
Under review as a conference paper at ICLR 2022

WHY SHOULD I TRUST YOU, BELLMAN?
EVALUATING THE BELLMAN OBJECTIVE WITH
OFF-POLICY DATA

Anonymous authors
Paper under double-blind review

ABSTRACT

In this work, we analyze the effectiveness of the Bellman equation as a proxy ob-
jective for value prediction accuracy in off-policy evaluation. While the Bellman
equation is uniquely solved by the true value function over all state-action pairs,
we show that in the finite data regime, the Bellman equation can be satisfied ex-
actly by infinitely many suboptimal solutions. This means that Bellman error can
be minimized without necessarily improving the accuracy of the value function.
We find this observation extends to practical settings; when computed over an off-
policy dataset, the Bellman error bears little relationship to value prediction error.
Consequently, we show that the Bellman error is a poor metric for comparing
value functions, and therefore, an ineffective objective for off-policy evaluation.
Finally, we discuss differences between Bellman error and the non-stationary ob-
jective used by iterative methods and deep reinforcement learning, and highlight
how the effectiveness of this objective relies on generalization during training.

1 INTRODUCTION

In reinforcement learning (RL), value functions are a measure of performance of a target policy.
Value functions are an important quantity in RL as they can be used to inform decision-making.
Consequently, many modern reinforcement learning algorithms rely on a value function in some
capacity (Gu et al., 2016; Schulman et al., 2017; Fujimoto et al., 2018; Badia et al., 2020).

The Bellman equation is a fundamental relationship in RL which relates the value of a state-action
pair to the state-action pair that follows, and is uniquely satisfied over all state-action pairs by the
true value function. The existence of the Bellman equation suggests a straightforward approach
for approximate value function learning, where a function is trained to minimize the Bellman error
(the difference of both sides of the equation). The Bellman equation has played a prominent role
in many historically significant approaches (Schweitzer & Seidmann, 1985; Baird, 1995; Bradtke &
Barto, 1996; Antos et al., 2008; Sutton et al., 2009), as well as the more modern family of deep RL
algorithms (Mnih et al., 2015; Lillicrap et al., 2015; Gu et al., 2016; Hessel et al., 2017).

In this work, we examine the relationship between the Bellman equation and the accuracy of value
functions. We do so through off-policy evaluation (OPE), which presents the task of learning the
value function of a target policy with data gathered from a separate and possibly unknown behavior
policy. OPE, which is a subcomponent of virtually any off-policy RL algorithm, is an ideal setting
for evaluating value functions as it provides a clear metric of performance (value prediction error)
and provides consistency across trials (fixed dataset and target policy).

Our main thesis is that since the Bellman equation is meant to consider the entire MDP and all
possible state-action pairs, when it is instead estimated over a finite dataset, there is likely to be
some breakdown in its relationship to value prediction. This work aims to better understand that
breakdown through theoretical analysis and empirical study. Our key discoveries are under off-
policy, function approximations, and finite data assumptions:

Bellman error is a poor metric for value error. We find that given two arbitrary value functions,
comparing their Bellman error is insufficient to determine which value function is more accurate.
This problem is highlighted by experiments which show that value functions trained to minimize

1

Under review as a conference paper at ICLR 2022

Bellman error directly (Baird, 1995) have lower Bellman error but higher value error, than value
functions trained by iterative methods (Ernst et al., 2005). We find that this non-correspondence in
relative ordering over error terms holds even when evaluated over on-policy data (Figure 2), and
only worsens further with off-policy datasets (Figure 3).

Bellman error is a poor objective for learning off-policy. A natural consequence of the Bellman
error being a weak metric for value error, is that the Bellman error makes for a poor off-policy ob-
jective. Our experiments show that value functions trained by different algorithms exhibit different
behaviors. As such, Bellman error cannot be used as a metric for arbitrary value functions. However,
we find that when comparing value functions trained by the same algorithm, Bellman error can be
used as an accurate measure for value error, but only if the error terms are evaluated with on-policy
data (Table 1). This means that Bellman error is only a meaningful objective when used on-policy.

Iterative methods rely on generalization for successful training. Iterative methods, such as many
deep RL algorithms (Mnih et al., 2015; Lillicrap et al., 2015), use a slightly different objective than
Bellman error, where the target is assumed to be fixed. This means the objective is non-stationary
and evolves during learning. Similar to the Bellman error objective, we find that examining the FQE
loss alone is insufficient to determine the accuracy of the value function. However, we remark that
we can compare two functions if we take the loss with respect to the same fixed target. This means
that if the frozen target is accurate, then the distance to that target is a good proxy for value error.
This exposes the reliance of iterative methods to generalization which occurs during training.

Our work highlights problems with using Bellman error as a signal, or objective, in the off-policy
setting, and aims to provide practitioners a better understanding of Bellman equation-based loss
functions, the role of generalization in RL, and the learning dynamics of value functions. Our
findings point to an underappreciation of the importance of finite data in widely used objectives and
we encourage the community to place a higher emphasis on practical settings.

2 BACKGROUND

Reinforcement learning (RL) is an optimization framework for tasks of sequential nature (Sutton &
Barto, 1998). Typically, tasks are defined as a Markov decision process (S, A, R, p, d0, γ), with
state space S, action spaceA, reward functionR, transition dynamics p, initial state distribution d0,
and discount factor γ ∈ [0, 1). Actions are selected according to a policy π.

The performance of a policy is measured by its discounted return Eπ[
∑∞
t γtr(st, at)]. Off-

policy evaluation (OPE) is the task of approximating the value function Qπ(s, a) =
Eπ[
∑∞
t γtr(st, at)|s0 = s, a0 = a] of a target policy, given samples from an arbitrary dataset.

A fundamental relationship regarding value functions is the Bellman equation (Bellman, 1957):

Qπ(s, a) = Er,s′∼p,a′∼π [r + γQπ(s′, a′)] , (1)

which relates the value of the current state-action pair to an expectation over the next state-action
pair. Given an approximate value function Q (distinguished from the true value function Qπ by
dropping the π superscript) of a target policy π, we denote the Bellman error ε(s, a):

ε(s, a) := Q(s, a)− Er,s′∼p,a′∼π [r + γQ(s′, a′)] . (2)

In policy evaluation, the main objective of interest is value error of a state-action pair ∆(s, a):

∆(s, a) := Q(s, a)−Qπ(s, a), (3)

where Qπ , the true value function, is intractable without access to the underlying MDP. A standard
result is if the Bellman equation converges to the fixed point then the value function must be the true
value function. We can re-frame this result in terms of Bellman errors and value errors.

Proposition 1 If the Bellman error ε(s, a) = 0 for all state-action pairs (s, a) ∈ S × A, then the
value error ∆(s, a) = 0 for all state-action pairs (s, a) ∈ S ×A.

In instances where we cannot compute the Bellman error exactly, such as from samples in a non-
deterministic environment, we can instead use temporal difference (TD) learning, where the TD
error δ(i) is a sample-based approximation to Bellman error which can be computed over a transi-
tion i := (s, a, r, s′), δ(i) := Q(s, a) − (r + γQ(s′, a′)), where a′ is sampled from the policy π.

2

Under review as a conference paper at ICLR 2022

Note that the expected TD error is simply the Bellman error ε(s, a) = Er,s′,a′ [δ(i)], where the two
values are identical if the environment and policy are deterministic.

In this work we focus on two algorithms based on the Bellman equation, which will update an
approximate value function Q, using samples from a finite dataset D. Bellman residual minimiza-
tion (BRM) (Baird, 1995) directly minimizes the Bellman error over samples from the dataset D:

LBRM(Q) :=
1

|D|
∑

(s,a,r,s′)∼D,a′∼π

(Q(s, a)− (r + γQ(s′, a′)))
2
. (4)

Fitted Q-Evaluation (FQE) (Ernst et al., 2005; Le et al., 2019) is an iterative method for minimizing
Bellman error:

LFQE(Q) :=
1

|D|
∑

(s,a,r,s′)∼D,a′∼π

(
Q(s, a)− (r + γQ̄(s′, a′))

)2
. (5)

The key distinction between the two algorithms is that BRM directly updates both Q(s, a) and
Q(s′, a′), while FQE only considers Q(s, a). This is because FQE uses Q̄(s′, a′), a target value
function which is updated Q̄← Q after a fixed number of time steps (possibly including every time
step), meaning that only the left side of the Bellman equation is directly updated.

3 EXPERIMENTAL DESIGN

Our goal is to thoroughly evaluate the relationship between Bellman error (a measurable proxy) and
value error (an unmeasurable true objective) in the case of off-policy evaluation with finite samples.
In this section we outline the experimental choices used in our empirical evaluation. Comprehensive
experimental details (i.e. hyperparameters, architecture, etc.) can be found in the Appendix E.

Setting. We consider the setting of off-policy evaluation (OPE), as it allows to directly compare
value functions over a clear metric, value error. Our experiments consider a variety of continuous-
action tasks through the MuJoCo simulator (Todorov et al., 2012; Brockman et al., 2016), as it is
deterministic and high-dimensional. Determinism in the dynamics is desirable as it, alongside a
deterministic policy, makes the Bellman error and TD error identical. This allows us to compute the
Bellman error exactly and ignore the double sampling issue for residual gradient methods (Baird,
1995). Value functions are trained to evaluate an expert deterministic target policy from a fully
trained TD3 agent (Fujimoto et al., 2018), using a standard discount factor γ = 0.99.

Algorithms. Our experiments are based on Bellman residual minimization (BRM) (Baird, 1995)
and Fitted Q-Evaluation (FQE) (Ernst et al., 2005; Le et al., 2019). We use these algorithms due to
their popularity in the literature, and to highlight differences in methods which minimize Bellman
error directly or indirectly. Network architecture and hyperparameters are the same between algo-
rithms and are selected to match state-of-the-art deep RL methods (Fujimoto et al., 2018; Haarnoja
et al., 2018a) for the MuJoCo domain. FQE is implemented using a target network updated with
Polyak averaging. In every experiment, algorithms are trained for 1 million time steps and 10 seeds.

Training Datasets. Each dataset is collected by using noisy versions of the target policy. This
allows us to rank the distribution shift of each dataset. Each noise level corresponds to both the
probability of selecting a uniformly random action, as well as the standard deviation of Gaussian
noise added to the actions (noting that actions are in the range [−1, 1]). We use uniformly random
actions to ensure that not all actions are centered around the target policy, and Gaussian noise to
ensure that every action is distinct from actions selected by the target policy.

Metrics. We use the mean squared Bellman error, as it is the most common objective on the Bellman
error (Baird, 1995; Sutton & Barto, 1998). For better interpretability, we use the absolute value error,
normalized by dividing by a constant term equal to the average true value function Qπ sampled on-
policy. As an example, this means that 0.1 value error roughly corresponds to a percent difference
of 10%. Some experiments are repeated in Appendix D with variations of these metrics.

4 THE BELLMAN EQUATION AS AN OBJECTIVE

In this section we discuss the role of the Bellman error as a proxy objective for value error. Our
main result is that missing transitions break the fundamental relationship between Bellman error

3

Under review as a conference paper at ICLR 2022

and value error, meaning that one of these error terms can be minimized independently of the other.
Consequently, this means that minimizing the empirical Bellman error makes for an ineffective ob-
jective, as it does not guarantee a corresponding reduction in value error. We show this problem
theoretically and through simple examples (4.1), then demonstrate this phenomenon occurs in stan-
dard, widely used benchmark environments (4.2). Finally, we discuss the effectiveness of deep RL
methods in spite of these concerns, and highlight the role of generalization in off-policy RL (4.3).

4.1 THEORETICAL ANALYSIS

Recall the key idea behind the Bellman equation is that it is uniquely satisfied by the true value func-
tion over all state-action pairs. Therefore, if we are interested in off-policy evaluation, the Bellman
error is used as a measurable proxy objective to value error, which is typically unmeasurable. While
completely minimizing the Bellman error results in the optimal solution, the Bellman error is only a
proxy to value error, and does not share an exact correspondence, even when considering the entire
MDP. Consider the following proposition.

Proposition 2 For any constant C > 0 and discount factor γ ∈ (0, 1), there exists an MDP and
a pair of value functions (Q1, Q2) with Bellman errors (ε1, ε2) and value errors (∆1,∆2), such
that for all state-action pairs (s, a) ∈ S × A, the absolute Bellman error of Q2 is greater than the
absolute Bellman error of Q1 by C, |ε2(s, a)| − |ε1(s, a)| > C, but the absolute value error of Q1

is greater than the absolute value error of Q2 by C, |∆1(s, a)| − |∆2(s, a)| > C.

This means that a reduction in Bellman error, even over all state-action pairs, does not guaran-
tee a corresponding reduction in value error. To understand how this outcome is possible, con-
sider an infinitely long chain MDP, with reward r = 0 for all transitions. Let k > 0. Let
Q1(·) = k/(1 − γ) for all inputs, and let Q2(st) = (−1)tk, in other words, k on even states
and −k on odd states. While Q1 clearly has higher absolute value error, when we look at the
Bellman error, the distance between Q1(st, ·) and γQ1(st+1, ·) will be less than Q2(st, ·) and
γQ2(st+1, ·) as Q2 swaps signs at each timestep. See the Appendix B.2 for the full details.

s0 s1
a0

a0

Figure 1: A basic MDP. If (s0, a0) is contained in the
dataset but (s1, a1) is not, by carefully selecting the
values Q(s0, a0) and Q(s1, a1), we can construct ex-
amples where the Bellman error of the dataset is 0 but
the value error is arbitrarily large.

This non-correspondence between value error
and Bellman error was possible as the absolute
value of the Bellman error does not capture the
bias in the value error. We can better understand
bias in the value error by simply summing the
Bellman errors over relevant transitions.

Theorem 1 Let dπ(s′, a′|s, a) = (1 −
γ)
∑∞
t=0 γ

tpπ((s, a) → s′, t)π(a′|s′), be the
conditional discounted state-action occupancy,
where pπ((s, a) → s, t) is the probability of
leaving the state-action pair (s, a) and visiting
the state s after t time steps. The value error ∆(s, a) of a state-action pair (s, a) can be defined as
a function of the Bellman error ε(s′, a′) over dπ(s′, a′|s, a):

∆(s, a) =
1

1− γ
E(s′,a′)∼dπ(·|s,a)[ε(s

′, a′)]. (6)

A direct consequence of Theorem 1 is the aforementioned uniqueness property of the Bellman equa-
tion. That is, if the Bellman error is 0 for all relevant state-action pairs, which may be visited by
the target policy, then the value error must also be 0. However, if we are instead examining a finite
dataset, this relationship also exposes the concern that if any relevant transitions are missing, then
the desired property of a unique solution of the Bellman equation is broken.

Corollary 1 If there exists a state-action pair (s′, a′) not contained in the dataset D, where the
state-action occupancy dπ(s′, a′|s, a) > 0, then for any C > 0, there exists a value function such
that the Bellman error is 0 for all state-action pairs in the dataset D, while the value error of the
state-action pair (s, a) is C.

Consider the simple two-state MDP defined in Figure 1. Suppose again we have reward r = 0 for
all state-action pairs. If we suppose that the dataset contains the sole transition (s0, a0, r, s1) then

4

Under review as a conference paper at ICLR 2022

BRM FQE MC

Figure 2: Comparing the Bellman error (top row) with value error (bottom row) of value functions trained with
a dataset of 1m on-policy transitions. Error terms are evaluated over a held-out test set of on-policy rollouts.
The shaded area captures the standard deviation over 10 seeds. MC refers to Monte Carlo value estimation
with bootstrapping to reduce bias from time-delimited episode termination. While clearly the Bellman error is
lowest for BRM (which directly minimizes Bellman error) followed by FQE (which indirectly minimizes
Bellman error) followed by MC (which minimizes the MC estimate of value error), this ordering is not
reflected in value error. This shows overfitting of the Bellman error objective is possible even with on-policy
data and that we cannot determine value prediction accuracy by examining empirical Bellman error alone.

we can construct examples where the Bellman error is 0 but the value error is arbitrarily large and
conversely, where the Bellman error is arbitrarily large but the value error is 0.

Example 1. (0 Bellman Error, C Value Error). We define the Q-values such that the Bellman
error is 0 but the value error is C.

If
Q(s0, a0) = C,

Q(s1, a0) = 1
γC.

=⇒
ε(s0, a0) = C − γ 1

γC = 0,

∆(s0, a0) = Q(s0, a0)− 0 = C.
(7)

Example 2. (C Bellman Error, 0 Value Error). In this second example, we define the Q-values
such that the Bellman error is C but the value error is 0.

If
Q(s0, a0) = 0,

Q(s1, a0) = − 1
γC.

=⇒
ε(s0, a0) = 0 + γ 1

γC = C,

∆(s0, a0) = Q(s0, a0)− 0 = 0.
(8)

Note that these examples do not involve adversarially modifying the environment in some extreme
manner, and instead occur due to the value estimate of the missing transition. As a result, these
scenarios can still happen in practical settings where function approximation is used to estimate the
values of missing transitions, as it is difficult to control the behavior of function approximation and
guarantee avoiding these scenarios where the Bellman error is deceptively low.

4.2 KEY EXPERIMENTS

Everything we have discussed thus far has suggested that Bellman error may not be a representa-
tive proxy objective for value error. We now examine our ideas with empirical results. Our main
observation is that the relationship between Bellman error and value error is broken in finite data
settings, particularly in the off-policy case. To do so, we examine the Bellman error and the value
error of value functions trained by BRM and FQE. Additionally, we remark that our experiments are
in deterministic domains, and as such, the problems we introduce are independent from the double
sampling problem with BRM (Baird, 1995).

On-policy empirical Bellman error is insufficient to rank value functions. Figure 2 shows the
learning curves of value functions trained with on-policy data, and evaluated on a held-out test set of
on-policy rollouts. Recall that while FQE uses an iterative approach based on the Bellman equation,
BRM directly minimizes the Bellman error, and the Monte Carlo estimate (MC) does not use the

5

Under review as a conference paper at ICLR 2022

BRM FQE

Figure 3: The final Bellman error and value error of functions trained with datasets gathered by increasingly
noisy versions of the target policy. 0.0 is an on-policy dataset and the remainder are off-policy. Error bars
capture the standard deviation over 10 seeds. Bellman error was clipped to 10k on the HalfCheetah task for
FQE for visual clarity, as the value estimate diverged for 0.1 and 0.2 noise levels (see the learning curves in
Appendix C.2). FQE consistently outperforms BRM while having significantly higher Bellman error.
Additionally, while the value prediction accuracy of BRM drops substantially with increased distribution shift,
the Bellman error term remains low throughout all settings, suggesting it is possible to train a function with low
Bellman error, regardless of its value accuracy.

Train Data Test Data Algorithm HalfCheetah Hopper Walker2d Ant Humanoid

All On-Policy BRM 0.95 0.74 0.96 0.99 0.98
FQE 0.81 0.76 0.72 0.79 0.11

All 0.1
BRM -0.46 -0.83 -0.74 -0.75 -0.65
FQE 0.57 0.85 -0.90 -0.60 0.20

0.1 0.1
BRM 0.11 0.04 -0.47 0.46 -0.48
FQE 0.92 0.29 -0.14 0.58 0.05

Table 1: Pearson’s correlation coefficient of the final Bellman error and value error of functions trained with
either only BRM or only FQE. Warm colors are used to show positive correlation and cold colors are
used for negative correlation. The error terms are computed over the test dataset. The functions are trained
using datasets of varying noise levels, where all refers to the set (0.1, 0.2, 0.3, 0.4, 0.5) with 10 seeds, (6×10
functions), 0.1 refers to the subset of functions trained on the 0.1 dataset (10 functions). While there is high
correlation between the on-policy empirical Bellman error and value error when comparing functions trained
with the same algorithm, this relationship is not strong when evaluated with an off-policy dataset.

Bellman equation in its objective. Therefore, it is unsurprising that the value functions trained by
BRM have lower Bellman error than the value functions trained by FQE and MC. However, even
when the FQE value functions have much higher Bellman error (such as Ant and Humanoid), the
results in value error have an inverse order, where the FQE and MC value functions have lower value
error than the BRM value functions. These learning curves demonstrate that while BRM methods
are capable of minimizing Bellman error more aggressively than FQE, the reduction in Bellman
error is not reflected in value error. This means that even when working with large (1m) on-policy
datasets, the empirical Bellman error should not be used to rank the performance of value functions.

Although Figure 2 shows a large variation in Bellman error, for most tasks, the value functions
are competitive in terms of value prediction error. This means that although Bellman error is not
an effective metric for selecting arbitrary value functions, it may still be effective as objective. In
Figure 3 we test Bellman error as an off-policy objective. We display the final Bellman error and
value error of value functions trained with off-policy datasets, where the data is gathered by a noisy
version of the target policy. Next, we test Bellman error as a metric for value error across functions
trained by a fixed algorithm. In Table 1, we seperate the functions by algorithm, and then measure the

6

Under review as a conference paper at ICLR 2022

Train Data Test Data Metric HalfCheetah Hopper Walker2d Ant Humanoid

All On-Policy
BE 0.81 0.76 0.72 0.79 0.11
LFQE 0.81 0.79 0.60 0.81 0.22
MSE 0.78 0.95 0.96 0.98 0.77

All 0.1
BE 0.57 0.85 -0.90 -0.60 0.20
LFQE 0.62 0.84 -0.90 -0.59 0.21
MSE 0.96 0.84 0.72 0.97 0.85

Table 2: Pearson’s correlation coefficient of varying metrics and the value error of functions trained with.
BE: Bellman Error, LFQE: the FQE objective, MSE: regression loss. This regression loss is with respect to a
fixed target is taken from the FQE objective from a single trial (and then kept fixed across all trials). Warm
colors are used to show positive correlation and cold colors are used for negative correlation. The error
terms are evaluated over the test data. All functions (from Figure 3), trained with datasets of varying noise
levels, are included. We can see that the difference between BE and LFQE is minimal, and that MSE with a
fixed target is the most effective metric. This shows that we cannot compare functions using LFQE because it
is non-stationary (and dependent on the current value function), but removing the dependency on the current
value function (MSE) is a strong proxy for value error.

correlation between these error terms. Train data denotes the set of training data, i.e. ‘All’ includes
the entire set of final functions gathered from the experiments in Figure 3, and ‘0.1’ includes only
the functions trained on the dataset of 0.1 noise level. The test data describes which dataset the error
terms are evaluated on. Our conclusions are as follows:

For a fixed algorithm, on-policy empirical Bellman error can be a good proxy for value error.
Table 1 shows that when we separate the value functions by algorithm, and evaluate the error terms
over on-policy data, there is a strong correlation between the Bellman error and the value error. This
means that Bellman error can be a meaningful learning objective when working with on-policy data,
and explains the decent value prediction accuracy of BRM as shown in Figure 2.

Bellman error is an ineffective off-policy objective. The signal between Bellman error and value
error is muddied when the error terms are evaluated with off-policy data (0.1). For BRM, we find
the error terms correlate negatively. This is likely due to BRM overfitting to Bellman error objective.
We also examine only the subset of functions which were trained with the 0.1 dataset, which means
the functions compared are all trained with the same algorithm and on the same dataset. While they
exhibit a higher correlation than set of functions trained with different datasets, the relationship is
still not clear across all tasks. In Figure 3, we note that the value prediction of BRM degrades rapidly
in the presence of distribution shift. Furthermore, in spite of this performance drop, the Bellman
error of BRM value functions is low for all datasets, which shows that the empirical Bellman error
can be optimized independently of value error, when evaluated over an off-policy dataset.

BRM performs poorly because of premature convergence. Our theoretical results, such as Corol-
lary 1, show there exists infinitely many suboptimal solutions where the Bellman equation is satis-
fied. This means Bellman error is an unreliable signal for value error, as there are infinitely many
functions with low Bellman error but high value error. However, in practice, we have found that the
behavior of BRM is predictable. In Appendix A we examine the final values estimated by BRM,
trained with data collected by different behavior policies of varying noise levels, and compare them
to the true value of the target policy as well as the behavior policy. We find that BRM produces final
values which are (1) highly consistent across seeds, (2) highly influenced by the behavior policy,
and (3) close to 0. This means that BRM performs poorly as it tends to converge prematurely to the
first low Bellman error solution (which is not reflected in low value error). Note that this premature
convergence is not an aspect of FQE, which explains some of the performance gap between the two
approaches. In the following section we will examine the success of FQE in more detail.

4.3 A MEANINGFUL OFF-POLICY BELLMAN OBJECTIVE REQUIRES GENERALIZATION

We now discuss the performance of FQE. In the previous section, we saw an evident disconnect
Bellman error and value error. Our results show value functions trained with FQE can have growing
Bellman error (Figure 2), and yet achieve a high value prediction accuracy (Figure 3). The success
of FQE is supported by many examples in the literature for OPE tasks (Voloshin et al., 2019; Fu

7

Under review as a conference paper at ICLR 2022

et al., 2021; Fujimoto et al., 2021), as well as control applications with deep RL (Mnih et al., 2015;
Lillicrap et al., 2015; Hessel et al., 2017). In this section, we discuss how FQE can be an effective
approach, in spite of the flaws of the Bellman equation, and highlight the role of generalization in
making the FQE objective a meaningful proxy for value error.

Unlike Bellman error, the objective used by FQE is dependent on a target value Q̄:

LFQE(Q) :=
1

|D|
∑

(s,a,r,s′)∼D

(
Q(s, a)− (r + γQ̄(s′, a′))

)2
. (9)

As FQE is an iterative algorithm, we can view LFQE as an objective which is a function of the target
Q̄. Therefore, analysis ofLFQE will require reasoning about an inconsistent target. Instead, we might
consider a fixed version of LFQE where we use a single target across all trials. We should expect this
metric to have increased relevance when comparing different value functions, as it is independent of
the current value function. In similar fashion to Table 1, in Table 2, we list the correlation between
value error and three metrics:

Bellman error (BE) : (Qθ(s, a)− (r + γQθ(s
′, a′)))2, (10)

The FQE objective (LFQE) : (Qθ(s, a)− (r + γQθ̄(s
′, a′)))2, (11)

Regression to a fixed target Q̄ (MSE) : (Qθ(s, a)− (r + γQ̄(s′, a′)))2. (12)
We use the subscript to show the parameters of the value function, where θ are the parameters of Q,
θ̄ are the parameters of Q̄ dependent on θ, and Q̄ is a fixed target network, independent of the θ. We
determine Q̄ by taking the final target Qθ̄ of a single trial, and then fix it across all trials.

The results in Table 2 show little difference between Bellman error and the FQE objective in deter-
mining value error. More importantly, we see MSE to a fixed target has a strong relationship to value
error. Given we have previously shown that FQE learns an accurate value function (Figure 3), then it
should be unsurprising that the distance to this target value function is a good proxy for value error.
However, both the final Bellman error and FQE objective are also measuring the MSE to an accurate
value function, but their values are dependent on the current value function, which makes them less
valuable for comparing across different value functions. Ultimately, this experiment shows that the
Bellman equation can be a useful off-policy objective if the target is accurate.

We can formalize the intuition “if the target is accurate, then distance to the target is a good proxy
for value error” by the following proposition on proxy objectives.

Proposition 3 Given a pair value functions (Q1, Q2) with value errors (∆1,∆2), and target y =
r + γQ̄(s′, a′). If sign(y − Qπ(s, a)) = sign(∆1(s, a)) = sign(∆2(s, a)) and |y − Qπ(s, a)| <
min(|∆1(s, a)|, |∆2(s, a)|) then |Q1(s, a)− y| < |Q2(s, a)− y| implies |∆1(s, a)| < |∆2(s, a)|.

This same observation could be applied equally to BRM methods. However, we remark that by
optimizing both sides of the Bellman equation, BRM methods are directly modifying the target.
We can understand some of the performance gap between FQE and BRM in that FQE is allowed
to generalize, whereas in Figure 4, we see that BRM methods are pushed into early convergence,
which favors solutions near 0, and inhibits generalization in the target.

The Bellman equation needs generalization. The importance of the accuracy of the target, high-
lights the reliance of the Bellman equation on generalization. With an off-policy and finite dataset,
succeeding state-action pairs (s′, a′) are unlikely to be contained in the dataset. Consequently,
Q(s′, a′) will only be accurate if the value function is able to generalize to this state-action pair1.

While this is a simple observation, it has significant implications. Firstly, this means the Bellman
equation requires generalization during training. This is distinct from typical machine learning
settings, where generalization is an exercise which occurs after training. This is problematic because
if it is difficult to ensure good generalization after training, it is only more difficult to ensure good
generalization during training. This highlights the importance of feature learning (Jaderberg et al.,
2016; Yang & Nachum, 2021), as neural network features are unlikely to be relevant early in training.
Another implication is hyperparameter sensitivity. It is a well known problem that RL algorithms
are sensitive to small adjustments (Henderson et al., 2017; Engstrom et al., 2019). A necessity of
generalization at training time causes the significance of correct hyperparameters to be amplified.

1A similar observation has been made in the context of offline RL, with an emphasis on the errors this
generalization induces (Fujimoto et al., 2019b).

8

Under review as a conference paper at ICLR 2022

5 RELATED WORK

The role of Bellman error has been considered in depth in the literature, in the context of bounds
on the performance of a greedy policy in relation to the norm of the Bellman error (Williams &
Baird, 1993; Singh & Yee, 1994; Bertsekas & Tsitsiklis, 1996; Heger, 1996; Munos, 2003; 2007;
Farahmand et al., 2010).

Close to our work, Maillard et al. (2010) perform finite sample analysis on BRM methods with on-
policy samples. Similar to our work, they conclude that the empirical Bellman error from on-policy
samples is a reasonable approximation to the true Bellman error, but do not perform practical exper-
iments or consider the off-policy setting. Kolter (2011) remarks that with off-policy sampling, the
solution to linear TD can have arbitrarily large Bellman error but does not consider BRM methods,
or finite datasets. Geist et al. (2017) evaluate the Bellman error as an objective for policy optimiza-
tion. Although they examine a different setting, they arrive at a similar conclusion, the signal from
the Bellman error is only meaningful if the sampling distribution corresponds to the optimal policy.

The Bellman error has additional concerns that our paper does not discuss. The double sampling
problem (Baird, 1995) is that the gradient of the Bellman error is biased if estimated from a single
transition in a stochastic MDP. The double sampling issue provides motivation for most recent BRM
methods (Feng et al., 2019; Zhu & Ying, 2020; Bas-Serrano et al., 2020). We avoid this particular
issue in our analysis by focusing on deterministic environments, but remark that BRM is likely to
perform even worse with stochasticity. Sutton & Barto (1998) show that in scenarios where the
feature representation of states is not uniquely defined, there exist examples where Bellman error is
not learnable, as the structure of the MDP can not be determined from data alone, and thus the true
Bellman error cannot be computed.

Our observations connect strongly to offline RL (Lange et al., 2012; Levine et al., 2020), where
offline policy evaluation is used in conjunction with policy learning. Previous work has observed
that the value function of FQE methods can diverge when computed offline due to poor estimates
in the target (Fujimoto et al., 2018; 2019a; Kumar et al., 2019). Similar to our work, empirical
properties of deep value functions which induce instability or divergence have been studied (Fu
et al., 2019; Achiam et al., 2019) but have not considered the role of the objective itself. Several
recent papers examined the sample complexity of offline RL, noting that without access to online
data, the number of necessary transitions is exponential with respect to the horizon (Wang et al.,
2020; Zanette, 2021; Chen et al., 2021; Xiao et al., 2021). In the context of offline model selection,
several papers have observed that TD error is a weak baseline with poor correspondence to policy
performance, remarking that it is a measure of value function accuracy rather than quality of the
policy, but provide little analysis (Irpan et al., 2019; Paine et al., 2020; Tang & Wiens, 2021). Our
findings help explain these results by showing that Bellman (and TD) error are not an effective
measure of value accuracy, and cannot rank models even with on-policy data. These empirically-
minded observations caution against traditional results which suggest Bellman error as a metric for
model selection (Farahmand & Szepesvári, 2011).

6 CONCLUSION

In this paper we examine the role of the Bellman equation as an objective. Our main observation is
that the Bellman equation is only uniquely solved by the true value function when computed over
the entire MDP. For a given finite dataset, we show there can exist infinitely many suboptimal value
functions which satisfy the Bellman equation. This exposes a fundamental problem with Bellman
error, in that it is not guaranteed to correspond to value error. We demonstrate this problem theo-
retically, with toy problems, and empirically on standard benchmark environments. This result is
highlighted by an empirical comparison between Bellman Residual Minimization (BRM) (Baird,
1995) and Fitted Q-Evaluation (FQE) (Ernst et al., 2005; Le et al., 2019), which shows that value
functions trained with BRM have much lower Bellman error but much higher value error than value
functions trained with FQE. While much of the modern literature surrounding Bellman error min-
imization emphasizes the double sampling problem (Dai et al., 2018; Feng et al., 2019; Saleh &
Jiang, 2019; Bas-Serrano et al., 2020), our results show a much more fundamental problem; solv-
ing the Bellman equation over a finite dataset does not guarantee an accurate value function. We
give concrete evidence of this problem with practical experiments, and hope our findings provide
practitioners, and theorists alike, a better understanding of Bellman equation-based objectives.

9

Under review as a conference paper at ICLR 2022

REFERENCES

Joshua Achiam, Ethan Knight, and Pieter Abbeel. Towards characterizing divergence in deep q-
learning. arXiv preprint arXiv:1903.08894, 2019.

András Antos, Csaba Szepesvári, and Rémi Munos. Learning near-optimal policies with bellman-
residual minimization based fitted policy iteration and a single sample path. Machine Learning,
71(1):89–129, 2008.

Adrià Puigdomènech Badia, Bilal Piot, Steven Kapturowski, Pablo Sprechmann, Alex Vitvitskyi,
Zhaohan Daniel Guo, and Charles Blundell. Agent57: Outperforming the atari human benchmark.
In International Conference on Machine Learning, pp. 507–517. PMLR, 2020.

Leemon Baird. Residual algorithms: Reinforcement learning with function approximation. In
Machine Learning Proceedings 1995, pp. 30–37. Elsevier, 1995.

Joan Bas-Serrano, Sebastian Curi, Andreas Krause, and Gergely Neu. Logistic q-learning. arXiv
preprint arXiv:2010.11151, 2020.

Richard Bellman. Dynamic Programming. Princeton University Press, 1957.

Dimitri P Bertsekas and John N. Tsitsiklis. Neuro-Dynamic Programming. Athena scientific Bel-
mont, MA, 1996.

Steven J Bradtke and Andrew G Barto. Linear least-squares algorithms for temporal difference
learning. Machine learning, 22(1):33–57, 1996.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym, 2016.

Lin Chen, Bruno Scherrer, and Peter L Bartlett. Infinite-horizon offline reinforcement learning
with linear function approximation: Curse of dimensionality and algorithm. arXiv preprint
arXiv:2103.09847, 2021.

Bo Dai, Albert Shaw, Lihong Li, Lin Xiao, Niao He, Zhen Liu, Jianshu Chen, and Le Song. Sbeed:
Convergent reinforcement learning with nonlinear function approximation. In International Con-
ference on Machine Learning, pp. 1125–1134. PMLR, 2018.

Logan Engstrom, Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Firdaus Janoos, Larry
Rudolph, and Aleksander Madry. Implementation matters in deep rl: A case study on ppo and
trpo. In International Conference on Learning Representations, 2019.

Damien Ernst, Pierre Geurts, and Louis Wehenkel. Tree-based batch mode reinforcement learning.
Journal of Machine Learning Research, 6(Apr):503–556, 2005.

Amir-massoud Farahmand and Csaba Szepesvári. Model selection in reinforcement learning. Ma-
chine learning, 85(3):299–332, 2011.

Amir Massoud Farahmand, Rémi Munos, and Csaba Szepesvári. Error propagation for approximate
policy and value iteration. In Advances in Neural Information Processing Systems, 2010.

Yihao Feng, Lihong Li, and Qiang Liu. A kernel loss for solving the bellman equation. Advances
in Neural Information Processing Systems, 32:15456–15467, 2019.

Justin Fu, Aviral Kumar, Matthew Soh, and Sergey Levine. Diagnosing bottlenecks in deep q-
learning algorithms. In International Conference on Machine Learning, pp. 2021–2030. PMLR,
2019.

Justin Fu, Mohammad Norouzi, Ofir Nachum, George Tucker, Ziyu Wang, Alexander Novikov,
Mengjiao Yang, Michael R Zhang, Yutian Chen, Aviral Kumar, Cosmin Paduraru, Sergey Levine,
and Thomas Paine. Benchmarks for deep off-policy evaluation. In International Conference on
Learning Representations, 2021.

10

Under review as a conference paper at ICLR 2022

Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function approximation error in
actor-critic methods. In International Conference on Machine Learning, volume 80, pp. 1587–
1596. PMLR, 2018.

Scott Fujimoto, Edoardo Conti, Mohammad Ghavamzadeh, and Joelle Pineau. Benchmarking batch
deep reinforcement learning algorithms. arXiv preprint arXiv:1910.01708, 2019a.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. In International Conference on Machine Learning, pp. 2052–2062, 2019b.

Scott Fujimoto, David Meger, and Doina Precup. A deep reinforcement learning approach to
marginalized importance sampling with the successor representation. In Proceedings of the 38th
International Conference on Machine Learning, volume 139, pp. 3518–3529. PMLR, 2021.

Matthieu Geist, Bilal Piot, and Olivier Pietquin. Is the bellman residual a bad proxy? In Proceedings
of the 31st International Conference on Neural Information Processing Systems, pp. 3208–3217,
2017.

Shixiang Gu, Timothy Lillicrap, Ilya Sutskever, and Sergey Levine. Continuous deep q-learning
with model-based acceleration. In International Conference on Machine Learning, pp. 2829–
2838, 2016.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International Confer-
ence on Machine Learning, volume 80, pp. 1861–1870. PMLR, 2018a.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. Soft actor-critic algorithms and appli-
cations. arXiv preprint arXiv:1812.05905, 2018b.

Matthias Heger. The loss from imperfect value functions in expectation-based and minimax-based
tasks. Machine Learning, 22(1):197–225, 1996.

Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and David Meger.
Deep reinforcement learning that matters. In AAAI Conference on Artificial Intelligence, 2017.

Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney, Dan
Horgan, Bilal Piot, Mohammad Azar, and David Silver. Rainbow: Combining improvements in
deep reinforcement learning. arXiv preprint arXiv:1710.02298, 2017.

Alexander Irpan, Kanishka Rao, Konstantinos Bousmalis, Chris Harris, Julian Ibarz, and Sergey
Levine. Off-policy evaluation via off-policy classification. Advances in Neural Information Pro-
cessing Systems, 32:5437–5448, 2019.

Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czarnecki, Tom Schaul, Joel Z Leibo, David
Silver, and Koray Kavukcuoglu. Reinforcement learning with unsupervised auxiliary tasks. arXiv
preprint arXiv:1611.05397, 2016.

Sham Kakade and John Langford. Approximately optimal approximate reinforcement learning. In
International Conference on Machine Learning, volume 2, pp. 267–274, 2002.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

J. Zico Kolter. The fixed points of off-policy td. In Advances in Neural Information Processing
Systems, 2011.

Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing off-policy
q-learning via bootstrapping error reduction. In Advances in Neural Information Processing Sys-
tems, pp. 11784–11794, 2019.

Sascha Lange, Thomas Gabel, and Martin Riedmiller. Batch reinforcement learning. In Reinforce-
ment learning, pp. 45–73. Springer, 2012.

11

Under review as a conference paper at ICLR 2022

Hoang Le, Cameron Voloshin, and Yisong Yue. Batch policy learning under constraints. In Inter-
national Conference on Machine Learning, pp. 3703–3712. PMLR, 2019.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tuto-
rial, review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

Odalric-Ambrym Maillard, Rémi Munos, Alessandro Lazaric, and Mohammad Ghavamzadeh.
Finite-sample analysis of bellman residual minimization. In Proceedings of 2nd Asian Conference
on Machine Learning, pp. 299–314. JMLR Workshop and Conference Proceedings, 2010.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. Nature, 518(7540):529–533, 2015.

Rémi Munos. Error bounds for approximate policy iteration. In ICML, volume 3, pp. 560–567,
2003.

Rémi Munos. Performance bounds in l p-norm for approximate value iteration. SIAM journal on
control and optimization, 46(2):541–561, 2007.

Tom Le Paine, Cosmin Paduraru, Andrea Michi, Caglar Gulcehre, Konrad Zolna, Alexander
Novikov, Ziyu Wang, and Nando de Freitas. Hyperparameter selection for offline reinforcement
learning. arXiv preprint arXiv:2007.09055, 2020.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. In Advances in Neural Information Processing Systems, pp.
8024–8035, 2019.

Ehsan Saleh and Nan Jiang. Deterministic bellman residual minimization. In Proceedings of Opti-
mization Foundations for Reinforcement Learning Workshop at NeurIPS, 2019.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Paul J Schweitzer and Abraham Seidmann. Generalized polynomial approximations in markovian
decision processes. Journal of mathematical analysis and applications, 110(2):568–582, 1985.

Satinder P Singh and Richard C Yee. An upper bound on the loss from approximate optimal-value
functions. Machine Learning, 16(3):227–233, 1994.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction, volume 1. MIT
press Cambridge, 1998.

Richard S Sutton, Hamid Reza Maei, Doina Precup, Shalabh Bhatnagar, David Silver, Csaba
Szepesvári, and Eric Wiewiora. Fast gradient-descent methods for temporal-difference learning
with linear function approximation. In Proceedings of the 26th Annual International Conference
on Machine Learning, pp. 993–1000, 2009.

Shengpu Tang and Jenna Wiens. Model selection for offline reinforcement learning: Practical con-
siderations for healthcare settings. In Machine Learning for Healthcare Conference, pp. 2–35.
PMLR, 2021.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5026–5033.
IEEE, 2012.

Cameron Voloshin, Hoang M Le, Nan Jiang, and Yisong Yue. Empirical study of off-policy policy
evaluation for reinforcement learning. arXiv preprint arXiv:1911.06854, 2019.

12

Under review as a conference paper at ICLR 2022

Ruosong Wang, Dean Foster, and Sham M Kakade. What are the statistical limits of offline rl with
linear function approximation? In International Conference on Learning Representations, 2020.

Ronald J. Williams and L. Baird. Tight performance bounds on greedy policies based on imperfect
value functions. Technical report, Northeastern University, College of Computer Science, 1993.

Chenjun Xiao, Ilbin Lee, Bo Dai, Dale Schuurmans, and Csaba Szepesvari. On the sample complex-
ity of batch reinforcement learning with policy-induced data. arXiv preprint arXiv:2106.09973,
2021.

Mengjiao Yang and Ofir Nachum. Representation matters: Offline pretraining for sequential deci-
sion making. In Self-Supervision for Reinforcement Learning Workshop-ICLR 2021, 2021.

Andrea Zanette. Exponential lower bounds for batch reinforcement learning: Batch rl can be ex-
ponentially harder than online rl. In International Conference on Machine Learning, pp. 12287–
12297. PMLR, 2021.

Yuhua Zhu and Lexing Ying. Borrowing from the future: An attempt to address double sampling.
In Mathematical and scientific machine learning, pp. 246–268. PMLR, 2020.

13

Under review as a conference paper at ICLR 2022

A BRM FINAL VALUES

Target Policy Behavior Policy BRM BRM (Suboptimal target policy)

Figure 4: Visualizing the final value estimated by BRM after training on different datasets corresponding to
varying noise levels. The true value of the target policy and the behavior policy are displayed to provide
reference, as well as BRM when trained to evaluate a suboptimal policy (corresponding to TD3 trained for
300k time steps rather than 3m). Error bars capture the standard deviation over 10 seeds (but are visually hard
to see as the deviation is low). We can see that BRM typically converges to a value which is closer to the
behavior policy rather than the target policy, and typically prefers values which are close to 0. Interestingly,
the BRM trained to evaluate the suboptimal target policy converges to the same value on the noisiest datasets,
suggesting that the influence of the target policy on what value BRM converges to is reduced with increased
distribution shift.

14

Under review as a conference paper at ICLR 2022

B PROOFS

B.1 PROPOSITION 1

Proposition 1 If the Bellman error ε(s, a) = 0 for all state-action pairs (s, a) ∈ S × A, then the
value error ∆(s, a) = 0 for all state-action pairs (s, a) ∈ S ×A.

Proof. This is a direct consequence of Theorem 1.

�

B.2 PROPOSITION 2

Proposition 2 For any constant C > 0 and discount factor γ ∈ (0, 1), there exists an MDP and
a pair of value functions (Q1, Q2) with Bellman errors (ε1, ε2) and value errors (∆1,∆2), such
that for all state-action pairs (s, a) ∈ S × A, the absolute Bellman error of Q2 is greater than the
absolute Bellman error of Q1 by C, |ε2(s, a)| − |ε1(s, a)| > C, but the absolute value error of Q1

is greater than the absolute value error of Q2 by C, |∆1(s, a)| − |∆2(s, a)| > C.

Proof. Proof by construction. Consider an infinitely long chain MDP, with reward r = 0 for
all transitions. We will consider a more general case, where |ε2(s, a)|b − |ε1(s, a)|b > C and
|∆1(s, a)|d − |∆2(s, a)|d > C, for any b > 0 and d > 0.

Let k > 0. Let Q1(·) = k
1−γ for all inputs, and let Q2(st) = (−1)tk, in other words, k on even

states and −k on odd states.

Since the value of all state-action pairs is 0, we have

|∆1(·)|d =

(
k

1− γ

)d
, (13)

|∆2(·)|d = kd, (14)

and

|ε1(·)|b =

∣∣∣∣ k

1− γ
− γk

1− γ

∣∣∣∣b = kb, (15)

|ε2(·)|b = | ± 1(k −−γk)|b = (k + γk)b. (16)

We have |∆1(s, a)|d − |∆2(s, a)|d > C if:(
k

1− γ

)d
− kd > C (17)

⇐⇒ 1

(1− γ)d
kd − kd > C (18)

⇐⇒ (
1

(1− γ)d
− 1)kd > C (19)

⇐⇒ k >

(
C

1
(1−γ)d

− 1

) 1
d

. (20)

We have |ε2(s, a)|b − |ε1(s, a)|b > C if:

(k + γk)b − kb > C (21)

⇐⇒ (1 + γ)bkb − kb > C (22)

⇐⇒ ((1 + γ)b − 1)kb > C (23)

⇐⇒ k >

(
C

(1 + γ)b − 1

) 1
b

. (24)

(25)

15

Under review as a conference paper at ICLR 2022

Let k = max

((
C

(1+γ)b−1

) 1
b

,

(
C

1

(1−γ)d
−1

) 1
d

)
.

�

B.3 THEOREM 1

Theorem 1 Let dπ(s′, a′|s, a) = (1 − γ)
∑∞
t=0 γ

tpπ((s, a) → s′, t)π(a′|s′), be the conditional
discounted state-action occupancy, where pπ((s, a) → s, t) is the probability of leaving the state-
action pair (s, a) and visiting the state s after t time steps. The value error ∆(s, a) of a state-action
pair (s, a) can be defined as a function of the Bellman error ε(s′, a′) over dπ(s′, a′|s, a):

∆(s, a) =
1

1− γ
E(s′,a′)∼dπ(·|s,a)[ε(s

′, a′)]. (26)

Proof. Our proof follows similar steps to the proof of Lemma 6.1 in (Kakade & Langford, 2002)
and likely others.

First by definition:

∆(s, a) := Q(s, a)−Qπ(s, a) (27)
⇒ Qπ(s, a) = Q(s, a)−∆(s, a). (28)

Then we can decompose value error:

∆(s, a) = Q(s, a)−Qπ(s, a) (29)

= Q(s, a)− (r + γEπ[Qπ(s′, a′)]) (30)

= Q(s, a)− (r + γEπ[Q(s′, a′)−∆(s′, a′)]) (31)

= Q(s, a)− (r + γEπ[Q(s′, a′)]) + γEπ[∆(s′, a′)] (32)

= ε(s, a) + γEπ[∆(s′, a′)]. (33)

By treating ∆(s, a) as a value function and ε(s′, a′) as the reward, we can see that:

∆(s, a) =
1

1− γ
E(s′,a′)∼dπ(·|s,a)[ε(s

′, a′)]. (34)

Note that this theorem can also be applied to finite horizon MDPs, by either considering a defini-
tion of dπ which accounts for the finite horizon, dπ(s′, a′|s, a) = 1∑T−1

t=0 γt

∑T−1
t=0 γtpπ((s, a) →

s′, t)π(a′|s′), or by transforming the finite horizon MDP into an infinite horizon MDP by consider-
ing episode termination to be a terminal state which loops infinitely upon itself.

�

B.4 COROLLARY 1

Corollary 1 If there exists a state-action pair (s′, a′) not contained in the dataset D, where the
state-action occupancy dπ(s′, a′|s, a) > 0, then for any C > 0, there exists a value function such
that the Bellman error is 0 for all state-action pairs in the dataset D, while the value error of the
state-action pair (s, a) is C.

Proof. This is a direct consequence of Theorem 1. LetD′ contain the set of state-action pairs (s′, a′)
not contained in the dataset D, where the state-action occupancy dπ(s′, a′|s, a) > 0. It follows that

∆(s, a) =
1

1− γ
E(s′,a′)∼dπ(·|s,a)[ε(s

′, a′)] (35)

=
1

1− γ
∑

(s′,a′)∼D

ε(s′, a′) +
1

1− γ
∑

(s′,a′)∼D′
ε(s′, a′). (36)

16

Under review as a conference paper at ICLR 2022

Recall
ε(s, a) := Q(s, a)− Er,s′∼p,a′∼π [r + γQ(s′, a′)] , (37)

and there exists at least one Q(s, a), such that (s, a) ∈ D′. It follows that we can choose a function
Q such that 1

1−γ
∑

(s′,a′)∼D ε(s
′, a′) = 0 but 1

1−γ
∑

(s′,a′)∼D′ ε(s
′, a′) = C.

�

B.5 PROPOSITION 3

Proposition 3 Given a pair value functions (Q1, Q2) with value errors (∆1,∆2), and target y =
r + γQ̄(s′, a′). If sign(y − Qπ(s, a)) = sign(∆1(s, a)) = sign(∆2(s, a)) and |y − Qπ(s, a)| <
min(|∆1(s, a)|, |∆2(s, a)|) then |Q1(s, a)− y| < |Q2(s, a)− y| implies |∆1(s, a)| < |∆2(s, a)|.

|Q1(s, a)− y| < |Q2(s, a)− y| (38)
⇒ |Q1(s, a)−Qπ(s, a) +Qπ(s, a)− y| < |Q2(s, a)−Qπ(s, a) +Qπ(s, a)− y| (39)
⇒ |∆1(s, a)− (y −Qπ(s, a))| < |∆2(s, a)− (y −Qπ(s, a))| (40)
⇒ |∆1(s, a)| − |(y −Qπ(s, a))| < |∆2(s, a)| − |(y −Qπ(s, a))| (41)
⇒ |∆1(s, a)| < |∆2(s, a)|. (42)

Where the second last line is from sign(y − Qπ(s, a)) = sign(∆1(s, a)) = sign(∆2(s, a)) and
|y −Qπ(s, a)| < min(|∆1(s, a)|, |∆2(s, a)|).

�

17

Under review as a conference paper at ICLR 2022

C LEARNING CURVES

C.1 BRM

(a) Evaluated with the Training Dataset

(b) Evaluated with the On-Policy Dataset

Noise level: 0.0 0.1 0.2 0.3 0.4 0.5

Figure 5: Visualizing the learning curves of the Bellman error and value error of value functions trained by
BRM. The shaded area captures the standard deviation over 10 seeds. We can observe that Bellman error eval-
uated with the on-policy dataset is roughly representative of the value error, while the Bellman error evaluated
with their training datasets is not.

18

Under review as a conference paper at ICLR 2022

C.2 FQE

(a) Evaluated with the Training Dataset

(b) Evaluated with the On-Policy Dataset

Noise level: 0.0 0.1 0.2 0.3 0.4 0.5

Figure 6: Visualizing the learning curves of the Bellman error and value error of value functions trained by
FQE. The shaded area captures the standard deviation over 10 seeds. Bellman error of individual trials is
clipped to 10k for visual clarity.

19

Under review as a conference paper at ICLR 2022

D WHAT IF...

D.1 ...WE COMPARE ABSOLUTE BELLMAN ERROR TO ABSOLUTE VALUE ERROR?

Figure 2 and Table 1 compare the mean squared Bellman error to the absolute value error. In this
section we repeat these results comparing absolute Bellman error to absolute value error (Figure 7,
Table 3), and mean squared Bellman error to mean squared value error (Figure 8, Table 4). We find
that our observations are consistent with the observations in the main body.

BRM FQE MC

Figure 7: Comparing the absolute Bellman error with the absolute value error. The shaded area captures the
standard deviation over 10 seeds. Both algorithms are trained using on-policy data collected by the target
policy.

BRM FQE MC

Figure 8: Comparing the mean squared Bellman error with the mean squared value error. The shaded area
captures the standard deviation over 10 seeds. Both algorithms are trained using on-policy data collected by
the target policy.

20

Under review as a conference paper at ICLR 2022

Train Data Test Data Algorithm HalfCheetah Hopper Walker2d Ant Humanoid

All On-Policy BRM 1.00 0.97 1.00 1.00 1.00
FQE 0.79 0.79 0.80 0.79 0.83

All 0.1
BRM 0.01 0.72 -0.18 -0.61 -0.50
FQE 0.73 0.54 -0.58 -0.07 0.67

0.1 0.1
BRM -0.08 0.53 -0.14 0.49 -0.15
FQE 0.99 0.76 0.01 0.43 0.27

Table 3: Pearson’s correlation coefficient of the final absolute Bellman error and absolute value error of func-
tions trained with either only BRM or only FQE. Warm colors are used to show positive correlation and cold
colors are used for negative correlation. The error terms are computed over the test dataset. The functions
are trained using datasets of varying noise levels, where all refers to the set (0.1, 0.2, 0.3, 0.4, 0.5) with 10
seeds, (6×10 functions), 0.1 refers to the subset of functions trained on the 0.1 dataset (10 functions). This is
a repeat of Table 1, comparing absolute Bellman error to absolute value error (rather than MSE Bellman error).
Similar observations can be made.

Train Data Test Data Algorithm HalfCheetah Hopper Walker2d Ant Humanoid

All On-Policy BRM 0.97 0.79 0.99 0.99 1.00
FQE 0.63 0.63 0.60 0.55 0.15

All 0.1
BRM -0.29 -0.70 -0.58 -0.77 -0.58
FQE 0.56 0.82 -0.91 -0.66 0.20

0.1 0.1
BRM 0.95 0.32 -0.13 0.53 0.54
FQE 0.12 0.06 -0.47 0.28 -0.48

Table 4: Pearson’s correlation coefficient of the final mean squared Bellman error and mean squared value error
of functions trained with either only BRM or only FQE. Warm colors are used to show positive correlation
and cold colors are used for negative correlation. The error terms are computed over the test dataset. The
functions are trained using datasets of varying noise levels, where all refers to the set (0.1, 0.2, 0.3, 0.4, 0.5)
with 10 seeds, (6×10 functions), 0.1 refers to the subset of functions trained on the 0.1 dataset (10 functions).
This is a repeat of Table 1, comparing mean squared Bellman error to mean squared value error (rather than
absolute value error). Similar observations can be made.

21

Under review as a conference paper at ICLR 2022

D.2 ...WE USE LESS DATA?

All of our experiments use datasets of 1m transitions. In Figure 9 we repeat the experiment in
Figure 2 with a dataset of 50k transitions, rather 1m. We find our observations are unchanged in this
setting, in that FQE and MC have much higher Bellman errors but lower value errors than BRM.

BRM FQE MC

Figure 9: Comparing the mean squared Bellman error with the absolute value error, using a dataset of 50k,
rather than 1m as in Figure 2. The shaded area captures the standard deviation over 10 seeds. Both algorithms
are trained using on-policy data collected by the target policy.

22

Under review as a conference paper at ICLR 2022

D.3 ...WE USE TRAINING ERROR INSTEAD OF TEST ERROR?

Figure 2 evaluates the Bellman error and the value error on a held-out test set. In section we show
the results on the training set (Figure 10). We see near identical figures. This shows that the dataset
is sufficiently large that overfitting to individual transitions does not occur.

(a) Training Dataset

(b) Test Dataset

BRM FQE MC

Figure 10: Comparing the Bellman error with value error. The shaded area captures the standard deviation over
10 seeds. Both algorithms are trained using on-policy data collected by the target policy. Figure 2 shows the
Bellman error and value error, evaluated on a held-out test set (repeated in Figure 10b). In this figure we also
display the error terms over the training set (Figure 10a). We see near identical figures. This shows that the
dataset is sufficiently large that overfitting to individual transitions does not occur.

23

Under review as a conference paper at ICLR 2022

D.4 ...WE USE TRAIN FOR LONGER?

All of our experiments train for 1m timseteps. In Figure 11 we repeat the experiment in Figure 2
while training for 10m time steps, rather 1m. Interestingly, we see more consistent relative ordering
between FQE and BRM at 10m time steps, but otherwise our observations are unchanged with
additional training.

BRM FQE MC

Figure 11: Comparing the mean squared Bellman error with the absolute value error using a dataset of 1m but
trained for 10m time steps total, rather than 1m as in Figure 2. The shaded area captures the standard deviation
over 10 seeds. Both algorithms are trained using on-policy data collected by the target policy.

24

Under review as a conference paper at ICLR 2022

E EXPERIMENT DETAILS

Software. Software versions used were as follows:

• Python 3.6
• Pytorch 1.8.0 (Paszke et al., 2019)
• Gym 0.17.0 (Brockman et al., 2016)
• MuJoCo 1.502 (Todorov et al., 2012)
• mujoco-py 1.50.1.1

-v3 versions of the MuJoCo environments were used.

Hyperparameters. FQE and BRM used the same hyperparameters and architecture, as described
in Table 5. These hyperparameters were chosen to match TD3 and SAC (Fujimoto et al., 2018;
Haarnoja et al., 2018a), state of the art off-policy RL algorithms used in the MuJoCo domain. Fol-
lowing these algorithms, both FQE and BRM set the discount factor γ to 0 for terminal states (and
use 0.99 otherwise). FQE uses Polyak averaging for the target network update. Given parameters
θ of the current network, the parameters of the target network θ̄ are updated by the following after
each time step:

θ̄ ← (1− τ)θ̄ + τθ, (43)
where τ is the target update rate. This rule is a commonly-used update rule by many off-policy
RL algorithms for continuous actions (Lillicrap et al., 2015; Fujimoto et al., 2018; Haarnoja et al.,
2018b).

Hyperparameter Value

Network
Hyperparameters

Optimizer Adam (Kingma & Ba, 2014)
Learning rate 3e-4
Mini-batch size 256
Target update rate (FQE) 5e-3
Discount factor 0.99
Terminal Discount factor 0.0

Architecture
Network Hidden dim 256
Network Hidden layers 2
Activation function ReLU

Table 5: Hyperparameters and architecture.

OPE target. In each experiment, we evaluate the discounted return of a deterministic target policy
taken from TD3 (Fujimoto et al., 2018) trained for 3 million time steps. Our implementation of TD3
is based directly off of the author-provided Github (https://github.com/sfujim/TD3).
For all experiments, the discounted return uses a discount factor of γ = 0.99.

Dataset and behavior policy. Datasets are collected by using a noisy variation of the target policy
πt. For a noise level n ∈ [0.0, 0.1, 0.2, 0.3, 0.4, 0.5], the behavior policy πb is defined as:

πb(s) =

{
πt(s) +N (0, n), with p = n,

uniform random action with p = 1− n. (44)

Most experiments use a dataset of 1 million transitions, matching the replay buffer size of TD3/SAC.

Metrics and evaluation datasets. The main metrics used are Bellman error and value error. Given
an evaluation dataset De and value function Q, the mean-squared Bellman error is computed by:

1

|De|
∑

(s,a,r,s′)∼De,a′∼π

(Q(s, a)− (r + γQ(s′, a′)))
2
. (45)

Given an evaluation dataset De and value function Q, the normalized absolute value error is com-
puted by:

1

K|De|
∑

(s,a,r,s′)∼De,a′∼π

|Q(s, a)−Qπ(s, a)|. (46)

2License information: https://www.roboti.us/license.html

25

https://github.com/sfujim/TD3
https://www.roboti.us/license.html

Under review as a conference paper at ICLR 2022

Qπ(s, a) is computed near exactly by resetting the MuJoCo environment to the specific state-
action pair (s, a) and running the policy for 1000 time steps. Value error is normalized by a per-
environment constant equal to the average true value Qπ over the on-policy evaluation dataset D0.0:

K =
1

|D0.0|
∑

(s,a,r,s′)∼D0.0

Qπ(s, a). (47)

We report the values of K used in Table 6.

Environment K

HalfCheetah 1382.35
Hopper 388.56
Walker2d 529.12
Ant 580.90
Humanoid 571.29

Table 6: Values of the per-environment normalizing constant K, used to normalize value error for better inter-
pretability across tasks.

Evaluation datasets are each collected by using the same set of behavior policies used to generate
the training datasets, in other words with noise levels [0.0, 0.1, 0.2, 0.3, 0.4, 0.5]. Each evaluation
dataset contains 1000 transitions, and is gathered by collecting 50k transitions, and then uniformly
randomly saving 1000 of the 50k transitions. Error terms are computed over an evaluation dataset
of 1000 transitions, generated in similar fashion as the training datasets. Tables (1 & 2) report
Pearson’s correlation coefficient. Since this measure is not robust to outliers, for FQE we remove
the 30% of data points with the highest Bellman error terms (functions trained with BRM had no
obvious outliers).

26

	Introduction
	Background
	Experimental Design
	The Bellman Equation as an Objective
	Theoretical Analysis
	Key Experiments
	A Meaningful Off-Policy Bellman Objective Requires Generalization

	Related Work
	Conclusion
	BRM Final Values
	Proofs
	Proposition 1
	Proposition 2
	Theorem 1
	Corollary 1
	Proposition 3

	Learning Curves
	BRM
	FQE

	What if...
	...We compare absolute Bellman error to absolute value error?
	...We use less data?
	...We use training error instead of test error?
	...We use train for longer?

	Experiment Details

