
Tanimoto Random Features for Scalable Molecular
Machine Learning

Austin Tripp
Unversity of Cambridge
ajt212@cam.ac.uk

Sergio Bacallado
Unversity of Cambridge
sb2116@cam.ac.uk

Sukriti Singh
University of Cambridge
ss2971@cam.ac.uk

José Miguel Hernández-Lobato
University of Cambridge
jmh233@cam.ac.uk

Abstract

The Tanimoto coefficient is commonly used to measure the similarity between
molecules represented as discrete fingerprints, either as a distance metric or a
positive definite kernel. While many kernel methods can be accelerated using
random feature approximations, at present there is a lack of such approximations
for the Tanimoto kernel. In this paper we propose two kinds of novel random
features to allow this kernel to scale to large datasets, and in the process discover a
novel extension of the kernel to real-valued vectors. We theoretically characterize
these random features, and provide error bounds on the spectral norm of the
Gram matrix. Experimentally, we show that these random features are effective at
approximating the Tanimoto coefficient of real-world datasets and are useful for
molecular property prediction and optimization tasks. Future updates to this work
will be available at http://arxiv.org/abs/2306.14809.

1 Introduction

In recent years there have been notable advances in the use of machine learning (ML) for drug
discovery, including molecule generation and property prediction (Dara et al., 2022). Despite
ceaseless progress in deep learning, conventional methods such as support vector machines or random
forest trained on molecular fingerprints are still competitive in the low-data regime (Walters and
Barzilay, 2020; Stanley et al., 2021). These fingerprints essentially encode fragments from a molecule
into a sparse vector, thereby compactly representing a large number of molecular substructures (David
et al., 2020). They are extensively used in virtual screening for substructure and similarity searches
as well as an input for ML models (Cereto-Massagué et al., 2015; Granda et al., 2018).

The Tanimoto coefficient (also known as the Jaccard index) stands out as a natural way to compare
such fingerprints. This coefficient is most commonly expressed as a function on sets TS or as a
function of non-negative vectors TMM (Jaccard, 1912; Tanimoto, 1958; Ralaivola et al., 2005; Costa,
2021; Tan et al., 2016):

TS(X,X
′) =

|X ∩X ′|
|X ∪X ′|

, X,X ′ ⊆ Ω, TMM (x, x′) =

∑
i min(xi, x

′
i)∑

i max(xi, x′i)
, x, x′ ∈ Rd

≥0 . (1)

If a and b are binary indicator vectors representing sets A and B respectively, then TS(A,B) =
TMM (a, b). Therefore TMM can be viewed as a generalization of TS ; for this reason it is sometimes
called the “weighted Jaccard coefficient” or min-max coefficient.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

http://arxiv.org/abs/2306.14809

The Tanimoto coefficient is widely used in machine learning and cheminformatics to compute
similarities between molecular fingerprints (Bajusz et al., 2015; O’Boyle and Sayle, 2016; Miranda-
Quintana et al., 2021), chiefly because of the following properties:

1. Clear Interpretation: The value of TMM (x, x′) represents the degree of overlap between
x and x′ and is always between 0 and 1. T (x, x′) = 1 only when x = x′.

2. Kernel: TMM (·, ·) is positive definite (Gower, 1971; Ralaivola et al., 2005), meaning it can
be used as the kernel for algorithms like support vector machines or Gaussian processes.

3. Metric: 1−TMM (x, x′) is a valid distance metric (typically called Jaccard/Soergel distance)
and can therefore be used in nearest-neighbour and clustering algorithms (Marczewski and
Steinhaus, 1958; Levandowsky and Winter, 1971).

In this paper, we present and characterize two efficient low-rank approximations for large matrices
of Tanimoto coefficients. The first method, presented in section 3, uses a random hash function to
index a random tensor and enjoys exceptionally low variance. The second method, presented in
section 4, uses a power series expansion of the Tanimoto similarity for binary vectors. This line of
research also unexpectedly led to the discovery of a new generalization of the Tanimoto coefficient to
arbitrary vectors in Rd, TDP , which is also a kernel and can be used to form a distance metric. In
section 6 we demonstrate experimentally that our random features are effective at approximating
Tanimoto matrices of real-world fingerprint data and demonstrate its application to molecular property
prediction and optimization problems.

2 Background: kernel methods and random features

Kernel methods are a broad class of machine learning algorithms which make predictions using a
positive definite kernel function k : X × X 7→ R (Schölkopf et al., 2002). Common methods in this
class are support vector machines (Cortes and Vapnik, 1995) and Gaussian processes (Williams and
Rasmussen, 2006). Given a dataset of n data points, training most kernel methods requires computing
the n× n kernel matrix1 Ki,j = k(x(i), x(j)) (with O(n2) time complexity) and possibly inverting it
(with O(n3) time complexity). Because of this, applying kernel methods to large datasets generally
requires approximations.

Given a kernel k, a random features map is a random function f : X 7→ RM , with the property that
f(x) · f(x′) approximates k(x, x′) for every pair x, x′ ∈ X . The approximation is often exact in
expectation:

Ef [f(x) · f(x′)] = k(x, x′) for all x, x′ ∈ X . (2)

Random features allow the kernel matrix to be approximated as K̂i,j = f(x(i)) · f(x(j). Because
this matrix has rank at most M , this approximation generally reduces the cost of O(n3)/O(n2)
computations to O(M3)/O(nM2), i.e. at most linear in n.

The seminal work of Rahimi and Recht (2007), which coined the term random features, gave a general
method based on Fourier analysis to construct random features for any Bochner or stationary kernel,
for which k(x, x′) is a function of x− x′. This class includes many common kernels including the
RBF and Matérn kernels, but excludes TMM . Subsequent works have proposed random features for
other kernels including the polynomial kernel and the arc-cosine kernel (Liu et al., 2021). However,
there is no general formula to define random features for non-stationary kernels, such as TMM .

A random features map is sometimes called a data-oblivious sketch, to distinguish it from other
data-dependent low-rank approximation methods which depend on a given dataset x(1), . . . , x(n).
Examples of data-dependent low rank sketches are the Nyström approximation and leverage-score
sampling (Drineas et al., 2005, 2012). Although data-dependent methods may result in lower
approximation errors for a given dataset, data-oblivious sketches are naturally parallelizable and
useful in cases where the dataset changes over time (e.g. streaming or optimization) or for ultra-large
datasets which may not fit in memory.

1We write xi to refer to the ith element of a vector and x(i) to denote the ith vector in a list.

2

3 Low-variance random features for Tanimoto and MinMax kernels

Outside of chemistry, the Tanimoto coefficient has been widely used to measure the similarity between
text documents and rank results in search engines. To quickly find documents with high similarity
to a user’s query, many prior works have studied random hashes for the Tanimoto coefficient, i.e. a
family of random functions h : X 7→ {1, . . . ,K} such that

Ph (h(x) = h(x′)) = TMM (x, x′). (3)
Although initially these hashes were only applicable to binary inputs (Broder, 1997; Broder et al.,
1998; Charikar, 2002), more recent work has produced efficient random hashes for arbitrary non-
negative vectors (Manasse et al., 2010; Ioffe, 2010; Shrivastava, 2016). In this section we propose
a novel family of low-variance random features for TMM (and by extension TS) which is based on
random hashes.

It is important to clarify that although the definition of random hashes in equation 3 resembles the
definition of random features in equation 2, they are actually distinct. Random hash functions output
discrete objects (typically an integer or tuple of integers) whose probability of equality is TMM , while
random features must output vectors in RM whose expected inner product is TMM . If a random hash
maps to {1, . . . ,K}, a naive approach may be to use a K-dimensional indicator vector as a random
feature. Because hash equality is a binary outcome, the variance of such random features would
be TMM (1− TMM). Realistic hash functions like that of Ioffe (2010) use K ≥ 103, implying a
“variance per feature” of ≈ 102, which is undesirably high.

Our main insight is that low-variance scalar random features can be created by using a random hash
to index a suitably distributed random vector. In the following theorem, we show that a vector of
i.i.d. samples from any distribution with the correct first and second moments can be combined with
random hashes to produce random features for TMM .
Theorem 3.1. Let h : X → Y be a random hash for TMM satisfying equation 3, with |Y| = K.
Furthermore, let ξ be a random variable such that E[ξ] = 0 and E[ξ2] = 1, and let Ξ = [ξ1, . . . , ξK]
be a vector of independent copies of ξ. Then the 1D random features

ϕΞ,h(x) = Ξh(x) (4)

estimate TMM without bias: EΞ,h(ϕΞ,h(x) · ϕΞ,h(x
′)) = TMM (x, x′), and with variance

VΞ,h [ϕΞ,h(x) · ϕΞ,h(x
′)] = 1+TMM (x, x′)

(
E[ξ4]− 1− TMM (x, x′)

)
≥ 1−TMM (x, x′)2. (5)

Furthermore, the lower bound is tight and achieved when ξ is Rademacher distributed (i.e. uniform
in {−1, 1}).

The proof is given in Appendix D.1. This theorem shows that Rademacher ξ yields the smallest
possible variance in the class of random features defined in eq. (4).

These random features have many desirable properties. First, unlike random features for many
other kernels such as the Gaussian kernel (Liu et al., 2021), the variance does not depend on the
dimension of the input data or norms of the input vectors. Second, because these random features
are 1-dimensional scalars, M independent random feature functions can be concatenated to produce
M -dimensional random feature vectors with variance at most 1/M . This suggests that as few as
≈ 103 random features could be used in practical problems. Third, although each instance of Ξ
requires storing a K dimensional random vector, if ξ is chosen to be Rademacher distributed, then
each entry can be stored with a single bit, requiring just ≈ 100 kB of memory when K = 106.

One disadvantage of these random features is that they are not continuous or differentiable with
respect to their inputs. For applications such as Bayesian optimization which require optimizing
over model inputs this would create difficulties as gradient-based optimization could no longer be
done. It was this disadvantage which motivated us to search for other random features, leading to the
discoveries in the following section.

4 Tanimoto dot product kernel and its random features

Ralaivola et al. (2005) gave a definition for the Tanimoto coefficient involving dot products:

TDP (x, x
′) =

x · x′

∥x∥2 + ∥x′∥2 − x · x′
, (6)

3

with TDP (x, x
′) = 1 when x, x′ = 0. It is easy to check that TDP (x, x

′) = TMM (x, x′) on binary
vectors, which was used by Ralaivola et al. (2005) to prove that TDP is a kernel on the space {0, 1}d,
referencing prior work by Gower (1971). However, TDP is not identical to TMM for general inputs
x, x′ ∈ Rd

≥0. Here, we give the first proof that TDP is a positive definite function in Rd and thus,
also a valid kernel in this space.
Theorem 4.1. For x, x′ ̸= 0 in Rd, we have

TDP (x, x
′) =

∞∑
r=1

(x · x′)r
(
∥x∥2 + ∥x′∥2

)−r
, (7)

where the series is absolutely convergent. The function TDP is a positive definite kernel in Rd.

It has been noticed previously that, unlike 1− TMM , the function 1− TDP is not a distance metric
on non-binary inputs (Kosub, 2019). Indeed, when d = 1, the inputs {1, 2, 4} violate the triangle
inequality. However, we can easily derive a distance metric from TDP .

Corollary 4.2. dDP (x, x
′) =

√
1− TDP (x, x′) corresponds to the RKHS norm of the function

1
2 [TDP (x, ·)− TDP (x

′, ·)] and is therefore a valid distance metric on Rd.

Proofs are given in Appendix D.2. These results imply that TDP , like TMM , is an extension of the
set-valued Tanimoto coefficient (equation 1) to real vectors and can be used as a substitute for TMM

in machine learning algorithms that require a kernel or distance metric. Unlike TMM , the kernel
TDP is differentiable everywhere with respect to its inputs. It can also be computed in batches using
matrix-matrix multiplication, allowing for efficient vectorized computation.

We now consider producing a random features approximation to TDP for large-scale applications.
Motivated by the close relationship between TDP and TMM , one may be tempted to find a random
hash for TDP and apply the techniques developed in section 3. Unfortunately, we are able to prove
that this is not possible.
Proposition 4.3. There exists no random hash function for TDP over non-binary vectors.

Proof. Charikar (2002) proved that if s(x, x′) is a similarity function for which there exists a
random hash, then 1 − s(x, x′) must satisfy the triangle inequality (see their Lemma 1). Because
1− TDP (x, x

′) does not satisfy the triangle inequality it follows by contradiction that there does not
exist a random hash for TDP .

Therefore producing random features for TDP will require another approach. In the remainder of this
section we present a framework to produce random features for TDP by directly approximating its
power series (equation 7). We first describe a method to produce random features for (∥x∥2+∥x′∥2)−r

(4.1). Then we describe how these features can be combined with existing random features for the
polynomial kernel to approximate TDP ’s truncated power series (4.2–4.3). Lastly, we present an error
bound for the kernel matrix of a dataset in the spectral norm, showing that the required dimension for
the sketch scales optimally with the stable rank of the kernel matrix (4.4).

4.1 Random features for the “prefactor”
(
∥x∥2 + ∥x′∥2

)−r

In this section we present a random feature map for the positive definite kernel (x, x′) 7→ (∥x∥2 +
∥x′∥2)−r, which we will refer to as the the prefactor. We defer all proofs to Appendix D.3. We begin
with the following lemma, which defines scalar random features for the prefactor:
Lemma 4.4. If Z ∼ Gamma(s, c) (where c is a rate parameter), then

φr,Z(x) = e(1/2−∥x∥2)ZZ(r−s)/2
√
c−se(c−1)ZΓ(s)/Γ(r) (8)

is an unbiased scalar random feature for the prefactor (∥x∥2 + ∥x′∥2)−r for all s, c > 0.

Although independent copies of Z could be combined to form an M -dimensional sketch, we instead
propose to use a dependent point set Z1, . . . , ZM where each element Zi has a Gamma(s, c) distribu-
tion whilst maximally covering the real line. This is a well-established Quasi-Monte Carlo (QMC)
technique which generally attains lower variance. We define our M -dimensional QMC features in
the following lemma:

4

Lemma 4.5. Let γs,c be the inverse cumulative distribution function of a Gamma(s, c) random
variable. Fix M, r ∈ N, u ∈ (0, 1), c, s > 0 and let ui = u+ i/M − ⌊u+ i/M⌋ for i = 1, . . . ,M .
Define ϕu,r(x) = (ϕu,r,1(x), . . . , ϕu,r,M (x)), where:

ϕu,r,i(x) =
1√
M

√
c−sΓ(s)

Γ(r)
e−(∥x∥2−c/2)γs,c(ui)(γs,c(ui))

(r−s)/2 . (9)

If u ∼ U(0, 1) then ϕu,r(x) forms unbiased random features of the prefactor (∥x∥2 + ∥x′∥2)−r.

Although the random features are unbiased for all s, c > 0, the value of these parameters will impact
the error. We show that if s, c are suitably tuned, then the relative error can be bounded:

Lemma 4.6. Let x(1), . . . , x(n) ∈ Rd with mini ∥x(i)∥2

maxi ∥x(i)∥2 ≥ ζ, and fix u ∈ [0, 1]. Define the relative
error

Ei,j =
ϕu,r(x

(i)) · ϕu,r(x(j))− (∥x(i)∥2 + ∥x(j)∥2)−r

(∥x(i)∥2 + ∥x(j)∥2)−r
. (10)

If c = 2ζ2, s = rζ, then for some constant C independent of r this error satisfies,

max
1≤i,j≤n

|Ei,j | ≤
2

M

Γ(rζ)ζ−rζ

Γ(r)
(r/e)r(ζ−1)(1.3)r ≤ C(Mζ)−1. (11)

Together, these lemmas suggest random features for the prefactor can be created by first estimating ζ
(the minimum ratio of norms of input vectors), then using the random features from Lemma 4.5 with
the values of s, c specified in Lemma 4.6.

4.2 A framework to produce random features for TDP

There are straightforward rules for producing random features for sums and products of kernels
whose individual random features are known (Duvenaud, 2014, sec. 2.6.2). Random features for
kernels k1, k2 can be concatenated (denoted ⊕) to form random features for the sum kernel k1 + k2,
while their tensor product2 (denoted ⊗) forms random features for the product kernel k1 × k2. Our
strategy to produce features for TDP is to combine random features for the “prefactor” (presented in
section 4.1) with random features for the polynomial kernel to produce random features for TDP ’s
power series (equation 7) truncated at R terms.

Fix R ∈ N, and for r = 1, . . . , R, let ϕr be a mr-dimensional random features map for the prefactor
(∥x∥2 + ∥x′∥2)−r and let ψr be a m′

r-dimensional random features map for (x · x′)r. The function:

Φ̃R(x) = ⊕R
r=1 [ϕr(x)⊗ ψr(x)] (12)

is therefore a random feature estimate for TDP ’s power series, truncated at R terms. Unfortunately,
these random features have dimension M =

∑R
r=1mrm

′
r which depends on the product of the

random features dimension of ϕr and ψr. Furthermore, the dimension m′
r of the random features ψr

required to approximate the polynomial kernel (x · x′)r with good accuracy can scale poorly with r.
For even modest values of mr,m

′
r the resulting value of M will likely be prohibitively large.

To remedy this, we turn to recent works which propose powerful linear maps to approximate tensor
products with a lower-dimensional vector. Assuming x(1), y(1) ∈ Rd1 and x(2), y(2) ∈ Rd2 , these
maps are effectively random matrices Π ∈ Rm×(d1d2), which exhibit a subspace embedding property
whereby [Π(x(1) ⊗ x(2))] · [Π(y(1) ⊗ y(2))] concentrates sharply around (x(1) ⊗ x(2)) · (y(1) ⊗ y(2)).
Critically, the product Π(x(1) ⊗ x(2)) can be computed without instantiating either matrix Π or the
tensor product x(1) ⊗ x(2). Examples of such methods include TENSORSKETCH and TENSORSRHT
(Pagh, 2013; Pham and Pagh, 2013; Ahle et al., 2020), but for generality we will simply refer to these
methods as SKETCH. Defining a series of sketches SKETCHr : Rmr × Rm′

r 7→ Rm̃r we can modify
Φ̃R from equation 12 into:

ΦR(x) = ⊕R
r=1SKETCHr [ϕr(x), ψr(x)] (13)

2For two vectors x ∈ Rd1 and y ∈ Rd2 , define the tensor product x⊗ y = vec(xyT) ∈ Rd1d2 .

5

which has output dimension M =
∑R

r=1 m̃r, i.e. without any pathological dependencies on the
dimensions of ϕr(x), ψr(x). However, because these features approximate a truncated power series,
they will be biased downward due to the monotonicity of the power series (7). We propose two bias
correction techniques to potentially improve empirical accuracy. One approach is to normalize the
random features such that Φ(x) · Φ(x) = 1 = TDP (x, x) for all x ∈ Rd, i.e., such that the diagonal
entries of the kernel matrix K are estimated exactly. A second approach is based on sketching the
residual of the power series. These approaches are presented in detail in Appendix E.

4.3 Implementing the random features

Instantiating the random features from the previous subsection (13) requires making concrete choices
for R, SKETCHr,mr,m

′
r, m̃r, ϕr, ψr for all r, and choosing a bias correction technique. There

are many reasonable choices for SKETCHr, such as TENSORSKETCH (Pham and Pagh, 2013) and
TENSORSRHT (Ahle et al., 2020). These sketches generally allow mr,m

′
r, m̃r to be chosen freely

(although naturally error will increase as m̃r decreases). Many of these sketches can also be used
as random features for the polynomial kernel ψr (Wacker et al., 2022), either directly or as part of
more complex algorithms like TREESKETCH (Ahle et al., 2020) or complex-to-real sketches (Wacker
et al., 2023). The QMC random features from section 4.1 can be used for the prefactor ϕr, with the
parameters s, c chosen based on the anticipated norms of the input vectors.

The only remaining inputs are R (the number of power series terms to approximate) and m̃1, . . . , m̃R

(how many random features to use for each term). Assuming a fixed dimension M for the final
random features, this choice involves a bias variance trade-off, as a higher value of R will reduce
bias but require each term in the power series to have fewer features, thereby increasing variance.
Intuitively, because the terms of the power series decrease monotonically the variance of terms for
small r is likely to dominate the overall variance, and therefore we surmise that a decreasing sequence
for {m̃r}Rr=1 will be the best choice. Ultimately however we do not have theoretical results to dictate
this choice in practice. We will evaluate these choices empirically in section 6.

4.4 Asymptotic error bound for TDP random features

Because many kernel methods use kernel matrices as linear operators, it is natural to examine the
error of kernel approximations in the operator norm. Previous works have produced asymptotic
error bounds of the random feature dimension m required to achieve a relative approximation
error of ε in the operator norm. Defining s̃r(K) = Tr(K)/∥K∥op, Cohen et al. (2015) show that
m = Ω̃(s̃r(K)/ε2) is essentially optimal for data-oblivious random features of linear kernels, even
though it is possible to eliminate logarithmic factors. Our main theoretical result is that with the
correct choices of base random features, the random features for TDP presented in section 4.2 achieve
similar scaling. We now state this as a theorem.

Theorem 4.7. For any n ≥ 1, let x(1), . . . , x(n) ∈ Rd be a set of inputs with mini ∥x(i)∥2

maxi ∥x(i)∥2 ≥ ζ. Let

K be the matrix with entries Ki,j = TDP(x
(i), x(j)). For all ε > 0, there exists an oblivious sketch

Φ : Rd → Rm with m = Ω̃(s̃r(K)/ε2), such that

PΦ

(
∥K̂ −K∥op ≥ ε∥K∥op

)
≤ 1

poly(n)
(14)

where K̂i,j = Φ(x(i)) · Φ(x(j)). Furthermore, the sketch can be computed in time Õ(s̃r(K)nε−2 +
nnz(X)ε−2 + nζ−1ε−3).

The random features in the theorem follow equation 13, with specific choices for M ,R, and
{SKETCHr, m̃r, ϕr, ψr}Rr=1 given in the proof in Appendix D.4. Theorem 4.7 essentially suggests
that, with the correct settings, the error of the random features proposed in section 4.2 scales as well
as one could reasonably expect for a kernel of this type. We would highlight that the computational
cost of the sketch is sub-quadratic in n, and compares favourably with the cost of data-dependent
low-rank approximation methods.

6

102 103 104 105

Number of random features

10 5

10 4

10 3

10 2

T M
M

 M
SE

0.0 0.2 0.4 0.6 0.8 1.0

TMM(x, x)

0.0

0.5

1.0

1.5

2.0

T M
M

 V
ar

ia
nc

e

Rademacher, count FPs Gaussian, count FPs Rademacher, binary FPs Gaussian, binary FPs

Figure 1: Left: MSE of TMM matrix reconstruction as a function of number of random features
(median over 5 trials, shaded regions are first/third quartiles). Right: empirical variance of scalar
TMM random feature estimates for M = 105, closely matching theoretical predictions (dashed lines).

5 Related work

Our work on random features fits into a large body of literature random features for kernels (Liu et al.,
2021). The majority of work in this area focuses on stationary kernels (i.e. k(x, x′) = f(x− x′)),
because the Fourier transform can be applied to any stationary kernel to produce random features
in a systematic way (Rahimi and Recht, 2007). There is however no analogous universal formula
to produce random features for non-stationary kernels like TMM and TDP ; therefore each kernel
requires a bespoke approach. Although our random features are novel, they build upon ideas present
in prior works. Our random features for TMM critically rely on previously-proposed random hashes
for TMM . Our approach to create random features for TDP via approximating its power series
follows was inspired by the random features for the Gaussian kernel from Cotter et al. (2011), which
were subsequently improved upon by Ahle et al. (2020). Similar techniques have also been used to
create random features for the neural tangent kernel (Zandieh et al., 2021). However, to the best of
our knowledge no prior works have proposed random features specifically for the Tanimoto kernel or
its variants.

Other works have proposed other types of scalable approximations for Tanimoto coefficients which
are not based on random features. Haque and Pande (2010) propose SCISSORS, an optimization-
based approach to estimate Tanimoto coefficients which is akin to a data-dependent sketch. A
large number of works use hash-based techniques to find approximate nearest neighbours with the
Tanimoto distance metric (Nasr et al., 2010; Kristensen et al., 2011; Tabei and Tsuda, 2011; Anastasiu
and Karypis, 2017). Although these techniques are useful for information retrieval, unlike random
features they cannot be used to directly scale kernel methods to larger datasets.

6 Experiments

In this section we apply the techniques in this paper to realistic datasets of molecular fingerprints. All
experiments were performed in python using the numpy (Harris et al., 2020), pytorch (Paszke et al.,
2019), gpytorch (Gardner et al., 2018), and rdkit (Landrum et al., 2023) packages. Molecules
were represented with both binary (B) and count (C) Morgan fingerprints (Rogers and Hahn, 2010)
of dimension 1024 (additional details in Appendix F.1). These vectors indicate the presence (B) or
count (C) of different subgraphs in a molecule. Code to reproduce all experiments is available at:
https://github.com/AustinT/tanimoto-random-features-neurips23.

6.1 Errors of random features on real datasets

Here we study the error of approximating matrices of Tanimoto coefficients using our random features,
with the general goal of verifying the claims in sections 3–4 on a realistic dataset of molecules. We
choose to study a sample of 1000 small organic molecules from the GuacaMol dataset (Brown et al.,
2019; Mendez et al., 2019) which exemplify the types of molecules typically considered in drug
discovery projects. We use both binary (B) and count (C) fingerprints of radius 2.

7

0.01

1

1e+02

c/c
*

r=1 (count FP) r=3 (count FP)

0.01 1 1e+02

s/s *

0.01

1

1e+02

c/c
*

r=1 (binary FP)

0.01 1 1e+02

s/s *

r=3 (binary FP)

9.0
7.5
6.0
4.5
3.0
1.5

0.0
1.5

M
ed

ia
n

lo
g 1

0
M

SE

102 103 104 105

Number of random features

10 9

10 7

10 5

10 3

Pr
ef

ac
to

r M
SE

count FP, r=1
count FP, r=3
binary FP, r=1
binary FP, r=3

Figure 2: Left: Contour plots of MSE for prefactor random features with M = 104 with varying
s, c. Right: MSE vs number of prefactor random features with s, c values from Lemma 4.6. As in
Figure 1, lines are medians over 5 trials, shaded regions are first/third quartiles.

2 1 0 1 2

Feature allocation p

0.0005

0.0010

0.0015

0.0020

T D
P
 M

SE

102 103 104 105

Number of random features

10 4

10 3

10 2

T D
P
 M

SE
 (p

=-
1)

no bias correction normalize sketch error

Figure 3: Left: MSE for M = 104 dimensional random features when allocating features by
m̃r ∝ rp, r = 1. . . . , 4. Right: MSE of TDP random features using R = 4, p = −1 and various bias
correction strategies. Both subplots use binary fingerprints (the equivalent plot for count fingerprints
is Figure F.2). As in Figure 1, lines are medians over 5 trials, shaded regions are first/third quartiles.

First, we investigate the random features for TMM proposed in section 3. We instantiate these features
using the random hash from Ioffe (2010) (explained further in Appendix F.2) with Ξ both Gaussian
and Rademacher distributed. The results are shown in Figure 1. The left subplot shows the median
mean squared error (MSE), i.e. Ei,j

[(
TMM (x(i), x(j))− ϕ(x(i)) · ϕ(x(j))

)2]
as a function of the

random feature dimension M . As expected for a Monte Carlo estimator, the square error decreases
with O(1/M) (i.e. increasing the number of random features by 10 reduces the MSE by a factor of
10). As predicted by Theorem 3.1, the estimation error seems to depend only on the distribution of Ξ
and not on the input vectors themselves; therefore the error curves for count and binary fingerprints
overlap completely. The error is lowest when Ξ is Rademacher distributed, although the empirical
difference in error seems small. The right subplot looks at the variance across across scalar random
features, showing close matching with the predictions of Theorem 3.1. Overall these features behave
exactly as expected.

Next, we investigate the random features for TDP from section 4. These features are more complex,
so we start by studying the random features for the “prefactor” from section 4.1. Recall that these
features had free parameters s, c > 0. Fixing the number of features M = 104, Figure 2 (left) shows
the MSE for the r = 1 and r = 3 terms for both the binary and count fingerprints (which have
different norms) as a function of s and c. The values which minimize the relative error bound from
lemma 4.6, denoted s∗, c∗, seem to lie in a broad plateau of low error in all settings, suggesting that
these values of s, c are a prudent choice. Using these values of s, c, Figure 2 (right) shows the MSE
with respect to the number of features M . As expected for a QMC method, the error dependence
appears to be quadratic O(1/M2) (i.e. a ten-fold increase in M reduces MSE by 100-fold).

8

Table 1: Average log probability of test set labels with various approximate GPs for 5 targets from
DOCKSTRING dataset (García-Ortegón et al., 2022). ± values are standard deviations over 5 trials.

KERNEL METHOD ESR2 F2 KIT PARP1 PGR

TMM RAND SUBSET GP -1.084±0.004 -0.951±0.002 -1.094±0.002 -0.999±0.002 -1.183±0.005
SVGP -0.908±0.005 -0.502±0.005 -0.846±0.002 -0.606±0.005 -1.030±0.005
RFGP (Ξ RAD.) -0.954±0.009 -0.658±0.013 -1.222±0.044 -0.968±0.037 -1.127±0.023
RFGP (Ξ GAUSS.) -0.956±0.010 -0.663±0.015 -1.230±0.048 -0.967±0.036 -1.124±0.025

TDP RAND SUBSET GP -1.073±0.002 -0.940±0.001 -1.077±0.002 -0.988±0.001 -1.187±0.006
SVGP -0.880±0.004 -0.459±0.002 -0.804±0.002 -0.568±0.002 -1.010±0.004
RFGP (PLAIN) -0.902±0.003 -0.513±0.004 -0.979±0.015 -0.690±0.022 -1.029±0.002
RFGP (NORM) -0.902±0.003 -0.515±0.003 -0.980±0.015 -0.691±0.022 -1.028±0.002
RFGP (SKETCH) -0.904±0.002 -0.515±0.004 -0.979±0.014 -0.690±0.021 -1.030±0.002

Because it is implemented in scikit-learn (Pedregosa et al., 2011), we use TENSORSKETCH
(Pagh, 2013) both as the polynomial random feature map and to combine the polynomial and prefactor
random features. We fix the number of random features for the prefactor to be 104 (recall it can be
chosen freely without impacting the final random feature dimension). Figure F.1 shows the MSE
of approximating both (x · x′)r and ((x · x′)/(∥x∥2 + ∥x′∥2))r. In both cases, the MSE decreases
approximately with O(1/M). Finally, we empirically examine how to allocate M random features
across R terms. Using R = 4, Figure 3 (left) shows that allocating most of the features to the terms
with small R results in lower error. We therefore heuristically suggest allocating features according
to m̃r ∝ r−1. Recall that truncating the power series biases the random features downward, and in
section 4.2 two bias correction techniques were proposed. Figure 3 (right) studies the overall MSE for
the plain features and both bias correction techniques. It appears that, in practice, neither technique
is particularly helpful (normalization in fact appears harmful for large M). All techniques show an
error dependence of approximately O(1/M).

6.2 Molecular property prediction and uncertainty quantification

To evaluate their efficacy in practice, we use our random features to approximate large-scale Gaussian
processes (GPs) (Williams and Rasmussen, 2006) for molecular property prediction. Specifically,
we study 5 tasks from the DOCKSTRING benchmark which entail predicting protein binding affinity
from a molecular graph structure (García-Ortegón et al., 2022). Each task contains 250k molecules,
making exact GP regression infeasible. We represent molecules with count fingerprints of radius 1.

We use M = 5000 random features for all methods. We compare to two approximate GP baselines.
The first is an exact GP on a random subset of size M . Since this approach ignores most of the
dataset, one should expect a reasonable approximate GP to perform better. The second is a sparse
variational GP (SVGP) which approximates the dataset using M pseudo-data points Z (Titsias, 2009;
Hensman et al., 2013). The locations of Z are typically chosen based on the input dataset (we use
K-means clustering), making this method effectively a data-dependent sketch. Accordingly, one
might expect the performance of this approximation to be better than data-oblivious random features.
Details of Gaussian process training are given in appendix F.4.

Table 1 shows the average log probability of test set labels for all types of GP with TMM and TDP

kernels. Several trends are evident. First, for each kernel random feature GPs (RFGPs) consistently
outperform random subset GPs, but underperform SVGP. Second, for each kernel the difference
between the RFGP varieties is small (generally less than the standard deviation). Third, on most
targets TDP seems to perform better than the TMM kernel. The reason for this is unclear. Similar
trends can be see in the R2 metric (Table F.1). This suggests that the RFGPs in this paper can be used
in large-scale regression, although it seems in practice that data-dependent approximations are more
accurate.

6.3 Bayesian optimization in molecule space via Thompson sampling

Bayesian optimization (BO) uses a probabilistic surrogate model to guide optimization and is generally
considered one of the most promising techniques for sample-efficient optimization (Shahriari et al.,
2015). Because wet-lab experiments are expensive and time-consuming, there is considerable interest
in using BO for experiment design. Chemistry experiments are often done in large batches, and

9

103 104

Number of data points

100

102

Ti
m

e
(s

)

103 104

Number of data points

8.0

7.8

Av
er

ag
e

F2
 sc

or
e

TMM (exact) TMM (RFs) TDP (exact) TDP (RFs)

Figure 4: Run time and docking scores of BO using exact and approximate Thompson sampling.
Solid lines are means over 5 trials, shaded regions are standard errors.

therefore algorithms which use functions sampled from a probabilistic model are of particular interest
(Hernández-Lobato et al., 2017). To sample from a normal distribution N (µ,K) one typically
transforms i.i.d. samples Z ∼ N (0, 1) via µ+K1/2Z. This requires computing K1/2, and thereby
causes exact GP sampling to scale cubically in the number of evaluation points. By approximating
K ≈ ΦTΦ, our random features allow for approximate sampling in linear time. In this section we
apply this to a real-world dataset.

As a demonstration, we consider a single round of selecting 100 molecules from a random sub-sample
of n molecules using Thompson sampling, a procedure for Bayesian optimization which selects
molecules that maximize a function sampled from a GP prior using the TMM and TDP kernels.
Similar to the setup from section 6.2, we use molecules and labels from the DOCKSTRING dataset.
Molecules are represented as count fingerprints. M = 5000 random features used, with Rademacher
Ξ for TMM and no bias correction for TDP . All other implementation details are the same as in
the previous subsection. Figure 4 (left) shows that, as expected, exact Thompson sampling scales
worse than approximate Thompson sampling with random features. Figure 4 (right) shows that using
approximate instead of exact Thompson sampling does not seem to change the average F2 docking
scores of the molecules chosen. This suggests that approximate Thompson sampling could fruitfully
be applied to large datasets of molecules in Bayesian optimization tasks.

7 Discussion and conclusion

In this paper we presented two kinds of random features to estimate Tanimoto kernel matrices: one
based on random hashes and another based on a power series expansion. To our knowledge, this is
the first investigation into random features for the Tanimoto kernel. We theoretically analyze their
approximation quality and demonstrate that they can effectively approximate the Tanimoto kernel
matrices on realistic molecular fingerprint data. In the process we discovered a new Tanimoto-like
kernel over all of Rd which is a promising substitute for the more established TMM on regression
and optimization tasks.

Despite promising theoretical and experimental results, our random features do have some limitations.
We found that it was difficult to efficiently vectorize the computation of the random features for
TMM , making them undesirably slow to compute. For TDP , we were able to exhibit an error bound
on the spectral norm which depends on certain choices for the base sketch and sketch dimensions;
however, it is unclear whether these choices are optimal in practice. Nonetheless, in Appendix D.5
we prove that exact low-rank factorizations of TMM and TDP kernel matrices are not possible; this
means that follow-up works could reduce but never eliminate the approximation error.

We are most optimistic about the potential of our random features to be applied in Bayesian opti-
mization, in particular by enabling scalable approximate sampling from GP posteriors (Wilson et al.,
2020). Although we briefly explored this technique in section 6.3, in the future it could allow for
sample-efficient Bayesian algorithms for complex tasks like Pareto frontier exploration and diverse
optimization using the Bayesian algorithm execution framework (Neiswanger et al., 2021). These
tasks are highly relevant to real-world drug discovery and there are scant new methods poised to solve
them in a sample-efficient way. We hope that the methods presented in this paper enable impactful,
large-scale applications of the Tanimoto kernel and its two extensions in chemoinformatics.

10

Acknowledgments and Disclosure of Funding

We thank Isaac Reid and Zhen Ning David Liu for helpful discussions. Austin Tripp acknowl-
edges funding via a C T Taylor Cambridge International Scholarship and the Canadian Centennial
Scholarship Fund. Sukriti Singh acknowledges funding from the UK Engineering and Physical
Sciences Research Council. José Miguel Hernández-Lobato acknowledges support from a Turing AI
Fellowship under grant EP/V023756/1.

Author contributions: the initial idea of using random hashes to produce random features for the
Tanimoto kernel came from Sergio. Austin came across Ioffe (2010) and realized his proposed hash
could be used to extend the scheme to TMM for general non-negative vectors. Austin derived and
proved the variance statement from Theorem 3.1. Sergio proposed and proved Theorem 4.1 and
Corollary 4.2 for the TDP kernel. Austin proposed and proved Proposition 4.3 after reading Charikar
(2002). Sergio developed the random features for the prefactor (section 4.1) and the overall schema
for the random features (section 4.2). Sergio proposed and proved Theorem 4.7. All experiments
were designed and performed by Austin. Sukriti helped with some experiments which ultimately did
not appear in this version of the manuscript. Sergio and José Miguel provided advising throughout
the project. Writing was done jointly, but mostly by Austin and Sergio.

References
Ahle, T. D., Kapralov, M., Knudsen, J. B., Pagh, R., Velingker, A., Woodruff, D. P., and Zandieh, A.

(2020). Oblivious sketching of high-degree polynomial kernels. In Proceedings of the Fourteenth
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 141–160. SIAM.

Anastasiu, D. C. and Karypis, G. (2017). Efficient identification of tanimoto nearest neighbors:
All-pairs similarity search using the extended jaccard coefficient. International Journal of Data
Science and Analytics, 4:153–172.

Ando, T., Horn, R. A., and Johnson, C. R. (1987). The singular values of a hadamard product: A
basic inequality. Linear and Multilinear Algebra, 21(4):345–365.

Bajusz, D., Rácz, A., and Héberger, K. (2015). Why is tanimoto index an appropriate choice for
fingerprint-based similarity calculations? Journal of cheminformatics, 7(1):1–13.

Bishop, C. M. and Nasrabadi, N. M. (2006). Pattern recognition and machine learning, volume 4.
Springer.

Broder, A. Z. (1997). On the resemblance and containment of documents. In Proceedings. Compres-
sion and Complexity of SEQUENCES 1997 (Cat. No. 97TB100171), pages 21–29. IEEE.

Broder, A. Z., Charikar, M., Frieze, A. M., and Mitzenmacher, M. (1998). Min-wise independent
permutations. In Proceedings of the thirtieth annual ACM symposium on Theory of computing,
pages 327–336.

Brown, N., Fiscato, M., Segler, M. H., and Vaucher, A. C. (2019). Guacamol: benchmarking models
for de novo molecular design. Journal of chemical information and modeling, 59(3):1096–1108.

Cereto-Massagué, A., Ojeda, M. J., Valls, C., Mulero, M., Garcia-Vallvé, S., and Pujadas, G. (2015).
Molecular fingerprint similarity search in virtual screening. Methods, 71:58–63.

Charikar, M. S. (2002). Similarity estimation techniques from rounding algorithms. In Proceedings
of the thiry-fourth annual ACM symposium on Theory of computing, pages 380–388.

Cohen, M. B., Nelson, J., and Woodruff, D. P. (2015). Optimal approximate matrix product in terms
of stable rank. arXiv preprint arXiv:1507.02268.

Cortes, C. and Vapnik, V. (1995). Support-vector networks. Machine learning, 20:273–297.

Costa, L. d. F. (2021). Further generalizations of the jaccard index. arXiv preprint arXiv:2110.09619.

Cotter, A., Keshet, J., and Srebro, N. (2011). Explicit approximations of the gaussian kernel. arXiv
preprint arXiv:1109.4603.

11

Dara, S., Dhamercherla, S., Jadav, S. S., Babu, C. M., and Ahsan, M. J. (2022). Machine learning in
drug discovery: a review. Artificial Intelligence Review, 55(3):1947–1999.

David, L., Thakkar, A., Mercado, R., and Engkvist, O. (2020). Molecular representations in ai-driven
drug discovery: a review and practical guide. Journal of Cheminformatics, 12(1):1–22.

Drineas, P., Magdon-Ismail, M., Mahoney, M. W., and Woodruff, D. P. (2012). Fast approximation of
matrix coherence and statistical leverage. The Journal of Machine Learning Research, 13(1):3475–
3506.

Drineas, P., Mahoney, M. W., and Cristianini, N. (2005). On the nyström method for approximating a
gram matrix for improved kernel-based learning. journal of machine learning research, 6(12).

Duvenaud, D. (2014). Automatic model construction with gaussian processes.

García-Ortegón, M., Simm, G. N., Tripp, A. J., Hernández-Lobato, J. M., Bender, A., and Bacallado,
S. (2022). Dockstring: easy molecular docking yields better benchmarks for ligand design. Journal
of chemical information and modeling, 62(15):3486–3502.

Gardner, J., Pleiss, G., Weinberger, K. Q., Bindel, D., and Wilson, A. G. (2018). Gpytorch: Blackbox
matrix-matrix gaussian process inference with gpu acceleration. Advances in neural information
processing systems, 31.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and Dahl, G. E. (2017). Neural message
passing for quantum chemistry. In International conference on machine learning, pages 1263–1272.
PMLR.

Gower, J. C. (1971). A general coefficient of similarity and some of its properties. Biometrics, pages
857–871.

Granda, J. M., Donina, L., Dragone, V., Long, D.-L., and Cronin, L. (2018). Controlling an organic
synthesis robot with machine learning to search for new reactivity. Nature, 559(7714):377–381.

Haque, I. S. and Pande, V. S. (2010). Scissors: a linear-algebraical technique to rapidly approximate
chemical similarities. Journal of chemical information and modeling, 50(6):1075–1088.

Harris, C. R., Millman, K. J., Van Der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D., Wieser,
E., Taylor, J., Berg, S., Smith, N. J., et al. (2020). Array programming with numpy. Nature,
585(7825):357–362.

Hensman, J., Fusi, N., and Lawrence, N. D. (2013). Gaussian processes for big data. In Proceedings
of the Twenty-Ninth Conference on Uncertainty in Artificial Intelligence, pages 282–290.

Hernández-Lobato, J. M., Requeima, J., Pyzer-Knapp, E. O., and Aspuru-Guzik, A. (2017). Parallel
and distributed thompson sampling for large-scale accelerated exploration of chemical space. In
International conference on machine learning, pages 1470–1479. PMLR.

Ioffe, S. (2010). Improved consistent sampling, weighted minhash and l1 sketching. In 2010 IEEE
international conference on data mining, pages 246–255. IEEE.

Jaccard, P. (1912). The distribution of the flora in the alpine zone. 1. New phytologist, 11(2):37–50.

Kosub, S. (2019). A note on the triangle inequality for the jaccard distance. Pattern Recognition
Letters, 120:36–38.

Kristensen, T. G., Nielsen, J., and Pedersen, C. N. (2011). Using inverted indices for accelerating
lingo calculations. Journal of chemical information and modeling, 51(3):597–600.

Landrum, G., Tosco, P., Kelley, B., Ric, Cosgrove, D., sriniker, gedeck, Vianello, R., NadineSchneider,
Kawashima, E., N, D., Jones, G., Dalke, A., Cole, B., Swain, M., Turk, S., AlexanderSavelyev,
Vaucher, A., Wójcikowski, M., Take, I., Probst, D., Ujihara, K., Scalfani, V. F., guillaume godin,
Lehtivarjo, J., Pahl, A., Walker, R., Berenger, F., jasondbiggs, and strets123 (2023). rdkit/rdkit:
2023_09_1 (q3 2023) release beta.

Levandowsky, M. and Winter, D. (1971). Distance between sets. Nature, 234(5323):34–35.

12

Liu, F., Huang, X., Chen, Y., and Suykens, J. A. (2021). Random features for kernel approximation:
A survey on algorithms, theory, and beyond. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 44(10):7128–7148.

Manasse, M., McSherry, F., and Talwar, K. (2010). Consistent weighted sampling. Unpublished
technical report) http://research. microsoft. com/en-us/people/manasse, 2.

Marczewski, E. and Steinhaus, H. (1958). On a certain distance of sets and the corresponding distance
of functions. In Colloquium Mathematicum, volume 6, pages 319–327. Instytut Matematyczny
Polskiej Akademii Nauk.

Mendez, D., Gaulton, A., Bento, A. P., Chambers, J., De Veij, M., Félix, E., Magariños, M. P.,
Mosquera, J. F., Mutowo, P., Nowotka, M., et al. (2019). Chembl: towards direct deposition of
bioassay data. Nucleic acids research, 47(D1):D930–D940.

Miranda-Quintana, R. A., Bajusz, D., Rácz, A., and Héberger, K. (2021). Differential consistency
analysis: which similarity measures can be applied in drug discovery? Molecular Informatics,
40(7):2060017.

Nasr, R., Hirschberg, D. S., and Baldi, P. (2010). Hashing algorithms and data structures for rapid
searches of fingerprint vectors. Journal of chemical information and modeling, 50(8):1358–1368.

Neiswanger, W., Wang, K. A., and Ermon, S. (2021). Bayesian algorithm execution: Estimating com-
putable properties of black-box functions using mutual information. In International Conference
on Machine Learning, pages 8005–8015. PMLR.

Nelson, J. and Nguyên, H. L. (2013). Osnap: Faster numerical linear algebra algorithms via sparser
subspace embeddings. In 2013 ieee 54th annual symposium on foundations of computer science,
pages 117–126. IEEE.

O’Boyle, N. M. and Sayle, R. A. (2016). Comparing structural fingerprints using a literature-based
similarity benchmark. Journal of cheminformatics, 8(1):1–14.

Pagh, R. (2013). Compressed matrix multiplication. ACM Transactions on Computation Theory
(TOCT), 5(3):1–17.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein,
N., Antiga, L., et al. (2019). Pytorch: An imperative style, high-performance deep learning library.
Advances in neural information processing systems, 32.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,
Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher,
M., Perrot, M., and Duchesnay, E. (2011). Scikit-learn: Machine learning in Python. Journal of
Machine Learning Research, 12:2825–2830.

Pham, N. and Pagh, R. (2013). Fast and scalable polynomial kernels via explicit feature maps. In
Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data
mining, pages 239–247.

Rahimi, A. and Recht, B. (2007). Random features for large-scale kernel machines. Advances in
neural information processing systems, 20.

Ralaivola, L., Swamidass, S. J., Saigo, H., and Baldi, P. (2005). Graph kernels for chemical
informatics. Neural networks, 18(8):1093–1110.

Rogers, D. and Hahn, M. (2010). Extended-connectivity fingerprints. Journal of chemical information
and modeling, 50(5):742–754.

Schölkopf, B., Smola, A. J., Bach, F., et al. (2002). Learning with kernels: support vector machines,
regularization, optimization, and beyond. MIT press.

Shahriari, B., Swersky, K., Wang, Z., Adams, R. P., and De Freitas, N. (2015). Taking the human out
of the loop: A review of bayesian optimization. Proceedings of the IEEE, 104(1):148–175.

13

Shrivastava, A. (2016). Simple and efficient weighted minwise hashing. Advances in Neural
Information Processing Systems, 29.

Stanley, M., Bronskill, J. F., Maziarz, K., Misztela, H., Lanini, J., Segler, M., Schneider, N., and
Brockschmidt, M. (2021). Fs-mol: A few-shot learning dataset of molecules. In Thirty-fifth
Conference on Neural Information Processing Systems Datasets and Benchmarks Track (Round 2).

Tabei, Y. and Tsuda, K. (2011). Sketchsort: Fast all pairs similarity search for large databases of
molecular fingerprints. Molecular informatics, 30(9):801–807.

Tan, P.-N., Steinbach, M., and Kumar, V. (2016). Introduction to data mining. Pearson Education
India.

Tanimoto, T. T. (1958). Elementary mathematical theory of classification and prediction.

Titsias, M. (2009). Variational learning of inducing variables in sparse gaussian processes. In
Artificial intelligence and statistics, pages 567–574. PMLR.

Wacker, J., Kanagawa, M., and Filippone, M. (2022). Improved random features for dot product
kernels. arXiv preprint arXiv:2201.08712.

Wacker, J., Ohana, R., and Filippone, M. (2023). Complex-to-real sketches for tensor products
with applications to the polynomial kernel. In Ruiz, F., Dy, J., and van de Meent, J.-W., editors,
Proceedings of The 26th International Conference on Artificial Intelligence and Statistics, volume
206 of Proceedings of Machine Learning Research, pages 5181–5212. PMLR.

Walters, W. P. and Barzilay, R. (2020). Applications of deep learning in molecule generation and
molecular property prediction. Accounts of chemical research, 54(2):263–270.

Williams, C. K. and Rasmussen, C. E. (2006). Gaussian processes for machine learning, volume 2.
MIT press Cambridge, MA.

Wilson, J., Borovitskiy, V., Terenin, A., Mostowsky, P., and Deisenroth, M. (2020). Efficiently
sampling functions from gaussian process posteriors. In International Conference on Machine
Learning, pages 10292–10302. PMLR.

Xiong, Z., Wang, D., Liu, X., Zhong, F., Wan, X., Li, X., Li, Z., Luo, X., Chen, K., Jiang, H., et al.
(2019). Pushing the boundaries of molecular representation for drug discovery with the graph
attention mechanism. Journal of medicinal chemistry, 63(16):8749–8760.

Zandieh, A., Han, I., Avron, H., Shoham, N., Kim, C., and Shin, J. (2021). Scaling neural tangent
kernels via sketching and random features. In Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang,
P., and Vaughan, J. W., editors, Advances in Neural Information Processing Systems, volume 34,
pages 1062–1073. Curran Associates, Inc.

14

Outline of appendices

• Appendix A comments on the items in the NeurIPS Paper Checklist.
• Appendix B summarizes the notation used in this paper.
• Appendix C explains TREESKETCH from Ahle et al. (2020), which is used in the proof of

Theorem 4.7.
• Appendix D provides proofs for all theoretical results in the paper.
• Appendix E explains possible techniques to correct the bias of the TDP kernel which are

mentioned briefly in section 4.
• Appendix F gives additional details about the experiments from section 6 and presents some

supplementary results.

15

A Paper Checklist

Here we explicitly comment on all areas of the NeurIPS paper checklist.

Claims The key claims in this paper are the creation of random features for the Tanimoto kernel and
the creation of a new continuous kernel. The claims are mainly supported theoretically with proofs,
but we also test our random features experimentally and show that they are usable with real-world
data.

Code of Ethics + broader impacts Read and acknowledged. Our work is fairly abstract and
theoretical and we do not work with human-related data, so we do not foresee significant direct
ethical impacts (positive or negative).

Limitations Our work is primarily theoretical, so the main strength (random features with low
approximation error) is also the main weakness (the approximation error could plausibly be lower).
Random features are well-studied as a general approach so the strengths and weaknesses are generally
well-understood (Liu et al., 2021). For this reason we did not include an explicit limitations section.
However, we did mention some other limitations in section 7.

Theory Our key theorems have minimal assumptions which are clearly stated. All theorems are
proved in Appendix D.

Experiments Code to reproduce the experiments is available at:
https://github.com/AustinT/tanimoto-random-features-neurips23.

Training details The experiments in this paper have minimal details and the important de-
tails are specified in Appendix F. All unspecified details should be easy to find in the code
(https://github.com/AustinT/tanimoto-random-features-neurips23).

Error bars Our tables and figures include error bars.

Compute The compute costs of the experiments in this paper were quite modest and were run on a
single machine with no GPU usage. The approximate computational times were:

• Section 6.1: a script to produce all the plots took approximately 24 h to run. The long
runtime was mostly due to computing errors for many settings of R and p.

• Section 6.2: for TMM , SVGP and each RFGP inference took approximately 1 h (total
3 h per target). For TDP , SVGP took 0.5 h while RFGP took 0.3 h (total 1.5 h per target).
Multiplying this by 5 targets and 5 trials gives a total compute time of ≈112 h.

• Section 6.3: this experiment was quite fast: total runtime was perhaps 5 h.

Reproducibility Our contribution is reproducible via the statements of our random features and our
code. We aim for a high standard of reproducibility: the exact commands to reproduce the results are
stated explicitly in our code’s README file, and the raw data behind all plots in this paper is included
alongside the code.

Safeguards We believe there is nothing high-risk which we need to safeguard.

Licenses We cite the assets which we use in the paper.

Assets We are not releasing assets.

Humans Subjects / IRB Approvals Not applicable to our paper.

16

B Notation

We use ∥x∥ to denote the Euclidean norm of a vector x, ∥A∥op for the spectral norm and ∥A∥F for
the Frobenius norm of a matrix A. xi denotes the ith element of a vector x, while x(i) denotes the ith
vector in a list of vectors. We denote nnz(·) the number of non-zero entries in a vector or matrix. For
two functions f, g we say f(z) = O(g(z)) if there is a constant C, such that 0 ≤ f(z) ≤ Cg(z) for
z large enough. Similarly, f(z) = Ω(g(z)) if there is a constant C, such that f(z) ≥ Cg(z) for z
large enough. Õ and Ω̃ omit poly-logarithmic factors.

Throughout the paper, we use d for the dimension of input vectors, n for the number of samples in
the dataset, and M for the dimension of the sketch or random features.

17

C Definition of TREESKETCH

For simplicity, we shall define TREESKETCH (Ahle et al., 2020) for inputs which are r-fold tensor
products x(1) ⊗ · · · ⊗ x(r) where r is a power of two, and each x(i) ∈ Rd is of the same dimension d.

The main ingredients will be two base sketches, one for the leaves of the tree, and one for internal
nodes. The leaf sketch, Tbase is a random matrix in Rm×d. The internal sketch, Sbase, is a random
matrix in Rm×m2

, which can be rapidly applied to the tensor product of two vectors in Rm. It is
possible to instantiate TreeSketch using simple sketches such as COUNTSKETCH, for the leaves, and
TENSORSKETCH for internal nodes. However, our theory we assumes that Tbase is OSNAP (Nelson
and Nguyên, 2013), and Sbase is TENSORSHRT, both of which enjoy a useful spectral property.

Having picked the base sketches, we can define for any power of two q ≥ 2, a random map
Qq : Rmq → Rm whose action on a tensor product v(1) ⊗ · · · ⊗ v(q) with v(i) ∈ Rm is given by the
following recursion:

Qq = Qq/2(Sq
1(v

(1) ⊗ v(2))⊗ Sq
2(v

(3) ⊗ v(4))⊗ · · · ⊗ Sq
q/2(v

(q−1) ⊗ v(q))).

Here, the matrices (Si
j) are independent copies of Sbase. The action of TREESKETCH Πr on x(1) ⊗

· · · ⊗ x(r) is then defined by

Πr(x(1) ⊗ · · · ⊗ x(r)) = Qr(T1(x
(1))⊗ · · · ⊗ Tr(x

(r)))

where the matrices (Ti) are independent copies of Tbase. Figure C.1 gives a schematic view of the
computational tree for a tensor product with r = 4.

Whilst the action of Πr was only defined for tensor products, this can be extended to arbitrary
vectors in Rdq

. Ahle et al. (2020) prove that the resulting linear sketch has many desirable subspace
embedding properties, some of which are used in the proof of Theorem 4.7.

S4
1

S2
1

T2

⊗

T1

x(1) x(2)

S4
2

T4

⊗

T3

x(3) x(4)

⊗

Figure C.1: Schematic view of the computational tree for TREESKETCH for a tensor product of four
vectors x(1) ⊗ · · · ⊗ x(4).

18

D Proofs

D.1 Proof of Theorem 3.1

For simplicity, we drop the subscripts h,Ξ from probabilities and expectations. To show that the
random features are unbiased, we re-write the expectation:

E [ϕΞ,h(x) · ϕΞ,h(x
′)]

= P(h(x) = h(x′))E
[
Ξh(x)Ξh(x′)|h(x) = h(x′)

]
+ P(h(x) ̸= h(x′))E

[
Ξh(x)Ξh(x′)|h(x) ̸= h(x′)

]
= P(h(x) = h(x′))E

[
Ξ2
h(x)

]
(Ξh(x) = Ξh(x′))

+ P(h(x) ̸= h(x′))E
[
Ξh(x)

]
E
[
Ξh(x′)

]
(Ξh(x),Ξh(x′) independent)

= 1 · P(h(x) = h(x′)) + 0 · P(h(x) ̸= h(x′)) (assumed moments of ξ)

= TMM (x, x′) (h(x) is an unbiased hash for TMM)

Because in general V[X] = E[X2]−E[X]2, and we have E [ϕΞ,h(x) · ϕΞ,h(x
′)] = TMM (x, x′), we

only need to compute E
[
(ϕΞ,h(x) · ϕΞ,h(x

′))
2
]
. This can be done using a similar decomposition:

E
[
(ϕΞ,h(x) · ϕΞ,h(x

′))
2
]
= P(h(x) = h(x′))E

[
(ϕΞ,h(x) · ϕΞ,h(x

′))
2 |h(x) = h(x′)

]
+ P(h(x) ̸= h(x′))E

[
(ϕΞ,h(x) · ϕΞ,h(x

′))
2 |h(x) ̸= h(x′)

]
= TMM (x, x′)E

[
Ξ4
h(x)

]
+ (1− TMM (x, x′))E

[
Ξ2
h(x)

]
E
[
Ξ2
h(x′)

]
= TMM (x, x′)E

[
Ξ4
h(x)

]
+ (1− TMM (x, x′))

Here, the last step follows from the moments of Ξ which were fixed by assumption. Subtracting
TMM (x, x′)2 from the above yields the expression for the variance.

By Jensen’s inequality, E[ξ4] ≥ E[ξ2]2, and E[ξ2] = 1 by assumption, so E[ξ4] ≥ 1. Substituting
E[ξ4] = 1 into the equation for V(ϕΞ,h(x) ·ϕΞ,h(x

′)) gives the lower bound and completes the proof.

D.2 Proof of Theorem 4.1 and Corollary 4.2

Take any pair of inputs x, y ̸= 0 in Rd. By the Cauchy–Schwarz inequality, we have∣∣∣∣∣ x · y
∥x∥2 + ∥y∥2

∣∣∣∣∣ ≤ ∥x∥∥y∥
∥x∥2 + ∥y∥2

≤
(
∥x∥/∥y∥+ 1

∥x∥/∥y∥

)−1

≤ 1

2
. (15)

Now, we can write the function TDP as

TDP (x, y) =
x · y

∥x∥2 + ∥y∥2 − x · y
=

x·y
∥x∥2+∥y∥2

1− x·y
∥x∥2+∥y∥2

(16)

=
x · y

∥x∥2 + ∥y∥2

(
1

1− x·y
∥x∥2+∥y∥2

)
(17)

=
x · y

∥x∥2 + ∥y∥2
∞∑
r=0

(
x · y

∥x∥2 + ∥y∥2

)r

(18)

=

∞∑
r=1

(
x · y

∥x∥2 + ∥y∥2

)r

, (19)

where in the identity (18) we use the bound in (15) to assert that the series is bounded by 2−r and
thus absolutely convergent.

19

Furthermore, because (x, y) 7→ x · y is a positive definite kernel, and so is

(x, y) 7→ 1

∥x∥2 + ∥y∥2
=

∫ ∞

0

e−(∥x∥2+∥y∥2)tdt,

each summand in the power series is positive definite because it is a product of positive definite
kernels. Hence, as sums and limits of positive definite kernels are positive definite, and the power
series is convergent, TDP is positive definite in the space Rd \ {0}. The extension to include the
vector 0 ∈ Rd is straightforward, as any Gram matrix including this vector is block diagonal. We
conclude that TDP is a positive definite kernel in Rd.

To prove Corollary 4.2, note that by the Moore–Aronszajn theorem, there exists an RKHS
of functions (H, ⟨·⟩H) on Rd with reproducing kernel TDP , such that for any x, y ∈ Rd,
⟨TDP (x, ·), TDP (y, ·)⟩H = TDP (x, y). Then, observe that

∥TDP (x, ·)− TDP (y, ·)∥2H = ⟨TDP (x, ·)− TDP (y, ·), TDP (x, ·)− TDP (y, ·)⟩H
= ⟨TDP (x, ·), TDP (x, ·)⟩H + ⟨TDP (y, ·), TDP (y, ·)⟩H

− 2⟨TDP (x, ·), TDP (y, ·)⟩H
= 2− 2TDP (x, y),

where in the final identity, we use the fact that TDP (x, x) = 1 for all x ∈ Rd. Dividing by 2 and
taking square roots on both sides, we obtain∥∥∥1

2
TDP (x, ·)−

1

2
TDP (y, ·)

∥∥∥
H

=
√

1− TDP (x, y),

where the RKHS norm on the left is clearly a distance metric.

D.3 Proofs and derivations for prefactor random features from section 4.1

D.3.1 Scalar random features (Lemma 4.4)

First, we present a derivation for the scalar random features for the prefactor (∥x∥2 + ∥x′∥2)−r from
Lemma 4.4. As the kernel is a function of ∥x∥2 and ∥x′∥2, we can deal, without loss of generality,
with the one-dimensional case. We begin by observing that for any a, b > 0,(

1

a+ b

)r

=

∫ ∞

0

e(1/2−a)te(1/2−b)t t
r−1e−t

Γ(r)
dt

=

∫ ∞

0

e(1/2−a)te(1/2−b)tc−re(c−1)t c
rtr−1e−ct

Γ(r)
dt

=

∫ ∞

0

e(1/2−a)te(1/2−b)t c
−se(c−1)ttr−sΓ(s)

Γ(r)

csts−1e−ct

Γ(s)
dt. (20)

Defining the function

φZ(a) = e(1/2−a)ZZ(r−s)/2

(
c−se(c−1)ZΓ(s)

Γ(r)

)1/2

and letting Z ∼ Gamma(s, c), we recognise the right hand side of (20) as the expectation of
φZ(a)φZ(b). Hence, (

1

a+ b

)r

= E(φZ(a)φZ(b)).

This proves Lemma 4.4.

D.3.2 QMC random features (Lemma 4.5)

Next we motivate and derive our QMC random features for the prefactor, proving Lemma 4.5. It
is possible to sketch a with a vector φ(a) = 1√

M
(φZ1

(a), . . . , φZM
(a)) where Z1, . . . , ZM are

independent copies of Z. This makes the kernel approximation φ(a) · φ(b) a Monte Carlo estimator

20

of the expectation, with error decreasing with the dimension M of the sketch at the standard rate
O(M−1/2).

However, we shall instead consider a Quasi-Monte Carlo (QMC) estimator with an error decreasing
at the faster rate O(M−1). Let γs,c be the inverse cumulative distribution function of a Gamma(s, c)
random variable. With a change of variables, we can write the integral (20) as(

1

a+ b

)r

=
c−sΓ(s)

Γ(r)

∫ 1

0

e−(a+b−c)γs,c(u)(γs,c(u))
r−sdu. (21)

Fix n > 0, u ∈ [0, 1], and let ui = (u+ i/M)− ⌊u+ i/M⌋ for i = 1, . . . ,M . We can now define
features ϕu,r(a) ∈ RM , as in Section 4.2:

ϕu,r,i(a) =
1√
M

√
c−sΓ(s)

Γ(r)
e−(a−c/2)γs,c(ui)(γs,c(ui))

(r−s)/2.

A QMC estimator for (a+ b)−r is given by the dot product ϕu(a)Tϕu(b). This estimator is unbiased:
Lemma. If u is random and U(0, 1), then for all a, b > 0,(

1

a+ b

)r

= E(ϕu,r(a) · ϕu,r(b)).

Proof. By linearity of expectation,

E(ϕu,r(a) · ϕu,r(b)) =
1

M

M∑
i=1

E
[
c−sΓ(s)

Γ(r)
e−(a+b−c)γs,c(ui)(γs,c(ui))

r−s

]
.

Observing that each ui ∼ U(0, 1), the result follows by Eq. (21).

This lemma is equivalent to Lemma 4.5, thereby proving it.

D.3.3 Relative error bound (Lemma 4.6)

In the following lemma, we establish a basic Quasi-Monte Carlo error bound.
Lemma D.1. For any u ∈ [0, 1], c ≤ (a+ b), 0 < s ≤ r,∣∣∣ 1

(a+ b)r
− ϕu,r(a) · ϕu,r(b)

∣∣∣ ≤ 2

M

c−sΓ(s)

Γ(r)

(
r − s

e(a+ b− c)

)r−s

.

Proof. Consider the QMC approximation of an integral
∫ 1

0
f(x)dx for a function f of bounded

variation, using a regular net of n points. It is well known that the error of this approximation is
bounded above by V (f)/n where V is the total variation norm. Hence,∣∣∣ 1

(a+ b)r
− ϕu,r(a) · ϕu,r(b)

∣∣∣ ≤ 1

n

c−sΓ(s)

Γ(r)
V (f)

for f(u) = e−(a+b−c)γs,c(u)(γs,c(u))
r−s on 0 ≤ u ≤ 1. As γs,c is monotone increasing, f is

unimodal tending to 0 as u→ 0 and u→ 1. Thus V (f) = 2max0≤u≤1 f(u). The maximum of f is
attained where γs,c(u) = (r − s)/(a+ b− c), hence

V (f) = 2

(
r − s

e(a+ b− c)

)r−s

.

We are interested in sketching (∥x(i)∥2 + ∥x(j)∥2)−r for every pair of inputs x(i), x(j) in a dataset
{x(1), . . . , x(n)}. The previous lemma can be used to choose values c and s ≤ r which minimise the
relative error

Ei,j =
ϕu,r(x

(i)) · ϕu,r(x(j))− (∥x(i)∥2 + ∥x(j)∥2)−r

(∥x(i)∥2 + ∥x(j)∥2)−r
.

21

The kernel k(x, y) is invariant to scaling x and y, i.e., k(x, y) = k(ℓx, ℓy) for all ℓ > 0. Thus, if we
are interested in approximating the Gram matrix for {x(1), . . . , x(n)}, we may assume without loss
of generality that maxi ∥x(i)∥2 = 1 and let ζ = mini ∥x(i)∥2. Here, ζ will act as a condition number
for the dataset, which will determine the error of the random feature approximation.

By Lemma D.1, we have

|Ei,j | ≤ (∥x(i)∥2 + ∥x(j)∥2)r 2

M

c−sΓ(s)

Γ(r)

(
r − s

e(∥x(i)∥2 + ∥x(j)∥2 − c)

)r−s

= (∥x(i)∥2 + ∥x(j)∥2)r 2

M

c−sΓ(s)(r − s)r−s

Γ(r)e(r−s)

(
1

∥x(i)∥2 + ∥x(j)∥2 − c

)r−s

=
2

M

Γ(s)(r − s)r−s

Γ(r)e(r−s)

(
1− c

∥x(i)∥2 + ∥x(j)∥2

)s−r (
c

∥x(i)∥2 + ∥x(j)∥2

)−s

.

The last two factors are log-convex in c/(∥x(i)∥2 + ∥x(j)∥2) > 0. Hence, for a fixed c, the product(
1− c

∥x(i)∥2 + ∥x(j)∥2

)s−r (
c

∥x(i)∥2 + ∥x(j)∥2

)−s

is maximised at either ∥x(i)∥2 + ∥x(j)∥2 = 2 or ∥x(i)∥2 + ∥x(j)∥2 = 2ζ. Therefore,

|Ei,j | ≤
2

M

Γ(s)(r − s)r−s

Γ(r)e(r−s)

[(
1− c

2

)s−r (c
2

)−s

∨
(
1− c

2ζ

)s−r (
c

2ζ

)−s
]
.

Using again the log-convexity of y 7→ (1− y)s−ry−s, we find that(
1− c

2

)s−r (c
2

)−s

is minimised as a function of c at c1 = 2s/r. And(
1− c

2ζ

)s−r (
c

2ζ

)−s

is minimised at c2 = 2ζs/r. Recall that Lemma D.1 requires 0 ≤ c ≤ ∥x(i)∥2 + ∥x(j)∥2 for all i, j
or 0 ≤ c ≤ 2ζ, which is satisfied by c2 when s ≤ r, but not necessarily by c1. Thus, it is reasonable
to set c = c2, which leads to

|Ei,j | ≤
2

M

Γ(s)(r − s)r−s

Γ(r)e(r−s)

[(
1− ζs

r

)s−r (
ζs

r

)−s

∨
(
1− s

r

)s−r (s
r

)−s
]

≤ 2

M

Γ(s)(r − s)r−srrs−s

Γ(r)e(r−s)

[
(r − ζs)

s−r
ζ−s ∨ (r − s)

s−r
]

≤ 2

M

Γ(s)(s/e)−s

Γ(r)(r/e)−r

[(
r − ζs

r − s

)s−r

ζ−s ∨ 1

]
.

When ζ = 1 (all inputs x(i) have the same norm), setting s = r leads to an error bound of 4/n.
However, small values of ζ can make the upper bound blow up unless we tune s suitably. For a given
value of ζ, this upper bound could be maximised numerically over 0 < s ≤ r. However, setting
s = rζ, we obtain

|Ei,j | ≤
2

M

Γ(rζ)(rζ/e)−rζ

Γ(r)(r/e)−r

[(
1− ζ2

1− ζ

)r(ζ−1)

ζ−rζ ∨ 1

]

≤ 2

M

Γ(rζ)ζ−rζ

Γ(r)
(r/e)r(ζ−1)

[((
1− ζ2

1− ζ

)ζ−1

ζ−ζ

)r

∨ 1

]

≤ 2

M

Γ(rζ)ζ−rζ

Γ(r)
(r/e)r(ζ−1)ρr

22

where ρ ≈ 1.2 is defined by

ρ := max
0≤ζ≤1

(
1− ζ2

1− ζ

)ζ−1

ζ−ζ .

This proves the first inequality in Lemma 4.6.

To conclude the proof of Lemma 4.6, we study the behaviour of the upper bound as it diverges when
ζ → 0. Using the asymptotic Γ(x) ∼ 1/x as x→ 0, we have

2

M

Γ(rζ)ζ−rζ

Γ(r)
(r/e)r(ζ−1)ρr ∼ (Mζ)−1 2(r/e)

−rρr

rΓ(r)

where 2(r/e)−rρr

rΓ(r) is bounded for r ≥ 1. Therefore, the upper bound is O(M−1ζ−1). This completes
the proof.

D.4 Proof of Theorem 4.7

We begin by defining the stable rank, a common notion of effective dimension for a data matrix
A ∈ Rd×n or its associated Gram matrix ATA.

Definition D.2. The stable rank sr(A) of a data matrix A ∈ Rd×n is given by

sr(A) =
∥A∥2F
∥A∥2op

.

For a positive semi-definite matrix K ∈ Rn×n, define s̃r(K) = Tr(K)/∥K∥op.

The stable rank of A is upper bounded by the rank, but it is insensitive to small singular values, so it
can be much smaller than min(n, d). Note that sr(A) = s̃r(ATA). The function s̃r(K) extends the
concept of stable rank to a general kernel matrix K.

We now re-state theorem 4.7 for convenience, and provide a proof:

Theorem. For any n ≥ 1, let x(1), . . . , x(n) ∈ Rd be a set of inputs with mini ∥x(i)∥2

maxi ∥x(i)∥2 ≥ ζ. Let K

be the matrix with entries Ki,j = TDP(x
(i), x(j)). For all ε > 0, there exists an oblivious sketch

Φ : Rd → Rm with m = Ω̃(s̃r(K)/ε2), such that

PΦ

(
∥K̂ −K∥op ≥ ε∥K∥op

)
≤ 1

poly(n)
(22)

where K̂i,j = Φ(x(i)) · Φ(x(j)). Furthermore, the sketch can be computed in time Õ(s̃r(K)nε−2 +
nnz(X)ε−2 + nζ−1ε−3).

We begin by specifying the sketch Φ. Define

Φ(x) = ⊕R
r=1Φ

r(x)

where Φr(x) = Πr+1(ϕu,r(x) ⊗ x⊗r), Πr is a TREESKETCH (see appendix C) and ϕu,r(x) is
the random feature expansion for the prefactor defined in Lemma 4.5. TREESKETCH (Ahle et al.,
2020), must be instantiated with the base sketches OSNAP (Nelson and Nguyên, 2013) at the leaves
(Tbase), and TENSORSRHT (Ahle et al., 2020) at internal nodes (Sbase). The choices for R, and the
dimensions of Πr and ϕu,r will be made explicit in the proof.

For each r ∈ [R], define matrices Kr, K̃r, and K̂r in Rn×n by

Kr
i,j =

(
x(i) · x(j)

∥x(i)∥2 + ∥x(j)∥2

)r

,

K̃r
i,j = (x(i)⊗r ⊗ ϕu,r(x

(i))) · (x(i)⊗r ⊗ ϕu,r(x
(i))),

K̂r
i,j = Φr(x

(i)) · Φr(x
(j)),

23

Then, by the triangle inequality, we have

∥K̂ −K∥op ≤
R∑

r=1

∥K̂r − K̃r∥op +

R∑
r=1

∥K̃r −Kr∥op +

∥∥∥∥∥
R∑

r=1

Kr −K

∥∥∥∥∥
op

≤
R∑

r=1

∥K̂r − K̃r∥op +

R∑
r=1

∥K̃r −Kr∥op +

∞∑
r=R+1

∥Kr∥op. (23)

We shall find high-probability bounds for each of the terms on the right in turn. For the last term, we
can choose R = C log(s̃r(K)ε−1) with C large enough, and apply the following upper bound

∞∑
r=R+1

∥Kr∥op ≤
∞∑

r=R+1

∥Kr∥F

≤
∑

r=R+1

n

(
max
i,j∈[n]

∥x(i) · x(j)∥r

(∥x(i)∥2 + ∥x(j)∥2)r

)1/2

≤
∑

r=R+1

n2−r/2

≤ n2−(R−1)/2 ≤ nε

3s̃r(K)
≤
ε∥K∥op

3
, (24)

where the final inequality follows from the fact that s̃r(K) = n/∥K∥op, as the kernel matrix K has
ones on the diagonal.

The terms in the second sum of (23) may be written as

∥K̃r −Kr∥op = ∥Ẽ ⊙Kr∥op

where ⊙ denotes the Hadamard product and E is the error matrix defined in (10). Noting that E is
symmetric, we can apply Corollary 11 in Ando et al. (1987) to assert that

∥K̃r −Kr∥op ≤ max
i

|Ei,i|∥Kr∥op.

By the triangle inequality, for each r ≥ 1, we have ∥Kr∥op ≤ ∥K∥op. Hence, with the choice
M = Ω(Rζ−1ε−1) for the dimension of ϕu,r, and applying Lemma 4.6 we obtain

R∑
r=1

∥K̃r −Kr∥op ≤
ε∥K∥op

3
. (25)

Finally, we turn to the first term in (23). Let Ar be a matrix with columns x(i)⊗r ⊗ ϕu,r(x
(i)) for

i = 1, . . . , n. We can rewrite the error in question

∥K̂r − K̃r∥op = ∥(Πr+1Ar)
TΠr+1Ar −AT

r Ar∥op

In Lemma D.3, we establish that ∥Ar∥2F ≤ (1 + ε)Tr(K) and ∥Ar∥2op ≤ (1 + ε)∥K∥op. Let
δ = 1/poly(n) denote the error tolerance. Choose the dimension of the sketch Πr+1 to be mr =

Ω
(

R2r4 s̃r(K)
ε2 log3

(
n(d∨M)

εδ

))
and the sparsity parameter of OSNAP as s = R2r4

ε2 log3
(

n(d∨M)
εδ

)
.

Then, Lemmata 32–34 in Ahle et al. (2020) ensure that,

P
(
∥K̂r − K̃r∥op ≥

ε∥K∥op

3R

)
= P

(
∥(Πr+1Ar)

TΠr+1Ar −AT
r Ar∥op ≥

ε∥K∥op

3R

)
≤ 1

poly(n)
.

Taking a union bound, we obtain

P

(
R∑

r=1

∥K̂r − K̃r∥op ≥
ε∥K∥op

3

)
≤ 1

poly(n)
. (26)

Finally, combining the bounds (26), (25), and (24), we obtain

P
(
∥K̂ −K∥op ≥ ε∥K∥op

)
≤ 1

poly(n)
.

24

Dimension of the sketch Φ: The total dimension of the sketch is m = m1 + · · · + mR,
where mr = Ω

(
R2r4 s̃r(K)

ε2 log3
(

n(d∨M)
εδ

))
with R = C log(s̃r(K)ε−1). Hence, ignoring poly-

logarithmic factors, the sketch has dimension m = Ω̃(s̃r(K)/ε2).

Runtime: We first estimate the runtime of applying Φr. Applying OSNAP with sparsity parameter
s to a vector w ∈ Rd takes O(snnz(w)) time. Thus, applying r independent OSNAP sketches to
each x(i) for i ∈ [n] takes O(srnnz(X)) time. Applying OSNAP to ϕu,r(x(i)) for i ∈ [n] takes
O(nsM) time. Then, applying one TENSORSRHT sketch takes O(mr logmr) time, and therefore
applying all the necessary copies of Sbase requires O(rmr logmr). In total, the sketch Φatior may
be computed in O(nrmr logmr + snnz(X) + nsM). Adding these runtimes over r ∈ [R] gives us
a total runtime which is Õ(s̃r(K)nε−2 + nnz(X)ε−2 + nζ−1ε−3).

Lemma D.3. For each r = 1, . . . , R, we have ∥Ar∥2op ≤ (1+ ε)∥K∥op and ∥Ar∥2F ≤ (1+ ε)Tr(K).

Proof. Note that AT
r Ar = K̃r. Hence, we aim to show that ∥K̃r∥op ≤ (1 + ε)∥K∥op, and that

Tr(K̃r) ≤ (1 + ε)Tr(K). By the triangle inequality,

∥K̃r∥op ≤ ∥K̃r∥op + ∥K̃r −Kr∥op ≤ (1 + ε)∥Kr∥op ≤ (1 + ε)∥K∥op,

where the penultimate inequality was shown in the proof of Theorem 4.7, and the final inequality is
due to the fact that Kr ⪯ K.

Then, by linearity of the trace,

Tr(K̃r) = Tr(Kr) + Tr(K̃r −Kr) = Tr(Kr) + Tr(E ⊙Kr). (27)

And applying once more Corollary 11 of Ando et al. (1987), we have

Tr(E ⊙Kr) =

n∑
i=1

σi(E ⊙Kr) ≤ max
i∈[n]

|Ei,i|
n∑

i=1

σi(K
r) ≤ ε

n∑
i=1

σi(K
r),

where σi(·) denotes the ith singular value. Using once more thatKr ⪯ K and hence σi(Kr) ≤ σi(K)
for all i ∈ [n], we obtain,

Tr(E ⊙Kr) ≤ εTr(K).

Plugging this into (27) yields Tr(K̃r) ≤ (1 + ε)Tr(K).

D.5 Rank of Tanimoto Kernels

Lemma D.4. There does not exist an exact finite-dimensional feature map for either TMM or TDP .

Proof. We will use a proof by contradiction, first focusing on TMM . The setup for the contradiction
is as follows: suppose there existed an exact feature map f : Rd 7→ RM such that TMM (x, y) =
f(x) · f(y) ∀x, y ∈ Rd. This would imply that any kernel matrix between n points X could be
written as an inner product

TMM (X,X) = f(X)T f(X) .

Because f outputs M dimensional vectors this would imply the resulting matrix has rank at most M .
Therefore, under this hypothesis it should not be possible to form a kernel matrix of more than M
inputs which is full-rank (invertible). Our contradiction will be to construct such a matrix.

We now present a way to construct a full-rank TMM kernel matrix with any number of points n. Con-
sider the set of points {a(i)}ni=1 where a(i) = (2n)i ∈ R. For any i, we have that TMM (a(i), a(i)) = 1
and if n ≥ 2 then ∑

j ̸=i

|TMM (a(i), a(j))| =
∑
j ̸=i

(2n)−|i−j| ≤
∑
j ̸=i

1

2n
≤ 1

2
,

meaning the kernel matrix is strictly diagonally dominant and therefore non-singular. Since such a
construction exists for any n, setting n =M + 1 contradicts the assumption of an M -dimensional

25

feature map, and repeating this argument for all finite M proves that no finite-dimensional feature
map can exists for TMM .

The proof for TDP is almost identical. Consider the same sequence of points as in the preceding
paragraph. For any i, we have that TDP (a

(i), a(i)) = 1 and∑
j ̸=i

|TDP (a
(i), a(j))| =

∑
j ̸=i

1

(2n)|i−j| + (2n)−|i−j| − 1
≤
∑
j ̸=i

1

2n− 1
< 1 ,

meaning the kernel matrix for TDP is also strictly diagonally dominant, thereby also precluding the
existence of an M -dimensional feature map for finite M .

This result suggests that the best we can hope for is an approximate finite-dimensional feature map
for both kernels, which is exactly what is provided in this paper.

26

E Methods to correct the bias of Tanimoto dot product random features

Here, we describe the bias correction strategies mentioned in Section 4.2 and tested experimentally in
section 6. We begin by noting that when x, x′ ∈ Rd

≥0, x · x′ ≥ 0, and therefore, the power series

TDP (x, x
′) =

∞∑
r=1

(x · x′)r(∥x∥2 + ∥x′∥2)−r

is monotone. Therefore, if we use an unbiased sketch for the truncated series
R∑

r=1

(x · x′)r(∥x∥2 + ∥x′∥2)−r

as the one constructed in Section 4.2, the final sketch will be biased downward:

E(Φ(x) · Φ(x′)) < TDP (x, x
′)

for all x, x′ ∈ Rd
≥0. Below we introduce two strategies to remedy this issue.

E.1 Bias correction strategy 1: normalize the features

Empirically, we observe that the highest bias occurs in the diagonal elements of the kernel matrix. As
the kernel satisfies TDP (x, x) = 1 for all x ∈ Rd, one possible correction is to normalize the sketch
to obtain

Φ̃(x) =
Φ(x)

∥Φ(x)∥
.

This remains an oblivious sketch, and ensures that the diagonal of the kernel matrix is estimated
exactly, at the expense of possibly introducing some bias in off-diagonal elements of K.

E.2 Bias correction strategy 2: sketch the residual

To simplify the algebra, let tx,y = x·y
∥x∥2+∥y∥2 . The power series for TDP can then be re-written as:

TDP (x, y) =

∞∑
r=1

(tx,y)
r

=

R∑
r=1

(tx,y)
r
+ (tx,y)

R+1
+

∞∑
r=R+2

(tx,y)
r

=
R∑

r=1

(tx,y)
r
+ (tx,y)

R+1
+ (tx,y)

R+1
∞∑
r=1

(tx,y)
r

=

R∑
r=1

(tx,y)
r

︸ ︷︷ ︸
kR

+(tx,y)
R+1

(1 + TDP (x, y))︸ ︷︷ ︸
truncation error

(28)

Critically, the truncation error can be written in terms of the kernel value itself, without any infinite
sums. This enables a simple procedure to generate random features for both the truncated power
series and the remainder:

1. Compute and store Φ(x) as random features for the truncated kernel kR.
2. Concatenate a single 1 onto Φ(x) to produce features Φ+1(x) = (1,Φ(x)) which approx-

imate the kernel 1 + kR using only a single extra dimension. Treat this as approximate
random features for the kernel 1 + k.

3. Compute random features Φr+1(x) for tR+1
x,y .

4. Apply SKETCH to the tensor product Φr+1(x)⊗Φ+1(x) to obtain ∆(x), which approximates
random features of the truncation error tR+1

x,y (1 + TDP (x, y)).

27

5. Concatenate the random features Φ(x) and ∆(x), to obtain bias corrected random features
Φbc(x) = Φ⊕∆(x).

Overall, these random features are essentially a concatenation of the random features for the truncated
power series with an additional random feature estimate of the truncation error, which is formed using
both the random features for the first R terms and the random features for the (R+ 1)th term. A nice
property of the procedure above is that it re-uses the random features Φ(x) to estimate the error.

28

F Experimental details and Additional Results

F.1 Datasets and featurization

The 1000 molecules from GuacaMol are included in our code. The molecules from the DOCKSTRING
dataset are available online (https://github.com/dockstring/dataset).

Note that when using count fingerprints for TDP we used the square root of the counts as the
fingerprint. This was done for two reasons:

1. To reduce the norms of the vectors (and thereby increase ζ).
2. To roughly make their interpretation consistent with TMM : i.e. the “weight” of a fragment

in which occurs n times in the numerator/denominator of TDP is n times the weight of a
fragment which occurs once.

F.2 Details of TMM random features

We use the random hash from Ioffe (2010) in our implementation. To hash vectors in RD random
variables ri, ci ∼ Γ(2, 1), βi ∼ U(0, 1) are drawn i.i.d. for i = 1, . . . , D, and then the following3

are computed for all i:

ti(x) = ⌊(lnxi)/ri + βi⌋ , (29)
yi(x) = ri(ti(x)− βi) , (30)
ai(x) = ln ci − yi(x)− ln ri , (31)
i∗(x) = arg min

i=1,...,D
ai(x) , (32)

hr,c,β(x) =
(
i∗(x), ti∗(x)(x)

)
. (33)

Note that equation 29 uses the convention that ln 0 = −∞. These variables do not have a clear
interpretation in isolation so we refer the reader to Ioffe (2010) for an explanation of why this hashing
procedure produces a random hash for TMM . The hash itself is formed of 2 integers: i∗ ∈ {1, . . . , D}
and ti∗ ∈ Z. This unfortunately means that the number of possible outputs is potentially infinite,
which would require us to potentially sample an arbitrarily large vector Ξ. To avoid this, we first use
python’s built-in hash function to map this pair of integers to a single integer, then take the result
module 212 = 4096. This allows us to sample a small (finite) vector Ξ, and although it introduces a
small amount of bias this does not appear to be an issue in practice.

Elements of Ξ are always sampled i.i.d. from either a Rademacher or Gaussian distribution (the
distribution should always be clear from context).

F.3 Additional results for TDP random features

Figure F.1 shows that the error for both polynomial random features from TENSORSKETCH and
random features for individual terms in T ′

DP s power series decreases with O(1/M). Figure F.2
shows the overall error for count fingerprints.

F.4 Gaussian process training details from section 6.2

Our GP models use a constant mean and Gaussian noise. Specifically, the model of the observed
labels y is:

f(X) ∼ GP (µ, ak(X,X)])

y(X) ∼ N
(
f(X), σ2I

)
Therefore, the GP hyperparameters are three scalars:

• The constant mean, µ
3Note that the presentation of equations 29–33 differs slightly from Ioffe (2010) who defines yi and ai to

be the exponential of equations 30/31: we wrote it this way because in practice working in log space avoids
numerical stability issues. This is explicitly suggested in their paper.

29

https://github.com/dockstring/dataset

102 103 104 105

Number of random features

10 6

10 5

10 4

10 3

Po
ly

no
m

ia
l M

SE

102 103 104 105

Number of random features

10 6

10 5

10 4

10 3

10 2

T D
P
 te

rm
 M

SE

count FP, r=1 count FP, r=3 binary FP, r=1 binary FP, r=3

Figure F.1: MSEs for approximating (x · x′)r (left) and ((x · x′)/(∥x∥2 + ∥x′∥2))r (right) using
TENSORSKETCH for various r on count and binary fingerprints as a function of the random feature
dimension M .

2 1 0 1 2

Feature allocation p

0.0005

0.0010

0.0015

0.0020

0.0025

T D
P
 M

SE

102 103 104 105

Number of random features

10 4

10 3

10 2

T D
P
 M

SE
 (p

=-
1)

no bias correction normalize sketch error

Figure F.2: Same as Figure 3 but with count fingerprints.

• The kernel amplitude/outputscale a

• The observation noise σ2

GP performance will be greatly affected by the choice of kernel hyperparameters. To ensure that the
difference in performance is not due to differences in kernel hyperparameter settings we fit them in
a consistent way for all methods. Specifically, for all methods, we start by fitting an exact GP to a
random subset of M = 5000 data points by maximizing the marginal likelihood with L-BFGS. The
different approximations are as follows:

• Random subset: gpytorch’s exact GP inference is applied on a random subset of M data
points (a different subset then was used to fit the hyperparameters).

• SVGP: scikit-learn’s K-means clustering is run withM clusters to produce an initializa-
tion of the inducing points. These inducing points are used to initialize a sparse variational
GP (Hensman et al., 2013), implemented in gpytorch. The variational parameters are
optimized via natural gradient descent with a learning rate of 10−1 and a batch size of
2M = 10 000 for one pass through the dataset. Although the inducing point locations
themselves could be further optimized with gradient descent, we chose not to do so for this
experiment.

• RFGP: First, the training and test sets are converted into M dimensional random features.
Then, the posterior equations for inference in Bayesian linear models are used to make
predictions on the test set given the training set (Bishop and Nasrabadi, 2006, equations
3.49–3.51). The computation is done in a specific order to avoid forming any n×n matrices
(the Woodbury matrix identity is used extensively for this). This is fairly clearly documented
in the code.

30

Table F.1: AverageR2 score for approximate GPs on DOCKSTRING dataset. Attentive FP and MPNN
results are taken from García-Ortegón et al. (2022). Other details are the same as Table 1.

KERNEL METHOD ESR2 F2 KIT PARP1 PGR

TMM RAND SUBSET GP 0.514±0.002 0.810±0.002 0.695±0.002 0.849±0.001 0.426±0.007
SVGP 0.578±0.001 0.861±0.000 0.749±0.000 0.889±0.000 0.542±0.002
RFGP (Ξ RAD.) 0.518±0.002 0.838±0.001 0.703±0.002 0.864±0.001 0.465±0.003
RFGP (Ξ GAUSS.) 0.517±0.002 0.837±0.000 0.702±0.001 0.864±0.001 0.467±0.004

TDP RAND SUBSET GP 0.513±0.003 0.817±0.001 0.696±0.002 0.851±0.001 0.384±0.011
SVGP 0.581±0.001 0.865±0.000 0.753±0.001 0.889±0.000 0.543±0.002
RFGP (PLAIN) 0.546±0.001 0.852±0.001 0.716±0.002 0.876±0.000 0.512±0.002
RFGP (NORM) 0.546±0.001 0.852±0.001 0.715±0.002 0.876±0.000 0.513±0.002
RFGP (SKETCH) 0.545±0.001 0.852±0.001 0.716±0.002 0.876±0.000 0.510±0.002

N/A MPNN 0.506±0.001 0.798±0.005 0.755±0.005 0.815±0.010 0.324±0.096
N/A ATTENTIVE FP 0.627±0.010 0.880±0.001 0.806±0.008 0.910±0.002 0.678±0.008

Note that for TMM it was vital to implement the kernel as

TMM (x, x′) =
∥x∥1 + ∥x′∥1 − ∥x− x′∥1
∥x∥1 + ∥x′∥1 + ∥x− x′∥1

(34)

instead of a naive implementation which follows equation 1. This is because such an implementation
requires forming a tensor of shape N ×M × d when calculating the kernel between N and M points
in Rd (for example Tijk = min(xik, yjk)) which can exceed memory limits for modest N,M, d.
This identity allows us to use the relatively efficient torch.cdist function. Note that we did not
invent this identity ourselves; we discovered it in Ioffe (2010).

Even with this implementation, M = 5000 inducing points did not fit into GPU memory for TMM ,
so all experiments were run on CPU.

F.5 Metrics and additional results from section 6.2

Metrics Table 1 reports average log probability, which calculated by first calculating the log
probability of each test point individually (i.e. marginally, not jointly), then averaging these val-
ues. We also report the coefficient of determination (R2 score), calculated using the function
sklearn.metrics.r2_score. This measures only the error of the GP mean. A value of 1 indicates
perfect prediction, while a value of 0 can be achieved by predicting the sample mean for every data
point.

Additional results Table F.1 reports the average R2. Trends are similar to Table 1. We also include
baselines for two types of graph neural network: Attentive FP (Xiong et al., 2019) and MPNN (Gilmer
et al., 2017). Although the performance of GP methods does not match that of Attentive FP, it is
often close, suggesting there is potential for approximate GPs to be competitive with graph neural
networks for molecular property prediction.

31

	Introduction
	Background: kernel methods and random features
	Low-variance random features for Tanimoto and MinMax kernels
	Tanimoto dot product kernel and its random features
	Random features for the ``prefactor'' (x2+x'2)-r
	A framework to produce random features for TDP
	Implementing the random features
	Asymptotic error bound for TDP random features

	Related work
	Experiments
	Errors of random features on real datasets
	Molecular property prediction and uncertainty quantification
	Bayesian optimization in molecule space via Thompson sampling

	Discussion and conclusion
	Paper Checklist
	Notation
	Definition of TreeSketch
	Proofs
	Proof of Theorem 3.1
	Proof of Theorem 4.1 and Corollary 4.2
	Proofs and derivations for prefactor random features from section 4.1
	Scalar random features (scalar prefactor features lemma)
	QMC random features (lemma:def QMC prefactor features)
	Relative error bound (QMC error)

	Proof of Theorem 4.7
	Rank of Tanimoto Kernels

	Methods to correct the bias of Tanimoto dot product random features
	Bias correction strategy 1: normalize the features
	Bias correction strategy 2: sketch the residual

	Experimental details and Additional Results
	Datasets and featurization
	Details of TMM random features
	Additional results for TDP random features
	Gaussian process training details from section 6.2
	Metrics and additional results from section 6.2

