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ABSTRACT

Learning causal representations from observational and interventional data in the absence
of known ground-truth graph structures necessitates implicit latent causal representation
learning. Implicitly learning causal mechanisms typically involves two categories of inter-
ventional data: hard and soft interventions. In real-world scenarios, soft interventions are
often more realistic than hard interventions, as the latter require fully controlled environ-
ments. Unlike hard interventions, which directly force changes in a causal variable, soft
interventions exert influence indirectly by affecting the causal mechanism. In this paper,
we tackle implicit latent causal representation learning in a Variational Autoencoder (VAE)
framework through soft interventions. Our approach models soft interventions effects by
employing a causal mechanism switch variable designed to toggle between different causal
mechanisms. In our experiments, we consistently observe improved learning of identifiable,
causal representations, compared to baseline approaches.

1 INTRODUCTION

Causal representation learning promotes conventional deep learning models from black boxes to gray boxes
such that we can obtain robust, transferable, and explainable representations Schölkopf (2019). In contrast, in
statistical representation learning, the representations do not generally have a meaningful structure. Although
we can represent statistical models with graphical models just as in causal models, the connections in such
a graph are volatile and cannot be generalized to different domains. Furthermore, in causal models we can
perform interventions and counterfactuals on the variables which can help the model to imagine situations
that it has never seen before.

Causal models can be expressed by both graphical models and structural causal models (SCMs) Pearl (2005).
A causal graphical model is a Directed Acyclic Graph (DAG) in which there is an edge between variables
such as X → Y if X is a parent of Y . We call a variable endogenous if it has a parent in the graph and
exogenous if it has no parents. Exogenous variable usually correspond to uncertainties and noise in the data
Pearl et al. (2016). In graphical causal models we can only infer about which variables are causally related
to each other but we cannot infer about how they are related to each other. SCMs are a way to describe this
relationship.

Identifiability of causal models is one of the long-standing questions in this field. Without identifiablity,
we cannot claim the learnt representations are causal. To see this, let’s consider three random variables
X,Y, Z whose joint distribution is factorized as p(X,Y, Z) = p(Y |X)p(Z|X)p(X). According to the
faithfulness assumption, the conditional independence in the joint distribution of variables must be entailed
in its corresponding graph as well Yu et al. (2020). Therefore, the joint distribution p(X,Y, Z) can be
represented by three graphs Z → X → Y , Y → X → Z, and Y ← X → Z which imply same conditional
independence Z ⊥⊥ Y |X . All of these graphical models belong to the same Markov Equivalence Class
(MEC). It can be concluded that the Markov condition in graphs is not sufficient for identifying causal models
Schölkopf (2019) and without further assumptions or data, we can only learn the MEC of the causal model.
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Existing works have made different assumptions about availability of of ground truth causal variables labels
Yang et al. (2021), model parameters Ahuja et al. (2023), availability of paired interventional data Brehmer
et al. (2022), availability of intervention targets Lippe et al. (2022) to ensure identifiability of causal models.

In a Variational AutoEncoder (VAE) framework, there are generally two approaches for causal representation
learning: Explicit Latent Causal Models (ELCMs) and Implicit Latent Causal Models (ILCMs). IN ELCMs,
the latents are the causal variables and the adjacency matrix of the causal graph is parameterized and integrated
in the prior of the latents such that the prior of latents is factorized according to the Causal Markov Condition
Schölkopf et al. (2021). This approach in causal representation learning is highly susceptible to being stuck
in local minimums as it is hard to learn representations without knowing the graph, and it is hard to learn
the graph without knowing the representations. To the best of our knowledge, ILCMs were first introduced
in Brehmer et al. (2022) and they circumvent this chicken and egg problem in causal model discovery by
using solution functions which can implicitly model edges in the causal graph. in ILCMs the latents are the
exogenous variables and the there is no explicit parameterization for the graph. Let’s consider a simple SCM
to understand the motivation behind solution functions:

Z1 = f1(E1) & Z2 = f2(Z1, E2), (1)

where e1 and e2 are exogenous variables, f1 and f2 are the causal mechanisms, z1 and z2 are the causal
variables. This example SCM is a general case in which the causal variables are an arbitrary nonlinear
function of parents and exogenous variables. It is easy to see that we can write all the causal variables as a
function of exogenous variables:

Z1 = f1(E1) = s1(E1, E2) & Z2 = f2(f1(E1), E2) = s2(E1, E2), (2)

where s1 and s2 are the solution functions. This example shows how exogenous variables can be mapped to
causal variables through solution functions and that we feed all of the exogenous variables to the corresponding
solution function of a causal variable and let the model decide which of the exogenous variables are ancestral.
One might wonder why exogenous variables are chosen to be the latents in ILCMs and the reason is that
exogenous variables must be mutually independent in a SCM, hence, we can conveniently factorize prior
of exogenous variables as p(E) = Πip(Ei). The observed variables are obtained from from a mixture g of
causal variables Z i.e. X = g(Z).

Motivated by the results in Brehmer et al. (2022), we propose a novel approach for implicit causal
representation learning with soft interventions. In implicit causal representation learning the problem is to
recover the exogenous variables E from the observed variables X . In Brehmer et al. (2022), the interventions
are assumed to be hard which is not realistic and does not apply to real-world problems Correa & Bareinboim
(2020). In hard interventions, the connections of the intervened variables with its parents are severed
Pearl et al. (2016) whereas in soft interventions, the causal variable is still affected by its parents and the
intervention changes the conditional distribution p(Zi|Zpa) Correa & Bareinboim (2020) which includes
as a special case the hard interventions do(Zi) = zi. Our focus here will be on identifiability of causal
models and not scalability with number of variables. As also indicated in Brehmer et al. (2022), a method for
identifiability can fail with large number of variables even with hard interventions. Nonetheless, we will
evaluate implicit causal models in a large real-world dataset, aiming to highlight promising future directions
in implciit causal representation learning.
Contributions Our key contributions can be summarized as follows:
I. A novel approach for implicit causal representation learning with soft interventions.
II. Employing causal mechanisms switch variable to model the effect of soft interventions.

2 RELATED WORKS

The problem of causal representation learning has gained a lot of attention recently Schölkopf et al. (2021);
Kaddour et al. (2022). The major challenge in this problem is identifiability which cannot be simply achieved
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by the Markov condition in graphs Schölkopf (2019), hence, further data and assumptions are required. In
general, causal representation learning methods can be categorized into Explicit Latent Causal Models and
Implicit Latent Causal Models. Our work focuses on identifiability of causal models while retaining implicit
modeling and builds on Brehmer et al. (2022).
2.1 EXPLICIT LATENT CAUSAL MODELS

CausalVAE Yang et al. (2021) proposes a causal layer in VAE which takes independent exogenous variables
as input and maps them into a space in which variables are causally related. The dependent variables are taken
by the decoder to reconstruct the inputs. The acyclicity constraint introduced in Zheng et al. (2018) is used
here for a continuous optimization. CITRIS Lippe et al. (2022) is a VAE-based framework for identifiying
multi-dimensional causal factors from temporal sequences of images where interventions with known targets
may have been performed. Therefore, both observational data and interventional data with known targets
is required. CITRIS is a variational autoencoder that assigns latent variables to their corresponding causal
factors and induces disentanglement by conditioning each latent’s prior distribution only on its respective
intervention target. It also disentangles autoencoder representations by using normalizing flows. iCaRL
leverages data from multiple environments to learn representations. An environment variable E is introduced
which can account for changing factors in each environment same as in Bagi et al. (2023). DEAR Shen
et al. (2022) addresses the unidentifiability of mutually independent latent factors and use annotated labels of
the groundtruth factors and graph structure as supervisory signals. Identifiability of causal models based on
available data and various assumptions about the parameters of the decoder and latent space has been studied
in Ahuja et al. (2023). Aforementioned methods are score-based Yu et al. (2020) but, identifiability of causal
models using maximal ancestral graphs and statistical tests has also been studied in Jaber et al. (2020).

Leveraging Sparse Mechanisms Shift Schölkopf et al. (2021) and sparsity of the causal graphs is proposed in
Perry et al. (2022) as an inductive bias which is then used in Lachapelle et al. (2022) for disentangled causal
representation learning.
2.2 IMPLICIT LATENT CAUSAL MODELS

Existing methods learn the causal graph along with other parameters of the network, which is a difficult
optimization problem with no information about causal variables or the graph available . Motivated by their
results, our work focuses on identifying causal models using soft interventions instead of hard interventions
as in Brehmer et al. (2022) to bring ILCMs one step closer to real-world applications.

In Brehmer et al. (2022), identifiability is proven theoretically for hard interventions, however, the results for
causal models with more than 10 variables indicate that in practice, complex causal models include more
ambiguous relations and confounding factors in which case identifying causal model is not straightforward.
Identifiability becomes more difficult when we use soft interventions instead of hard interventions. In soft
interventions, the effect of causal variables on the observed variables is not clear as both intervention and
parents are influencing the causal variables. Also note that, we are retaining implicit modeling, hence, there
is no knowledge of parents. In the subsequent sections, we will examine where the identifiabiltiy theory in
Brehmer et al. (2022) fails when we use soft interventions and how we can model their effect using causal
mechanisms switch technique as introduced in Pearl (2005); Schölkopf (2019) to help model find the true
causal model.

3 METHODOLOGY

3.1 OBJECTIVE

A causal model is a conceptual or mathematical representation used to understand and describe the relation-
ships between different variables and how they influence each other i.e., causal mechanisms. A causal model
in its most general form can be expressed as Schölkopf (2019):

Zi = fi(ZPAi , Ei) (i = 1, ..., n), (3)
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where fi is a deterministic function that defines the relation between causal variable Zi and its corresponding
parents PAi and exogenous variable Ei. In implicit modeling, the latents are the exogenous variables Ei

and we aim to obtain causal variables through solution functions si : E → Zi to circumvent modeling the
adjacency matrix of the causal model. Since exogenous variables are assumed to be mutually independent in
a causal model, we can conveniently factorize p(E) = Πip(Ei) whereas prior of causal variables should be
factorized according to the Causal Markov condition Schölkopf et al. (2021).

In implicit causal representation learning, the challenge lies in uniquely determining the causal relationships
between variables from observed data, a problem known as Identifiability. Identifying causal models from data
can be complex, often studied within classes of models, such as those identifiable up to affine transformations.
In the context of nonlinear Independent Component Analysis (ICA), the generative process involves a
mixture g of unobserved latent causal variables Z ∈ Rn, resulting in observations X ∈ Rn i.e. observations
Lachapelle et al. (2022); Zheng et al. (2022). Our objective in this paper is to recover Z from X ."
3.2 SETUP

Identifying a causal model from observational data is not trivial and requires strict assumptions on the
parameters of the model Ahuja et al. (2023). Interventional data can be used along with observational data
to observe the effect of changing a causal variable in the observed variables and thereby identifying it. One
simple setting here could be to use pair of observed variables (x, x̃) where x is the observational data and x̃
is the interventional data in which one of the causal variables is targeted by a soft intervention. In order to
simplify the problem we make two assumptions in the generation process:
Assumption 3.1 (Atomic interventions). The interventional data x̃ is a result of single soft intervention:

x̃ = g(z/i, z̃i)

Assumption 3.2 (Counterfactual exogenous variables). The soft intervention affects only the exogenous
variable of the intervened variable while maintaining the exogenous of all other causal variables:{

ei ̸= ẽi if intervention on zi
ei = ẽi otherwise.

Without these two assumptions the observed changes in x̃ would be ambiguous as multiple interventions or
change in exogenous variables might have an overlapping effect in the observed variables. Consequently, the
data generation process can be defined as:
Definition 3.1 (Data generation process). Consider a latent causal model where the underlying SCM is
defined by a continuous latent space E ∈ Rn with independent probabilities p(Ei) which admits a solution
function s. The paired observations (x, x̃) are generated as:

e ∼ p(E), z = s(e), x = g(z),
Soft-Intervention.−−−−−−−−−→ ẽi ∼ p(Ẽi), z̃ = s̃(ẽi, e/i), x̃ = g(z̃) (4)

3.3 PROPOSED METHOD: SOFTILCM
The ILCM model from Brehmer et al. (2022) assumes hard interventions, making post-intervention represen-
tations independent of ancestry. However, this is limited to controlled scenarios. In response to real-world
complexity, we introduce SoftILCM. We address the challenges of identifiability with soft interventions and
present a model using a causal mechanism switch variable n ∈ Rn to effectively capture soft interventions.
Definition 3.2 (LCM equivalence up to permutation and reparameterization (informal)) Brehmer et al. (2022)).
Let M = (C,X, g) and M ′ = (C ′, X, g′) be two Latent Causal Models (LCMs) with same observational
space X , C and C ′ be SCM, and g and g′ be mixing functions. We say M and M ′ are equivalent up to
permutation and reparameterization if there exists a permutation ψ : G(C)→ G(C ′) (G is graph over C) and
elementwise diffeomorphisms ϕ : C → C ′ to map causal and exogenous variables in C to their corresponding
ones in C ′.
Definition 3.3 (Disentanglement Lachapelle et al. (2022)). Given a groundtruth model M∗, we say a learned
LCM M is disentangled when M∗ and M are equivalent up to permutation and reparameterization.
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Figure 1: General overview of the SoftILCM. FC represents fully connected neural network, and F shows
solution function.

(a) (b)
Figure 2: Causal graph models in the presence of Hard (a) and Soft (b) interventions.

Hard intervention: We begin by examining identifiability in ILCMs according to Definition 3.2 with hard
interventions. The string in Figure 2a illustrates how post intervention causal variables in M can be mapped
to M ′ if there exists a diffeomorphism ϕ. It is noteworthy that the intervened variable Z̃i has no connection
with its parents and is only affected by intervention I as z̃i = fi(., ẽi).

Soft intervention: In soft interventions, the string diagram will be as depicted in Figure 2b. The major
difference here is that Z̃i is no longer disconnected from its parents and its causal mechanism fi is affected
by the intervention. One of the conditions for identifiability, is that ϕ should be ψ − diagonal Brehmer et al.
(2022) which will be violated here and Z̃ ′

i′ will no longer be a function of Z̃i alone. Consequently, the causal
variables will no longer be disentangled as z̃i = f̃i(zpai

, ẽi).

Causal mechanism switch variable: In implicit modeling we lack knowledge regarding the true parents and
the structure of chains and forks within a graph which can induce indirect dependencies. This is attributed to
the presence of unconditional dependence inherent in the configurations of chains and forks. Consequently,
discerning causal relations from soft interventions becomes profoundly challenging, especially within complex
causal models marked by confounding factors and ambiguous relations. To tackle this issue, we propose to
model the effect of soft interventions as z̃i = f̃i(zpai , ẽi) = hi(zpai , ẽi, v), where v is the causal mechanism
switch variable. Thus, the new parent set of Zi will be P̃Ai = PAi ∪ V and it is related to Zi by the
conditional probability:

p(zi|p̃ai) =
{
p(zi|pai, v) if zi is target of soft intervention

p(zi|pai) if no interventions
(5)
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The usage of v in soft interventions is analogous to augmented networks in Pearl (2005) which was mainly
designed for hard interventions, however, it can also be used for soft interventions:
Quote: "One advantage of the augmented network representation is that it is applicable to any change in the
functional relationship fi and not merely to the replacement of fi by a constant."Pearl (2005)

Theorem 3.4 (Identifiability of R-valued ALCMs from soft interventions-Extended from Brehmer et al.
(2022)). LetM = (C,X, g, V ) andM ′ = (C ′, X, g′, V ′) be two Augmented Latent Causal Models (ALCMs)
with the following properties:
1. The ALCMs have same observation space X .
2. The SCMs C and C ′ consist of n real valued endogenous and exogenous variables such that Zi = Ei =
Z ′
i = E′

i = R.
3. The switch variables are real valued V = Rn.
4. The endogenous variables are deterministic function of their augmented parents P̃A = PA ∪ V .
Then the following two statements are equivalent:

1. The ALCMs assign same likelihood to interventional and obsevational data i.e., pXM (x, x̃) =
pXM ′(x, x̃).

2. The ALCMs are equivalent according to Definition 3.2.

The main part of the proof of theory is to show that the transformation ϕ in Figure 2b is ψ − diagonal which
is discussed in Appendix A.1.

Consequently, there will be three latents in SoftILCM: a switch variable V , the pre-intervention exogenous
variables E and the post-intervention causal variables Ẽ. We would have maximized log-likelihood of
log p(x, x̃) but, as the likelihood is intractable due to the latents, we are going to maximize the Evidence
Lower BOund (ELBO) given as follows:

max
p,q

Ep∗(x,x̃)

[
Eq(n|x̃−x),q(e|x),q(ẽ|x̃)

[
log

p(x|e)p(x̃|ẽ)p(x̃− x|v)p(ẽ|e, v)p(v)p(e)
q(e|x)q(ẽ|x̃)q(v|x̃− x)

]]
(6)

The approximate posterior q(.|.) of the latents are factorized as we are using mean-field variational inference
Goodfellow et al. (2016) and the prior of latents are factorized as p(ẽ, e, v) = p(ẽ|e, v)p(v)p(e). As exogenous
variables are mutually independent p(e) = Πip(ei) and we assume p(ei) and p(v) to be standard Gaussian.
Furthermore, as we assume ei = ẽi for all non-intervened variables, the p(ẽ|e, v) will be as follows:

p(ẽ|e, v) = Πi/∈Iδ(ẽi − ei)Πi∈Ip(ẽi|ei, v) = Πi/∈Iδ(ẽi − ei)Πi∈Ip(z̃i|ei, v)|
∂z̃i
∂ẽi
| (7)

The last equality is obtained from the Change of Variable Rule in probability theory as we use normalizing
flows to map ẽi to z̃i Dinh et al. (2017). The solution function s̃i is used to map exogenous variable to causal
variables and we implement them using location-scale noise models Immer et al. (2023) as also practiced in
Brehmer et al. (2022). For simplicity, in our experiments, we are only going to change the loc network in
post-intervention. Thereofore, to satisify the cinditions in Theory 3.4 we are going to use switch varible V as
follows:

z̃i = s̃i(ẽi; e, v) =
ẽi − (loc(e/i) + h(v))

scale(e/i)
, (8)

Through this solution function, the model implicitly learns which of e/i are ancestral exogenous variables,
hence, identifying causal relations. We assume p(z̃i|e, v) to be a Gaussian whose mean is determined by ei
and n as ei is a certain ancestor of z̃i and we do not have knowledge about the other ancestors in implicit
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modeling. We also obtain v from x̃− x to guide the model that v should model effects of soft intervention
as we assume the changes in x̃ are due to the soft intervention only. The general overview of the model is
illustrated in Figure 1.

4 EXPERIMENTS AND RESULTS

The experiments conducted in this paper address two downstream tasks; (1) Causal Disentanglement to
identify the true causal graph from pairs of observations (x, x̃), and (2) Action Inference to infer about actions
generated from the post-intervention samples using causal variables in a supervised manner.

(a) Pre-Intervention (b) Post-Intervention (c) Pre-Intervention (d) Post-Intervention
Figure 3: Image samples of Pre and Post interventions in simulated (a, b), as well as real-world (c, d)
conditions from Causal-Triplet datasets Liu et al. (2023).

4.1 DATASETS

4.1.1 SYNTHETIC

We generate simple synthetic datasets with X = Z = Rn. For each dimension n, we generate ten datasets,
using linear SCMs with random DAGs and causal mechanisms, in which each edge is sampled in a fixed
topological order from a Bernoulli distribution with probability 0.5. The pre-intervention ans post-intervention
causal variables are obtained as:

zi = scale(zpai
)ei + loc(zpai

)
Soft-Intervention.−−−−−−−−−→ z̃i = ˜scale(zpai

)ẽi + ˜loc(zpai
), (9)

where the loc and scale networks are changed in post intervention. The pre-intervention loc and post-
intervention ˜loc network weights are initialized with samples drawn from N(0, 1) and N(3, 1), respectively.
The scale is 1 (no effect from parents) for both pre-intervention and post-intervention samples Both ei and ẽi
are sampled from a standard Gaussian. The causal variables are mapped to the data space through a randomly
sampled SO(n) rotation. For each dataset, we generate 100,000 training samples, 10,000 validation samples,
and 10,000 test samples.
4.1.2 CAUSAL-TRIPLET

Causal-Triplet datasets Liu et al. (2023) consist of: images obtained from a photo-realistic simulator of
embodied agents, ProcTHOR Deitke et al. (2022), and the other contains images repurposed from a real-world
video dataset of human-object interactions Damen et al. (2022). The former one contains 100k images in
which 7 types of actions manipulate 24 types of objects in 10k distinct ProcTHOR indoor environments. The
latter consists of 2632 image pairs, collected under a similar setup from the Epic-Kitchens dataset with 97
actions manipulating 277 objects. Samples of both datasets are shown in Figure 3
4.2 METRICS

For the causal disentanglement task, we are going to use the DCI scores Eastwood & Williams (2018).
Causal disentanglement score quantifies the degree to which Zi factorises or disentangles the Z∗. Causal
disentanglement Di for Zi is calculated as Di = (1 − HK(Pi.)) = (1 +

∑K−1
k=0 Pik logK Pik) where

Pij =
Rij∑K−1

k=0 Rik
and Rij denotes the probability of zi being important for predicting z∗j . Total causal

disentanglement is the weighted average
∑

i ρiDi where ρi =
∑

j Rij∑
ij Rij

. Causal Completeness quantifies

7



Under review as a conference paper at ICLR 2024

the degree to which each z∗i is captured by a single Zi. Causal completeness is calculated as Cj =

(1−HD(P̃.j)) = (1 +
∑D−1

d=0 P̃dj logD P̃ij). D and K here are equal to the dimension of z∗ and z which is
n.

For the action inference task, we will use classification accuracy as a metric.

5 RESULTS

5.1 CAUSAL DISENTANGLEMENT

We generated a dataset for the soft interventions and trained the models of SofTILCM, ILCM, β-VAE and
D-VAE for 10 different seeds, which generated 10 different causal graphs. We selected 4 causal variables
to encompass complex causal structures, including forks, chains, and colliders. Table 1 displays the Causal
Disentanglement and Causal Completeness Scores for the three baseline models, computed on the test data.

Table 1: Comparison of identifiability results

Graph Causal Disentanglement Causal Completeness

Model Name β-VAE d-VAE ILCM Soft-ILCM β-VAE d-VAE ILCM Soft-ILCM

G-1 0.39 0.54 0.69 0.81 0.53 0.68 0.76 0.87

G-2 0.15 0.72 0.74 0.83 0.24 0.77 0.79 0.87

G-5 0.25 0.51 0.67 0.97 0.54 0.56 0.77 0.97

G-6 0.19 0.50 0.65 0.69 0.41 0.69 0.76 0.79

G-7 0.25 0.44 0.32 0.42 0.45 0.54 0.37 0.50

G-8 0.51 0.62 0.73 0.98 0.63 0.69 0.73 0.98

G-9 0.35 0.49 0.70 0.76 0.65 0.74 0.88 0.90

G-10 0.48 0.54 0.50 0.60 0.61 0.63 0.62 0.69

G-11 0.31 0.68 0.83 0.86 0.40 0.76 0.86 0.87

G-12 0.15 0.39 0.52 0.32 0.42 0.56 0.82 0.50

The results in Table 1 indicate that SoftILCM can identify the true causal graph in most cases. The results
for graphs G− 7 and G− 12 are worst and there can be a seen a pattern. As mentioned in Schölkopf et al.
(2021); Perry et al. (2022), causal graphs are sparse and in G− 7 case where the graph is fully connected the
proposed method cannot identify the causal variables well. Furthermore, in the next experiment we are going
to show that the causal disentanglement has a lower bound which is a function of number of edges in the
graph and the intensity of soft intervention effect which can explain why SoftILCM cannot identify causal
variables in G− 12 despite its sparsity.
5.2 FACTORS AFFECTING CAUSAL DISENTANGLEMENT

In this experiment, we consider the graph G− 5 which has the best identifiability and change the intensity
of soft intervention and number of edges in its data generation process. For changing intensity, the post-
intervention ˜loc network weights are initialized with samples drawn from N(1, 1) (almost similar to loc)
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and N(10, 1) (significantly different from loc). For changing number of edges, we consider a chain and
fully-connected graph.

Table 2: SoftILCM performance on different configurations of G− 5

Edges Post-intervention causal mechanism Causal Disentanglement Causal Completeness
Chain Default 0.98 0.98
Full Default 0.89 0.89

Default Significantly different 0.68 0.73
Default Almost similar 0.85 0.86

The results in Table 2 further confirms the sparsity of causal graphs as the causal disentanglement is much
worse in the fully-connected graph than the default graph of G − 5. The result for significantly different
post-intervention causal mechanism indicate that the switch variable cannot approximate intense effects of
soft intervention as discussed in Theory 3.4 and is not a determinsitc function of V and its parent. Almost
similar post-intervention causal mechanisms also do not have sufficient variability to disentangle the causal
variables as studied in Lachapelle et al. (2022).
5.3 ACTION INFERENCE

In this experiment, we show the performance of SoftILCM in a real-world Causal-Triplet datasets. Based on
the nature of actions in this dataset, the causal variables should represent attributes of objects such as shape
and color. As the dataset is consisted of images we train all the methods with ResNet encoder and decoder.
One of the constraints of ILCM and SoftILCM is to have a diffeomorphic encoder. To ensure this, we add the
following inverse consistency constraint to the loss function to ensure that decoder is the inverse of encoder
as:

∑
iEei∼q(ei|x),êi∼q(êi|x̂)[(ei − êi)2], where x̂ are the reconstructed samples. For the ProcThor dataset

the number of causal variables are 7. For the Epic-Kitchens dataset, we randomly chose 20 actions from the
dataset as 97 causal variables will be too complex in a VAE setup. The results are shown in Table 3. The
results in Table 3 indicate that SoftILCM performs at par with the baseline methods. Based on the number of
actions in this dataset, the results suggest that implicit causal models are not scalable to causal models with
large number of variables. Furthermore, due to the unconditional dependencies of forks and chains in causal
graphs, including all causal variables in the action or object inference may cause spurious correlations. We
leave the scalability of SoftILCM to our future works.

Table 3: Action and object accuracy of different methods on Causal-Triplet datasets

Epic-Kitchens ProcTHOR

Method Action Accuracy Object accuracy Action Accuracy Object accuracy

ILCM 0.17 0.18 0.21 0.34
β − V AE 0.30 0.20 0.32 0.41
d− V AE 0.19 0.20 0.27 0.38
Soft-ILCM (ours) 0.17 0.21 0.22 0.36

6 CONCLUSION

Our research introduces SoftILCM, a novel model for implicit latent causal representation learning under soft
interventions, incorporating a causal mechanism switch variable. We’ve conducted evaluations on synthetic
and real-world datasets, employing the causal disentanglement score as a key metric. The results demonstrate
that SoftILCM outperforms state-of-the-art methods, highlighting its efficacy in causal representation learning
and moving implicit causal models one step towards the real-world applications. Our results indicate that
SoftILCM can identify the causal models from soft interventions with few number of variables and it can be a
promising direction for future works.
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A APPENDIX

A.1 PROOF OF IDENTIFIABILITY THEORY

Proposition A.1 (Measure preservation of causal mechanisms with switch variable). Let Z ∈ Rn be pre-
intervention causal variables and V ∈ Rn be the causal mechanisms switch variable. The post intervention
causal variables can then be formulated as: z̃i = f̃i(zpai

, ẽi) = hi(zpai
, ẽi, v). In implicit modeling, as

we do not know the parents, we feed all Z to causal mechanisms, hence, hi : V × Z → Z̃i. To explore
the properties of hi under this transformation, define conditional probability measure on pZ̃i|Z on Z̃i and
probability measure pV on V . For all z ∈ Z, the function hi(., z) : V → Z̃i preserves the measure on V and
induces a consistent conditional distribution p(Z̃i|Z).

The proof of Proposition A.1 is straightforward when assuming that the value of Z̃i is a deterministic function
of V and Zpai with no uncertainties. However, in reality, the causal mechanism is represented as a function of
V and Vpai , approximating the impact of soft intervention, and therefore, zero uncertainties are not guaranteed.
Following this proposition and Lemma 2 from Brehmer et al. (2022), we can prove the identifiability of
implicit causal models:
Corollary A.1 (ψ − diagonal diffeomorphic Transformation). The post-intervention causal mechanisms f̃
are constant in pre-intervention causal variables Z ∈ Rn, hence, there exists a diffeomorphic transformation
ϕ = g′−1 ◦ g : Z → Z ′ which is ψ − diagonal.

Using Corollary A.1, the rest of the proof for identifiability follows from Brehmer et al. (2022). As we will
demonstrate in the results section, the causal mechanisms switch approach for approximating post-intervention
causal mechanisms may not yield ideal results in certain instances.
A.2 SOFT VS. HARD INTERVENTION

In a causal model, an intervention refers to a deliberate action taken to manipulate or change one or more
variables in order to observe its impact on other variables within the causal model. Interventions help to study
how changes in one variable directly cause changes in another, thereby revealing causal relationships.

Based on the levels of control and manipulation in a causal intervention, we can have soft vs. hard interventions.
A hard intervention involves directly manipulating the variables of interest in a controlled manner such as
Randomized Controlled Trials (RCTs). In other words, a hard intervention sets the value of a causal variable
Z to a certain value denoted as do(Z = z) Pearl et al. (2016).

On the other hand, soft intervention involves more subtle or less controlled manipulation of variables and
changes the conditional distribution of the causal variable p(Z|Zpa)→ p̃(Z|Zpa) which can be modeled as
z̃i = f̃i(zpai , ẽi) Correa & Bareinboim (2020).

Looking at interventions from a graphical standpoint, a hard intervention entails that the intervened node is
solely impacted by the intervention itself, with no influence coming from its ancestral nodes. Conversely, in
the context of a soft intervention, the representation of the intervened node can be influenced not only by the
intervention but also by its parent nodes.

As an example, suppose we are trying to understand the causal relationship between different types of diets
and weight loss. The soft intervention in this scenario could be a switch from a regular diet to a low-carb diet.
Switching to a low-carb diet is a voluntary choice made by the individual and there are no external forces or
regulations compelling them to make this change (non-coercive). The intervention involves a modification of
the individual’s diet rather than a complete disruption since they are adjusting the proportion of macronutrients
(fats, proteins, and carbs) they consume, which is less disruptive than a radical change in eating habits (gradual
modification). The individual has autonomy to choose and tailor their diet according to their preferences
and health goals so they are empowered to make informed decisions about their dietary choices (behavioural
empowerment). Conversely, if the government or an authority were to intervene and enforce a mandatory
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low-carb diet through legal means, this would constitute a hard intervention. In this scenario, regulations
would be implemented, prohibiting the consumption of specific carbohydrate-containing foods. Regulatory
agencies would be established to oversee and ensure adherence to the low-carb diet mandate, taking actions
such as removing prohibited foods from the market, restricting their import and production, and so on.
Individuals caught consuming banned foods would be subject to fines, legal repercussions, or other penalties.
A.3 EXPERIMENTS

This section contains additional details about Soft-ILCM design architectures as well as experiments settings.
A.3.1 ARCHITECTURE DESIGN

Based on the Soft-ILCM architecture depicted in Figure 1, we devised a solution function comprising three
fully connected networks. These networks consist of two layers each, with 64 hidden units per layer and ReLU
activation functions. For our synthetic dataset experiments, we employed a fully connected auto-encoder
model, while for the realistic dataset, we utilized ResNet-based networks.
A.4 RESULTS

In our synthetic dataset experiments, Soft-ILCM achieved the highest average performance with a 4-variable
causal model. We employed various data generation seeds, resulting in diverse adjacency matrices, reflecting
the influence of soft interventions on causal mechanisms and parental impact.

While our primary research objective centered on addressing identifiability challenges in implicit causal
models under soft interventions, we also conducted an investigation into the scalability of our proposed model.
To comprehensively assess its performance, we designed experiments covering a range of causal graphs,
featuring 5 to 10 variables, with 10 different seeds for each variable, following a similar experimental setup
as our 4-variable causal graph experiments. The outcomes of these experiments, comparing Soft-ILCM and
ILCM, are presented in Figure 4.

Figure 4: Causal disentanglement for different number of variables
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