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Abstract

Deep neural networks have achieved significant success in the last decades, but
they are not well-calibrated and often produce unreliable predictions. A large
number of literature relies on uncertainty quantification to evaluate the reliability
of a learning model, which is particularly important for applications of out-of-
distribution (OOD) detection and misclassification detection. We are interested in
uncertainty quantification for interdependent node-level classification. We start our
analysis based on graph posterior networks (GPNs) that optimize the uncertainty
cross-entropy (UCE)-based loss function. We describe the theoretical limitations
of the widely-used UCE loss. To alleviate the identified drawbacks, we propose a
distance-based regularization that encourages clustered OOD nodes to remain clus-
tered in the latent space. We conduct extensive comparison experiments on eight
standard datasets and demonstrate that the proposed regularization outperforms the
state-of-the-art in both OOD detection and misclassification detection.

1 Introduction

In recent years, deep neural networks (DNNs) have been widely used in various fields [10, 28].
However, some neural networks provide under-confident [36] or over-confident [14] predictions,
limiting their practical applications in risk-constrained and safety-critical fields, such as drug discovery
[38], autonomous driving [30], and medical diagnosis [2]. Take autonomous drug design for an
example. Uncertainty estimation on the reliability of model predictions helps to support molecular
reasoning and experimental design by saving considerable time and resources [23]. It is important to
estimate the predictive uncertainty of a DNN, i.e., indicating when its predictions are likely incorrect.
There are two main types of uncertainty: epistemic uncertainty (knowledge uncertainty) and aleatoric
uncertainty (data uncertainty) [9]. Epistemic uncertainty is due to the lack of knowledge about
unseen data. Aleatoric uncertainty is caused by the inherent complexity of the data, which cannot
be reduced by increasing the training data, including sources of noise such as homoscedastic or
heteroscedastic noise [17]. These two uncertainty types are typically used for out-of-distribution
(OOD) and misclassification detection, respectively.

Most models have been introduced for uncertainty estimation on i.i.d. inputs, such as image and
tabular data. However, the uncertainty estimation for classifying interdependent nodes in attributed
graph data, such as social networks and citation networks, is under-explored. This work focuses on
the node classification tasks with great potential to generalize to others with interdependent inputs.
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Among various graph neural networks (GNNs) for processing graph data structures [18, 35, 13, 8],
graph posterior network (GPN) has been developed for semi-supervised node classification tasks [32]
that achieves state-of-the-art results in uncertainty estimation.

The major contributions of this paper are three-fold: (1) We theoretically analyze the limitations
of GPN at OOD detection when minimizing uncertainty cross-entropy (UCE), a widely used loss
function for uncertainty estimation. (2) Motivated by the aforementioned limitations, we propose a
distance-based regularization that considers the prior knowledge that OOD-specific features are useful
for learning representational space mappings. (3) We conduct extensive experiments comparing
our proposed model with five state-of-the-art baselines on eight graph datasets for two uncertainty
quantification tasks: OOD detection and misclassification detection tasks. The results demonstrate
that our proposed regularization can improve the quality of uncertainty quantification.

2 Related Work

This section reviews existing uncertainty estimation methods for i.i.d data and graph data.

Uncertainty Quantification for i.i.d inputs − There is plentiful research on uncertainty quantifi-
cation on i.i.d. inputs as discussed in a recent survey [1]. The first family quantifies the predictive
uncertainty of a DNN via multiple forward passes, such as deep ensembles and dropout-based
Bayesian neural networks (BNNs). Deep ensembles [19] intuitively sample multiple predictions by
training an ensemble of deep neural networks and aggregate the results. Dropout-based methods
[11] utilize multiple stochastic forward passes implemented with different dropout initializations to
approximate the posterior distribution of network weights. However, the substantial memory and
computational demands required for training and testing make it impractical for real-time applications.
The second family quantifies uncertainty using deterministic single forward-pass neural networks,
including density-based methods and distribution-based methods. The density-based approaches
typically fit a distribution (e.g., class-wise Gaussian distribution [3, 20, 34]) in the representation
space of a pre-trained or fine-tuned DNN, followed by the associated PDF function to quantify
different uncertainty types. The distribution-based methods train a deterministic neural network that
directly predicts the conjugate prior distribution of the class probabilities of the input feature vector,
called Dirichlet distribution, for uncertainty quantification. The predicted Dirichlet distribution can
be interpreted as an approximation of the posterior distribution of class probabilities conditioned
on the input feature vector. Popular distribution-based models are prior networks [22], evidential
networks [29], and posterior networks (PN) [7], all using UCE as the loss function with different
regularizations to improve the quality of uncertainty quantification.

Uncertainty Quantification for Graphs − As pointed out in the survey [1], uncertainty quantification
on GNNs and semi-supervised learning is under-explored. Most existing models for uncertainty
quantification on graphs are either dropout-based or BNN-based methods that typically drop or assign
probabilities to edges. There are two approaches using deterministic single-pass GNNs to quantify
uncertainty. One is called graph-based kernel Dirichlet distribution estimation (GKDE) [39], which
consists of evidential GCN, graph-based kernel, teacher network, dropout, and loss regularization.
Another method is the GPN model that combines PN and personalized page rank (PPR) message
passing to disentangle uncertainty with and without network effects. In addition, a recent method
[37] used standard classification loss for OOD detection on graphs together with an energy function
that is directly extracted from GNN, however, it is limited to OOD detection, not generally on the
topic of uncertainty quantification.

3 Preliminary

We discuss the problem setting of uncertainty quantification on the task of semi-supervised node
classification in Section 3.1. In particular, we use a deep neural network to predict the multinomial
uncertainty for each node and evaluate the aleatoric uncertainty and epistemic uncertainty by the
prediction result. In Section 3.2, we give a brief review of the GPN model [32], which serves as a
fundamental framework for our analysis and motivation for the proposed approach.
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3.1 Problem Setting

We define a graph with attributed node-level features G = (V, E , X, YL), where V is a set of nodes
on the graph with cardinality N and E ⊂ V × V denotes a set of graph edges that can be represented
by an adjacency matrix W . A feature matrix is denoted by X = [x1, . . . ,xN ]T ∈ RN×d, in which
each row xi ∈ Rd is a feature vector of node i with dimension d. Under the semi-supervised learning
setting, a set of labels is available, denoted by YL = {yi | i ∈ L}, where L ⊂ V and yi ∈ {1, . . . ,K}
for K classes.

Our goal is to design and learn a deterministic GNN based on G that takes the feature matrix X and
the adjacency matrix W as INPUT and predicts the parameters of a Dirichlet distribution for each
node i ∈ V as OUTPUT, denoted as αi, which is often referred to as the concentration parameters.
Therefore, the network function FΘ can be expressed as: A = FΘ(X,W ), where A := [αi]i∈V is a
matrix and Θ refers to network parameters. The statistical relations between the class label yi, the
vector of class probabilities pi, and the Dirichlet parameters αi can be represented as:

yi|pi ∼ Cat(pi), pi|αi ∼ Dir(αi), [αi]i∈V = FΘ(X,W ). (1)

Based on the predictions of A, the expected vector of class probabilities p̄i := E[pi|αi] =

[αi1/αi0, · · · , αiK/αi0]
T , where αi0 =

∑K
k=1 αik is called the Dirichlet strength. The aleatoric and

epistemic uncertainties about the classification of each node i can be calculated as:

ualea
i = −max{p̄i1, · · · , p̄iK} and uepis

i = −αi0, (2)

respectively. The aleatoric uncertainty is measured by the negative of the largest class probability in
p̄i. This uncertainty is higher when the largest class probability in p̄i is lower, which implies that
the model is less confident and the probabilities are more evenly spread across classes. On the other
hand, the epistemic uncertainty is measured by the negative of the Dirichlet strength αi0, whose
value is higher when the Dirichlet strength is lower, meaning that the model is unfamiliar with the
feature vector of node i and the predicted Dirichlet distribution is less concentrated around a specific
point or set of points on the probability simplex [22]. We note that a high aleatoric uncertainty may
not indicate a high epistemic uncertainty and vice versa. For example, two evidence parameters
αi = [1, · · · , 1] and αj = [1000, · · · , 1000] have the same aleatoric uncertainty: −1/K, since they
have the same projected class probabilities; but their epistemic uncertainties differ drastically: K
versus 1000K. Please refer to [32, 33] for rationales of aleatoric and epistemic uncertainties in (2).

3.2 Graph Posterior Network

Our framework is based on graph posterior network (GPN) [32], which extends posterior network
(PN) [7] to semi-supervised node classification. GPN consists of three main steps. First, a feature
encoder maps the original features onto a low-dimensional latent space with a simple two-layer
multi-layer perception (MLP) encoder. Second, a radial normalizing flow [27] estimates the density
of the latent space per class. Lastly, a personalized page rank message passing scheme [13] diffuses
the pseudo counts (density multiplied by the number of training nodes) by taking the graph structure
into account. We summarize the three steps with notations as follows,

1. Multi-layer perceptron for representation learning: zi = f(xi;θ) or fθ in short.
2. Normalizing flow for density estimation: gϕ for short, and more specifically

gϕ(zi)k = Nk · P(zi|k;ϕ), (3)

where Nk is the number of training nodes belonging to the class k, zi is the embedding
vector of node i obtained via the first step, P(zi|k;ϕ) is the conditional density per class
k estimated by a normalizing flow module, and ϕ denotes the parameters of this module.
GPN also includes the evidence computed prior to the graph aggregation, defined by

αfeat
i = gϕ(zi) + 1. (4)

3. Personalized page rank (PPR) for evidence diffusion: βaggr
i,k =

∑
j∈V Πppr

i,jgϕ(zj)k, where
Πppr

i,j refer to the dense PPR scores implicitly reflecting the importance of node j from
the perspective of node i. Then we can get the predicted concentrate parameters α with a
uniform prior 1 for a non-degenerated Dirichlet distribution, i.e.,

αi = βaggr
i + 1. (5)
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As opposed to GPN, PN is designed for uncertainty estimation for i.i.d. inputs, which only considers
the first two steps to predict the Dirichlet distribution Dir(αfeat

i ).

Given the labels of training nodes: YL = {yi | i ∈ L}, GPN is trained by minimizing the following
Bayesian loss:

L = UCE(A, Y ) + λ
∑

i∈L
H[Dir(αi)]. (6)

The first term in (6), called uncertainty cross entropy (UCE) [5], is defined by

UCE(A, Y ) =
∑
i∈L

Epi∼Dir(αi) [− logP(yi|pi)] =
∑
i∈L

∑
k∈[K]

yik(Ψ(αi0)−Ψ(αik)), (7)

where Y = [yi]i∈[N ], yi ∈ {0, 1}K is the one-hot encoded ground-truth class of the node i, and

Ψ is the digamma function, in terms of the Gamma function by: Ψ(x) = Γ′(x)
Γ(x) . Minimizing UCE

is known to increase confidence in classifying observed data (training nodes in this context). The
second term in (6) is based on the entropy of each node-level Dirichlet distribution Dir(αi) that
favors smooth distributions. For more details on GPN, please refer to Appendix C.

4 Our Contributions

This section provides a series of theoretical analyses relating to the UCE loss term and the GPN model
for detecting the OOD nodes, followed by a partial remedy to derived issues via two distance-based
regularizations. Specifically, we prove in Theorem 1 that under certain conditions, UCE can be made
arbitrarily small with the limiting case of UCE equal to zero in Corollary 3. Theorem 4 gives a
construction to make the UCE to be zero. As UCE does not involve the OOD nodes, Theorem 6 and
Corollary 7 elucidate scenarios for possibly detecting the OOD nodes. Lastly, Theorem 8 presents a
special situation where GPN fails to detect the OOD nodes.

4.1 Theoretical analysis

The loss function plays a pivotal role in learning effective representation functions and density
estimations. In this context, we establish several theorems (Theorems 1 and 4) to describe some
demanding assumptions on fθ and gϕ that achieve the minimum UCE loss. We then describe a
limitation of UCE in separating ID and OOD nodes in Theorem 6 and Corollary 7 for PN, which
means that we only consider the first two steps in GPN. The main conclusion of our analysis is that
the UCE loss function alone is insufficient to learn a representation space that separates OOD from
ID nodes. We take graph connectivity into account in Theorem 8 to study some scenarios where
GPN is ineffective for OOD detection. Although our theorems do not completely characterize graph
learning, they provide some insights into the behavior of the network parameters in PN/GPN when
minimizing the UCE loss.

Theorem 1. If the underlying distribution of feature vectors belonging to class k, denoted by Xk, is
disjoint to each other and both the MLP module (fθ) and the normalizing flow module (hϕ) can be
arbitrarily complex, then ∀ϵ > 0 there exists a configuration of fθ and gϕ such that UCE(A, Y ) < ϵ.

For the proofs, please refer to Appendix B. Here, we elaborate on the ideal configuration that satisfies
the conclusion of Theorem 1. We assume the MLP function fθ is arbitrarily complex such that it
maps xi ∈ Xk into a bounded ball in the representational space, i.e.,

{fθ(xi)|i ∈ [N ] and xi ∈ Xk} ⊂ B(zk, rk),

where each ball B(zk, rk) is centered at a point zk and bounded in size with rk < r for a positive
value r. Furthermore, we choose the normalizing flow gϕ to be

gϕ(z; k) =

®
1

Vol(B(zk,rk))
if d(z, zk) < rk

0 otherwise,
(8)

where Vol(·) refers to the volume of the ball. The conclusion in Theorem 1 states that for every ϵ,
there exists a suitable upper bound r of all the balls such that UCE(A, Y ) < ϵ.
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An implication of Theorem 1 is that UCE is not sufficient to separate OOD from ID nodes. Example 2
illustrates a scenario that OOD nodes can be close to ID nodes in the learned representation space
even though they can be separated in the feature space based on OOD-specific features, which are
unfortunately discarded. In other words, the learned representation space by GPN based on the UCE
loss is not guaranteed to preserve the distance between OOD and ID nodes in its representation
learning step.
Example 2 (Lost Features). Suppose two ID classes in a citation network contain bags of words for
SVM and neural networks papers respectively. Additionally, the OOD nodes contain bags of words
from reinforcement learning papers. Note that frequencies of keywords are used to discriminate
different classes. Then the keywords, “actor critic” and “policy network” are able to separate OOD
nodes from ID nodes, but are irrelevant features for discriminating between the two ID classes. UCE,
as a discriminatory loss, is only applied on ID nodes, and hence it is almost impossible to learn
representations that respect the OOD-specific features such as “actor-critic” and “policy networks”.

Limitations and discussions − The first assumption in Theorem 1 regarding the distinct class-specific
distributions of feature vectors might not be realistic in practice since certain ID classes may not be
clearly distinguishable due to noise in features or class labels. Nevertheless, our intuition suggests
that if the UCE loss is inadequate for separating OOD from ID nodes in situations where they are
separable, it is even more likely to falter in the more complex, non-separable cases. As for the second
assumption in Theorem 1, it is true that arbitrary complexity of fθ and gϕ does not fully respect the
inductive bias [24] of the network design, such as the MLP layers with ReLU for the feature encoder
f(x;θ), our analysis remains insightful and informative about the structures these networks are likely
to exhibit. For example, we may expect from Theorem 1 that the representation of each class may
favor an embedded space that compresses OOD-specific features, while density estimation gϕ tends
to have higher peaks over smaller volumes as the model consolidates the representation space.

We note that in [7, Theorem 1] and [32, Theorem], the authors demonstrated that PN/GPN is able
to achieve reasonable uncertainty estimation when the feature encoder is a ReLU network and PPR
diffusion is removed to disregard network effects. Unfortunately, the analysis is based on extreme
node features, specifically as δ → ∞,

P(f(δ · xi;θ)|k;ϕ) → 0, and βagg
i,k → 0,

for any node i with a high probability. Moreover, Theorem 1 in the GPN paper [32] holds even when
the supports of disjoint ID and OOD classes in the latent space overlap. In other words, this result
does not prevent distant nodes from having similar representations. In summary, the analysis based
on extreme node features may provide limited insights about the issues of GPN studied in this section.
See Appendix D for detailed discussions.

By taking ϵ → 0, Theorem 1 reduces to Corollary 3 where UCE is equal to 0.
Corollary 3. In the ideal case, where the representation function fθ maps the support of each class,
Xk, to a countable set (with measure zero), Zk and there exists a normalizing flow that has infinite
density on the point set for every class, one achieves UCE(A, Y ) = 0.

Next, we aim for the construction of a specific case to make UCE equal to zero. As it is challenging
to analyze the joint minimization on θ and ϕ, we assume that the normalizing flow can be chosen
optimally. For this purpose, we consider a simplified problem where the true density function is
assumed to be known for a given θ and hence it can be used to replace the learning of the normalizing
flow. As a result, the problem reduces to the learning of the representation network θ.
Theorem 4. Let Xk be the true distributions for class-k in the original feature space. Suppose the
normalizing flow module gϕ obtains the true analytic solution. If the true distributions {Xk} are
disjoint, then the fθ̂ that minimizes the UCE loss projects the support of each class in the original
space to a disjoint point set Zk, where Zk is defined by the projection of Xk to the representation
space, i.e., Zk = fθ(Xk).

Notice that the true analytical solution ϕ̂ in Theorem 4 is a function of θ, i.e., ϕ̂ = ϕ(θ). It is possible
to know an analytical form of ϕ(θ). For example, if the data points belonging to each class are
sampled from a known Gaussian distribution in the original feature space and the representation
network is a linear projection function, then the true density of the projected data points belonging
to each class can be derived based on any configuration of the known Gaussian distribution in the
original feature space.
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Figure 1: Illustration of the representation mapping in Theorem 1 with the conditions to detect far
OOD nodes (Theorem 6) and near OOD nodes (Corollary 7).

Before discussing OOD detection, we start with the definition of OOD nodes.
Definition 5. We define out-of-distribution (OOD) nodes to be the nodes that do not belong to any of
the K in-distribution (ID) classes. We denote all the ID distribution supports by X[K] =

⋃K
k=1 Xk.

In order to detect the OOD nodes, we need a good representation, e.g., fθ(X[K])
⋂

fθ(X−X[K]) = ∅.
However, it is possible that ∪K

k=1f
−1
θ (Zk) = X , which implies that any OOD node in the feature

space is mapped to the same distribution of an ID class in the representation space. To this end, we
require the preimage, f−1

θ , to be well-behaved in the sense that f−1
θ (Zk) must be contained within

a bounded region near the support of the true distribution Xk. Explicitly, we require there exists
a constant δ > 0 such that d(x, x̂) < δ, ∀x̂ ∈ f−1

θ (Zk) and ∀x ∈ Xk for each k. The choice of δ
depends on additional information about the dataset. An excessively large δ causes overlap between
classes, thus increasing the likelihood of improperly identifying the OOD nodes as ID. On the other
hand, a relatively small δ forces the model to overfit, which labels the non-training nodes as OOD.

We characterize in Theorem 6 that under certain conditions, OOD can be detected correctly if they
are far away from the ID distribution. One such condition is that the function fθ is well-fit, meaning
that it maps the support of Xk inside B(zk, rk) for every k in [K]. We denote a set of all well-fit
functions by Γ. Please refer to Figure 1 for a geometric illustration of these relevant quantities.
Theorem 6 (Far OOD). Under the same assumptions in Theorem 4 and two additional assumptions:
(i) Xk is bounded and (ii) for any x̂ ∈ f−1

θ (z) with z ∈ Zk, there exists xk ∈ Xk such that d(xk, x̂) <

δ, if the true distribution of OOD nodes does not overlap with the region ∪θ∈Γ ∪k ∪zk∈Zk
{f−1

θ (zk)},
then minimizing UCE can learn a representation projection of fθ that detect all the OOD points
farther than δ from Xk.
Corollary 7 (Near OOD). Following Theorem 6, if x̂ ∈ ∪θ∈Γ ∪k ∪zk∈Zk

{f−1
θ (zk)} follows the

distribution of OOD nodes, then the classification of x̂ depends on the choice of θ ∈ Γ.

The main purpose of Theorem 6 is to show a desired behavior for OOD detection is induced by
point-wise effects. In practice, we suggest the careful construction of fθ’s topology coupled with
proper regularization terms to achieve the point-wise effect.

Lastly, we consider the setting of GPN to use a graph layer after the feature-wise evidence predictions.
Theorem 8. Under the following conditions: (1) The features of some class 0 and OOD nodes belong
to S; (2) The OOD nodes are only connected to class 0 and themselves; (3) Other nodes belong to
other regions i.e. x ∈ X − S if x /∈ X0

⋃
XOOD; (4) Other nodes’ features are non-degenerate in

their associated region; and (5) the endowed graph neural network layer must produce evidence
for each node between the highest and lowest feature evidence found among its neighbors. A graph
with arbitrary homophily can achieve a global minimum on UCE with the associated OOD nodes
achieving arbitrarily large evidence, while simultaneously having perfect accuracy.

Limitations and Discussions. In Theorem 8, we provide a special situation where the GPN archi-
tecture may fail to detect OOD nodes by predicting large evidence values for belonging to class
0. In addition, we show in Appendix B that if GPN has bad initial feature predictions, even ideal
graph construction coupled with an ideal graph neural network (with a homophily degree 1.0) fails to
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prevent the OOD nodes from being misclassified as ID nodes. For homophily graphs with degrees
less than 1.0, the majority of nodes for each class have similar evidence values after graph diffusion
layers, except that the nodes between some pairs of classes may have different evidence values.

4.2 Distance-Based Regularization

As discussed in Section 4.1, the UCE loss function alone is insufficient to learn a representation
space that separates OOD from ID nodes using the GPN model. We propose a heuristic remedy that
enforces distance minimization on the graph. Ideally, we should design a distance formula that can
preserve the distance relationship among all the feature vectors. However, distance preservation likely
increases variation in the latent space as we cannot compress the classes’ support in the representation
space to be arbitrarily small, while simultaneously preserving distances.

Instead, we consider distance minimization, as it helps prevent the model from discarding relevant
features while decreasing variation between nodes in the representation space. Here we give two
formulations directly. The simpler, theorem-motivated term, is the distance regularization on the
latent space,

RD(fθ(X);G) =
∑
i,j∈E

∥fθ(xi)− fθ(xj)∥2 . (9)

The regularization encourages nearby points in the graph representation to remain nearby in the latent
space. In other words, this regularization (9) discourages the overlap fθ(X[K])

⋂
fθ(X − X[K]).

We also minimize the "distance" on the produced evidence through a divergence-based regularization,

Rα(α
feat;G) =

∑
(i,j)∈E

divkl(α
feat
i ,αfeat

j ) + divkl(α
feat
j ,αfeat

i ), (10)

where divkl refers to the Kullback–Leibler divergence and two symmetric terms are considered. This
divergence-based formulation likely decreases the variation in evidence between neighboring nodes,
because high variation in the latent space between neighboring nodes need not be mapped to similar
evidence.

In summary, we augment the GPN mode with either one of the proposed regularization terms in (9)
and (10), thus leading to the objective function as follows,

L = UCE(A, Y )− λ1

∑
i∈L

H(Dir(αi))︸ ︷︷ ︸
entropy regularizer

+λ2 R(fθ(X);G)︸ ︷︷ ︸
proposed regularizer

, (11)

with two positive parameters λ1, λ2. The first term is the standard UCE loss function. The second
term is regarded by GPN as an entropy regularizer. The last term, R, is chosen to be either RD or
Rα, a decision implemented through hyperparameter tuning. We have included a theoretical result in
Appendix B that provides a rationale for the proposed distance regularizations.

5 Experiments

In this section, we conduct extensive experiments on two tasks of OOD detection and misclassification
detection. We compare the proposed framework (11) for uncertainty estimation of semi-supervised
node classification using 8 datasets with a comparison to 5 baseline methods. The code is available at
https://github.com/neoques/Graph-Posterior-Network.

5.1 Experiment Setup

Datasets We use three citation networks (i.e. CoraML, CiteSeer, Pubmed) [4], two co-purchase
datasets [31] (i.e. AmazonComputers, AmazonPhotos), two coauthor datasets [31] (i.e. CoauthorCS
and CoauthorPhysics) and a large dataset OGBN Arxiv [16]. A detailed description of these datasets
is in Appendix E. We show the result of three citation datasets in the main paper and the remaining
results in Appendix F.
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Baselines We present the results for uncertainty estimation using five baseline methods. Among
these, two evidence collection models, namely graph kernel density estimation (GKDE) [39] and label
propagation (LP) [32], assuming that OOD nodes are located far away from the training nodes, while
easily misclassified nodes reside near the boundaries between classes. We compare to a modified
GCN model, referred to as VGCN-Energy [21], a Bayesian-based model, called GKDE-GCN [39],
and GPN [32] as baselines in our evaluation. We also introduce a Graph Neural Network called
APPNP [12] as one baseline for the misclassification detection task and report the ROC score. Details
of these baselines can be found in Appendix D.

Metrics To assess the classification performance of ID nodes, we rely on the metric ID-ACC, which
calculates the fraction of correct predictions among all predictions. As for evaluating uncertainty
estimation, we employ the metrics AUC-ROC and AUC-PR as evaluation measures. The rankings
are based on the scores of epistemic or aleatoric uncertainty. OOD detection is treated as a binary
classification task, where the positive class corresponds to OOD nodes and the negative class pertains
to ID nodes. Please refer to (2) for the calculation of aleatoric uncertainty and epistemic uncertainty.
For the Dirichlet-based models, the epistemic uncertainty has a similar practical interpretation to
vacuity in the belief theory, assessed using AUC scores. On the other hand, in VGCN-Energy, the
calculation of epistemic uncertainty is based on the energy value and is represented as uepis

i = energy.
The misclassification detection task is also a binary classification problem, where the positive cases
correspond to wrongly classified nodes and the negative cases represent correctly classified nodes.
The calculation of uncertainty for misclassification detection is performed in the same manner as OOD
detection except that uepis

i = −maxk αk
i . Prior studies [32, 39] has indicated that aleatoric uncertainty

is generally more effective for identifying misclassifications, whereas epistemic uncertainty is more
appropriate for detecting out-of-distribution instances.

Model Setup For all the baseline methods, we maintain consistency by employing the same set of
model hyperparameters as provided by GPN. Specifically for some model hyperparameters such as
latent dimension and weight decay, we adopt the same settings as GPN. Inspired by [26], we explore
multiple choices of activation functions in the representation networks. In addition to the default
ReLU used in GPN, we experiment with Sigmoid and GELU activation functions. Through empirical
evaluation, we discover that the choice of activation function significantly impacts the performance
of certain datasets, which is demonstrated in Appendix E.4. Besides, hyperparameters that we tune
include entropy regularization weight, distance-based regularization format (whether RD or Rα), and
weighting parameters (λ1, λ2), which are optimized based on the validation cross-entropy for each
specific dataset. For a comprehensive overview of the hyperparameter configuration and ablation
study, please refer to Appendix D.

5.2 Results

OOD Detection OOD detection aims to detect whether an input example is OOD given the
predicted uncertainty estimation. For the semi-supervised node classification, we adopt the Left-Out-
Classes setting where we assume several categories as OOD (details can be found in Appendix D),
as considered in [7, 39]. Different from the independent input setting, we retain the OOD nodes in
the graph but exclude their labels from the training and validation sets. This implies that the loss
function does not involve OOD labels, but the model has encountered the OOD node features during
the training phase. Similarly to [32], we also remove the last graph propagation layer for comparison
as “w/o network” where the final result only depends on the node features and no graph structure
involved. This configuration, referred to as the “w/o network” setting, results in a final output that
solely relies on the node features, with no involvement of the graph structure.

The results on CoraML, Citeseer, and PubMed are presented in Table 1 and the results on the other 5
datasets are shown in Table 6 in Appendix E. Our model achieves the best ID accuracy for four datasets
and demonstrates comparable performance to GPN for the remaining four datasets Furthermore, we
observe an improvement in the ROC (Receiver Operating Characteristic) rankings based on predicted
epistemic uncertainty with propagation, ranging from +1% to +8% compared to GPN. Consistent
with previous studies [32], our results demonstrate that prediction models incorporating evidence
propagation consistently outperform those without propagation across all datasets. This observation
highlights the significant impact of graph structure on uncertainty estimation. Moreover, when
comparing aleatoric uncertainty and epistemic uncertainty as ranking scores, we find that epistemic
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uncertainty outperforms aleatoric uncertainty in the OOD detection task. This finding aligns with
literature [39, 32] and emphasizes the superiority of epistemic uncertainty for OOD detection.

Table 1: AUROC and AUPR for the OOD Detection

Data Model ID-ACC AUROC AUPR
Alea w/ Epi w/ Epi w/o Alea w/ Epi w/ Epi w/o

CoraML

LP 86.40 83.78 80.86 n.a. 74.80 71.15 n.a.
GKDE 83.02 74.46 71.86 n.a. 66.19 64.05 n.a.

VGCN-Energy 89.66 81.70 83.15 n.a. 75.67 78.44 n.a.
GKDE-GCN 89.33 82.23 82.09 n.a. 75.88 77.03 n.a.

GPN 88.51 83.25 86.28 80.95 75.79 79.97 72.81
Ours 90.06 83.94 87.20 76.12 76.26 80.36 63.32

Citeseer

LP 57.34 65.99 67.54 n.a. 48.12 48.59 n.a.
GKDE 49.62 63.75 63.91 n.a. 56.74 56.79 n.a.

VGCN-Energy 70.79 72.16 76.08 n.a. 53.71 58.35 n.a.
GKDE-GCN 70.76 73.34 76.19 n.a. 54.25 59.07 n.a.

GPN 69.79 72.46 70.74 66.65 55.14 50.52 44.93
Ours 72.51 75.22 78.98 73.21 62.30 58.63 52.73

PubMed

LP 89.18 80.32 79.64 n.a. 71.01 72.98 n.a.
GKDE 88.16 69.66 68.47 n.a. 55.81 54.33 n.a.

VGCN-Energy 94.77 72.58 72.63 n.a. 60.54 60.63 n.a.
GKDE-GCN 94.66 73.53 74.47 n.a. 61.36 61.96 n.a.

GPN 94.08 71.84 73.91 71.2 57.92 67.19 59.72
Ours 93.84 75.23 81.76 77.79 60.75 78.16 69.19

Alea: Aleatoric, Epi.: Epistemic, w/: with propagation, w/o: without propagation
AUROC and AUPR for the OOD Detection: ID-ACC means the accuracy on ID nodes. AUROC and AUPR scores are given for OOD
detection based on different uncertainty metrics, where [Alea w/] is the aleatoric score with propagation layer, [Epi w/] is the epistemic score
with propagation layer and [Epi w/o] is the epistemic score without propagation. n.a. means either model or metric not applicable.

Misclassification Detection In addition to OOD detection, we conduct misclassification detection
on the clean graph for evaluating the predictive uncertainty estimation. Table 2 presents the results
for three datasets, while Table 7 in Appendix D is for the other 5 datasets. We observe a significant
improvement ranging from +12% to +50% in our model’s AUC-PR scores. While it is true that our
method performs worse than the best of the baselines in terms of AUROC, the differences are within
approximately 3% for six of the eight datasets.: Amazon Computers, Amazon Photos, Coauthor CS,
Coauthor Physics, and ODBG Arxiv, and PubMed. Despite having a lower AUROC compared to
the best of the baselines, our method exhibits a higher AUPR. This suggests that our method may
excel at identifying true positives among the top-ranked nodes when compared to GPN, while the
best baselines may be more effective at distinguishing between true positives and negatives among
the lower-ranked nodes.

Table 2: AUROC and AUPR for the Misclassification Detection

Data Model AUROC AUPR
Alea w/ Epi w/ Alea w/ Epi w/

CoraML

APPNP 83.64 n.a 48.39 n.a
VGCN-Energy 81.02 n.a 48.30 n.a
GKDE-GCN 80.80 76.83 49.61 45.87

GPN 81.19 78.10 49.51 44.42
Ours 75.8 69.85 89.95 88.20

CiteSeer

APPNP 73.55 n.a. 51.70 n.a.
VGCN-Energy 74.64 n.a 48.30 n.a.
GKDE-GCN 75.45 73.83 54.78 53.57

GPN 75.89 74.16 60.78 59.32
Ours 69.15 68.62 72.67 72.36

PubMed

APPNP 80.98 n.a. 37.79 n.a.
VGCN-Energy 81.16 n.a 38.24 n.a
GKDE-GCN 80.95 73.99 39.64 33.19

GPN 80.46 75.38 40.74 35.11
Ours 80.13 72.87 95.41 92.79

Alea: Aleatoric, Epi.: Epistemic, w/: with propagation, w/o: without propagation

AUROC and AUPR for misclassification detection: AUROC and AUPR scores are given for misclassification detection based on different
uncertainty metrics, where [Alea w/] is the aleatoric score with propagation layer, [Epi w/] is the epistemic score with propagation layer and
[Epi w/o] is the epistemic score without propagation. n.a. means either model or metric not applicable

5.3 Ablation Study

Our proposed model differs from the GPN model in three main aspects. First, we use validation
cross entropy (CE) instead of hold-out datasets to select hyperparameters. Second, we consider the
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activation function for the MLP layers as one of the hyperparameters for selection. We expect feature
value rescaling through non-linear activation of feature values to affect the density predictions. Third,
we incorporate one of the proposed distance-based regularization terms to the loss function used in
GPN.We conduct an ablation study to demonstrate the contribution of these three components. The
results for CiteSeer and PubMed are shown in Table 3 and the remaining datasets are included in
Appendix E. Hyperparameter tuning using validation cross-entropy improves GPN’s performance,
especially in cases where the choice of activation function has a significant impact on specific
datasets. Additionally, we consistently observe performance enhancements from the distance-based
regularization in both datasets, demonstrating the effectiveness of the proposed distance awareness
regularization term.

Table 3: Ablation Study with OOD Detection task

Data Model ID-ACC AUROC AUPR
Alea w/ Epi w/ Epi w/o Alea w/ Epi w/ Epi w/o

Citeseer

GPN 69.79 72.46 70.74 66.65 55.14 50.52 44.93
GPN-CE 70.98 74.20 73.75 68.41 58.12 53.55 46.60

GPN-CE-ACT 71.96 74.72 77.97 72.28 60.41 56.04 50.73
GPN-CE-GD 72.51 75.22 78.98 73.21 62.30 58.63 52.73

PubMed

GPN 94.08 71.84 73.91 71.2 57.92 67.19 59.72
GPN-CE 93.84 74.19 78.32 74.50 59.85 74.11 64.55

GPN-CE-ACT 93.84 74.19 78.32 74.50 59.85 74.11 64.55
GPN-CE-GD 93.84 75.23 81.76 77.79 60.75 78.16 69.19

Alea: Aleatoric, Epi.: Epistemic, w/: with propagation
GPN refers to the original GPN paper with its default hyperparameters and ReLU as the middle activation function, GPN-CE is the
original GPN model with re-tuned Dirichlet entropy regularization weight based on validation cross-entropy; GPN-CE-ACT is the original
GPN model with re-tuned entropy regularization weight and activation function based on cross-entropy; GPN-CE-GD/(Ours) adds the
distance-based regularization term while tuning the two weights and activation function.

6 Limitations

Our theoretical analyses mainly study the limitations of the UCE loss function when separating OOD
from ID nodes in the learned representation space. If we include the entropy-based regularization
term in Equation (6) with a sufficiently large weight λ, some of our theoretical findings may not
remain applicable. However, the entropy-based regularization term is designed to favor smooth
Dirichlet distributions but not to preserve the distance between OOD and ID nodes. We conjecture
that the resulting loss function is still insufficient to learn a representation space that separates OOD
from ID nodes, even though they are separable in the original feature space. In addition, our proposed
regularization terms in Section 4.2 are more effective for homophily graphs than heterophily graphs,
as neighboring nodes are less likely to belong to the same class in a heterophily graph than those in a
homophily graph.

7 Conclusion

This paper contributed to a better understanding of uncertainty quantification for node classification.
We investigated the limitations of the widely used UCE loss function. Motivated by the theoretical
analysis, we proposed a distance-based regularization that helps learn a representation network that is
more effective for the uncertainty quantification task. Experimentally, we demonstrated our approach
outperforms the state-of-the-art in two specific applications of uncertainty quantification for node
classification: OOD detection and misclassification detection.
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The supplementary materials are organized as follows. Appendix A provides the background knowledge on
the Dirichlet distribution. In Appendix B we review the architecture of the graph posterior network (GPN) [32]
together with our discussion on oversight of [32, Theorem 1]. Appendix C details the proofs of all the theorems
and corollaries discussed in the main paper. We provide detailed descriptions of baseline models, datasets, and
hyperparameter tuning for the experiments in Appendix D. Lastly, Appendix E includes more experimental
results that we are unable to fit into the paper.

A Dirichlet Distribution

A non-degenerate Dirichlet distribution, denoted by Dir(α), is parameterized by the concentration parameters
α = [α1, · · · , αK ]⊺ with αk > 1 for k ∈ [K]. More specifically, the Dirichlet distribution with parameters
α1, · · · , αK has a probability density function (pdf) given by

pdf(p;α) =
1

B(α)

K∏
k=1

p
αk−1
k , (12)

where {pk}Kk=1 belongs to the standard probability simplex, thus
∑K

k=1 pk = 1 and pk ∈ [0, 1],∀k ∈ [K], and
the normalizing constant B(α) is expressed in terms of the Gamma function Γ(·), i.e.,

B(α) =

∏
k Γ(αk)

Γ (Σkαk)
. (13)

Under the semi-supervised learning setting, a set of labels is available, denoted by L ⊂ V. For i ∈ L, the class
label yi ∈ {1, . . . ,K} can be converted into a one-hot vector yi with yik = 1 if the sample belongs to the k-th
class and yij = 0 for j ̸= k. By arranging αi and yi into matrices A := [αi]i∈L and Y := [yi]i∈L, the UCE
loss function is defined as:

UCE(A, Y ) =
∑
i∈L

∑
k∈[K]

yik(Ψ(αi0)−Ψ(αik)), (14)

where αi0 =
∑K

k=1 αik and Ψ is the digamma function given by

Ψ(x) =
Γ′(x)

Γ(x)
.

B Detailed Framework of GPN

In this section, we review the architecture of GPN, followed by two examples that reveal a limitation of Theorem
1 in the GPN paper [32].

Multi-layer Perceptron (MLP). Instead of deep convolution layers used in many neural networks designed
for image classification task [7], GPN utilizes two simple perceptron layers with ReLU activation function as the
encoding network, which maps high dimensional data to a latent space with a much smaller dimension, avoiding
the curse of dimensionality for the density estimation on a (mapped) latent representation [25]. As each node is
independent of the others in this step, the encoding map only considers the node features without any graph
structure involved. Mathematically, the mapping can be expressed by

zi = f(xi;θ) = W2σ(W1xi + 1⊺b1) + 1⊺b2,

where θ := {W1,W2, b1, b2} denotes a set of learning parameters. For simplicity we use the notation
zi = fθ(xi).

Normalizing Flow. Normalizing flow is used to estimate the density P(zi|k;ϕ) for k ∈ [K] and learning
parameters ϕ as an invertible transformation q(·; k) of a base distribution, e.g. Normal distribution, which
denotes the distribution of class k in the latent space. The default flow in GPN is the radial flow [27], given by

q(z; k) = z+
β(z− z0)

γ + ∥z− z0∥

P(zi|k;ϕ) = pz(q
−1(zi; k))|det

∂q−1(·; k)
∂z

|.

where z0 is a reference point and pz(·) ∼ N (0, 1). After estimating the density of the node i belonging to a
specific class k, the pseudo evidence counts are scaled to the probability, i.e., βk

i ∝ P(zi|k;ϕ), GPN sets

βk
i := gϕ(zi)k = Nk · P(zi|k;ϕ),

where Nk is the number of training nodes that belong to the class k.

13



Personalized Page Rank. GPN applies a personalized page rank (PPR) module to diffuse the evidence
among neighboring nodes. It is motivated by the work of Approximate Personalized Propagation of Neural
Predictions (APPNP) [12] that is designed to decouple the prediction (only based on node features) with any
encoding network and propagate with a personalized page rank (PPR) module (only based on edge information).
In particular, PPR provides a personalized influence score matrix for each node that considers L hop of neighbors
without involving any new parameters to learn and L is a hyperparameter:

β(l+1) = (1− γ)Âβ(l) + γβ(0),

where γ is a hyper-parameter relating to the teleport probability, Â denotes the symmetrically normalized graph
adjacency matrix with added self-loops (i.e., Â := D−1/2AD−1/2 with the standard adjacency matrix A), and l

denotes the layer index with β(0) obtained after the normalizing flow. The output of PPR is a set of concentration
parameters, denoted by α = hγ(β

(0)).

Collectively for MLP, normalizing flow, and PPR, the network in GPN can be expressed by

αi = 1 + hγ(gϕ(fθ(xi))), (15)

for each node i, where the addition of 1 guarantees that the concentration parameter is strictly positive. In
addition, an entropy regularization was considered by GPN defined by,

H(Dir(αi)) = logB(αi) + (αi0 −K)Ψ(αi0)−
K∑

k=1

(αik − 1)Ψ(αik), (16)

where αi0 =
∑K

k=1 αik.

Next, we provide two examples to describe oversight of [6, Theorem 1] and [32, Theorem 1] in the sense that
both theorems assume an impossibility. Particularly the assumption is that a two-layer ReLU network can be
represented by a set of affine mappings, each being full rank, from a finite set of regions to the latent space.
However, we construct Example 9 and Example 10 to show this assumption is impossible.

Example 9. We start with a simple case where a two-layer ReLU network with input, hidden layer, and output
of a scalar (1-dimensional) is considered for an easier interpretation of the results. One simple example of a
two-layer ReLU network is expressed by

z = fθ(x) = 1 · σReLU(1 · x+ 0) + 0. (17)

Following [15], we split the latent space into two affine regions, i.e.,

z =

®
x if x ∈ [0,∞)

0 if x ∈ (−∞, 0],
(18)

labeled by Q(0) = [0,∞) and Q(1) = (−∞, 0]. We see the associated V (0) = 1 and V (1) = 0 in the affine
representation (17) that certainly do not have independent rows, as required by [6, Theorem 1].

Example 10 extends the 1D case in Example 9 into a higher d-dimension, showing that there is always at least
one affine region that produces a single value, i.e. fθ(Q(l)∗) = {v} when mapped into a ReLU network fθ .

Example 10. We consider the ReLU network,

fθ(x) = CσReLU(Bx), (19)

where B,C ∈ Rd×d are matrices of full rank. Denote xj to be the solution to the equation,

−ej = Bx, (20)

where ej is the jth Euclidean standard basis. As B is assumed to be full rank, there is the unique solution of the
corresponding xj .

Notice that the polytope,

S =

{
d∑

j=1

ajxj

∣∣∣∣∣aj ≥ 0

}
, (21)

has non-zero measure in Rd. Note that the ReLU network is constant by construction, as σReLU(−ej) = 0. In
other words, we have for x ∈ S that

z = fθ(x) = CσReLU(Bx) = C0 = 0. (22)

As in the previous example, the existence of S means that there exists some V (·) = 0d,d which contradicts the
assumption that all V s have independent rows. Under this setting, the density does not approach zero, which is
the conclusion of Theorem 1 in [32].
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C Proofs

In this section, we provide the proof of all the theorems and corollaries. Note that until Theorem 8, We ignore
the graph component hγ and focus solely on the representational layer fθ and normalizing flow layer gϕ.

Proof of Theorem 1 and Corollary 3. As fθ is arbitrary by assumption, we choose it in such a way that it maps
a point in Xk to a point inside the ball centered at zk with radius rk, denoted by B(zk, rk),

fθ : Xk → Zk ⊂ B(zk, rk), (23)

where zk ∈ Z with a minimal distance R between any two of them, i.e., d(zk, zm) > R,∀k,m ∈ [K], and we
define r > rk, ∀k ∈ [K]. We then choose the normalizing flow to be,

gϕ(z; k) = 1 +Nk ·
®

1
Vol(B(zk,rk))

, if z ∈ B(zk, rk),

0, otherwise.
(24)

We add the value of 1 in the normalizing flow to produce valid evidence measures. We also assume that
Nk = µ(Xk) > 0, where µ is the Lebesgue measure function.

The global minimum of UCE occurs when UCE is equal to 0 for every class. Recall that

∑
k∈[K]

UCE (g(Zk), Y ) =
∑

k∈[K]

∫
Zk

Ñ
Ψ

Ñ ∑
m∈[K]

gm(z)

é
−Ψ(gk(z))

é
dµ. (25)

Using (23), we consider an upper bound of the right-hand side by integrating over the larger region, that is,

∑
k∈[K]

∫
B(zk,rk)

Ñ
Ψ

Ñ ∑
m∈[K]

gm(z)

é
−Ψ(gk(z))

é
dµ, (26)

=
∑

k∈[K]

Vol(B(zk, rk)) ·
Å
Ψ

Å
K +

Nk

Vol(B(zk, rk))

ã
−Ψ

Å
1 +

Nk

Vol(B(zk, rk))

ãã
. (27)

According the recurrence relation of the digamma function: Ψ(x+ 1) = Ψ(x) + 1/x, we readily derive that,

∑
k∈[K]

UCE (g(Zk), Y ) ≤
∑

k∈[K]

Vol(B(zk, rk)) ·
K−1∑
m=1

Å
K −m+

Nk

Vol(B(zk, rk))

ã−1

. (28)

Taking the limit of the right-hand side yields

lim
r→0

∑
k∈[K]

Vol(B(zk, rk)) ·
K−1∑
m=1

Å
K −m+

Nk

Vol(B(zk, rk))

ã−1

, (29)

=
∑

k∈[K]

lim
rk→0

Vol(B(zk, rk)) · lim
rk→0

K−1∑
m=1

Å
K −m+

Nk

Vol(B(zk, rk))

ã−1

. (30)

It is straightforward for the following two limits to hold,

lim
rk→0

Vol(B(zk, rk)) = 0, (31)

lim
rk→0

K−1∑
m=1

Å
K −m+

Nk

Vol(B(zk, rk))

ã−1

= 0, (32)

thus leading to

lim
r→0

∑
k∈[K]

Vol(B(zk, rk)) ·
K−1∑
m=1

Å
K −m+

Nk

Vol(B(zk, rk))

ã−1

= 0. (33)

On the other hand, as Ψ(
∑

k∈[K] gk(z))−Ψ(gk(z)) ≥ 0, we have

0 ≤
∑

k∈[K]

∫
Zk

(Ψ

Ñ ∑
m∈[K]

gm(z)

é
−Ψ(gk(z))dµ =

∑
k∈[K]

UCE (g(Zk), Y ) , (34)

which implies that UCE → 0 as r → 0. For r = 0, UCE is equal to zero, which leads to Corollary 3.
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Proof of Theorem 4. We denote the parameters of gϕ that represent the true analytic solution ϕ̂ = ϕ(θ). Note that
this is a function with respect to the choice of θ, that is, the true distribution is dependent on the representational
mapping. In this proof, we focus on finding a value of θ s.t.,

θ̂ = argmin
θ

UCE(α(θ, ϕ̂), Y ) = argmin
θ

UCE(α(θ, ϕ(θ)), Y ). (35)

As the true distribution is dependent on the representational mapping, we should consider a joint minimization
problem with respect to both the representation map and density distribution.

We will separate the proof into two cases. Specifically, we prove Case 1 by contradiction, showing that if the set
Zk mapped to by fθ from Xk has a non-zero measure, then the global minimizer UCE = 0 can not be achieved.
We then prove Case 2, under the assumption that a true analytical solution may achieve density evidence at a
point, by showing that we may achieve the global minimizer on a point set.

Case 1: Non-Zero Measure. Suppose the true distribution on this set is a non-degenerate distribution. As
the natural definitions of a probability distribution 1 =

∫
Zk

dµ, the UCE loss can be expressed by

∑
k∈[K]

UCE (g(Zk), Y ) =
∑

k∈[K]

∫
Zk

Ñ
Ψ

Ñ ∑
m∈[K]

gm(z)

é
−Ψ(gk(z))

é
dµ(z). (36)

In order for the measure of Zk to have a density of ϵ > 0, there exists a subset of Zk with non-zero measure
δk > 0, denoted Z∗

k . Using similar techniques as the proof of Theorem 1 in reverse, we obtain,∑
k∈[K]

UCE (g(Zk), Y ) ≥
∑

k∈[K]

∫
Zk

(Ψ (K +Nkϵ)−Ψ(1 +Nkϵ)) dµ,

then for some k ∈ [K] there exists some Z∗
k ,∑

k∈[K]

UCE (g(Zk), Y ) ≥
∫
Z∗

k

(Ψ (K +Nkϵ)−Ψ(1 +Nkϵ)) dµ,

= δ1 · (Ψ (K +Nkϵ)−Ψ(1 +Nkϵ)) .

As Ψ is strictly increasing, then δ2 = Ψ(K +Nkϵ)−Ψ(1 +Nkϵ) > 0, which implies that∑
k∈[K]

UCE (g(Zk), Y ) ≥
∑

k∈[K]

δ1 · δ2 > 0.

Therefore, we prove that if fθ maps to a measurable set, the UCE loss is necessarily non-zero.

Case 2: Zero Measure Sets. Corollary 3 shows that the zero UCE is achievable. If Case 1 fails, then we
can conclude that only on a disjoint set Zk with measure 0 for each k is permissible to achieve the UCE to be 0.
The exact choice of this set depends on the precise definitions of the probability distributions on a point set and
their ability to achieve infinite densities. Here we constrain these possibilities by requiring the range of fθ to
have non-zero measure or to be a point set if having zero measure2.

Proof of Theorem 6. Pick x ∈ X s.t. d(x,xk) > δ for xk ∈ Xk see that for any fθ where θ ∈ Γ we have that
x is necessarily not mapped to zk ∈ Z (if it were mapped in Z then the preimage would contain it and thus we
would have d(x,xk) < δ, which is a contradiction with our selection of x). Recall that the density for any point
mapped to zk is infinite. That is the density of the associated points mapped to the point set is necessarily infinite
and the density of points mapped elsewhere is necessarily smaller, namely 0, with the associated evidence 1.
Our selected x then has no evidence in favor of it belonging to a class k while any point in xk ∈ Xk must have
infinite evidence by our choice of a well-fit θ.

Proof of Corollary 7. Notice that we can choose two types of such θ,

Case 1 Let θ for class k be chosen such that,

f(x) =

®
zk if x ∈ Xk,

0 otherwise.
(37)

2We choose that the cardinality of the zero-measure set fθ(Xk) to be finite (rather than countably infinite) as
we do not want to detail precise topological arguments (like compactness and boundedness) about the pointsets
and their respective preimages.
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Case 2
f(x) =

®
zk if d(x, x̂) < δ for any x̂ ∈ Xk,

0 otherwise.
(38)

If x ∈ Xk is mapped to zk then it is endowed with infinite density, moreover, it is believed to be an ID node
belonging to class k. Thus, the nearby OOD being detected for these UCE minimizers is determined by arbitrary
choice.

Proof of Theorem 8. First note that the ID nodes are mapped to have infinite evidence achieved at the points
in the latent space Zk. As the representations of the OOD nodes are in Zk they are also endowed with infinite
evidence. That is graph layers can only help separate nodes by pulling them towards the center of their own
classes w.r.t. to the representation space this is only helpful if their representations are separate to begin with.

Lastly, we give a toy example showing heuristically that the proposed regularization yields a better separation of
the OOD nodes from IDs, compared to the original GPN model without the distance-based regularization.
Example 11. Consider two ID classes (Class 1 and Class 2) and one OOD class with the following construction:

1. All nodes belonging to Class 1 have feature values sampled from x(1) = [1, 0, 0].

2. All nodes belonging to Class 2 have feature values sampled from x(2) = [−1, 0, 0].

3. All nodes belonging to the OOD class 2 have feature values sampled from x(OOD) = [0, 1, v].

4. We sample v from the uniform distribution U(−1, 1) independently for each sample in each class.

5. All nodes are connected to every node within their own class, leading to a graph of homophily 1.

6. Suppose the density function is true density distribution

7. Denote the PPR layer by ĥ that uses the right normalized adjacency matrix AD−1 rather than
symmetrically normalized D−1/2AD−1/2, used in APPNP.

8. Suppose fθ is a linear function (i.e. no activation function) explicitly, W =

W11 W12

W21 W22

W31 W32

 .

Then GPN with our regularization can learn an embedding that makes it possible to separate classes 1, 2, and
OOD nodes. Without regularization, OOD nodes lie between ID classes in the latent space.

Proof. A simple calculation for the project leads to

zi = [XW ]i =


[W11,W12] for class 1 nodes
[−W11,−W12] for class 2 nodes
[W21 + vW31,W22 + vW31] for OOD nodes.

(39)

Clearly, the values of W31 and W32 would be smaller with the distance minimization term applied than without,
as v is selected randomly. Moreover neither W31 nor W32 affects the model’s ability to separate the two classes
as desired. We explicitly calculate both UCE and the distance-based regularization in the objective function,
while ignoring the Dirichlet regularization, thus leading to the following objective function,

L(Z,α, Y ;G) = UCE(ĥ(gϕ(fθ(x))), Y ) +R(Z;G). (40)

First, we explicitly work out the distance-based regularization term

R(Z;G) =
∑

(i,j)∈E

∥zi − zj∥2

=
∑

(i,j)∈E1

∥[W11,W12]− [W11,W12]∥2 +
∑

(i,j)∈E2

∥[−W11,−W12]− [−W1,1,−W12]∥2

+
∑

(i,j)∈EOOD

∥∥∥[W21 + v(i)W31,W22 + v(i)W32]− [W21 + v(j)W31,W22 + v(j)W32]
∥∥∥2

=
∑

(i,j)∈EOOD

∥∥∥(v(i) − v(j))[W31,W32]
∥∥∥2

,

17



which is minimized when W31,W32 go to zero.

Next, we consider the UCE loss portion. See that as we estimate the true density using g we will have no overlap

between the two distributions Z1,Z2. We are left with W =

W11 W12

W21 W22

0 0

 ,

Zi = [XW ]i =


[W11,W12] for class 1 nodes
[−W11,−W12] for class 2 nodes
[W21,W22] for OOD nodes,

(41)

If W is to remain full rank this will necessarily require either W21 or W22 to be non-zero. Thus OOD nodes will
be mapped as we see in (41) to some distinct values - which can be separated after the application of APPNP as
we expect APPNP to only average the values within each class.

D Additional Experimental Details

D.1 Descriptions of Baselines

Graph-based Kernel Dirichlet distribution Estimation (GKDE) [39]: Based on the high homophily property
of most graphs (neighboring nodes tend to share the same class label), GKDE derives the evidence with the help
of the node-level distances (shortest path in the graph) with training nodes belonging to the same class.

Label Propagation (LP) [32]: Following the idea of GKDE, LP collects the evidence by relying on the density
of labeled nodes in neighborhoods rather than distance. An initial condition per class is defined and then a
Personalized Page Rank is used as the diffusion.

VGCN-Energy [21]: It is a GCN-based model with energy score as the uncertainty estimation which maps each
node to a single, non-probabilistic scalar called the energy. The energy score can be calculated as follows

sienergy = −T log

K∑
k=1

exp
lki
T ,

where l is the predicted logits of a neural network and temperature parameter T = 1.

GKDE-GCN [39]: GKDE-GCN utilizes a GCN network to estimate the multisource uncertainty by a Dirichlet
distribution and then sample probability as well as the class prediction. The evidence derived from the aforemen-
tioned GKDE is as a teacher of concentration parameters of Dirichlet Distribution, and another deterministic
GCN predicting the probability is used as a teacher for sampled probability. The overall loss is composed of the
KL divergence between these two teachers with the corresponding distribution and Bayes risk with respect to the
squared loss of sampled class prediction.

APPNP [12]: Given that message passing neural network suffers from the over-smoothing problem that limits the
depth of the neural network, APPNP proposed to decouple the prediction and propagation where the prediction
depends on the node features and propagation depends on interactions between nodes through edges. APPNP
first uses any kind of neural network to embed the input space and diffuses information with a personalized page
rank. For large graphs, they use power iteration to approximate a topic-sensitive page rank.

GPN [32]: GPN applies a normalizing flow to estimate the density of each class in the latent space embedded
with an encoding network and then propagates the scaled density as the evidence.

D.2 Description of Datasets

We use three citation networks, labelled by CoraML, CiteSeer, Pubmed [4], two co-purchase Amazon datasets
[31], labeled by Computers and Photos, two coauthor datasets [31], labeled by CoauthorCS and Physics, and a
large dataset OGBN Arxiv [16]. We use the same train/val/test split of 5/15/80 as [32]. The details of the graphs
and setups for the OOD detection are provided in Table 4.

Table 4: Dataset Description

CoraML CiteSeer PubMed Computers Photos Coauthor CS Coauthor Physics OGBN-Arxiv
#nodes 2,995 4,230 19,717 13,752 7,650 18,333 34,493 169,343
#edges 16,316 10,674 88,648 491,722 238,162 163,788 495,924 2,315,598

#features 2879 602 500 767 745 6,805 8,415 128
#classes 7 6 3 10 8 15 5 40

# left-out-classes 3 2 1 5 3 4 2 15
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D.3 Hyper-parameter tuning

We follow the same setting with [32]. In detail, we use the Adam optimizer with a learning rate of 0.01. For
VGCN-Energy, we use a temperature of T = 1.0. We carefully tune three hyperparameters: the distance-based
regularization weight, Dirichlet entropy weight, and activation functions. We select the best parameters for each
dataset separately that returns the highest validation cross-entropy. The detailed hyperparameters configuration
is as Table 5.

Table 5: Hyperparameter configurations of proposed model

Dirichlet Entropy Reg. Weight Graph Distance Reg. Weight Activation function
CoraML 0 10−4 GELU
CiteSeer 10−4 10−9.5 LogSigmoid
PubMed 10−5 10−4 RELU

Computers 10−5 10−4 RELU
Photos 10−5 10−11 RELU

Coauthor CS 0 10−6 RELU
Coauthor Physics 10−4 10−4.5 LogSigmoid

OGBN-Arxiv 10−5 10−8 RELU

We also consider the following activation functions in the encoding network with element-wise operations,

σRELU(x) = max(0, x),

σLogSigmoid(x) = log
Ä
(1 + exp(−x))−1

ä
,

σGeLU(x) = xCDFN (x)

σHardTanh(x) =


−1, x < −1

x,−1 ≤ x ≤ 1

1, x > 1

.

ReLU is the most popular activation function used in the hidden layer of neural networks, which brings
efficient computation by only activating neurons with positive outputs. Sigmoid is popularly used for probability
prediction because its output is always in the range (0,1) with a smooth gradient. GeLU has better nonlinearity and
is widely used in Natural Language processing and computer vision. HardTanh is a more computation-efficient
version of Tanh.

E Additional Experiments

E.1 Additional Experiments - OOD Detection

For Amazon Photos, Amazon Computers, Coauthor CS, Coauthor Physics, and OGBN Arxiv dataset, the OOD
Detection results are shown in Table 6.

E.2 Additional Experiments - Misclassification Detection

For Amazon Photos, Amazon Computers, Coauthor CS, Coauthor Physics, and OGBN Arxiv dataset, the
Misclassification Detection results are shown in Table 7.

E.3 Graph Distance Minimization

We plot the tSNE visualization of latent space with different distance-based regularization weights and symbol
sizes denote the total evidence. We plot for coraML in Figure 2, CiteSeer in Figure 3, Coauthor CS in Figure 4,
Coauthor Physics in Figure 5. With increasing weight, it tends to have a more separable latent representation for
different categories while degenerate mappings occur when distance minimization is too large.
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Table 6: OOD Detection (Cont.)

Data Model ID-ACC AUROC AUPR
Alea w/ Epi w/ Epi w/o Alea w/ Epi w/ Epi w/o

Amazon
Computers

LP 83.28 86.74 83.88 n.a. 67.10 63.08 n.a.
GKDE 71.41 75.14 73.58 n.a. 49.21 47.68 n.a.

VGCN-Energy 88.95 82.76 83.43 n.a. 57.49 60.64 n.a.
GKDE-GCN 82.73 77.03 70.32 n.a 49.81 45.92 n.a

GPN 88.48 82.49 87.63 74.55 56.78 67.94 48.03
Ours 89.88 83.56 89.26 71.82 58.51 71.06 43.35

Amazon
Photos

LP 89.27 94.24 90.26 n.a. 90.24 85.55 n.a.
GKDE 85.94 76.51 60.83 n.a. 66.72 59.09 n.a.

VGCN-Energy 94.24 82.44 79.64 n.a. 72.60 71.71 n.a.
GKDE-GCN 89.84 73.65 69.09 n.a 62.45 59.68 n.a

GPN 94.10 82.72 91.98 76.57 74.55 86.29 64.00
Ours 94.40 83.51 92.30 78.10 77.65 87.36 65.39

Coauthor
CS

LP 86.40 83.78 80.86 n.a. 74.8 71.15 n.a
GKDE 78.84 79.32 77.59 n.a. 66.30 64.69 n.a.

VGCN-Energy 93.07 85.35 87.33 n.a. 80.87 82.79 n.a.
GKDE-GCN 93.13 85.02 84.45 n.a. 80.15 77.90 n.a.

GPN 88.21 69.49 92.90 88.84 55.41 90.28 86.54
Ours 89.24 70.12 92.37 91.38 56.20 91.17 90.45

Coauthor
Physics

LP 95.39 91.78 90.03 n.a. 70.58 69.63 n.a.
GKDE 93.30 87.02 84.64 n.a. 57.00 52.49 n.a.

VGCN-Energy 97.96 90.29 91.08 n.a. 63.63 69.41 n.a.
GKDE-GCN 97.95 87.38 84.62 n.a. 57.97 56.30 n.a.

GPN 97.40 85.20 94.51 89.63 61.89 83.73 66.44
Ours 97.44 85.28 94.42 90.36 62.80 83.61 70.62

OGBN
Arxiv

LP 66.84 80.04 75.22 n.a. 65.21 67.69 n.a.
GKDE 51.51 68.12 65.80 n.a. 47.22 45.23 n.a.

VGCN-Energy 75.61 64.91 64.50 n.a. 42.72 42.41 n.a
GKDE-GCN 73.89 68.84 72.44 n.a. 49.71 52.23 n.a.

GPN 73.84 66.33 74.82 62.17 46.35 58.71 43.01
Ours 71.30 66.98 74.52 62.75 47.48 56.97 41.48

Alea: Aleatoric, Epi.: Epistemic, w/: with propagation, w/o: without propagation

Table 7: AUROC and AUPR for the Misclassification Detection (Cont.)

Data Model AUROC AUPR
Alea w/ Epi w/ Alea w/ Epi w/

Amazon
Computers

APPNP 79.75 n.a. 45.10 n.a.
VGCN-Energy 82.08 n.a. 45.53 n.a.
GKDE-GCN 79.66 73.66 63.26 56.93

GPN 82.20 77.58 47.93 41.80
Ours 80.75 74.87 93.12 90.11

Amazon
Photos

APPNP 85.74 n.a. 37.00 n.a.
VGCN-Energy 87.94 n.a. 48.35 n.a.
GKDE-GCN 84.11 75.07 54.35 45.43

GPN 87.21 83.38 46.32 37.07
Ours 84.42 81.61 96.89 96.70

Coauthor
CS

APPNP 89.92 n.a. 37.98 n.a.
VGCN-Energy 89.46 n.a. 38.86 n.a.
GKDE-GCN 89.24 80.98 39.30 30.52

GPN 85.72 81.56 46.12 38.98
Ours 86.21 83.94 97.34 96.80

Coauthor
Physics

APPNP 93.27 n.a. 38.14 n.a.
VGCN-Energy 92.86 n.a. 37.19 n.a.
GKDE-GCN 92.77 86.12 37.08 25.13

GPN 91.14 89.63 41.43 35.64
Ours 89.93 88.83 99.14 99.10

OGBN
Arxiv

APPNP 77.55 n.a. 54.57 n.a.
VGCN-Energy 77.89 n.a. 54.87 n.a.
GKDE-GCN 77.47 77.55 61.62 62.33

GPN 75.44 72.71 55.64 52.99
Ours 75.30 72.85 83.95 81.54

Alea: Aleatoric, Epi.: Epistemic, w/: with propagation

20



CoraML

(a) 0 (b) 10−6

(c) 10−4 (d) 10−2

Figure 2: latent representation for CoraML

CiteSeer

(a) 0 (b) 10−6

(c) 10−4 (d) 10−2

Figure 3: latent representation for CiteSeer
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CoauthorCS

(a) 0 (b) 10−6

(c) 10−4 (d) 10−2

Figure 4: latent representation for Coauthor CS

CoauthorPhysics

(a) 0 (b) 10−6

(c) 10−4 (d) 10−2

Figure 5: latent representation for Coauthor Physics

E.4 Graph Activation

In this subsection, we present the t-SNE visualizations of the learned representational space for various datasets
in the following figures, without applying distance regularization. Instead, we introduce different activation
functions. It is worth noting the notable distinction in quality when using the LogSigmoid activation function,
which appears to be the smoothest among the activation functions employed on CiteSeer and Amazon Computers
datasets. Once again, the size of each node corresponds to the square root of the learned evidence. Additionally,
the color black indicates out-of-distribution (OOD) instances across all datasets, while distinct colors represent
different classes.
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CoraML

CiteSeer

PubMed

(a) RELU (b) LogSigmoid (c) HardTanh

Figure 6: Latent representation for CoraML, CiteSeer and PubMed on different graph activation
functions: RELU, LogSigmoid, and HardTanh.
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AmazonPhotos

AmazonComputers

CoauthorCS

CoauthorPhysics

(a) RELU (b) LogSigmoid (c) HardTanh

Figure 7: Latent representation for AmazonPhotos, AmazonComputers, CoauthorCS and Coauthor-
Physics on different graph activation functions: RELU, LogSigmoid, and HardTanh.
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E.5 Ablation Study

We show the full ablation study on three datasets: CoraML, CiteSeer and PubMed in Table 8.
Table 8: Ablation Study with OOD Detection task (cont.)

Data Model ID-ACC AUROC AUPR
Alea w/ Epi w/ Epi w/o Alea w/ Epi w/ Epi w/o

CoraML

GPN 88.51 83.25 86.28 80.95 75.79 79.97 72.81
GPN-CE 89.31 82.58 83.91 80.88 76.54 77.60 76.05

GPN-CE-ACT 89.87 83.34 86.96 75.60 74.96 79.74 62.73
GPN-CE-ACT-GD 90.06 83.94 87.20 76.12 76.26 80.36 63.32

Citeseer

GPN 69.79 72.46 70.74 66.65 55.14 50.52 44.93
GPN-CE 70.98 74.20 73.75 68.41 58.12 53.55 46.60

GPN-CE-ACT 71.96 74.72 77.97 72.28 60.41 56.04 50.73
GPN-CE-ACT-GD 72.51 75.22 78.98 73.21 62.30 58.63 52.73

PubMed
GPN 94.08 71.84 73.91 71.2 57.92 67.19 59.72

GPN-CE 93.84 74.19 78.32 74.50 59.85 74.11 64.55
GPN-CE-ACT 93.84 74.19 78.32 74.50 59.85 74.11 64.55

GPN-CE-ACT-GD 93.84 75.23 81.76 77.79 60.75 78.16 69.19
* Alea: Aleatoric, Epi.: Epistemic, w/: with propagation

GPN is the original results from the GPN paper with default hyperparameters and ReLU as the middle activation
function, GPN-CE is the original GPN model with re-tuned dirichlet entropy regularization weight; GPN-CE-ACT is
the original GPN model with re-tuned entropy regularization weight and activation function; GPN-CE-ACT-GD/(Ours)
add the distance-based regularization term and tuned the two weights and activation function.

25


	Introduction
	Related Work
	Preliminary
	Problem Setting
	Graph Posterior Network

	Our Contributions
	Theoretical analysis
	Distance-Based Regularization

	Experiments
	Experiment Setup
	Results
	Ablation Study

	Limitations
	Conclusion
	Acknowledgments
	Dirichlet Distribution
	Detailed Framework of GPN
	Proofs
	Additional Experimental Details
	Descriptions of Baselines
	Description of Datasets
	Hyper-parameter tuning

	Additional Experiments
	Additional Experiments - OOD Detection
	Additional Experiments - Misclassification Detection
	Graph Distance Minimization
	Graph Activation
	Ablation Study


