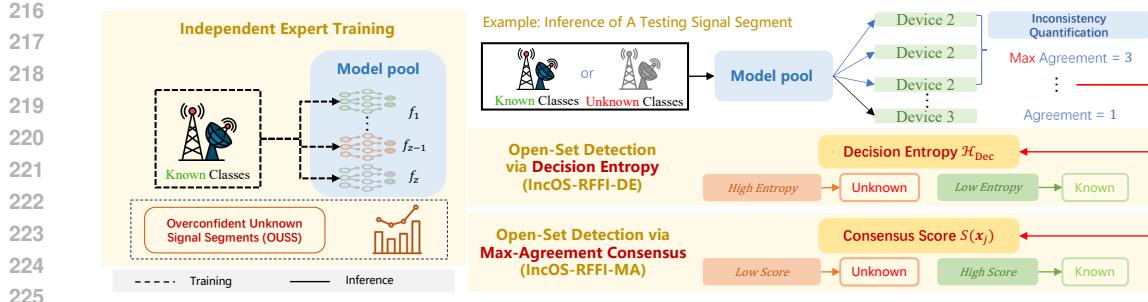


Figure 3: Overview of our IncOS-RFFI.

When $\Psi = 0$, the composite feature is assigned a low confidence due to the invalid part combinations.

The significant OUSS phenomenon in RFFI stems from the non-compositional entanglement characteristics of the radio frequency fingerprints. As shown in Figure 2, unlike CV where objects exhibit compositional structure (e.g., a cat typically consists of eyes, ears, and a tail), radio frequency fingerprints arise from globally distributed and entangled hardware impairments without compositional constraints. The hardware impairment components of radio frequency fingerprints are not completely orthogonal and may be entangled. Therefore, while the dominant impairment portion is incomplete, it is sufficient for accurate closed-set classification. If the impairments of an unknown signal segment are highly similar to the dominant impairment portion of a known class but also contain other impairment components, the lack of componential constraints may cause the classifier to output high confidence in the the known class, which can easily lead to the OUSS challenge.

4.2 FRAMEWORK OVERVIEW

As shown in Figure 3, the proposed IncOS-RFFI framework consists of the independent expert training, the open-set detection via decision entropy, and the open-set detection via max-agreement consensus. For the independent expert training, a pool of Z deep classifiers with random initialization, independent parameters, and independent data streams are trained on \mathcal{D}_{train} to maximize predictive diversity. For the open-set detection, decision entropy is used to quantify the inconsistency among predictions from multiple models, where high entropy indicates unknown classes. Note that for faster inference speed and lower computational overhead, we introduce the max-agreement consensus to quantify the inconsistency, called IncOS-RFFI-MA.

4.3 INDEPENDENT EXPERT TRAINING

To improve the prediction diversity, a pool of Z deep classifiers $\{f_z\}_{z=1}^Z$ with isolated dataflow and identical architecture are independently trained on \mathcal{D}_{train} . Specifically, the independent training means that each model is initialized with distinct random seeds, and no parameter sharing or gradient exchange occurs. Besides, the dataflow isolation means that each model has unique dataflow sequence. Furthermore, identical architecture ensures that the diversity among models, so that models develop unique decision boundaries for the OUSS challenge.

4.4 OPEN-SET DETECTION VIA DECISION ENTROPY

For the j -th input signal segment $x_j \in \mathcal{D}_{test}$, we denote the softmax output distribution of the z -th model as $\mathbf{p}_z^{(j)} = f_z(x_j)$ and denote the prediction as $y_z^{(j)} = \arg \max(\mathbf{p}_z^{(j)})$. Each expert's category prediction provides a direct indicator of whether the models agree or disagree on the same class. We define the decision frequency as a vector $\mathbf{v} = [v_1, \dots, v_K]$, where each component $v_k = \frac{1}{Z} \sum_{j=1}^Z \mathbb{I}(y_z^{(j)} = k)$ represents the prediction frequency for class k . And $\mathbb{I}(\cdot)$ is the indicator function. To quantify the inconsistency among predictions, we define decision entropy based

270 on the decision frequency as
 271

$$272 \quad \mathcal{H}_{\text{dec}} = - \sum_{k=1}^K v_k \log v_k, \quad (5)$$

$$273$$

274 where low entropy indicates known signal segments with high consistency, high entropy indicates
 275 open-set signal segments with high inconsistency. Hence, the corresponding open-set detection rule
 276 can be expressed as

$$277 \quad \text{Decision}(\mathbf{x}_j) = \begin{cases} \text{Known Class } \hat{y}^{(j)}, & \mathcal{H}_{\text{dec}} < \tau_H \\ \text{Open-Set,} & \mathcal{H}_{\text{dec}} \geq \tau_H \end{cases}, \quad (6)$$

$$278$$

$$279$$

280 where

$$281 \quad \hat{y}^{(j)} = \arg \max_k \sum_{z=1}^Z \mathbb{I}(y_z^{(j)} = k), \quad (7)$$

$$282$$

$$283$$

284 and τ_H denotes the entropy threshold.

285 **4.5 MAX-AGREEMENT CONSENSUS**

286 While the aforementioned decision entropy provides an effective criterion for open-set RFFI, its
 287 computational cost can be prohibitive for resource-constrained deployment scenarios. Specifically,
 288 the consensus score is defined as $S(\mathbf{x}_j) = \max_{k \in 1, \dots, K} \sum_{z=1}^Z \mathbb{I}(y_z^{(j)} = k)$, which is a substantially
 289 simpler metric and can serve as an efficient surrogate while delivering comparable performance.
 290 These two metrics, \mathcal{H}_{dec} and $S(\mathbf{x}_j)$, exhibit a strong inverse correlation; a high $S(\mathbf{x}_j)$ (signifying
 291 high consensus) corresponds to a low \mathcal{H}_{dec} , and vice versa. This relationship is underpinned by the
 292 theoretical lower bound of \mathcal{H}_{dec} for a given $S(\mathbf{x}_j)$, which can be expressed as

$$293 \quad \mathcal{H}_{\text{dec}} \geq - \frac{S(\mathbf{x}_j)}{Z} \log \frac{S(\mathbf{x}_j)}{Z} - \frac{Z - S(\mathbf{x}_j)}{Z} \log \frac{Z - S(\mathbf{x}_j)}{Z}. \quad (8)$$

$$294$$

$$295$$

$$296$$

$$297$$

$$298$$

299 Consequently, under typical conditions where multiple models clearly distinguish between known
 300 and open-set signal segments, a decision boundary for $S(\mathbf{x}_j)$ can closely approximate for \mathcal{H}_{dec} .

301 The primary advantage of this substitution is a significant gain in computational efficiency. Calculating
 302 $S(\mathbf{x}_j)$ only involves integer counting and a max operation, with a time complexity of $\mathcal{O}(C)$.
 303 In contrast, computing \mathcal{H}_{dec} requires C logarithmic operations and floating-point multiplications,
 304 which are computationally expensive on hardware such as edge devices or embedded systems.

305 Therefore, for applications where inference speed and power consumption are critical, we recom-
 306 mend using $S(\mathbf{x}_j)$ as a simplified and highly efficient alternative to \mathcal{H}_{dec} . Therefore, the open-set
 307 detection rule can be expressed as

$$308 \quad \text{Decision-Base}(\mathbf{x}_j) = \begin{cases} \text{Known Class } \hat{y}^{(j)}, & S(\mathbf{x}_j) \geq \tau_S \\ \text{Open Set,} & S(\mathbf{x}_j) < \tau_S \end{cases}, \quad (9)$$

$$309$$

$$310$$

311 where $\hat{y}^{(j)}$ is computed using (7), $\tau_S \in \mathbb{Z} \cap (1, Z)$ is a predefined consistency threshold.

312 **4.6 DISCUSSION: WHY INCONSISTENCY HELPS ALLEVIATE THE OUSS CHALLENGE**

313 **4.6.1 LOCAL OPTIMA LEAD TO PREDICTIVE DIVERSITY.**

314 The standard training paradigm for the RFFI classifier is to optimize the point estimate solution \mathbf{w}^* ,
 315 and the objective function can be expressed as

$$316 \quad \min_{\mathbf{w}} \mathbb{E}_{(\mathbf{x}_i, y_i) \in \mathcal{D}_{\text{train}}} [\mathcal{L}(f(\mathbf{x}_i; \mathbf{w}), y_i)],$$

$$317$$

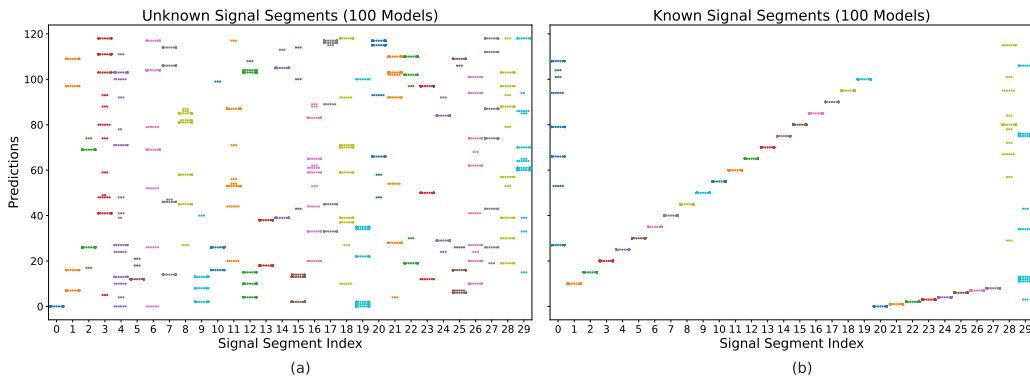
$$318$$

319 where $f(\cdot; \mathbf{w})$ is the RFFI classifier mapping parameterized by \mathbf{w} , and $\mathcal{L}(\cdot, \cdot)$ is the cross-entropy
 320 loss function. During the non-convex optimization process for Z models, the optimization ultimately
 321 converges to Z local minima $\{\mathbf{w}_z^*\}_{z=1}^Z$, resulting in each model producing a different feature repre-
 322 sentation. For $\mathcal{D}_{\text{train}}$, despite good training performance, different models exhibit different feature

324 representations. Besides, the decision boundary of the classifier gradually solidifies during the opti-
 325 mization process, meaning that the model tends to classify the input as one of the known categories.
 326 However, the unknown signal segments may overlap with different known classes in the feature
 327 space of multiple models, so that different models classify unknown signal segments into different
 328 known categories, which leads to the diversity of model predictions.
 329

330 4.6.2 PREDICTION INCONSISTENCY IN UNKNOWN CLASSES.

331 As illustrated in Figure 4, the predictions of the 100 models for unknown signal segments exhibit no-
 332 table inconsistency, suggesting the predictive diversity of unknown classes. In contrast, for known
 333 signal segments, except for signal segments 0, 28, and 29, the predictions of the remaining ones
 334 on the 100 models are consistent, which may indicate that the training process has enabled them
 335 to capture stable feature representations and decision boundaries for known categories. These ob-
 336 servations imply that predictive inconsistency could serve as a potential metric for distinguishing
 337 between known and unknown classes, where lower consistency might be associated with signal
 338 segments from unknown categories.
 339



354 Figure 4: A Swarm Plot of 100 Model-Predictions For Randomly Selected 30 Known Signal Segments and
 355 30 Unknown Signal Segments.
 356

357 4.6.3 ADVANTAGES OVER DEEP ENSEMBLES.

358 As shown in Figure 5, in deep ensembles (10 models), known signal segments with low confidence
 359 (*i.e.*, maximum softmax probability less than 0.8) account for 12.8% of all known classes. These
 360 low-confidence known signal segments are more easily confused with unknown classes. Figure 6(a)
 361 shows that the confidence scores of unknown signal segments are primarily distributed between
 362 0.2 and 0.6, with values spread across the entire range from 0 to 1, while known signal segments
 363 with low confidence are concentrated in the 0–0.2 interval. In contrast, as shown in Figure 6(b),
 364 the inconsistency distribution exhibits an opposite trend: the maximum agreement count among the
 365 10 models for unknown segments mostly ranges between 2 and 4, whereas that of low-confidence
 366 known segments lies between 7 and 10, indicating significantly lower inconsistency in known classes
 367 compared to unknown classes. This indicates that compared to deep ensembles, inconsistency based
 368 methods can effectively alleviate the misclassification problem caused by easily confused signal
 369 segments in deep ensembles.
 370

371 5 EXPERIMENTS

372 5.1 DATASET

373 We evaluate the performance of our approaches for open-set RFFI tasks using various public RFFI
 374 datasets shown in Table 1 of Appendix. As presented in Table 2 of Appendix, for each dataset, we
 375 select a group of devices as known classes \mathcal{Y}_K and set the other devices as unknown classes \mathcal{Y}_U .
 376

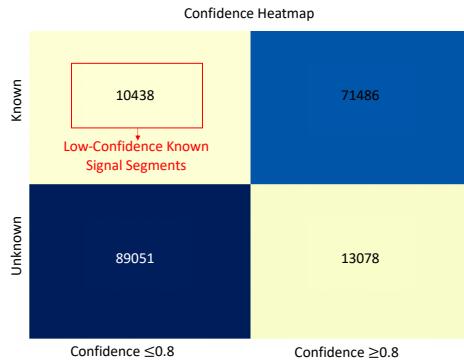


Figure 5: Confidence Heatmap of Deep Ensembles (10 models) on WiSig-ManyTx.

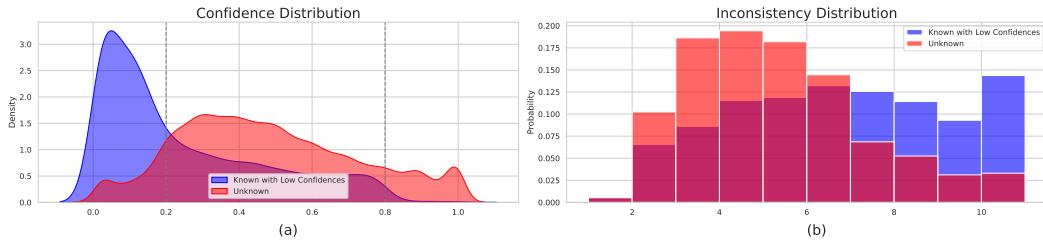


Figure 6: Comparative Analysis of Confidence and Inconsistency Distributions on 10 Models Between Unknown and Low-Confidence Known Signal Segments on WiSig-ManyTx.

5.2 EVALUATION METRICS AND IMPLEMENTATION DETAILS

Referring to the evaluation metrics in Chen et al. (2021); Lee et al. (2017); Dhamija et al. (2018), the closed-set classification rate (CCR) for known class accuracy, the area under the receiver operating characteristic (AUROC) and the open set classification rate (OSCR) for unknown detection capability, the area under the precision-recall curve (AUPR) class-imbalance robustness, and the detection accuracy (DTACC) for overall decision reliability are adopted. Besides, we leverage the ResNeXt-50 Xie et al. (2017) network as the backbone.

5.3 BASELINES

We compare the proposed IncOS-RFFI and IncOS-RFFI-Base with seventeen baselines, which can be grouped into five categories:

- Typical methods: the OpenMax Bendale & Boult (2016) based scheme, the DOC Shu et al. (2017) based scheme and the OLTR Liu et al. (2019) based schemes.
- Prototype learning based methods: GPL Yang et al. (2018), RPL Chen et al. (2020), ARPL, ARPL with confusing samples (ARPL+CS) Chen et al. (2021), MPF, AMPF and AMPF++ Xia et al. (2023) based schemes.
- Generative methods: the CROSR Yoshihashi et al. (2019), the OSRCI Neal et al. (2018) and the OpenMatch Saito et al. (2021) based schemes.
- RFFI-specific methods: the NS-RFF Xie et al. (2021) and the HyperRSI Fu et al. (2024) based schemes.
- Multi-model methods: the MC dropout scheme Justamante & McClure (2024) and the deep ensembles.

432	433	Methods	ManyTx		SingleDay		ORACLE		FIT/CorteXlab		POWDER		Augmentation		BlueTooth	
			CCR	AUROC	CCR	AUROC	CCR	AUROC	CCR	AUROC	CCR	AUROC	CCR	AUROC	CCR	AUROC
434	OpenMax	88.94	83.63	99.65	92.05	99.20	90.84	83.82	50.68	99.99	52.02	<u>83.20</u>	50.98	51.83	46.94	
435	DOC	88.60	82.91	87.60	85.24	99.99	88.41	85.58	51.88	99.99	50.62	<u>83.20</u>	17.02	52.35	47.87	
436	OLTR	89.80	84.07	99.80	92.62	99.12	89.32	85.20	51.14	99.99	38.91	78.40	47.80	51.60	44.76	
437	GCPL	89.57	84.47	99.80	89.45	99.99	81.57	84.90	46.23	99.99	83.19	38.00	46.09	51.79	41.33	
438	RPL	89.85	86.23	99.66	90.47	99.99	84.81	85.59	50.42	99.99	29.33	36.00	49.43	47.15	46.57	
439	ARPL	90.13	85.43	99.82	95.26	98.47	76.04	85.01	48.28	99.99	69.77	37.40	45.30	51.77	45.16	
440	ARPL+CS	89.12	73.85	99.43	95.48	99.54	89.49	68.39	50.20	99.99	41.06	24.80	81.06	6.52	64.18	
441	MPF	89.04	74.86	99.47	95.51	99.48	89.49	63.81	50.13	<u>99.50</u>	52.36	31.60	86.61	6.68	65.73	
442	AMPF	89.31	78.60	99.54	96.17	99.48	91.02	66.22	48.96	99.99	50.84	32.20	<u>85.35</u>	6.68	63.96	
443	AMPF++	89.66	79.76	99.61	96.12	99.60	91.80	70.70	51.57	99.99	71.42	27.00	81.47	7.19	<u>64.34</u>	
444	CROSR	87.46	72.45	98.35	85.02	98.79	79.21	82.75	46.01	99.99	48.50	81.96	45.12	50.21	46.75	
445	OSRCI	83.14	80.17	97.29	89.42	97.52	87.53	58.98	51.63	99.99	26.19	43.80	47.45	8.10	58.75	
446	OpenMatch	84.26	74.69	81.31	71.41	<u>99.93</u>	87.99	75.52	39.56	99.99	28.60	67.30	20.80	28.63	88.54	
447	NS-RFFI	85.08	69.20	98.83	78.55	99.66	89.13	76.56	50.44	96.00	65.76	38.60	51.95	51.33	43.53	
448	HyperRSI	84.19	50.00	99.71	67.03	99.91	90.41	97.11	51.04	99.99	44.08	77.60	43.73	48.06	50.00	
449	MC Dropout	89.75	90.13	99.72	95.50	99.42	82.74	86.97	52.31	50.00	53.21	84.20	46.78	51.12	39.08	
450	Ensemble	90.84	90.50	99.81	96.31	99.99	88.87	86.34	52.43	99.99	63.19	84.20	46.85	53.04	39.37	
451	IncOS-RFFI-MA	90.21	<u>91.04</u>	99.72	<u>96.41</u>	99.99	<u>91.97</u>	<u>86.32</u>	<u>52.77</u>	99.99	<u>75.00</u>	84.20	50.78	52.98	48.23	
452	IncOS-RFFI-DE	90.33	<u>91.12</u>	99.75	<u>96.52</u>	99.99	<u>92.01</u>	<u>86.34</u>	<u>52.82</u>	99.99	<u>75.12</u>	84.20	50.82	<u>53.01</u>	48.35	

Table 1: CCR and AUROC Comparison on seven radio frequency fingerprint datasets. The best method is emphasized in **bold**, and the underlined represents the second best result.

450	451	452	453	454	455	Methods	CCR	AUROC	OSCR	DTACC	AUIN	AUOUT
456	MC Dropout Consistency	26.50	50.00	13.25	50.00	72.26	77.74					
457	Multi-Head Consistency	89.12	51.49	46.00	51.49	72.56	75.11					
458	IncOS-RFFI-MA	<u>90.21</u>	<u>91.04</u>	<u>86.31</u>	<u>90.20</u>	<u>91.68</u>	<u>89.51</u>					
459	IncOS-RFFI-DE	<u>90.33</u>	<u>91.12</u>	<u>86.88</u>	<u>90.34</u>	<u>91.73</u>	<u>89.99</u>					

Table 2: Performance Comparison of MC Dropout Based Consistency, Multi-Head Based Consistency and Our InOS-RFFI on WiSig-ManyTx.

5.4 OVERALL PERFORMANCE COMPARISON

As shown in Table 1, our proposed InOS-RFFI consistently outperforms the open-set metrics. Although deep ensembles are highly competitive, they are slightly inferior to our approach in terms of AUROC while our approach achieves comparable CCR results to theirs, which shows that our inconsistency based method has alleviated the confusion problem in deep ensembles to some extent. Moreover, RFFI-specific schemes exhibit suboptimal performance on these datasets, primarily due to limited generalization of their signal-type tailored features. Furthermore, due to instability, generative methods are not as effective as typical methods and prototype learning based methods. Furthermore, the prototype learning based methods exhibit poor performance of CCR on the Augmentation and BlueTooth datasets, which shows that inherent characteristics of different datasets strongly affect the open-set discrimination capability of these methods. Although their AUROC is higher, the goal of OSR is to improve the open-set detection ability without compromising the classification accuracy of known classes, rather than sacrificing the classification accuracy of known classes.

6 CONCLUSION

In this paper, we have developed an InOS-RFFI approach to identify known devices, detect unknown devices and mitigate the OUSS challenge in RFFI. We independently train a pool of deep classifiers with independent parameters, isolated dataflow and identical architecture to promote predictive diversity. Moreover, to mitigate the confusion between unknown and low-confidence known classes, we propose that the signal segment with adequately high decision entropy or max-agreement consensus is indicated as known. Simulation results have demonstrated that our proposed InOS-RFFI-MA and InOS-RFFI-DE significantly outperforms existing benchmark algorithms in open-set RFFI tasks.

486 REFERENCES
487

488 Damilola Adesina, Chung-Chu Hsieh, Yalin E Sagduyu, and Lijun Qian. Adversarial machine learning
489 in wireless communications using rf data: A review. *IEEE Communications Surveys & Tutorials*, 25(1):77–100, 2022.

490

491 Lakshman Balasubramanian, Friedrich Kruber, Michael Botsch, and Ke Deng. Open-set recognition
492 based on the combination of deep learning and ensemble method for detecting unknown traffic
493 scenarios. In *2021 IEEE Intelligent Vehicles Symposium (IV)*, pp. 674–681. IEEE, 2021.

494

495 Abhijit Bendale and Terrance E Boult. Towards open set deep networks. In *Proceedings of the IEEE
496 conference on computer vision and pattern recognition*, pp. 1563–1572, 2016.

497

498 Guangyao Chen, Limeng Qiao, Yemin Shi, Peixi Peng, Jia Li, Tiejun Huang, Shiliang Pu, and
499 Yonghong Tian. Learning open set network with discriminative reciprocal points. In *Computer
500 Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings,
Part III 16*, pp. 507–522. Springer, 2020.

501

502 Guangyao Chen, Peixi Peng, Xiangqian Wang, and Yonghong Tian. Adversarial reciprocal points
503 learning for open set recognition. *IEEE Transactions on Pattern Analysis and Machine Intelli-
504 gence*, 44(11):8065–8081, 2021.

505

506 Jesse Davis and Mark Goadrich. The relationship between precision-recall and roc curves. In
507 *Proceedings of the 23rd international conference on Machine learning*, pp. 233–240, 2006.

508

509 Akshay Raj Dhamija, Manuel Günther, and Terrance Boult. Reducing network agnostophobia. *Ad-
510 vances in Neural Information Processing Systems*, 31, 2018.

511

512 Tom Fawcett. An introduction to roc analysis. *Pattern recognition letters*, 27(8):861–874, 2006.

513

514 Xue Fu, Yu Wang, Yun Lin, Tomoaki Ohtsuki, Guan Gui, and Hikmet Sari. Toward robust open-set
515 radiofrequency signal identification in internet of things using hypersphere manifold embedding.
516 *IEEE Internet of Things Journal*, 2024.

517

518 Lantu Guo, Chao Liu, Yuchao Liu, Yun Lin, and Guan Gui. Towards open-set specific emitter identi-
519 fication using auxiliary classifier generative adversarial network and openmax. *IEEE Transactions
520 on Cognitive Communications and Networking*, 2024.

521

522 Samer Hanna, Samurdhi Karunaratne, and Danijela Cabric. Wisig: A large-scale wifi signal dataset
523 for receiver and channel agnostic rf fingerprinting. *IEEE Access*, 10:22808–22818, 2022.

524

525 Boxiang He and Fanggang Wang. Cooperative specific emitter identification via multiple distorted
526 receivers. *IEEE Transactions on Information Forensics and Security*, 15:3791–3806, 2020.

527

528 Yuanling Huang et al. Radio frequency fingerprint extraction of radio emitter based on i/q imbalance.
529 *Procedia computer science*, 107:472–477, 2017.

530

531 David Justamante and Patrick McClure. Bayesian neural networks for wi-fi device fingerprinting and
532 new device detection. In *2024 IEEE International Conference on Electro Information Technology
(eIT)*, pp. 627–632. IEEE, 2024.

533

534 Samurdhi Karunaratne, Samer Hanna, and Danijela Cabric. Open set rf fingerprinting using gener-
535 ative outlier augmentation. In *2021 IEEE Global Communications Conference (GLOBECOM)*,
536 pp. 01–07. IEEE, 2021.

537

538 Juho Lee, Yoonho Lee, Jungtaek Kim, Adam Kosiorek, Seungjin Choi, and Yee Whye Teh. Set
539 transformer: A framework for attention-based permutation-invariant neural networks. In *Inter-
540 national conference on machine learning*, pp. 3744–3753. PMLR, 2019.

541

542 Kimin Lee, Honglak Lee, Kibok Lee, and Jinwoo Shin. Training confidence-calibrated classifiers
543 for detecting out-of-distribution samples. *arXiv preprint arXiv:1711.09325*, 2017.

544

545 Ziwei Liu, Zhongqi Miao, Xiaohang Zhan, Jiayun Wang, Boqing Gong, and Stella X Yu. Large-
546 scale long-tailed recognition in an open world. In *Proceedings of the IEEE/CVF conference on
547 computer vision and pattern recognition*, pp. 2537–2546, 2019.

540 Cyrille Morin, Leonardo S Cardoso, Jakob Hoydis, Jean-Marie Gorce, and Thibaud Vial. Transmitter
 541 classification with supervised deep learning. In *Cognitive Radio-Oriented Wireless Networks: 14th EAI International Conference, CrownCom 2019, Poznan, Poland, June 11–12, 2019, Proceedings 14*, pp. 73–86. Springer, 2019.

544 Gaurang Naik, Jung-Min Park, Jonathan Ashdown, and William Lehr. Next generation wi-fi and 5g
 545 nr-u in the 6 ghz bands: Opportunities and challenges. *IEE Access*, 8:153027–153056, 2020.

547 Lawrence Neal, Matthew Olson, Xiaoli Fern, Weng-Keen Wong, and Fuxin Li. Open set learning
 548 with counterfactual images. In *Proceedings of the European conference on computer vision (ECCV)*, pp. 613–628, 2018.

550 Jung-Min Park, Jeffrey H Reed, AA Beex, T Charles Clancy, Vireshwar Kumar, and Behnam
 551 Bahrak. Security and enforcement in spectrum sharing. *Proceedings of the IEEE*, 102(3):270–
 552 281, 2014.

553 Guillem Reus-Muns, Dheryta Jaisinghani, Kunal Sankhe, and Kaushik R Chowdhury. Trust in 5g
 554 open rans through machine learning: Rf fingerprinting on the powder pawr platform. In *GLOBE-
 555 COM 2020-2020 IEEE Global Communications Conference*, pp. 1–6. IEEE, 2020.

557 Kejin Sa, Dapeng Lang, Chenggang Wang, and Yu Bai. Specific emitter identification techniques
 558 for the internet of things. *IEEE Access*, 8:1644–1652, 2019.

559 Kuniaki Saito, Donghyun Kim, and Kate Saenko. Openmatch: Open-set consistency regularization
 560 for semi-supervised learning with outliers. *arXiv preprint arXiv:2105.14148*, 2021.

562 Kunal Sankhe, Mauro Belgiovine, Fan Zhou, Shamnaz Riyaz, Stratis Ioannidis, and Kaushik
 563 Chowdhury. Oracle: Optimized radio classification through convolutional neural networks. In
 564 *IEEE INFOCOM 2019-IEEE conference on computer communications*, pp. 370–378. IEEE, 2019.

565 Walter J Scheirer, Anderson de Rezende Rocha, Archana Sapkota, and Terrance E Boult. Toward
 566 open set recognition. *IEEE transactions on pattern analysis and machine intelligence*, 35(7):
 567 1757–1772, 2012.

568 Lei Shu, Hu Xu, and Bing Liu. Doc: Deep open classification of text documents. *arXiv preprint
 569 arXiv:1709.08716*, 2017.

571 Nasim Soltani, Kunal Sankhe, Jennifer Dy, Stratis Ioannidis, and Kaushik Chowdhury. More is bet-
 572 ter: Data augmentation for channel-resilient rf fingerprinting. *IEEE Communications Magazine*,
 573 58(10):66–72, 2020.

574 Emre Uzundurukan, Yaser Dalveren, and Ali Kara. A database for the radio frequency fingerprinting
 575 of bluetooth devices. *Data*, 5(2):55, 2020.

577 Chunsheng Wang, Yongmin Wang, Yue Zhang, Hua Xu, and Zixuan Zhang. Open-set specific
 578 emitter identification based on prototypical networks and extreme value theory. *Applied Sciences*,
 579 13(6):3878, 2023a.

581 Shenhua Wang, Hongliang Jiang, Xiaofang Fang, Yulong Ying, Jingchao Li, and Bin Zhang. Radio
 582 frequency fingerprint identification based on deep complex residual network. *IEEE access*, 8:
 583 204417–204424, 2020.

584 Wenyang Wang, Zheng Dou, Jiangzhi Fu, and Yun Lin. A diffusion model-based open set identifica-
 585 tion method for specific emitters. In *2023 IEEE/CIC International Conference on Communica-
 586 tions in China (ICCC)*, pp. 1–5. IEEE, 2023b.

587 Zefeng Wu, Minyu Hua, Yibin Zhang, Shufei Wang, Pengfei Liu, and Guan Gui. An open set
 588 specific emitter identification method using deep feature embedded discriminator. In *2023 IEEE
 589 23rd International Conference on Communication Technology (ICCT)*, pp. 1415–1419. IEEE,
 590 2023.

592 Ziheng Xia, Penghui Wang, Ganggang Dong, and Hongwei Liu. Adversarial kinetic prototype
 593 framework for open set recognition. *IEEE Transactions on Neural Networks and Learning Sys-
 tems*, 2023.

594 Renjie Xie, Wei Xu, Yanzhi Chen, Jiabao Yu, Aiqun Hu, Derrick Wing Kwan Ng, and A Lee
595 Swindlehurst. A generalizable model-and-data driven approach for open-set rff authentication.
596 *IEEE Transactions on Information Forensics and Security*, 16:4435–4450, 2021.

597

598 Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Aggregated residual trans-
599 formations for deep neural networks. In *Proceedings of the IEEE conference on computer vision*
600 and *pattern recognition*, pp. 1492–1500, 2017.

601 Hong-Ming Yang, Xu-Yao Zhang, Fei Yin, and Cheng-Lin Liu. Robust classification with convolu-
602 tional prototype learning. In *Proceedings of the IEEE conference on computer vision and pattern*
603 *recognition*, pp. 3474–3482, 2018.

604

605 Ryota Yoshihashi, Wen Shao, Rei Kawakami, Shaodi You, Makoto Iida, and Takeshi Naemura.
606 Classification-reconstruction learning for open-set recognition. In *Proceedings of the IEEE/CVF*
607 *conference on computer vision and pattern recognition*, pp. 4016–4025, 2019.

608

609 Guanjie Zhang and Yanbin Li. Specific emitter identification based on differential constellation.
610 *IEEE Access*, 2023.

611

612 Junqing Zhang, Guanxiong Shen, Walid Saad, and Kaushik Chowdhury. Radio frequency fingerprint
613 identification for device authentication in the internet of things. *IEEE Communications Magazine*,
614 61(10):110–115, 2023.

615

616 Xiaoxu Zhang, Meiyang Lin, Ye Tian, Yonghui Huang, Junshe An, and Tianshu Cui. Data-
617 enhancement-aided protocol-agnostic transmitter recognition for open-set in iot. *IEEE Internet of*
618 *Things Journal*, 10(10):8630–8644, 2022.

619

620 Xinyu Zhou, Aiqun Hu, Guyue Li, Lining Peng, Yuexiu Xing, and Jiabao Yu. A robust radio-
621 frequency fingerprint extraction scheme for practical device recognition. *IEEE Internet of Things*
622 *Journal*, 8(14):11276–11289, 2021.

623

624 A APPENDIX

625 In this section, we evaluate the effectiveness of IncOS-RFFI in open-set RFFI. We conduct extensive
626 experiments on a large-scale radio frequency fingerprinting datasets and compare our method with
627 several state-of-the-art open-set recognition approaches. The evaluation focuses on both closed-set
628 classification accuracy and the ability to detect unknown emitters.

629 A.1 DATASET

630 We evaluate the performance of our approaches for open-set RFFI tasks using various public RFFI
631 datasets shown in Table 5. As presented in Table 3, for each dataset, we select a group of devices as
632 known classes \mathcal{Y}_K and set the other devices as unknown classes \mathcal{Y}_U .

633 In order to mitigate the impact of varying emitter-receiver distances on the radio frequency finger-
634 print, we select only the 20ft data from the ORACLE dataset for experimentation. To avoid the
635 influence of different collection dates, we use only the data collected on January 8, 2019, from the
636 FIT dataset. For the BlueTooth dataset, we focus exclusively on the mobile data collected at 250
637 Msps for our experiments.

639 A.2 EVALUATION METRICS

641 Referring to the evaluation metrics in Chen et al. (2021); Lee et al. (2017); Dhamija et al. (2018),
642 the closed-set classification rate (CCR) for known class accuracy, the area under the receiver
643 operating characteristic (AUROC) and the open set classification rate (OSCR) for unknown detection
644 capability, the area under the precision-recall curve (AUPR) for class-imbalance robustness, and the
645 detection accuracy (DTACC) for overall decision reliability are adopted. Besides, we leverage the
646 ResNeXt-50 Xie et al. (2017) network as the backbone.

647

- 648 • **CCR:** Accuracy on test signal segments from known classes under a specified threshold.

Dataset	Classes		Signal Segments	
	$ \mathcal{Y}_K $	$ \mathcal{Y}_U $	$ \mathcal{D}_{train} $	$ \mathcal{D}_{test} $
ManyTx Hanna et al. (2022)	120	30	327.4k	184.1k
SingleDay Hanna et al. (2022)	20	8	128k	96k
ORACLE Sankhe et al. (2019)	10	6	50k	46k
FIT/CorteXlab Morin et al. (2019)	15	6	45k	36.9k
POWDER Reus-Muns et al. (2020)	2	2	1k	1.4k
Augmentation Soltani et al. (2020)	5	5	2.5k	3.5k
BlueTooth Uzundurukan et al. (2020)	25	8	27.6k	12.2k

Table 3: A Summary of the Selection of Training and Testing sets.

- **AUROC:** AUROC is a widely used primary evaluation metric for evaluating OSR performance by plotting the true positive rate against the false positive rate across varying thresholds Neal et al. (2018); Fawcett (2006); Davis & Goadrich (2006); Lee et al. (2017).
- **OSCR:** OSCR evaluates the trade-off between classification accuracy on known classes and the rejection rate of unknown classes, plotting CCR under various thresholds versus the false positive rate of unknowns Dhamija et al. (2018).
- **AUPR:** The precision-recall curve is graph plotting precision = $TP/(TP + FP)$ against recall = $TP/(TP + FN)$ by varying a threshold. The AUIN (or AUOUT) is the AUPR where the in- (or out-of-) distribution samples are specified as positive.
- **DTACC:** This metric corresponds to the maximum classification probability over all possible thresholds. We assume that both positive and negative examples have equal probability of appearing in the test set, i.e., $P(x \in P_{in}) = P(x \in P_{out}) = 0.5$.

A.3 IMPLEMENTATION DETAILS

The detailed parameter settings of our experiments are shown in Table 4. Each signal segment has the dimension of 2×256 , where the two rows correspond to the sampled I / Q components and the 256 columns correspond to the number of sampling points.

Parameters	Value
Signal segment dimension	2×256
Batch size	256
The number of epochs	20
Learning rate	0.01
Loss function	Cross-entropy
Optimizer	SGD
Momentum of optimizer	0.9
Weight decay of optimizer	0.00005

Table 4: Experimental Parameter Settings

Dataset	Waveform	Transmitters	Receiver(s)	Day(s)	Sampling Rate	Frequency	Bandwidth	Synthetic / Real-world
ManyTx Hanna et al. (2022)	WiFi	150 WiFi	28 USRP	4	25Ms/s	2462MHz	20MHz	Real-world
SingleDay Hanna et al. (2022)	WiFi	28 WiFi	10 USRP	1	25Ms/s	2462MHz	20MHz	Real-world
ORACLE Sankhe et al. (2019)	WiFi	16 USRP X310	1 USRP B210	-	5Ms/s	2.45GHz	80MHz	Synthetic
FIT/CorteXlab Morin et al. (2019)	IEEE 802.15.4	21 USRP N2932	1 USRP N2932	5	5Ms/s	433MHz	-	Real-world
POWDER Reus-Muns et al. (2020)	4G, 5G, WiFi	4 base stations	USRP B210	2	4G/5G:7.69Ms/s, WiFi: 5Ms/s	2.685GHz	-	Synthetic
Augmentation Soltani et al. (2020)	WiFi	10 transmitters	-	-	5Ms/s	-	-	Synthetic
BlueTooth Uzundurukan et al. (2020)	BlueTooth	250Ms/s: 33 Smartphones	Tektronix TDS7404	-	250Ms/s, 5Gs/s, 10Gs/s, 20Gs/s	-	15MHz-100MHz	Real-world

Table 5: Dataset Summary on Our Validation Experiments

Beside, we compare the proposed IncOS-RFFI and IncOS-RFFI-Base with seventeen baselines, which can be grouped into five categories:

(1) Typical methods:

- 702 • OpenMax (Bendale & Boult (2016)): OpenMax extends the typical softmax function to
703 provide a confidence score for open-set recognition. It operates by calculating the distance
704 from a sample to the class prototypes of the training set. For an unknown sample, it as-
705 signs a low confidence score, signaling it as an outlier, rather than a member of any of the
706 known classes. This is effective in open-set recognition problems, where the model must
707 also identify unknown classes.
- 708 • DOC (Shu et al. (2017)): The Deep Open Classification (DOC) framework uses deep learn-
709 ing for open-set classification by learning a representation that can distinguish between
710 known and unknown classes. DOC works by introducing an open-set classification objec-
711 tive that encourages the model to reject outliers (unknown classes) while classifying known
712 classes accurately. It also uses a margin-based loss function for distinguishing between
713 classes.
- 714 • OLTR (Liu et al. (2019)): Open Long-Tailed Recognition (OLTR) is designed for handling
715 open-set problems with long-tailed data. It incorporates a method for dealing with both
716 class imbalance and open-set recognition by using memory-based prototypes and rejection
717 regions for unknown classes.

718 (2) Prototype learning based methods:

- 720 • GCPL (Yang et al. (2018)): Generalized Class Prototype Learning (GCPL) introduces the
721 concept of prototype learning to open-set recognition. It uses prototypes of classes and
722 classifies input samples based on their distance to the class prototypes, effectively distin-
723 guishing between known and unknown classes.
- 724 • RPL (Chen et al. (2020)): Relational Prototype Learning (RPL) extends prototype learning
725 by considering relational structures between classes. It is more flexible than traditional
726 methods because it learns to recognize not just individual class prototypes but also the
727 relationships between them, allowing for better open-set classification.
- 728 • ARPL (Chen et al. (2021)): The Adaptive Relational Prototype Learning (ARPL) method
729 adapts to the data by learning relational prototypes in an open-set scenario. It aims to im-
730 prove upon RPL by dynamically adjusting the prototype space based on incoming data,
731 effectively handling unknown classes.
- 732 • ARPL+CS (Chen et al. (2021)): This is an extension of ARPL, where Confusing Samples
733 (CS) are incorporated into the training to enhance the model's robustness. These confusing
734 samples are added to the training set to challenge the model, making it more capable of
735 distinguishing between known and unknown classes.
- 736 • MPF (Xia et al. (2023)): Multi-Prototype Learning with Feature Expansion (MPF) utilizes
737 multiple prototypes for each class to capture diverse class characteristics. It helps in open-
738 set recognition by allowing each class to have several representative prototypes that can
739 better handle variations within classes.
- 740 • AMPF (Xia et al. (2023)): Adaptive Multi-Prototype Learning with Feature Expansion
741 (AMPF) is an improvement over MPF. It uses adaptive methods to refine prototypes during
742 the training process, dynamically adjusting them to accommodate variations in the data.
- 743 • AMPF++ (Xia et al. (2023)): This is an enhanced version of AMPF, further improving
744 the adaptability of prototypes by incorporating additional features or advanced learning
745 strategies to improve the discrimination between known and unknown classes.

746 (3) Generative methods:

- 748 • CROSR (Yoshihashi et al. (2019)): Class-Conditional Generative Model for Open-Set
749 Recognition (CROSR) uses a generative approach to model the distributions of known
750 classes and the unknown class. It generates samples from known classes and uses these
751 generated samples for recognition. For unknown classes, the model assigns a low likeli-
752 hood, indicating it is not part of the known classes.
- 753 • OSRCI (Neal et al. (2018)): Open-Set Recognition via Conditional Inference (OSRCI) is
754 a generative approach that learns a model capable of discriminating between known and
755 unknown classes by generating the conditional distribution of each class and applying it to
test samples.

756

- 757 • OpenMatch (Saito et al. (2021)): OpenMatch is another generative-based approach for
758 open-set recognition that utilizes a generative model to generate representations of the
759 known and unknown classes. It adjusts the decision boundary by learning from both the
760 training samples and the generative model, improving open-set classification.

761 (4) RFFI-specific methods:

762

- 763 • NS-RFF (Xie et al. (2021)): The Noise Suppressed Radio Frequency Fingerprint (NS-RFF)
764 method is specifically designed for Radio Frequency Fingerprint Identification (RFFI).
765 It applies noise suppression techniques to enhance the performance of RFFI in open-set
766 recognition scenarios, ensuring better discrimination between known and unknown RF sig-
767 nals.
- 768 • HyperRSI (Fu et al. (2024)): HyperRSI is a specialized approach for RFFI that leverages
769 hyperparameter optimization to improve the model’s robustness and adaptability to differ-
770 ent RF signal conditions. It is tailored to work with the inherent challenges of RF finger-
771 printing, such as noise and interference.

772 (5) Multi-model methods:

773

- 774 • MC Dropout (Justamante & McClure (2024)): Monte Carlo (MC) Dropout is a regular-
775 ization technique where dropout is applied during both training and inference. This allows
776 the model to approximate uncertainty in its predictions, which can be useful for open-set
777 recognition. By using MC dropout, the model estimates the uncertainty for each class and
778 can reject samples with high uncertainty as unknown.
- 779 • Deep Ensembles: This method uses multiple models (often trained independently) and ag-
780 gregates their predictions to improve generalization and robustness. In open-set recogni-
781 tion, deep ensembles help reduce overconfidence in the prediction of unknown samples by
782 providing a more diverse set of predictions from multiple models.

783 The network architectures of these baseline were modified to accommodate the one-dimensional
784 structure of the signal.

Methods	CCR	AUROC	OSCR	DTACC	AUIN	AUOUT
OpenMax	88.94	83.63	85.27	77.48	78.34	86.04
DOC	88.60	82.91	82.97	84.29	66.02	88.54
OLTR	89.80	84.07	82.77	80.23	83.12	79.81
GCPL	89.57	84.47	82.28	84.51	78.71	80.71
RPL	89.85	86.23	84.31	85.61	85.20	80.57
ARPL	90.13	85.43	83.48	85.60	80.89	81.29
ARPL+CS	89.12	73.85	72.89	70.46	70.78	69.91
MPF	89.04	74.86	73.38	73.29	69.45	71.76
AMPF	89.31	78.60	77.52	75.58	76.85	73.05
AMPF++	89.66	79.76	78.70	76.62	78.55	73.94
CROS	87.46	72.45	71.74	67.12	67.2	75.85
OSRCI	83.14	80.17	76.21	78.30	82.63	73.03
OpenMatch	84.26	74.69	71.41	72.14	73.70	69.53
NS-RFF	85.08	69.20	64.18	67.21	57.49	70.62
HyperRSI	84.19	50.00	75.26	50.00	72.26	77.74
MC Dropout	89.75	90.13	85.48	85.15	83.43	78.41
Ensemble	90.84	90.50	85.51	89.62	91.12	81.02
IncOS-RFFI-MA	90.21	91.04	86.31	90.20	91.68	89.51
IncOS-RFFI-DE	90.33	91.12	86.88	90.34	91.73	89.99

799 Table 6: Performance Comparison on WiSig-ManyTx.

800

801 A.4 IN-DEPTH ANALYSIS ON OUSS SUBSET OF MANYTX DATASET

802 We analyzed the ManyTx dataset, which has the largest number of categories. As shown in Table 6,
803 our method outperforms other methods in open-set metrics. To validate our method’s performance
804 on OUSS signal segments, we select unknown signal segments with a confidence score exceeding
805 0.96 as unknown classes for experiments. As shown in Table 7, the results show that our method
806 outperforms other methods in all metrics. In particular, when compared to deep ensembles, our
807 AUOUT improves by over 10%, demonstrating the advantage of inconsistency based methods in
808 classifying known and unknown classes.

Methods	AUROC	OSCR	DTACC	AUIN	AUOUT
OpenMax	77.01	72.15	71.84	84.34	65.79
DOC	78.40	76.61	82.01	76.65	76.02
OLTR	80.31	79.51	76.38	89.12	56.87
GCPL	81.36	79.81	81.91	86.95	58.80
RPL	83.58	82.25	83.11	90.65	59.53
ARPL	81.67	80.21	79.00	87.55	59.59
ARPL+CS	65.47	59.28	61.07	77.56	53.02
MPF	66.62	65.60	66.24	78.29	44.70
AMPF	71.67	70.98	68.96	83.41	46.63
AMPF++	73.45	72.82	70.63	84.71	48.22
CROSR	67.08	68.28	63.52	78.78	52.27
OSRCI	78.06	74.88	76.93	89.38	50.14
OpenMatch	85.48	80.87	85.70	94.32	58.06
NS-RFF	64.40	60.08	62.92	73.83	44.41
HyperRSI	50.00	73.62	50.00	83.52	50.91
MC Dropout	79.73	83.64	81.42	85.64	53.00
Ensemble	87.07	84.00	86.85	94.35	61.38
IncOS-RFFI-MA	87.03	84.79	87.15	94.46	71.5
IncOS-RFFI-DE	87.14	85.12	87.52	94.52	71.8

Table 7: Performance Comparison on 64.00% of OUSS from WiSig-ManyTx dataset.

A.5 ABLATION EXPERIMENTS

A.5.1 ABLATION ON CONSENSUS MECHANISMS.

To validate our proposed IncOS-RFFI, we conduct ablation experiments to evaluate the effectiveness of our approach using inconsistency based MC Dropout and inconsistency based 10 different classification head models with the same backbone. We observe that the predictions of the two methods are generally consistent, both for known and unknown classes, indicating that the predictive diversity brought by multiple independently trained models is very necessary, as shown in the Table 2.

A.5.2 THE IMPACT OF THE NUMBER OF MODELS.

As shown in the Figure 7, we find that the performance of the inconsistency based method gradually improves as the number of models increases. Notably, even when using only 5 models, our method shows good results and performs better than the 5-model deep ensembles in distinguishing between known and unknown classes, as illustrated in Table 8.

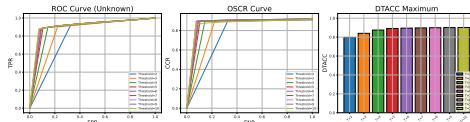


Figure 7: Comparison of ROC, OSCR Curves, and DTACC Plots Across Different Model Sizes on the WiSig-ManyTx.

Methods	CCR	AUROC	OSCR	DTACC	AUIN	AUOUT
Ensemble	90.67	89.51	87.06	89.57	91.07	80.97
IncOS-RFFI-MA	90.01	89.75	87.13	90.19	91.25	90.31
IncOS-RFFI-DE	<u>90.15</u>	<u>90.03</u>	<u>87.20</u>	<u>90.31</u>	<u>91.51</u>	<u>90.43</u>

Table 8: Comparison of Ours and the Deep Ensembles under five models