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ABSTRACT

Auto-regressive language models have made significant inroads in code generation,
reasoning, and execution in recent years. Despite the recent progress, however,
even the most capable models have been shown to perform significantly worse
than humans in the task of predicting what a given piece of code does. This has
fueled concerns about the tendency of models that seemingly generate and reason
over code to learn shortcuts without developing any deeper understanding of code.
Unlike reasoning, the meaning of a line of code is determined entirely by the
effect it has on the state of the machine on which it is executed. Inspired by this
observation, we propose measuring code understanding as the ability to predict
the effects of line-by-line execution of a piece of code. We perform an empirical
study which suggests that the inability to track machine state is a key contributor
to the deficiencies of existing models to understand code. We also propose a
simple solution based on fine-tuning a model on auxiliary state supervision, and
we demonstrate the effectiveness of this approach.

1 INTRODUCTION

Classic computers execute code by sequentially processing a series of instructions, updating memory
at each step. In contrast, when a Large Language Model (LLM) or a human is tasked with executing
code, they might take shortcuts by skipping intermediate steps and directly predicting the outcome.
While such shortcuts can in some cases reveal a deep understanding of the code, they can also be
misleading and error-prone, in particular, when they rely on superficial aspects of the code, such
as function or variable names , or merely relates the structure of the code to examples seen during
training. This raises the question to what degree a model trained to execute or describe code can truly
“understand” the code at the instruction level. If not, how can such an understanding be instilled or
improved in a given model?

To illustrate this point further, we consider the following simple Python program:

def factorial(n):
if n == 0:

return 1
else:

return n * factorial(n - 1)

We can find the results to the inputs 1 to 20 on the Wikipedia page on Factorial (Wikipedia contributors,
2024). Prevalent LLMs have seen this during training (Merity et al., 2016) and might correctly recite
the results. But when we ask for the output to n above 20, this shortcut no longer works and results
in an incorrect prediction. Actually executing the code guarantees the correctness of the result, but
also requires that the model execute each of the steps in sequence, and keep track throughout of the
value of n. If the model did rely on step-by-step execution and made a wrong prediction we would
have no way of knowing where the mistake happened. The recursive function hides multiple program
state transitions and makes it difficult to locate errors.

With these observations in mind, we present a code execution benchmark and study, centered on the
idea of step-by-step execution of code without control flow elements. In other words, the code we
consider only contains statements in each line, and as such, after each line the state of the program
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Table 1: Examples of how we transform a function into code trace.

Code in function Traced lines Code trace

for v in range(2):
w = v + 1

for v in range(2):

w = v + 1
for v in range(2):
w = v + 1

forloop0 = iter(range(2))
v = next(forloop0)
w = v + 1
v = next(forloop0)
w = v + 1

if c: # c == False
b = 1

else:
b = 0

if c:
else:
b = 0 b = 0

while c: # c == True
c = False

while c:
c = False
while c:

c = False

and its namespace are unambiguous. We can construct such step-by-step computations by unrolling
the execution of a function on some input, while tracing the code lines. This ensures that we retain
the same expressivity, in terms of input-output distribution, that is found in existing code execution
benchmarks.

For code execution, any given instruction manifests solely through the change it causes in the
machine’s state. Therefore, understanding and tracking these state changes is crucial for code
execution. A model’s ability to execute code step by step can be thought of as functionally equivalent
to its ability to track state. State tracking is not only important for code execution but also extends
to tasks like document comprehension and general agentic tasks. In this work, we focus on code
execution as an expressive and verifiable test bed for state tracking. This allows us to isolate and
study state tracking as a fundamental capability of LLMs.

Empirically, we find that large language models (LLMs) struggle with programs that consist of many
steps and with programs containing individual steps that hide significant complexity in a single
command. The latter (single-step complexity) relies on memorization, or further unrolling into less
complex steps. This constitutes a dimension along which code execution is challenging for any given
model. However, the first (execution length) is a dimension where significant improvement should be
possible by appropriate training. Overall, this highlights that there exists a significant semantic gap in
existing language models’ understanding of code.

To bridge this gap, we propose using explicit state supervision to induce step-by-step state transitions
in the hidden representations. Our results suggest that state supervision improves a model’s ability
to understand and track state throughout program execution, thereby enhancing its code execution
performance. This highlights that step-by-step execution could be an important and largely overlooked
ingredient to improving code understanding abilities in LLMs.

2 CODE TRACES FROM FUNCTIONS

We assess code execution in Python. Given some Python code and input values, we ask the LLM to
predict the output. Following Gu et al. (2024) we also consider the reverse: given the output, predict
a suitable input value. In both settings, the prompt to the LLM consists of the source code and either
the input or output representations.

The amount of compute a decoder-only Transformer applies scales quadratically with the prompt
and prediction length, which is not enough for many problems. For example, a naive solution to
the Traveling Salesman Problem tries all possible permutations of cities resulting in a complexity of
O(n!). Merely on the grounds of insufficient compute, we can already say that this is impossible to
simulate for the Transformer. Comparing the code execution performance in such a setting might
only measure the degree to which the LLM memorized examples instead of its step-by-step execution
capability.
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Table 2: Examples of code traces from each of our three benchmarks

CRUXEval MBPP Arithmetic programs

text = '123'
text_arr = [],
forloop0 = iter((range(len(text))))
j = next(forloop0)
text_arr.append(text[j:])
j = next(forloop0)
text_arr.append(text[j:])
j = next(forloop0)
text_arr.append(text[j:])
assert (text_arr) == ['123', '23', '3']

arr, n = [1,2,3,1,1],5
arr.sort()
prod = 1
forloop0 = iter((range(0,n,1)))
i = next(forloop0)
i = next(forloop0)
i = next(forloop0)
i = next(forloop0)
prod = prod * arr[i]
i = next(forloop0)
prod = prod * arr[i]
assert (prod) == 6

d, a, c = 4, 3, 6
a = 9 - a
a = d - a
b = c - 4
a = b + a
assert a == 0

We address this issue by replacing the function with its unrolled version: given the function and an
input we trace each line in the function whenever it is executed. This turns the problem setting into
one where the amount of compute applied by the Transformer grows proportionally with the amount
of steps the function runs for.

We run the function on the input and log a line of code whenever it is executed. Then, we apply a set
of transformations on the sequence of code lines. These transformations turn the sequence of code
lines into a valid Python program, which we refer to as code trace (Zhang et al., 2024). When a line
consists of an assignment, we copy it unaltered into the code trace. When a line contains control flow
elements, we skip any expressions that do not alter the values of any variable. See Table 1 for a list of
examples on how we transform code in functions to code traces.

Any dataset that contains both Python functions and example inputs can be automatically turned
into a traced version; alternatively, one can also generate synthetic code traces. We perform our
experiments on two code trace datasets derived from functions of the CRUXEval (Gu et al., 2024)
and MBPP (Austin et al., 2021) datasets, as well as one set of synthetic traces, which we refer to as
Arithmetic Programs. We refer to Table 2 for one trace example from each. See Appendix C for
details on how we generate the Arithmetic Programs.

When it comes to benchmarking code execution, the first two datasets are in some sense at the
opposite ends of a spectrum: CRUXEval was only recently introduced, its functions are synthetically
generated, they do not carry an intuitive name in their definition, and are designed to lack a clear intent
or task they should be performing; MBPP has been introduced in 2021, its functions are sourced from
human programmers, and each of them is paired with a task description, which is hinted to in the
respective function name; they therefore make for an ideal test-bed for investigating code execution
shortcuts. Our Arithmetic Programs, conversely, are designed to enable systematic investigation of
code execution capability at different levels of trace length and complexity.

3 EVALUATION ON CODE TRACES

In this section we evaluate the code execution performance on code traces on a suite of pre-trained
LLMs, including both models specialized to code and generalist models.

CRUXEval-I/O We compare the performance of multiple LLMs on the traced and non-traced
functions on the input and output prediction benchmarks of CRUXEval. For the non-traced case, we
adopt the numbers from the leaderboard1; for evaluating on traces (and later on MBPP) we fork the
CRUXEval code2. We filter out all samples whose traces that are longer than 50 steps. See Figure 1
for some useful statistics on the traced benchmark.

In Figure 2 the results show that the traced version generally achieves a higher accuracy compared
to the baseline for both input and output prediction. In Figure 3 we observe that there is a high
correlation between the traced and non-traced version, as expected: in order to figure out the output
or input of a CRUXEval function, the model must, for the most part, actually execute its code; and it
has an easier time doing so when this is unrolled into a code trace, as we speculated in section 2.

1https://crux-eval.github.io/leaderboard.html
2https://github.com/facebookresearch/cruxeval
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Figure 1: Distribution of trace lengths. CRUXEval (left): 761 execution traces from 761 programs.
MBPP (right): 999 execution traces from 347 programs.
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Figure 2: Evaluating LLMs at code execution. For CRUXEval, all models perform better on code
execution and understanding when faced with the traced version of a function, rather than the function
itself; the opposite is true for MBPP. For arithmetic programs, more digits make the problem harder
for all models.
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Figure 3: The correlation between accuracy in executing a program and executing its trace is strong
for CRUXEval, less so for MBPP.

MBPP-I/O We repeat the same analysis for the MBPP benchmark. In order to turn it into a
code execution benchmark in the vein of CRUXeval, we take the three unit tests associated to each
sample/function and grab from these the associated inputs and outputs; these are then used in the
same way as in CRUXEval to run input and output prediction tasks, as well as to obtain the traced
version of the benchmark. We report the details of this procedure in Appendix A, and again statistics
on the traced version in Figure 1.

We report in Figure 2 our results, which paint a different picture than the ones gathered on CRUXEval:
the non-traced version of the benchmark generally achieves higher accuracy compared to the traced
one, on both input and output prediction; moreover, one can observe (see Figure 3) a weaker
correlation between performance on the direct benchmark and performance on its traced version. We
can also observe the performance on the non-traced benchmark is higher overall than on CRUXEval,
with scores up to 80% on output prediction. MBPP is an objectively easier code execution benchmark.

Arithmetic programs-I/O In the case of arithmetic programs, we are mostly concerned with
ensuring that they constitute a good model of “realistic” code. We observe a similar accuracy
progression, across different models, as the one observed with MBPP and CRUXEval, and we can see
that both input and output prediction become more difficult as the number of digits of the numbers
fount in the program increases, as one would intutively expect. Finally, the benchmark is overall
slightly more difficult than either MBPP and CRUXEval.

We now examine how code execution performance relates to the number of execution steps involved.
Specifically, we analyze the success rate for varying numbers of steps across different LLMs. In Fig-
ure 4, we observe that performance degrades as the number of steps increases. Surprisingly, in some
cases, the model fails even at problems with zero steps. The overall trend is that pre-trained models
fail with increasing frequency at executing long programs.

Discussion In section 2 we had remarked on the contrasting characteristics of the two benchmarks,
chief among them the presence of human intent in the MBPP code, manifesting directly in the form
of intuitive function names, and indirectly in the complexion of the code itself. In light of this, our
results are not surprising: in order to predict the outputs and/or inputs of an MBPP code sample, the
model has much less of a need to actually execute the code, and can instead take a shortcut by using
the name of the function or just pattern-matching its code, thereby guessing the answer rather than
inferring it. We provide further experimental support of this picture by running an additional set
of evaluations, whereupon all function names are removed from the benchmark and the evaluation
prompts. This ablation is referred to as "Anonymous Programs" in Figure 2; we can observe how
performance (especially on output prediction) is negatively impacted by the absence of intuitive
function names, although it usually remains above performance on the traced benchmark. An element
of human intent is indeed still present in the function code itself, but this cannot be removed without
fundamentally changing the nature of the benchmark.
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Figure 4: Performance per trace length: longer traces are harder to execute, presumably because
LLMs have a harder time keeping track of state transitions. One aspect of difficulty/complexity.

Overall, these results are consistent with our belief that code traces constitute a more grounded
benchmark of code execution, compared to the functions they come from.

4 STATE SUPERVISION

State tracking over multiple steps is a significant challenge in code execution. Our benchmark
uncovers that longer traces, which involve multiple state transitions, result more frequently in
execution failures. In this section, we explore how transformers can learn state tracking.

A Python interpreter updates the state after every execution step. This state information is however
not part of the sequence of tokens the model is shown, as one can see in Table 2. A naive method
to include this information is to interleave it with the code lines. We identify three issues with this
approach. First, it requires modifying the prompt at inference time, which is challenging: one must
decide when to insert new tokens for the state and when to continue reading the given prompt, and in
most use cases it is undesirable to have to modify the prompt in this way. Second, this method forces
the model to commit to a specific state, despite uncertainty in the prediction. Third, adding extra
tokens increases the computational cost of training and inference, even for simple states. We propose
an alternative method which incorporates state information without running into these issues.

We introduce an auxiliary training loss to optimize the predictability of the state directly from each
line’s hidden representations, while leaving the token sequence unaltered. While this slightly increases
compute during training, it does not do so during inference. By retaining state information in the
hidden representations rather than the token space, our method allows for expressing uncertainty
over the state. This state supervision technique leverages state information without the drawbacks of
adding it to the model’s context.

Zaremba & Sutskever (2014) observe that learning code execution significantly benefits from a
curriculum-based approach to generating training data. They first uniformly sample a hidden variable
that controls the program’s complexity and then generate a program based on this variable. For
example, consider the parity problem: given a bit-string, predict whether the number of 1s is even
or odd. Here, the length of the bit-string determines the problem’s complexity. The curriculum first
samples a length n and then samples a bit string of that length. This method assumes control over
the hidden variable that dictates complexity, which is often not possible for real-world programs.
Nonetheless, we use this as our baseline, because we ourselves observe that without a curriculum,
our transformer model struggles to learn effectively. Note that in our experiments, we apply the
curriculum only in the baseline, and not in our state supervision method. In all the experiments in
this section, we train a small transformer from scratch. See Appendix D for more details.

4.1 SINGLE TOKEN STATE

Our aim is to steer the hidden representations towards containing information about the state. To
achieve this we take inspiration from linear probing (Alain, 2016; Belinkov, 2022)–a method that
uses hidden representations during inference to train a linear classifier, checking whether these
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Figure 5: Number of training samples to reach perfect test accuracy. Curriculum becomes infeasible
for longer sequences, while state supervision scales favorably.

representations predict a feature of interest. Instead of adding this classification head only during
inference, we incorporate it during training, and add its loss as an auxiliary loss to the standard
next-token prediction objective.

Ideally, we want the model to process the code as it ingests the tokens–thinking while reading–rather
than waiting until the question appears. To achieve this, we add state supervision to the last token of
every line of code, which is typically the newline symbol.

Since state supervision only works to the degree to which single-line understanding is already present
in the model, we initially restrict our attention to the simple Parity task, where the a single execution
step is just a simple XOR operation between two single bits.

Parity We formulate the Parity task as a code execution problem. See Figure 6 for an example.
Here, the state is a single bit, and we add a linear classification head to predict the value of p after
each line of code.

p = 1
p ^= 0
p ^= 1
assert p == ??

p = 1
p = 1
p = 0

Figure 6: Parity example. On the left is the parity program, and on the right is the corresponding
state at each line.

We evaluate the effectiveness of the state supervision method by comparing it against the curriculum
baseline. The curriculum baseline trains on random bit strings of length 2 to n while the state
supervision method only trains on length n. Both evaluate on bit strings of length n that are not seen
during training. Since we can generate an arbitrary amount of training data, we expect any model to
be able to achieve perfect accuracy. Hence, our metric shall be the number of seen samples needed
reach perfect accuracy on the test set.

The results in Figure 5a highlight that solely using the next-token prediction objective is very
inefficient for lengths 16 and 32, even with the curriculum. Furthermore, at length 64, the baseline
did not improve upon the random baseline on the test set, despite training for 225 (over 33 million)
samples. Without the curriculum, the model would not even manage to learn parity for length 16.
In contrast, state supervision solves parity for lengths 16 and 32 with only a fraction of the training
samples. Additionally, we observe a significantly smaller increase in the number of samples required
when increasing the length to 64. This experiment provides initial evidence for the effectiveness of
state supervision. In the next section, we explore how to generalize this method to more complex
states.
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Figure 7: Test accuracy on Arithmetic Programs after training on 223 samples. While still suffering
from the two identified axes of difficulty, state supervision dominates curriculum.

4.2 MULTI-TOKEN STATE

We consider a more generic case where the state consists of multiple tokens. To address this, we
replace the linear classification head with one of two alternatives that can represent multi-token
states. In one case, we use a small Transformer head to predict the state conditioned on the hidden
representation. In the second, we apply a CLIP-like contrastive loss between the representation of
the partial program, and that of its corresponding state. We compute the representation of states by
applying the same language model on the state.

Permutation We compare these two methods on permutation programs: the input is a list of
numbers and the program applies a sequence of swaps between two elements in the list. Figure 8
shows an example program and the resulting state of each line.

a = [2, 1, 3]
a[0], a[1] = a[1], a[0]
a[1], a[2] = a[2], a[1]
assert a == ??

a = [2, 1, 3]
a = [1, 2, 3]
a = [1, 3, 2]

Figure 8: Permutation example. On the left is the permutation program, and on the right is the
corresponding state of each line.

We set the list length to 4 and vary the number of swaps between 4 and 16. The higher the number of
swaps, the higher the chance for an element to have swapped places multiple times. As a result, it
becomes necessary to account for multiple code lines to predict the final location of a number. The
Transformer head consists of a small 2-layer Transformer. For the contrastive auxiliary loss we need
no additional parameters.

The results in Figure 5b demonstrate that state supervision remains effective for both the Transformer
head and the contrastive method. This indicates that, despite not using a linear head, the auxiliary
loss effectively induces a useful representation space in the language model. We observe that the
contrastive setting requires lowering the factor on the auxiliary loss from 1 to 0.1. If the factor is too
high, the loss decreases more slowly at the beginning of training because the representations are still
uninformative, and the auxiliary loss adds a noisy signal.

Arithmetic Program Finally, we test state supervision on Arithmetic Programs. From our results
in section 3, we observed that pre-trained models already fail at programs of length 2. This indicates
that pre-trained models struggle with these types of problems, despite likely having seen similar
arithmetic problems in their training data.

We compare state supervision using a 2-layer Transformer as the state prediction head against the
curriculum baseline. We evaluate different difficulty levels by varying the program length between
4 and 6 and the number of digits between 1 and 3. Increasing the number of digits increases the
complexity of individual code lines. We expect state supervision to be effective in addressing the
complexity added by longer programs, but not for more digits.
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Since most models do not solve the test samples within a reasonable amount of training time, we set
the number of training samples to 223 and compare their final accuracy.

The results in Figure 7 show that state supervision effectively addresses the complexity added by
increasing program length, while curriculum learning fails with increasing frequency for more number
of steps. State supervision looses its efficacy in the 3 digit setting due to the difficulty of individual
code lines. We expect that increasing the model size and number of training samples will recover the
efficacy of state supervision.

Discussion In all experiments in this section, we observe that the curriculum baseline underfits
its most difficult training samples, which are the programs with the same number of steps as the
test samples. Interestingly, even though the curriculum effectively adds out-of-distribution samples
(programs with fewer steps), this results in an improvement on the in-distribution samples, despite
reducing the number of in-distribution samples seen during training. However, the curriculum’s
effectiveness drastically decreases with longer programs, sometimes achieving no better than random
performance.

Although state supervision adds an additional loss term to the language modeling objective, we
observe that it improves the next-token prediction loss on the training set. This observation suggests
that state supervision is not merely a regularization term. Instead, it highlights that executing state
transitions step by step is an effective method for Transformers to execute code, and that state
supervision induces this behavior in the Transformer.

5 RELATED WORK

Code execution with LLMs Interest in the code generation capabilities of Language Models
dates as far back as Language Models themselves, see e.g. the surveys (Zan et al., 2022) and (Fan
et al., 2023). Benchmarks such as MBPP (Austin et al., 2021), HumanEval (Chen et al., 2021) and
APPS (Hendrycks et al., 2021) have been designed to assess the capability of LMs to synthesize code
from a natural language description. There are comparatively fewer benchmarks of code execution in
LMs, though the problem itself is an old one, see e.g. (Zaremba & Sutskever, 2014). In (Gu et al.,
2024), which was of inspiration for the present work, the authors introduce a benchmark of Python
code execution, also uncovering some counter-intuitive insights on how code execution and code
generation capabilities correlate to each other in transformer-based foundation models. We here take
a step further on that path by introducing benchmarks of step-by-step execution of code; if an analogy
between code execution and reasoning is made, our benchmarks can be seen as being meant to probe
the extent to what a model implicitly executes code when prompted do to so (Wang et al., 2024),
under the assumption that this allows for more reliability and generalizational capability compared to
pattern-matching shortcuts.

Interactive coding and task-solving Equipping an LLM with a Python Interpreter for the purpose
of more reliably solving reasoning task has been proposed in (Chen et al., 2023; Gao et al., 2023),
and more recently in (Li et al., 2023a). While our code traces are generated via such an interactive
procedure, they are not meant as a way to let an LLM interact with a Python interpreter during
inference, and they are not meant as an aid to carry out reasoning tasks; as a matter of fact, for two
of our benchmarks (Traced CRUXEval and Arithmetic Programs) we make a point of generating
traces from code which is lacking in task-solving intent. Another related work is (Zhang et al., 2024),
where traces similar to our code traces are used to finetune an LLM to Behavioral-Clone standard
Computer Science algorithms in an interactive form. The more general idea of coupling an LLM with
an external module is also explored in e.g. (Ebrahimi et al., 2024); besides the module being a text
scratchpad and not a Python interpreter, a qualitative difference lies in that the state of the scratchpad
is directly ingested by the model together with its manipulation commands, whilst it remains implicit
in our work.

Execution traces and process supervision Related to the above is the use of execution traces as a
form of CoT-like planning. In e.g. (Lehnert et al., 2024) and (Gandhi et al., 2024), the authors propose
to train a model on execution traces of popular search algorithms in order to promote grounding
and generalisation; in (Luo et al., 2024), the analogy with planning is taken further by supervising
the execution trace via intermediate rewards. Our code traces are different from execution traces in

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

that they are executable and valid programs, whilst execution traces usually are not. Nevertheless,
they can be seen as a form of CoT-like planning which decomposes a task (code execution) into its
elementary steps, and we expressly designed them as a tool for promoting grounding.

State tracking and auxiliary tasks in LLMs An examination of the state-tracking capabilities
of modern LLMs and their relationship to code is given in (Kim et al., 2024), where it is observed
that the capability of the model to track real-world entities (e.g. an apple) is improved when code is
present in its training corpus. A major inspiration for the present work was (Li et al., 2023b), where
is it found that the internal representations of a sequence model trained on the board game Othello
are predictive on the current board state, to the degree that they enable causal intervention. A similar
study (featuring real-world entities) was carried out in (Gurnee & Tegmark, 2023), where it was also
found that the “period” token at the end of a sentence is the one carrying the most information on the
state, similarly to the newline token in our code traces. The proposal of a training procedure meant
to encourage the internalization of useful information in the model’s hidden representation is the
subject of refs. (Deng et al., 2023; 2024), though the focus is therein on reasoning steps rather than
state information. Also of inspiration was (Gloeckle et al., 2024), wherein it is shown that training
LLMs on a multi-token prediction task in addition to the usual next-token objective, improves their
performance on the main next-token prediction task.

6 CONCLUSIONS AND LIMITATIONS

In this work, motivated by the observation that code is executed step-by-step in a classical computer,
we introduce three new code execution benchmarks based on the unrolling of Python function codes
into “code traces”. Via these benchmarks, we observe that modern LLMs, when tested on code
execution, sometimes take shortcuts rather than executing the code they are presented with, and that
the main bottleneck they face when attempting code execution lies in limitations of their capability
to track the state of the code. Motivated by this observation, we propose to enhance the training
procedure of foundation models by adding an auxiliary state-prediction task on top of the usual
next-token prediction objective, and empirically observe that this significantly boosts the learning
efficiency of state-tracking behaviors.

Due to compute constraints, we could only evaluate our new benchmarks on small- to mid-size,
open source LLMs; we are however confident that the trends and insights we observed will still be
present when our benchmarks are evaluated on more capable and API-based LLMs, something that
we strongly encourage readers to try. Due again to compute constraints, the experimental evaluation
of our state-tracking enhancement procedure could only be carried out on a small (about 13M
parameters) transformer model trained from scratch. Benchmarking our proposal during fine-tuning
(e.g. via PEFT methods such as LoRA) of pre-trained LLMs is a task we leave for future work.

REPRODUCIBILITY STATEMENT

We explain the general setup of our benchmark and experiments in the main paper and supplement
necessary details for reproducibility in the appendix. Furthermore, we plan on releasing the code
after acceptance.
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A TRACED MBPP DATASET

The MBPP (Most Basic Python Programs) benchmark (Austin et al., 2021) is one of the oldest and
most prevalent code generation benchmarks. It consist of simple python functions sourced from
human programmers, each of them paired with a simple task description beginning with either "Write
a function to..." or "Write a Python function to...". Along with each pair, three unit tests, generally in
the form

assert <function name>(<input>) == <output>,

are provided in order to confirm that, given the task description, an LLM can generate a Python
function solving the task. It is straightforward to turn MBPP into a code execution benchmark: for
each function, we grab its inputs and outputs from the unit tests, meaning that in general (though
not always, see below) one will end up with three benchmark samples per function. Afterwards, the
inputs are used to run the function and thereby obtain their traced version. The details of the tracing
procedure, which is the same as the one used on CRUXEval, are outlined in section 2. In order to
minimize the chance of leakage, we carry out this procedure only on the test split of MBPP, consisting
of 500 tasks and functions. Not of all these can be handled by our tracer, the reasons for this being:

• Multi-line conditional statements,

• Multi-line list, dictionary, or tuple comprehensions,

• No newline after a control flow element (e.g. if: or else:),

all of whom are not supported by out tracer. Moreover, we discard all functions whose execution runs
longer that 50 execution steps, whose state traces run more than 12000 characters long, and whose
code traces are longer than 1000 characters. These criteria also depend on the input the functions are
supplied, and not just on the functions themselves. As a result, a function is not always run an all
three inputs provided in the unit tests.

Eventually, we discard 173 functions of the 500 present, and we are left with 999 samples, containing
347 different functions.
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B PROMPTS

B.1 PROMPTS FOR PROGRAM PREDICTION ON CRUXEVAL

Our prompts for the program prediction task for CRUXEval are the same as those used in refer-
ence (Gu et al., 2024). Below is the one for the output prediction task:

[PYTHON]
def f(n):

return n
assert f(17) == ??
[/PYTHON]
[ANSWER]
assert f(17) == 17
[/ANSWER]

[PYTHON]
def f(s):

return s + "a"
assert f("x9j") == ??
[/PYTHON]
[ANSWER]
assert f("x9j") == "x9ja"
[/ANSWER]

[PYTHON]
<function_code>
assert f(<function_input>) == ??
[/PYTHON]
[ANSWER]

and here the one for the input prediction task:

[PYTHON]
def f(my_list):

count = 0
for i in my_list:

if len(i) % 2 == 0:
count += 1

return count
assert f(??) == 3
[/PYTHON]
[ANSWER]
assert f(["mq", "px", "zy"]) == 3
[/ANSWER]

[PYTHON]
def f(s1, s2):

return s1 + s2
assert f(??) == "banana"
[/PYTHON]
[ANSWER]
assert f("ba", "nana") == "banana"
[/ANSWER]

[PYTHON]
<function_code>
assert f(??) == <function_output>
[/PYTHON]
[ANSWER]
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B.2 PROMPTS FOR PROGRAM PREDICTION ON MBPP

In the MBPP case, we slightly tweak the CRUXEval prompts to include intuitive function names, in
order to make them consistent with the presence of function names in the function codes. Here is the
prompt we use for output prediction:

[PYTHON]
def identity(n):

return n
assert identity(17) == ??
[/PYTHON]
[ANSWER]
assert identity(17) == 17
[/ANSWER]

[PYTHON]
def append_a(s):

return s + "a"
assert append_a("x9j") == ??
[/PYTHON]
[ANSWER]
assert append_a("x9j") == "x9ja"
[/ANSWER]

[PYTHON]
<function_code>
assert <function_name>(<function_input>) == ??
[/PYTHON]
[ANSWER]

and below is the prompt for input prediction:

[PYTHON]
def count_even(my_list):

count = 0
for i in my_list:

if len(i) % 2 == 0:
count += 1

return count
assert count_even(??) == 3
[/PYTHON]
[ANSWER]
assert count_even(["mq", "px", "zy"]) == 3
[/ANSWER]

[PYTHON]
def concat(s1, s2):

return s1 + s2
assert concat(??) == "banana"
[/PYTHON]
[ANSWER]
assert concat("ba", "nana") == "banana"
[/ANSWER]

[PYTHON]
<function_code>
assert <function_name>(??) == <function_output>
[/PYTHON]
[ANSWER]
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For the "unnamed" version of MBPP referred to in section 3, we just use the CRUXEval prompts
reported in the previous section, while taking care to replace with "f" the function names contained
in the function definitions.

B.3 PROMPTS FOR THE TRACED BENCHMARKS

Our code traces do not contain any reference to function names. As a result, we can use the same
prompts for traced CRUXEval, traced MBPP, and for our Arithmetic Programs, without the risk of
inconsistencies. The one we employ for output prediction is simply a code-traced version of the
CRUXEval program output prompt:

[PYTHON]
n = 17
assert n == ??
[/PYTHON]
[ANSWER]
17
[/ANSWER]

[PYTHON]
s = "x9j"
s += "b"
assert s + "a" == ??
[/PYTHON]
[ANSWER]
"x9jba"
[/ANSWER]

[PYTHON]
<function_trace>
[/PYTHON]
[ANSWER]

And the same logic is followed for the input prediction case:

[PYTHON]
n = ??
assert n == 17
[/PYTHON]
[ANSWER]
17
[/ANSWER]

[PYTHON]
s1, s2 = ??
s2 += "a"
assert s1 + s2 == "banana"
[/PYTHON]
[ANSWER]
"ban", "an"
[/ANSWER]

[PYTHON]
<function_trace>
[/PYTHON]
[ANSWER]
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Figure 9: Effect of the two axes of difficulty.

C ARITHMETIC PROGRAM

We sample a random arithmetic program following these steps:

1. Set the output variable name to a
2. Sample a random expression

• consisting of an operation (+ or -)
• and two operands each of which is either a new variable, a free variable, or a random

number
• if a new variable is introduced, add it to the set of free variables

3. Randomly assign the expression to a free variable and close the variable if it does not appear
in the expression

4. Repeat step 2 and 3 until the specified program length is reached
5. Close all free variables by assigning a random number to each

D STATE SUPERVISION EXPERIMENT DETAILS

All runs train a small Transformer with 6 layers and 512 hidden dimensions, resulting in 13641216
trainable parameters. The model follows the Llama architecture (Dubey et al., 2024). We employ the
AdamW optimizer with a weight decay of 0.01. We use a cosine schedule for the learning rate, with a
peak learning rate at 0.0003 and a warm up for 100 steps.

In the state supervision runs with the Transformer head, we apply the same architecture as we use for
the language model, but with fewer parameters. It consists of 2 layers and 64 hidden dimensions.
We condition this small Transformer on the hidden representation h of the larger Transformer, by
inserting h as the initial token embedding. For the contrastive method, the objective is to retrieve the
correct state’s representation based on the representation of the partial program and vice-versa. We
implement this in the form of a classification over states or partial programs. In our experiments we
only consider states corresponding to the same program.
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