HEDNet: A Hierarchical Encoder-Decoder Network
for 3D Object Detection in Point Clouds

Gang Zhang', Junnan Chen?, Guohuan Gao?, Jianmin Li', Xiaolin Hu':%°*

!Department of Computer Science and Technology, Institute for Al,

BNRist, THU-Bosch JCML Center, Tsinghua University
2Huazhong University of Science and Technology, ®Beijing Institute of Technology

4Tsinghua Laboratory of Brain and Intelligence (THBI),

IDG/McGovern Institute for Brain Research, Tsinghua University

5 Chinese Institute for Brain Research (CIBR), Beijing 100010, China
zhang-g19@mails.tsinghua.edu.cn,chen_jn@hust.edu.cn,gaoguohuan@bit.edu.cn
lijianmin@mail.tsinghua.edu.cn,xlhu@tsinghua.edu.cn
Code: Ihttps://github.com/zhanggangool/HEDNet]

Abstract

3D object detection in point clouds is important for autonomous driving systems.
A primary challenge in 3D object detection stems from the sparse distribution of
points within the 3D scene. Existing high-performance methods typically employ
3D sparse convolutional neural networks with small kernels to extract features.
To reduce computational costs, these methods resort to submanifold sparse con-
volutions, which prevent the information exchange among spatially disconnected
features. Some recent approaches have attempted to address this problem by in-
troducing large-kernel convolutions or self-attention mechanisms, but they either
achieve limited accuracy improvements or incur excessive computational costs. We
propose HEDNet, a hierarchical encoder-decoder network for 3D object detection,
which leverages encoder-decoder blocks to capture long-range dependencies among
features in the spatial space, particularly for large and distant objects. We con-
ducted extensive experiments on the Waymo Open and nuScenes datasets. HEDNet
achieved superior detection accuracy on both datasets than previous state-of-the-art
methods with competitive efficiency. The code has been released.

1 Introduction

Learning effective representations from sparse input data is a key challenge for 3D object detection
in point clouds. Existing point-based methods [} [2} 3|4} 5] and range-based methods [6, 7} 18} 19, [10]
either suffer from high computational costs or exhibit inferior detection accuracy. Currently, voxel-
based methods [[11}[12} 113} |14} [15] dominate high-performance 3D object detection.

The voxel-based methods partition the unstructured point clouds into regular voxels and utilize sparse
conventional neural network (CNNs) [IL1,[12L1161117,118}[19]] or transformers [[13}114,|15]] as backbones
for feature extraction. Most existing sparse CNNs are primarily built by stacking submanifold sparse
residual (SSR) blocks, each consisting of two submanifold sparse convolutions [20] with small
kernels. However, submanifold sparse convolutions maintain the same sparsity between input and
output features, and therefore hinder the exchange of information among spatially disconnected
features. Consequently, models employing SSR blocks face challenges in effectively capturing
long-range dependencies among features. One potential solution is to replace the submanifold

*Corresponding Author

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

sparse convolutions in SSR block with regular sparse convolutions [21]. However, this leads to a
significant decrease in feature sparsity as the network deepens, resulting in substantial computational
costs. Recent research has investigated the utilization of large-kernel sparse CNNs [12} [16] and
transformers [[14}[15]] to capture long-range dependencies among features. However, these approaches
have either demonstrated limited improvements in detection accuracy or come with significant
computational costs. Thus, the question remains: is there an efficient method that enables sparse
CNNs to effectively capture long-range dependencies among features?

Revisiting backbone designs in various dense prediction tasks [[13} 22} 23| 24, [25] 26], we observe
that the encoder-decoder structure has proven effective in capturing long-range dependencies among
features. These methods typically use a high-to-low resolution backbone as an encoder to extract
multi-scale features and design different decoders to recover high-resolution features that can model
long-range relationships. For instance, PSPNet [24]] incorporates a pyramid pooling module to capture
both local and global contextual information by pooling features at multiple scales. SWFormer [[13]]
integrates a top-down pathway into its transformer backbone to capture cross-window correlations.
However, the utilization of the encoder-decoder structure in designing sparse convolutional backbones
for 3D object detection has not yet been explored, to the best of our knowledge.

In this work, we propose a sparse encoder-decoder (SED) block to overcome the limitations of the
SSR block. The encoder extracts multi-scale features through feature down-sampling, facilitating
information exchange among spatially disconnected regions. Meanwhile, the decoder incorporates
multi-scale feature fusion to recover the lost details. A hallmark of the SED block is its ability
to capture long-range dependencies while preserving the same sparsity between input and output
features. Since current leading 3D detectors typically rely on object centers for detection [27, 28],
we further adapt the 3D SED block into a 2D dense encoder-decoder (DED) block, which expands
the extracted sparse features towards object centers. Leveraging the SED block and DED block, we
introduce a hierarchical encoder-decoder network named HEDNet for 3D object detection in point
clouds. HEDNet can learn powerful representations for the detection of large and distant objects.

Extensive experiments were conducted on the challenging Waymo Open [29] and nuScenes [30]
datasets to demonstrate the effectiveness of the proposed HEDNet on 3D object detection. HEDNet
achieved impressive performance, with a 75.0% L2 mAPH on the Waymo Open fest set and a
72.0% NDS on the nuScenes fest set, outperforming prior methods that utilize large-kernel CNNs or
transformers as backbones while exhibiting higher efficiency. For instance, HEDNet was 50% faster
than DSVT, the previous state-of-the-art transformer-based method, with 1.3% L2 mAPH gains.

2 Related work

2.1 3D object detection in point clouds

For 3D object detection in point clouds, methods can be categorized into three groups: point-based,
range-based, and voxel-based. Point-based methods [} 12} [3} 14} 5] utilize the PointNet series [31}[32]]
to directly extract geometric features from raw point clouds and make predictions. However, these
methods require computationally intensive point sampling and neighbor search procedures. Range-
based methods [6, (7, 8 9, [10] convert point clouds into pseudo images, thus benefiting from the
well-established designs of 2D object detectors. While computationally efficient, these methods often
exhibit lower accuracy. Voxel-based approaches [[11} 17} [18}19] are currently the leading methods for
high-performance 3D object detection. Most voxel-based methods employ sparse CNNs that consist
of submanifold and regular sparse convolutions with small kernels to extract features. Regular sparse
convolutions can capture distant contextual information but are computationally expensive. On the
other hand, submanifold sparse convolutions prioritize efficiency but sacrifice the model’s ability to
capture long-range dependencies.

2.2 Capturing long-range dependencies for 3D object detection

To capture long-range dependencies for 3D object detection, recent research has explored solutions
such as large-kernel sparse convolutions [33}[16]] and self-attention mechanisms [[13}[14}[15]. However,
directly applying plain large-kernel CNNs for 3D representation learning can lead to problems such
as overfitting and reduced efficiency. Weight-sharing strategies have been proposed to mitigate
overfitting, like LargeKernel3D [12] and Link [[16]], however, they still suffer from low efficiency.

Empty feature

V- 4 I ANBZEy uP

AL L LL LS y

Skip conn. Skip conn. | SSR block Skip conn.

J 77T Valid feature
¥ 4 - . ay
I RS conv 7 1 ity A ey d Down ,# £ 7
ey 4 Expanded feature
' 4 e v
Z 7 .
P LS A A AR Py A G g A
(a) SSR block (b) RSR block (c) SED block (ours)

Figure 1: Comparison among SSR block (a), RSR block (b), and our SED block (c). The ‘Skip
conn.” denotes the skip connection, and the orange dashed lines represent the convolution kernel
space. Valid features have non-zero values. Expanded and empty features have zero values. In (b),
convolution is applied to both valid and expanded features, i.e.,the convolution kernel center traverses
the regions covered by these features. The red dashed square highlights the regions from which the
output feature marked by a star can receive information. In (c), we adopt a 3x3 RS convolution with
a stride of 3 for feature down-sampling (Down) as an example. UP denotes feature up-sampling.

Other methods, such as SST [14]] and DSVT [135]], utilize transformers as replacements for sparse
CNNs. SST employs a single-stride sparse transformer to preserve high-resolution features without
using down-sampling operators that may cause a loss of detail. Similarly, DSVT employs a single-
stride sparse transformer and performs window-based self-attention sequentially along the X-axis
and Y-axis. While both large-kernel CNNs and transformers aim to capture long-range dependencies,
they either achieve comparable performance or exhibit lower efficiency compared with sparse CNNs.
In contrast, our proposed HEDNet effectively captures long-range dependencies with the help of
encoder-decoder blocks while achieving competitive inference speed compared with existing methods.

2.3 Encoder-decoder networks for dense prediction

The encoder-decoder structure has been extensively investigated in various dense prediction tasks.
For example, the FPN-series [22 34} 135, |36] incorporates lightweight fusion modules as decoders
to integrate multi-scale features extracted from image classification backbones. DeeplabV3+ [25]
employs an atrous spatial pyramid pooling module to combine low-level features with semantically
rich high-level features. SWFormer [13]] introduces a top-down pathway into its transformer backbone
to capture cross-window correlations. However, there is limited exploration of the encoder-decoder
structure in the design of sparse CNNs. Most voxel-based approaches [[17} 18} 27} 28] rely on high-to-
low resolution sparse CNNs to extract single-scale high-level features. Part-A2-Net [37]] adopts the
UNet [38]] to extract features, but it performs detection using the encoder of UNet while utilizing the
decoder for the auxiliary segmentation and part prediction tasks. In this study, we propose HEDNet,
which primarily consists of encoder-decoder blocks to effectively capture long-range dependencies.

3 Method

3.1 Background

The sparse CNNs adopted by most voxel-based methods [[18} [27, 28] are primarily built by stacking
SSR blocks, each consisting of two submanifold sparse (SS) convolutions [20]]. In addition, they
usually insert regular sparse (RS) convolutions [21]] into the stacked SSR blocks to reduce the
resolution of feature maps progressively (similar to ResNet [39]).

SS convolution and SSR block. We present the structure of a single SSR block in Figure[T|(a). Two
SS convolutions are sequentially applied to the input feature map, with skip connections incorporated
between the input and output feature maps of the SSR block. The sparsity of feature map is defined
as the ratio of the regions that are not occupied by valid (nonzero) features to the total area of the
feature map. SS convolution only operates on valid features, allowing the output feature map of the
SSR block to maintain the same sparsity as the input feature map. However, this design hinders the

ﬁ Sparse feature map SSR | SSR block Down RS conv (stride 2) UP Sparse inverse conv

m Dense feature map DR Dense residual block Down Dense residual block (stride 2) UP Dense deconv
Fq(1) 1 i Fs(1) Fq(1) 1 Fs(1)

Fa5) Fa(i) Fa3) Fa(3) Fs(i) Fa;)

x gl || c c
T2 §—$+ DE—% L L — X §-°Qf> 5-% > S >
x x x x x x
8 B = g 5 g
X
\, Vv
Encoder Decoder Encoder Decoder
(a) SED block (b) DED block

Figure 2: Architecture of the SED block (a) and DED block (b). As an example, we illustrate
blocks of three scales. Both designs share the same structure. F;/Fo/Fs/F4/F5 are the names of
the corresponding feature maps. The number in parentheses indicates the resolution ratio of the
corresponding feature map relative to the block input. The SED block is capable of processing both
2D and 3D features, depending on whether 2D or 3D sparse convolutions are used.

exchange of information among spatially disconnected features. For instance, in the top feature map,
the output feature marked by a star cannot receive information from the other three feature points
outside the red dashed square in the bottom feature map (marked by the red triangles). This poses a
challenge for the model in capturing long-range dependencies.

RS convolution and RSR block. One possible solution to problem is to replace the SS convolutions
in the SSR block with RS convolutions. We call this modified structure regular sparse residual (RSR)
block and illustrate its structure in Figure[T](b). RS convolution operates on both valid and expanded
features [21]. Expanded features correspond to the features that fall within the neighborhood of the
valid features. Taking a 2D RS convolution with a kernel size of 33 as an example, the neighborhood
of a certain valid feature consists of the eight positions around it. This design leads to an output
feature map with a lower sparsity compared with the input feature map. Stacking RS convolutions
reduces the feature sparsity dramatically, which in turn leads to a notable decrease in model efficiency
compared with using SS convolutions. This is why existing methods [18} 27, [28] typically limit the
usage of RS convolution to feature down-sampling layers.

3.2 SED and DED blocks

SED block. SED block is designed to overcome the limitations of SSR block. The fundamental
idea behind this design is to reduce the spatial distance between distant features through feature
down-sampling and recover the lost details through multi-scale feature fusion.

We illustrate a two-scale SED block in Figure [T] (¢). After feature down-sampling, the spatially
disconnected valid features in the bottom feature map are integrated into the adjacent valid features
in the middle feature map. An SSR block is subsequently applied to the middle feature map to
promote interaction among valid features. Finally, the middle feature map is up-sampled to match the
resolution of the input feature map. Note that the feature up-sampling layer (UP) only up-samples
features to the regions covered by the valid features in the input feature map. As a result, the proposed
SED block can maintain the same sparsity between input and output feature maps. This characteristic
prevents the introduction of excessive computational costs when stacking multiple SED blocks.

The architecture of a three-scale SED block is presented in Figure 2] (a). The SED block adopts
an asymmetric encoder-decoder structure similar to UNet [38]], with the encoder responsible for
extracting multi-scale features and the decoder sequentially fusing the extracted multi-scale features
with the help of skip connections. Given the input feature map X, the function of the SED block can
be formulated as follows:

F; = SSR™(X) €))
Fo = SSR™ (Down; (F1)))
F3 = SSR™ (DOWH2 (Fg)) (3)
Fy = UPy(F3) + F, 4)
Fs = UPy(Fy) + Fy 5)

m Sparse feature map ’ Dense feature map SSR SSR block SED SED block DED DED block

©
(]
(V]
e
o a a 8 ﬁm BEvm a m c
(2] (2] @] 0] (a] o
2
X X X [
N N e a
Ed) Fag) Fs) — Fo3)
(&
Point clouds 5O *
Fo(1) Fi(1) 22 2D dense backbone

3D sparse backbone

Figure 3: Architecture of the proposed HEDNet. Given the raw point clouds, we first perform
voxelization to generate voxels by the VFE module, then employ the 3D sparse backbone and the
2D dense backbone to extract features for the detection head. The number in the bracket denotes
the resolution ratio of the corresponding feature map relative to the input. The RS convolutions for
feature down-sampling that follow the feature maps F1, Fa, and F5 are omitted for simplicity.

where F5 denotes the output feature map with the same resolution as the input X. The resolution
ratios of the intermediate feature maps F1, Fo, F3, and F4 relative to the input X are 1, 1/2, 1/4, and
1/2, respectively. SSR™ indicates m consecutive SSR blocks. We adopt RS convolution as the feature
down-sampling layer (Down) and sparse inverse convolution [40] as the feature up-sampling layer
(UP). With an encoder-decoder structure, the SED block facilitates information exchange among
spatially disconnected features, thereby enabling the model to capture long-range dependencies.

DED block. Existing high-performance 3D object detectors [15} [27, 28] usually rely on object
centers for detection. However, the feature maps extracted by purely sparse CNNs may have empty
holes around object centers, especially for large objects. To overcome this issue, we introduce a
DED block that expands sparse features towards object centers, as shown in Figure 2] (b). The DED
block shares a similar structure with the SED block but utilizes the widely used dense convolutions
instead. Specifically, we replace the SSR block in the SED block with a dense residual (DR) block,
which is similar to the SSR block but consists of two dense convolutions. Furthermore, the RS
convolution employed for feature down-sampling is replaced with a DR block that has a stride of 2.
For feature up-sampling, we replace the sparse inverse convolution with a dense deconvolution. These
modifications enable the DED block to effectively expand sparse features towards object centers.

3.3 HEDNet

Based on the proposed SED block and DED block, we introduce HEDNet, a hierarchical encoder-
decoder network designed for 3D object detection. The architecture of HEDNet is illustrated in
Figure 3] Given the raw point clouds, a dynamic VFE module [41] is used to perform voxelization to
generate a grid of voxels denoted as Fy. Subsequently, a sparse backbone including two SSR blocks
and several SED blocks is employed to extract 3D sparse features. Before being fed into the 2D dense
backbone, the sparse features are compressed into dense BEV features like in [18]. The 2D dense
backbone, composed of n DED blocks, is responsible for expanding the sparse features towards
object centers. Finally, the output features are fed into the detection head for final predictions. At a
macro level, HEDNet follows a hierarchical structure similar to SECOND [18]], where the resolution
of feature maps progressively decreases. At a micro level, the SED and DED blocks, key components
of HEDNet, employ encoder-decoder structures. This is where the name HEDNet comes from. We
adopt SED and DED blocks of three scales for HEDNet by default.

4 Experiments

4.1 Datasets and metrics

Waymo Open contains 160k, 40k, and 30k annotated samples for training, validation, and testing,
respectively. The metrics for 3D object detection include mean average precision (mAP) and mAP

Results on the validation data set

Method mAP/mAPH | Vehicle AP/APH | Pedestrian AP/APH | Cyclist AP/APH
L2 L1 | L2 L1 | L2 L1 | L2
SECOND [18] 61.0/57.2 |72.3/71.7]63.9/63.3 | 68.7/58.2 | 60.7/51.3 | 60.6/59.3 | 58.3/57.0
PointPillar [19] 62.8/57.8 |72.1/71.5]63.6/63.1|70.6/56.7 | 62.8/50.3 | 64.4/62.3 | 61.9/59.9
Lidar-RCNN [42]" | 65.8/61.3 |76.0/75.5|68.3/67.9|71.2/58.7|63.1/51.7| 68.6/66.9 | 66.1/64.4
Part-A2-Net [37]" 66.9/63.8 |77.1/76.5|68.5/68.0 | 75.2/66.9 | 66.2/58.6 | 68.6/67.4 | 66.1/64.9
SST [14] 67.8/64.6 |74.2/73.865.5/65.1|78.7/69.6 | 70.0/61.7 | 70.7/69.6 | 68.0/66.9
CenterPoint [27] 68.2/65.8 |74.2/73.6]66.2/65.7|76.6/70.5 | 68.8/63.2|72.3/71.169.7/68.5
PV-RCNN [43]" 69.6/67.2 |78.0/77.5|69.4/69.0|79.2/73.0(70.4/64.7|71.5/70.3 | 69.0/67.8
CenterPoint [27]1 69.8/67.6 |76.6/76.0|68.9/68.479.0/73.4171.0/65.8|72.1/71.069.5/68.5
SWFormer [13] -/- 77.8/77.3169.2/68.8 | 80.9/72.7 | 72.5/64.9 -/- -/-
OcTr [44] 70.7/68.2 |78.1/77.6]69.8/69.3 | 80.8/74.4 | 72.5/66.5|72.6/71.5 | 69.9/68.9
PillarNet-34 [11] 71.0/68.5 |79.1/78.6]70.9/70.5|80.6/74.0 | 72.3/66.2 | 72.3/71.2|69.7/68.7
AFDetV2 [45] 71.0/68.8 |77.6/77.1]69.7/69.2|80.2/74.6 (72.2/67.0 | 73.7/72.7|71.0/70.1
CenterFormer [46] | 71.1/68.9 |75.0/74.4(69.9/69.4(78.6/73.0|73.6/68.3|72.3/71.3 69.8/68.8
LargeKernel3D[33] -/- 78.1/77.6169.8/69.4 -/- -/- -/- -/-
PV-RCNN++ [4711 | 71.7/69.5 |79.3/78.8|70.6/70.2 | 81.3/76.3 | 73.2/68.0| 73.7/72.7 | 71.2/70.2
FSD [48]" 72.7/70.5 |79.5/79.0|70.3/69.9 | 83.6/78.2 | 74.4/69.4 | 75.3/74.1|73.3/72.1
DSVT-Voxel [15] 74.0/72.1 |79.7/79.3|71.4/71.0| 83.7/78.9|76.1/71.5|77.5/76.5 | 74.6/73.7
HEDNet (ours) 75.3/73.4 |81.1/80.6|73.2/72.7 | 84.4/80.0 | 76.8/72.6 | 78.7/77.7 | 75.8/74.9
Results on the test data set
Method mAP/mAPH| Vehicle AP/APH | Pedestrian AP/APH | Cyclist AP/APH
L2 L1 | L2 L1 | L2 L1 | L2
PV-RCNN [43] 71.3/68.8 |80.6/80.1|72.8/72.4|78.2/72.0|71.8/66.0|71.8/70.4 | 69.1/67.8
PV-RCNN++ [47] 72.4/70.2 |81.6/81.2|73.9/73.5|80.4/75.0|74.1/69.0|71.9/70.8 | 69.3/68.2
AFDetV?2 [45] 72.2/70.3 180.5/80.0|73.0/72.679.8/74.3|73.7/68.6 | 72.4/71.2 | 69.8/69.7
FSD [48] 74.4/72.4 |82.7/82.3|74.4/74.1|82.9/77.9(75.9/71.3|75.6/74.4|72.9/71.8
HEDNet (ours) 76.9/75.0 |84.2/83.8|77.0/76.6|84.1/79.7 |78.3/74.0|78.2/77.0 | 75.4/74.3

Table 1: Comparison with prior methods on the Waymo Open dataset (single-frame setting). Metrics:
mAP/mAPH (%)1 for the overall results, and AP/APH (%)7 for each category. : two-stage method.

weighted by the heading accuracy (mAPH). Both are further broken down into two difficulty levels:
L1 for objects with more than five LiDAR points and L2 for objects with at least one LiDAR point.

nuScenes consists of 28k, 6k, and 6k annotated samples for training, validation, and testing,
respectively. Mean average precision (mAP) and nuScenes detection score (NDS) are used as the
evaluation metrics. mAP is computed by averaging over the distance thresholds of 0.5m, 1m, 2m,
4m across all categories. NDS is a weighted average of mAP and the other five true positive metrics
measuring the translation, scaling, orientation, velocity, and attribute errors.

4.2 Implementation details

We implemented our method using the open-source OpenPCDet [49]. To build HEDNet, we set the
hyperparameter m to 2 for all SED and DED blocks and stacked 4 DED blocks for the 2D dense
backbone by default. For 3D object detection on the Waymo Open dataset, we adopted the detection
head of CenterPoint and set the voxel size to (0.08m, 0.08m, 0.15m). We trained HEDNet for 24
epochs on the full training set (single-frame) to compare with prior methods. For ablation experiments
in Section[4.4} we trained the models for 30 epochs on a 20% training subset. All models were trained
with a batch size of 16 on 8 RTX 3090 GPUs. The other training settings strictly followed DSVT [15].
For 3D object detection on the nuScenes dataset, we adopted the detection head of TransFusion-L
and set the voxel size to (0.075m, 0.075m, 0.2m). We trained HEDNet for 20 epochs with a batch
size of 16 on 8 RTX 3090 GPUs. The other training settings strictly followed TransFusion-L [28]].

4.3 Comparison with state-of-the-art methods

Results on the Waymo Open dataset. We compared the proposed HEDNet with previous methods
on the Waymo Open dataset (Table[I). On the validation set, HEDNet yielded 1.3% L2 mAP and 1.3%

Results on the validation data set

Method | NDS mAP | Car Truck Bus TL. C.V. Ped. M.T. Bike T.C. BR.
CenterPoint [27] 66.5 592|849 574 707 38.1 169 85.1 59.0 42.0 69.8 68.3
VoxelNeXt [50] 66.7 60.5 839 555 70.5 38.1 21.1 84.6 628 50.0 694 69.4
TransFusion-L [28] [70.1 65.5 [869 60.8 73.1 434 252 87.5 729 573 772 703
HEDNet (Ours) 714 66.7 | 87.7 60.6 77.8 50.7 28.9 87.1 743 568 763 669
Results on the test data set
Method | NDS mAP | Car Truck Bus TL. C.V. Ped. M.T. Bike T.C. BR.
PointPillars [[19] 453 3051684 230 282 234 41 597 274 1.1 30.8 389
3DSSD [3] 564 426|812 472 614 305 126 702 360 86 31.1 479
CBGS [51] 63.3 52.8 |81.1 485 549 429 105 80.1 515 223 709 65.7
CenterPoint [27] 65.5 580846 51.0 60.2 532 175 834 537 287 76.7 70.9
FCOS-LiDAR [9] 65.7 602|822 477 529 488 288 84.5 68.0 39.0 79.2 70.7
HotSpotNet [52] 66.0 59.3 [83.1 509 564 533 23.0 81.3 635 36.6 73.0 71.6
CVCNET [53] 66.6 582 826 495 594 51.1 162 83.0 61.8 38.8 69.7 69.7
AFDetV2 [45] 68.5 624 1863 542 625 589 267 858 63.8 343 80.1 71.0
UVTR-L [54] 69.7 639|863 522 62.8 59.7 337 84.5 68.8 41.1 747 74.9
VISTA [55] 69.8 63.0 844 551 637 542 251 82.8 70.0 454 785 714
Focals Conv [56] 70.0 63.8 |86.7 563 67.7 59.5 238 875 645 363 814 74.1
VoxelNeXt [50] 70.0 64.5 |84.6 53.0 647 558 28.7 858 732 457 79.0 74.6
TransFusion-L [28] [70.2 65.5 | 86.2 56.7 663 58.8 282 86.1 683 442 82.0 78.2
LargeKernel3D [[12] | 70.6 65.4 | 85.5 53.8 644 59.5 29.7 859 727 46.8 799 755
LinK [16] 71.0 66.3 [86.1 557 657 62.1 309 858 735 475 804 755
HEDNet (Ours) 72.0 67.7 [87.1 565 704 63.5 33.6 879 704 448 85.1 78.1

Table 2: Comparison with prior methods on the nuScenes dataset. Metrics: NDS (%)1 and mAP
(%)1 for the overall results, AP (%)7 for each category. ‘T.L., ‘C.V.’, ‘Ped.’, ‘M.T.’, ‘T.C.’, and 'B.R’
denote trailer, construction vehicle, pedestrian, motor, traffic cone, and barrier, respectively.

=
N
[

* HEDNet (Ours) —&— Overall
E 72 DSVT-Voxel E Vehicle.
< = 4| —A— Pedestrian
E FSD E | —— Cyclist
~ 70 - «
=2 PV-RCNN+, o
> LargeKernel3D =3
S S
£ 68 P
§ ® CenterPoint-Voxel p
: 6 PV-RCNN enterPoint-Voxe g 2
2 SST ® g
=
g . £
£ o4 . . £,

Part-A2-Net CenterPoint-Pillar|
62 w .
0 5 10 15 20 25 35 40 0-30 30-50 50-inf

Inference speed (FPS) Distance to LiDAR sensor (m)

Figure 4: Detection accuracy (L2 mAPH) versus Figure 5: Improvements decomposition of HED-
inference speed (FPS1) of different models on Net over HEDNet-single with regard to the dis-
the Waymo Open validation set. tance range of objects to the LiDAR sensor.

L2 mAPH improvements over the prior best method DSVT-Voxel [15]]. HEDNet also outperformed
the two-stage models PV-RCNN++ [47]] and FSD [48]]. More importantly, our method significantly
outperformed the transformer-based DSVT-Voxel by 1.7% L2 mAPH on the vehicle category, where
the average scale of vehicles is 10 times bigger than pedestrians and cyclists.

Results on the nuScenes dataset. We compared HEDNet with previous top-performing methods
on the nuScenes dataset (Table Q]) On the nuScenes test set, HEDNet achieved impressive results
with 72.0% NDS and 67.7% mAP. Compared with TransFusion-L (which adopts the same head as
HEDNet), HEDNet showcased significant improvements, with a gain of 1.8% NDS and 2.2% mAP.
In addition, on the three categories with large objects, namely bus, trailer (T.L.), and construction
vehicle (C.V.), HEDNet outperformed TransFusion-L by 4.1%, 4.7%, and 5.4% mAP, respectively.
These results further demonstrate the effectiveness of our method.

Block | Latency | L1 mAPH | L2 mAPH #Block | Latency | L1 mAPH | L2 mAPH

RSR block | 176 ms 74.61 68.30 0 48 ms 76.13 69.89
SSR block | 43 ms 74.42 67.93 1 54 ms 77.56 71.37
SED block | 48 ms 76.13 69.89 3 63 ms 77.75 71.64
SSR block® | 49 ms 76.67 70.49 4 67 ms 78.02 71.92
SED block® | 54ms | 77.39 71.37 5 73ms | 77.85 71.77

(a) Effectiveness of the SED block. (b) Effectiveness of the DED block.

Sparse back. | Dense back. |[L1 mAPH|L2 mAPH #Scale | Latency | L1 mAPH | L2 mAPH

8 SSR blocks | 1 DED block | 73.91 67.80 1 43 ms 76.18 69.88
16 SSR blocks| 1 DED block | 73.95 67.82 2 59 ms 77.61 71.44
4 SED blocks | 1 DED block | 75.39 69.42 3 67 ms 78.02 71.92
4 SED blocks |2 DED blocks| 75.62 69.67 4 78 ms 78.12 72.02
(c) HEDNet with 2D sparse backbone. (d) Effectiveness of encoder-decoder design.

Table 3: Ablations on the Waymo Open. ': with 1 DED block. In (c), ‘back.’” denotes backbone. In
(d), the gray line denotes the HEDNet-single, and the blue line denotes the default HEDNet.

Inference speed. We further compared HEDNet with previous leading methods in terms of detection
accuracy and inference speed, as depicted in Figure 4 Remarkably, HEDNet achieved superior
detection accuracy compared with LargeKernel3D [12] and DSVT-Voxel [15] with faster inference
speed. Note that LargeKernel3D and DSVT-Voxel were developed based on large-kernel CNN and
transformer, respectively. All models were evaluated on the same NVIDIA RTX 3090 GPU.

4.4 Ablation studies

To better investigate the effectiveness of HEDNet, we constructed two network variants: HEDNet-
single and HEDNet-2D. For the HEDNet-single, we replaced all the SED and DED blocks in HEDNet
with single-scale blocks, i.e.,only keeping the first m SSR/DR blocks in each SED/DED block. For
the HEDNet-2D, we replaced all 3D sparse convolutions in HEDNet with 2D sparse convolutions and
removed the three feature down-sampling layers that follow the feature maps F1, Fo, and F3, following
the settings in DSVT [15]. The two SSR blocks after Fy were also removed. In HEDNet-2D, the
resolution of the output feature map of the 2D dense backbone is same as that of the network input
Fy. We conducted experiments on the Waymo Open dataset to analyze various design choices of
HEDNet. All models were trained on a 20% training subset and evaluated on the validation set.

4.4.1 Model designs

Effectiveness of the SED block. We compared the models built with RSR block, SSR block, and
our proposed SED block in Table [3| (a). For the models with RSR/SSR blocks, we replaced the
SED blocks in HEDNet with RSR/SSR blocks. The 2D dense backbones in the first three models
were removed to fully explore the potential of the three structures. The first model with RSR blocks
achieved slightly better results than the second model with SSR blocks but with much higher runtime
latency. The third model with SED blocks significantly outperformed the second model with SSR
blocks by 1.96% L2 mAPH. Similar gains can be observed in the last two models with DED blocks.

Effectiveness of the DED block. The DED block is designed to expand sparse features towards
object centers. We compared the models that include different numbers of DED blocks in Table [3(b).
The models with DED blocks achieved large improvements over the model without DED blocks.
The model with five blocks performed worse than the model with four blocks. The former may be
overfitted to the training data. We adopted four DED blocks for HEDNet by default.

HEDNet with 2D sparse backbone. We conducted experiments on HEDNet-2D to evaluate the
effectiveness of our method with 2D inputs. For the construction of 2D inputs, we set the voxel size to
(0.32m, 0.32m, 6m), where the size of 6m in the Z axis corresponds to the full size of the input point
clouds. To compare our SED blocks with SSR blocks, we replaced each SED block in HEDNet-2D
with 2 SSR blocks or 4 SSR blocks, resulting in two models of different sizes (the first two models in

I large object

object with a few points

A=\
-— |}
—5 é VAR\V4
distant objects

Figure 6: Qualitative results on the Waymo Open. The red boxes are annotated by humans. The blue
boxes and green boxes are predicted by HEDNet and the HEDNet-single, respectively. Red points
correspond to the points that fall inside the human-annotated boxes. HEDNet predicted more precise
bounding boxes for the objects marked by red arrows than the single-scale variant HEDNet-single.

Table |3| (c)). From Table |3| (c), we can make the following observations. Firstly, the model with 16
SSR blocks achieved similar performance to the model with 8 SSR blocks, indicating that stacking
more SSR blocks could not further boost performance. Secondly, the models incorporating SED
blocks showed significant improvements over the models using SSR blocks (at least 1.6% gains on
L2 mAPH). This observation demonstrates the effectiveness of our SED block. Thirdly, stacking two
DED blocks achieved better performance than using a single one. These results clearly demonstrate
the generality and effectiveness of our proposed SED block and DED block.

4.4.2 HEDNet versus HEDNet-single

We conducted a thorough comparison between the proposed HEDNet and its single-scale variant,
HEDNet-single, to explore the effectiveness of the encoder-decoder structure and investigate which
objects benefit from HEDNet the most. Please note that the HEDNet is designed to capture long-range
dependencies among features in the spatial space, which is the core of this work.

Firstly, we compared the models built with blocks of different numbers of scales to explore the
effectiveness of the encoder-decoder structure. As shown in Table 3] (d), the models with multi-scale
blocks significantly outperformed the single-scale variant HEDNet-single (the line in gray color).
Using more scales achieved better performance, but introduced higher runtime latency. To strike a
balance between accuracy and efficiency, we adopted three-scale blocks for HEDNet by default.

Secondly, we evaluated the three-scale HEDNet and the HEDNet-single in Table 3] (d) separately for
each category and analyzed the results based on the distance range of objects to the LiDAR sensor.
We illustrate the accuracy improvements of HEDNet over HEDNet-single at various distance ranges
in Figure[3] Firstly, HEDNet showed significant improvements over HEDNet-single on the vehicle
category, where the size of vehicles is 10 times larger than that of pedestrians and cyclists. This
highlights the importance of capturing long-range dependencies for accurately detecting large objects.
Furthermore, HEDNet achieved larger performance gains on distant objects compared with objects
closer to the LiDAR sensor across all three categories. We believe this is because distant objects with
fewer point clouds require more contextual information for accurate detection. Overall, these results
demonstrate the effectiveness of our proposed method in detecting large and distant objects.

Thirdly, we further present some visualization results of the two models in Figure[6} HEDNet-single
exhibited limitations in accurately predicting boxes for large objects and the predicted boxes often

only covered parts of the objects (see the top row). In addition, when dealing with objects containing
a few points, HEDNet-single struggled to accurately estimate their orientations (see the bottom row).
In contrast, HEDNet predicted more precise bounding boxes for both scenarios, which we believe is
owed to the ability of HEDNet to capture long-range dependencies.

5 Conclusion

We propose a sparse encoder-decoder structure named SED block to capture long-range dependencies
among features in the spatial space. Further, we propose a dense encoder-decoder structure named
DED block to expand sparse features towards object centers. With the SED and DED blocks, we
introduce a hierarchical encoder-decoder network named HEDNet for 3D object detection in point
clouds. HEDNet achieved a new state-of-the-art performance on both the Waymo Open and nuScenes
datasets, which demonstrates the effectiveness of our method. We hope that our work can provide
some inspiration for the backbone design in 3D object detection.

Limitations HEDNet mainly focuses on 3D object detection in outdoor autonomous driving
scenarios. However, the application of HEDNet in other indoor applications is still an open problem.

Acknowledgements This work was supported in part by the National Key Research and Devel-
opment Program of China (No. 2021ZD0200301) and the National Natural Science Foundation of
China (Nos. U19B2034, 61836014) and THU-Bosch JCML center.

References

[1] Charles R. Qi, Wei Liu, Chenxia Wu, Hao Su, and Leonidas J. Guibas. Frustum pointnets for 3d object
detection from rgb-d data. In CVPR, 2018.

[2] Shaoshuai Shi, Xiaogang Wang, and Hongsheng Li. Pointrcnn: 3d object proposal generation and detection
from point cloud. In CVPR, 2019.

[3] Zetong Yang, Yanan Sun, Shu Liu, and Jiaya Jia. 3dssd: Point-based 3d single stage object detector. In
CVPR, 2020.

[4] Charles R Qi, Or Litany, Kaiming He, and Leonidas J Guibas. Deep hough voting for 3d object detection
in point clouds. In ICCV, 2019.

[5] Yilun Chen, Shu Liu, Xiaoyong Shen, and Jiaya Jia. Fast point r-cnn. In /CCV, 2019.

[6] Alex Bewley, Pei Sun, Thomas Mensink, Dragomir Anguelov, and Cristian Sminchisescu. Range condi-
tioned dilated convolutions for scale invariant 3d object detection. In CoRL, 2020.

[7] Lue Fan, Xuan Xiong, Feng Wang, Naiyan Wang, and ZhaoXiang Zhang. Rangedet: In defense of range
view for lidar-based 3d object detection. In ICCV, 2021.

[8] Pei Sun, Weiyue Wang, Yuning Chai, Gamaleldin Elsayed, Alex Bewley, Xiao Zhang, Cristian Sminchis-
escu, and Dragomir Anguelov. RSN: Range sparse net for efficient, accurate lidar 3d object detection. In
CVPR, 2021.

[9] Zhi Tian, Xiangxiang Chu, Xiaoming Wang, Xiaolin Wei, and Chunhua Shen. Fully convolutional
one-stage 3d object detection on liDAR range images. In NIPS, 2022.

[10] Danila Rukhovich, Anna Vorontsova, and Anton Konushin. Fcaf3d: fully convolutional anchor-free 3d
object detection. In ECCV, 2022.

[11] Guangsheng Shi, Ruifeng Li, and Chao Ma. Pillarnet: Real-time and high-performance pillar-based 3d
object detection. In ECCV, 2022.

[12] Yukang Chen, Jianhui Liu, Xiaojuan Qi, Xiangyu Zhang, Jian Sun, and Jiaya Jia. Scaling up kernels in 3d
cnns. In CVPR, 2023.

[13] Pei Sun, Mingxing Tan, Weiyue Wang, Chenxi Liu, Fei Xia, Zhaoqi Leng, and Dragomir Anguelov.
Swformer: Sparse window transformer for 3d object detection in point clouds. In ECCV, 2022.

[14] Lue Fan, Ziqi Pang, Tianyuan Zhang, Yu-Xiong Wang, Hang Zhao, Feng Wang, Naiyan Wang, and
Zhaoxiang Zhang. Embracing Single Stride 3D Object Detector with Sparse Transformer. In CVPR, 2022.

10

[15]

[16]

(17]

(18]
(19]

(20]

[21]
(22]

(23]
[24]

[25]

[26]

[27]

(28]

(29]

(30]

(31]

(32]

(33]

[34]

(35]

(36]

(37]

Haiyang Wang, Chen Shi, Shaoshuai Shi, Meng Lei, Sen Wang, Di He, Bernt Schiele, and Liwei Wang.
Dsvt: Dynamic sparse voxel transformer with rotated sets. In CVPR, 2023.

Tao Lu, Xiang Ding, Haisong Liu, Gangshan Wu, and Limin Wang. Link: Linear kernel for lidar-based 3d
perception. In CVPR, 2023.

Yin Zhou and Oncel Tuzel. Voxelnet: End-to-end learning for point cloud based 3d object detection. In
CVPR, 2018.

Yan Yan, Yuxing Mao, and Bo Li. Second: Sparsely embedded convolutional detection. In Sensors, 2018.

Alex H. Lang, Sourabh Vora, Holger Caesar, Lubing Zhou, Jiong Yang, and Oscar Beijbom. Pointpillars:
Fast encoders for object detection from point clouds. In CVPR, 2019.

Benjamin Graham and Laurens Van der Maaten. Submanifold sparse convolutional networks. arXiv
preprint arXiv:1706.01307, 2017.

Ben Graham. Sparse 3d convolutional neural networks. arXiv preprint arXiv:1505.02890, 2015.

Tsung-Yi Lin, Piotr Dollar, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge Belongie. Feature
pyramid networks for object detection. In CVPR, 2017.

Fisher Yu, Dequan Wang, Trevor Darrell, and Yi Zhou. Deep layer aggregation. In CVPR, 2018.

Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang Wang, and Jiaya Jia. Pyramid scene parsing
network. In CVPR, 2017.

Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian Schroff, and Hartwig Adam. Encoder-decoder
with atrous separable convolution for semantic image segmentation. In ECCV, 2018.

Gang Zhang, Ziyi Li, Jianmin Li, and Xiaolin Hu. Cfnet: Cascade fusion network for dense prediction.
arXiv preprint arXiv:2302.06052, 2023.

Tianwei Yin, Xingyi Zhou, and Philipp Krahenbuhl. Center-based 3d object detection and tracking. In
CVPR, 2021.

Xuyang Bai, Zeyu Hu, Xinge Zhu, Qingqiu Huang, Yilun Chen, Hongbo Fu, and Chiew-Lan Tai. Transfu-
sion: Robust lidar-camera fusion for 3d object detection with transformers. In CVPR, 2022.

Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Aurelien Chouard, Vijaysai Patnaik, Paul Tsui, James
Guo, Yin Zhou, Yuning Chai, Benjamin Caine, Vijay Vasudevan, Wei Han, Jiquan Ngiam, Hang Zhao,
Aleksei Timofeev, Scott Ettinger, Maxim Krivokon, Amy Gao, Aditya Joshi, Yu Zhang, Jonathon Shlens,
Zhifeng Chen, and Dragomir Anguelov. Scalability in perception for autonomous driving: Waymo open
dataset. In CVPR, 2020.

Holger Caesar, Varun Bankiti, Alex H. Lang, Sourabh Vora, Venice Erin Liong, Qiang Xu, Anush Krishnan,
Yu Pan, Giancarlo Baldan, and Oscar Beijbom. nuscenes: A multimodal dataset for autonomous driving.
In CVPR, 2020.

Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning on point sets for 3d
classification and segmentation. In CVPR, 2017.

Charles R Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep hierarchical feature learning on
point sets in a metric space. In NeurIPS, 2017.

Xiaohan Ding, Xiangyu Zhang, Jungong Han, and Guiguang Ding. Scaling up your kernels to 31x31:
Revisiting large kernel design in cnns. In CVPR, 2022.

Mingxing Tan, Ruoming Pang, and Quoc V. Le. Efficientdet: Scalable and efficient object detection. In
CVPR, 2020.

Golnaz Ghiasi, Tsung-Yi Lin, Ruoming Pang, and Quoc V. Le. Nas-fpn: Learning scalable feature pyramid
architecture for object detection. In CVPR, 2019.

Xingi Fan, Mingjie Jiang, Ali Raza Shahid, and Yan Hong. Hierarchical scale convolutional neural network
for facial expression recognition. In Cognitive Neurodynamics, 2022.

Shaoshuai Shi, Zhe Wang, Jianping Shi, Xiaogang Wang, and Hongsheng Li. From points to parts: 3d
object detection from point cloud with part-aware and part-aggregation network. In TPAMI, 2019.

11

(38]

(39]

(40]

(41]

(42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

(50]

[51]

[52]

(53]

[54]

[55]

[56]

(571
(58]

[59]

(60]

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
image segmentation. In MICCAI, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
In CVPR, 2016.

Spconv Contributors. Spconv: Spatially sparse convolution library. |https://github.com/
traveller59/spconv, 2022.

Yin Zhou, Pei Sun, Yu Zhang, Dragomir Anguelov, Jiyang Gao, Tom Ouyang, James Guo, Jiquan Ngiam,
and Vijay Vasudevan. End-to-end multi-view fusion for 3d object detection in lidar point clouds. In CoRL,
2019.

Zhichao Li, Feng Wang, and Naiyan Wang. Lidar r-cnn: An efficient and universal 3d object detector. In
CVPR, 2021.

Shaoshuai Shi, Chaoxu Guo, Li Jiang, Zhe Wang, Jianping Shi, Xiaogang Wang, and Hongsheng Li.
Pv-rcnn: Point-voxel feature set abstraction for 3d object detection. In CVPR, 2020.

Chao Zhou, Yanan Zhang, Jiaxin Chen, and Di Huang. Octr: Octree-based transformer for 3d object
detection. In CVPR, 2023.

Yihan Hu, Zhuangzhuang Ding, Runzhou Ge, Wenxin Shao, Li Huang, Kun Li, and Qiang Liu. Afdetv2:
Rethinking the necessity of the second stage for object detection from point clouds. In AAAI 2022.

Zixiang Zhou, Xiangchen Zhao, Yu Wang, Panqu Wang, and Hassan Foroosh. Centerformer: Center-based
transformer for 3d object detection. In ECCV, 2022.

Shaoshuai Shi, Li Jiang, Jiajun Deng, Zhe Wang, Chaoxu Guo, Jianping Shi, Xiaogang Wang, and
Hongsheng Li. Pv-rcnn++: Point-voxel feature set abstraction with local vector representation for 3d
object detection. In IJCV, 2023.

Lue Fan, Feng Wang, Naiyan Wang, and Zhaoxiang Zhang. Fully Sparse 3D Object Detection. In NeurIPS,
2022.

OpenPCDet Development Team. Openpcdet: An open-source toolbox for 3d object detection from point
clouds. https://github.com/open-mmlab/0penPCDet, 2020.

Yukang Chen, Jianhui Liu, Xiangyu Zhang, Xiaojuan Qi, and Jiaya Jia. Voxelnext: Fully sparse voxelnet
for 3d object detection and tracking. In CVPR, 2023.

Benjin Zhu, Zhengkai Jiang, Xiangxin Zhou, Zeming Li, and Gang Yu. Class-balanced grouping and
sampling for point cloud 3d object detection. In arXiv preprint arXiv:1908.09492, 2019.

Qi Chen, Lin Sun, Zhixin Wang, Kui Jia, and Alan Yuille. Object as hotspots: An anchor-free 3d object
detection approach via firing of hotspots. arXiv preprint arXiv:1912.12791, 2020.

Xiangyuan Zhu, Kehua Guo, Hui Fang, Liang Chen, Sheng Ren, and Bin Hu. Cross view capture for stereo
image super-resolution. In IEEE Transactions on Multimedia, 2022.

Yanwei Li, Yilun Chen, Xiaojuan Qi, Zeming Li, Jian Sun, and Jiaya Jia. Unifying voxel-based representa-
tion with transformer for 3d object detection. In NIPS, 2022.

Shengheng Deng, Zhihao Liang, Lin Sun, and Kui Jia. Vista: Boosting 3d object detection via dual
cross-view spatial attention. In CVPR, 2022.

Yukang Chen, Yanwei Li, Xiangyu Zhang, Jian Sun, and Jiaya Jia. Focal sparse convolutional networks
for 3d object detection. In CVPR, 2022.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In /CLR, 2015.

Christopher Choy, JunYoung Gwak, and Silvio Savarese. 4d spatio-temporal convnets: Minkowski
convolutional neural networks. In CVPR, 2019.

Jens Behley, Martin Garbade, Andres Milioto, Jan Quenzel, Sven Behnke, Cyrill Stachniss, and Jurgen
Gall. Semantickitti: A dataset for semantic scene understanding of lidar sequences. In /CCV, 2019.

Lingdong Kong, Youquan Liu, Runnan Chen, Yuexin Ma, Xinge Zhu, Yikang Li, Yuenan Hou, Yu Qiao,
and Ziwei Liu. Rethinking range view representation for lidar segmentation. In /CCV, 2023.

12

https://github.com/traveller59/spconv
https://github.com/traveller59/spconv
https://github.com/open-mmlab/OpenPCDet

Z El

L = = = gﬁ

Q - Q o o

B c 2 % w % B Z - z

S g 85 . %8 2 & g2 5832 8 3 & & o £

= £ % 2 8 5 2 %2 &% 25 5 ¥ 2 5 5 E
Method O M 2 F M A~ M =2 & A b OMm & » FE = & = mlU
MinkUNet34 [58](96.8 55.0 81.4 83.2 70.2 79.5 89.8 7.8 94.8 54.6 82.8 1.5 92.0 68.3 87.9 69.4 72.8 66.1 52.4 68.3
HEDNet (Ours) [97.3 57.2 82.3 88.1 73.9 80.4 91.3 23.2 95.1 51.5 83.1 2.8 92.1 69.6 87.6 69.4 72.3 66.6 52.1 70.3

Table 4: 3D semantic segmentation results on the SemanticKiTTI validation set. Metrics: mloU (%)71
for the overall results, IoU (%)1 for each category.

A Implementation details on 3D object detection

We implemented our method with Pytorch using the open-source OpenPCDet [49]].

Waymo Open dataset. We set the hyperparameter m to 2 for all SED and DED blocks and
stacked 4 DED blocks for the 2D dense backbone by default. We adopted the detection head of
CenterPoint [27] for HEDNet. As metioned in the main paper, we primarily followed the training
and inference schemes of DSVT [15]. Specifically, the voxel size was set to (0.08m, 0.08m, 0.15m),
and the detection range was set to [-75.2m, 75.2m] for X and Y axis, and [-2m, 4m] for Z axis. We
trained HEDNet for 24 epochs on the entire training dataset and reported the evaluation results on the
validation set to compare with previous state-of-the-art methods. For the ablation experiments, we
trained all models for 30 epochs on a 20% training subset. All models were trained with a batch size
of 16 on 8 RTX 3090 GPUs. We employed the Adam [57]] optimizer with a one-cycle learning rate
policy, and set the weight-decay to 0.05, and the max learning rate to 0.003. We also adopted the
faded training strategy in the last epoch. During inference, we applied class-specific NMS with an
IoU threshold of 0.75, 0.6 and 0.55 for vehicle, pedestrian, and cyclist, respectively.

nuScenes dataset. We set the hyperparameter m to 2 for all SED and DED blocks and stacked
5 DED blocks for the 2D dense backbone. We adopted the detection head of TransFusion-L [28]]
for HEDNet and primarily followed the training and inference schemes of TransFusion-L [28]]. The
voxel size was set to (0.075m, 0.075m, 0.2m), and the detection range was set to [-54m, 54m] for X
and Y axis, and [-5m, 3m] for Z axis. We trained HEDNet for 20 epochs on the combined training
and validation sets with a batch size of 16 on 8 RTX 3090 GPUs and reported the results on the test
set to compare with other methods. We employed the Adam [S7] optimizer with a one-cycle learning
rate policy, and set the weight-decay to 0.1, the momentum to [0.85, 0.95], and the max learning rate
to 0.001. The faded strategy was used during the last 5 epochs. For submission to the test server, we
set the query number of detection head to 300 and did not use any test-time augmentation.

B Experiments on 3D semantic segmentation

We conducted experiments on the popular LIDAR semantic segmentation dataset SemanticKiTTI [59],
It provides 22 sequences with 19 semantic classes, captured by a 64-beam LiDAR sensor. Following
the standard practice 58 60], we report the Intersection-over-Union (IoU) for each category and
the average score (mloU) over all categories. For the backbone network, we employed a UNet-style
structure, i.e.,the same designs as the first two layers of the MinkUNet34 are first adopted to extract
sparse features with a spatial down-sampling ratio of 4, followed by 4 SED layers to transform
the resulting features, finally, two symmetrical layers are used to recover high-resolution features
following MinkUNet34. The other settings strictly followed [58]. Table f] shows that the proposed
model exhibited significant gains over its counterpart MinkUNet34 (i.e.,2.0% in mloU), which
demonstrated the generality of our method.

C A step-wise ablation from VoxelNet to HEDNet

We conducted a step-wise ablation from the standard VoxelNet to our HEDNet on the Waymo Open
dataset to show the effectiveness of different components (see Table E]) For the second model, we
employed the training tricks used by DSVT, including IoU loss, class-specific NMS, faded strategy
(disabling data augmentations in the last epoch), and a weight decay of 0.05. These training tricks

13

No. | VoxelNet Tricks* Smaller-voxel SED-block DED-block Full-data|Latency L1 mAPH L2 mAPH

1 v 40 ms 70.0 64.0
2 v v 40 ms 75.4 69.1
3 v v N 49 ms 76.6 70.2
4 v v N v 55 ms 77.6 71.3
5 v v v v Ve 67 ms 78.0 71.9
6 v v v v v v 67 ms 79.5 73.4

Table 5: A step-wise ablation from VoxelNet to HEDNet. The first five models were trained on a 20%
training subset and the last model was trained on the full training set. *: training tricks used in DSVT.

can significantly boost detection accuracy. Actually, most of the training tricks have been used by
previous works, such as PV-RCNN++, and FSD. The codes and training configurations of the DSVT
model can be found in the OpenPCDet archives. For the third model, we adopt a smaller input voxel
size to keep more detailed information, which boosts the detection accuracy of pedestrian and cyclist.
The 4th and 5th models sequentially incorporate our proposed SED blocks and DED blocks. The last
model was trained on the full training set. Our final model (the 6th model) outperformed the previous
SOTA method DSVT by 1.3% L2 mAPH while being 50% faster.

14

	Introduction
	Related work
	3D object detection in point clouds
	Capturing long-range dependencies for 3D object detection
	Encoder-decoder networks for dense prediction

	Method
	Background
	SED and DED blocks
	HEDNet

	Experiments
	Datasets and metrics
	Implementation details
	Comparison with state-of-the-art methods
	Ablation studies
	Model designs
	HEDNet versus HEDNet-single

	Conclusion
	Implementation details on 3D object detection
	Experiments on 3D semantic segmentation
	A step-wise ablation from VoxelNet to HEDNet

