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Abstract

Accurately detecting and classifying damage in ana-
logue media such as paintings, photographs, textiles, mo-
saics, and frescoes is essential for cultural heritage preser-
vation. While machine learning models excel in correct-
ing degradation if the damage operator is known a priori,
we show that they fail to robustly predict where the dam-
age is even dafter supervised training; thus, reliable dam-
age detection remains a challenge. Motivated by this, we
introduce ARTeFACT, a dataset for damage detection in di-
verse types analogue media, with over 11,000 annotations
covering 15 kinds of damage across various subjects, me-
dia, and historical provenance. Furthermore, we contribute
human-verified text prompts describing the semantic con-
tents of the images, and derive additional textual descrip-
tions of the annotated damage. We evaluate CNN, Trans-
former, diffusion-based segmentation models, and founda-
tion vision models in zero-shot, supervised, unsupervised
and text-guided settings, revealing their limitations in gen-
eralising across media types. Our dataset is available at
https://daniela997.github.io/ARTeFACT/ as the first-of-its-
kind benchmark for analogue media damage detection and
restoration.

1. Introduction

Artworks on analogue media are at risk of deteriora-
tion over time due to environmental factors, human inter-
vention, or simple aging. Accurately distinguishing and
analysing such damage is a crucial step in the preserva-
tion process, with many practical applications—including
improved archiving and curation, provenance research, and
downstream restoration via digital tools. Manual identi-
fication of damage is labour-intensive, requiring special-
ized software, significant financial investment, and exten-
sive time commitment from skilled specialists [4, 7, 22].
These constraints limit the scale and frequency of restora-
tion efforts.
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Whether machine learning can successfully be used to
automate the damage detection has not yet been established.
This can be attributed to the constraints posed by data avail-
ability: damage in analogue media is rarely detailed in
metadata, making data collection challenging. Selecting
and annotating examples which cover the varied manifes-
tations of damage across different materials and contents
in analogue media is difficult but essential for assessing a
model’s ability to generalise at such a complex task [6].
Previous work has only targeted one type of analogue me-
dia at a time and sourced all of their data from the same
place [4,30, 35,58]. Consequently, their results do not re-
flect the evaluated approaches’ performance on unseen data,
and whether the models are able to truly learn what damage
is. Effective evaluation requires a diverse dataset and a pro-
tocol that accounts for the manifold of analogue media types
and their differences.

We propose the ARTeFACT dataset, which is designed
to enable a comprehensive evaluation of current and future
approaches. Our contributions are as follows:

* We produce an extensive dataset for the real-life task of
damage detection in analogue media. For each image,
we provide a pixel-accurate damage mask, with over
11,000 annotations in total, across 418 high-resolution
images spanning various cultures and historical peri-
ods. This dataset is the first of its kind.

* We propose and justify a comprehensive taxonomy of
analogue damage, categorizing deterioration into 15
distinct classes. We classify the images into 10 ma-
terial categories to represent how damage manifests
across different media based on material properties.
Additionally, we use 4 content categories to capture
differences in content complexity and structure.

e We perform a thorough evaluation of state-of-the-art
segmentation models in various settings - including a
vision foundation model trained specifically for seg-
mentation - and demonstrate that all models fall short
of generalising across different analogue media do-
mains and damage types.
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Figure 1. Examples from our dataset of damaged artwork, categorised by Material (rows 1 and 2) and Content (row 3). Annotation colours
correspond to different types of damage. Note the diversity of media and content, and pixel-accurate damage masks.

* We further benchmark two state-of-the-art diffusion-
based segmentation methods. Our results suggest that
current text-to-image models have insufficient speci-
ficity in conditioning for damage, resulting in the seg-
mentation of irrelevant areas.

2. Related work

Damage in analogue media. Advances in digital tech-
nology have revolutionized access to cultural artifacts by
enabling digitization. Digitization creates durable replicas,
but also captures damage that was present on the original
media. The field of cultural heritage preservation has faced
ongoing challenges in defining what is and isn’t damage,
and hence - what should and should not be restored [48],
complicating conservators’ decisions on restoration scope
and methods [37]. By detecting and restoring damage digi-
tally, we can address and mitigate the risk of causing further
harm to the original analogue medium; this aligns with the
crucial conservation principle of reversibility [1,37]. How-
ever, this also necessitates skilled use of specialised soft-
ware by restoration professionals [6—8]. Damage in ana-
logue media, which includes a range of materials such as
film, paintings, mosaics, murals, drawings, textile and oth-

ers, can manifest in diverse forms. Chambah [7] categorizes
such damage broadly into two groups: chemical degrada-
tions and mechanical degradations. While this classification
found in Chambah’s work pertains to film emulsion [6, 8],
similar ontologies are commonly applied in the field of
mathematical modelling of painting damage [4, 16, 17,39].
Image restoration and segmentation. The task of image
restoration typically involves reversing a degradation pro-
cess x applied to the undamaged image I to produce the
damaged image I’. Common restoration tasks include de-
noising [9, 27,28, 59, 60], superresolution [23,28,51], and
colourisation [20, 26,45, 61]. Training data is often gen-
erated by applying transformations to undamaged images,
like creating grayscale versions for colourisation. These
tasks are primarily digital and easy to simulate, unlike ana-
logue media damage, which stems from the physical prop-
erties of the medium and is only digitised after photography
or scanning. The irregular nature of such damage—material
loss, cracks, scratches—presents significant challenges for
digital simulation [4,6, 13,16,21,22,36,47,50].

In most restoration tasks, such as superresolution and
colourisation, the degradation operator is global; when
damage is localized (e.g., inpainting), the damaged areas
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are typically assumed to be known. Inpainting has been
addressed using VAEs [18,40], GANs [57], and diffusion
models [33,44,45,53,56]. Stable Diffusion [44] has demon-
strated state-of-the-art inpainting capabilities and is now the
go-to tool for conditional image inpainting. However, these
models rely on masks indicating the damaged areas. This
suggests that research should shift focus from inpainting to
detecting damage, the most challenging and understudied
part of the machine learning pipeline.

Blind inpainting, where the mask indicating the dam-
aged area is not provided, typically requires a segmenta-
tion module to detect these areas, using models like au-
toencoders [3, 19, 52] or U-Nets [22, 36]. State-of-the-
art architectures like UPerNet [54] and SegFormer [55]
could be trained for damage segmentation if annotations
are available. Self-supervised models such as DINO [5],
DINOV2 [38], SAM [25], and CLIP [42] have also shown
promise in learning semantically rich representations use-
ful for segmentation tasks. However, their ability to gener-
alise to the complex task of damage segmentation, with its
variability in shape and distribution, has remained an open
question, which we address in this work.

Recent text-to-image diffusion models like Stable Dif-

fusion [44] have inspired methods such as DiffEdit [14],
which uses pre-trained diffusion models to detect damaged
areas based on text prompts, followed by inpainting. Diff-
Seg [49], the state-of-the-art for unsupervised segmenta-
tion, leverages diffusion models for semantic segmentation
without additional supervision.
Datasets. Several art datasets have been developed for
classification [15,46] and semantic segmentation [ 1] in
cultural heritage. More recent datasets pair artwork im-
ages with textual descriptions [2, 12], and even leverage
text conditioning to synthesise artwork variants via diffu-
sion models [10]. However, there is a notable scarcity of
datasets of damaged analogue media, and the few that do
exist tend to focus exclusively on one type of media: paint-
ings [13,47], illuminated manuscript miniatures [4], film
emulsion scans [22], frescoes [35].

3. Damaged Analogue Media Dataset

We present a new dataset for damage detection in ana-
logue media. Our dataset consists of 418 high-resolution
images of various kinds of analogue media, including ex-
amples of: manuscript miniatures, photographs, maps,
ephemera (such as posters and leaflets), mosaics, drawings
and sketches, paintings, frescoes, carpets, tiles, lithographs,
book covers, technical drawings and blueprints, wallpapers,
letters, tapestries and stained glass (indicated as a Type at-
tribute in the dataset’s metadata). We provide over 11,000
pixel-level annotations covering 15 types of damage, and
categorise them based on material and content. In addi-
tion to these annotations, we also make available natural

Cracks Scratch

Burn marks

) -
Puncture Stamp

Sticker Lightleak

Figure 2. Damage types found in our dataset, demonstrating the
variety of shape, scale and severity of damage.

language annotations, disentangled into content and dam-
age descriptions. Images were manually selected from dig-
itized collections of museums and galleries, with additional
sources from WikiArt and Flickr groups, all collected under
a CC license at the highest possible resolution.

3.1. Annotation methodology

All images were annotated with 15 physical damage
types by one expert annotator, followed by two rounds of
manual review to ensure quality. A second expert conducted
a final review, resulting in over 11,000 annotated instances.
Our expert annotators specialise in digitally restoring ana-
logue media and have experience with all media types in
the dataset. Each image is also classified by material and
content based on its metadata, yielding 10 material classes
and 4 content classes. For a detailed look at our images and
image-level annotations through the prism of CLIP, refer to
Section in the Supplementary.

3.2. Damage Types

We define damage types by their properties (scale, opac-
ity), causes (mechanical, chemical), and effects (occluding
information, absence of information, structural deformity).
Each pixel-level annotation is assigned a damage type from
the proposed taxonomy, with Clean denoting parts of the
artwork which are undamaged, and remaining pixels classi-
fied as Background, covering the framing surface of digi-
tisation, if visible (usually in the cases of non-rectangular
artwork). This taxonomy was developed in consultation
with multiple heritage preservation experts.

The types of damage include Material loss, which
refers to missing or eroded sections of the artwork, and
Peel, indicating areas where layers (e.g. of pigment) have
separated or are flaking off. Dust, Hair, and Dirt de-
note different kinds of surface contaminants. Scratch,
Puncture, Fold and Cracks capture mechanical dam-
age and deformities, potentially caused by mishandling or
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Figure 3. Overview of the prevalence and severity of different
damage types in the Dataset.

accidents, or due to age. Stamp and Sticker highlight
intentional or accidental markings that could be seen as de-
facements. Staining and Burn marks are indicative
of chemical or thermal damage. Lightleak is a spe-
cific type of damage often found in photographic materials,
caused by unintended exposure to light.

Damage types vary widely in terms of shape, size and
spatial distribution; Figure 3 shows the distribution and
prevalence of each type of damage within the dataset. Fig-
ure 3a considers the extent of damage as a percentage of
pixels covered. In Figure 3b, each distinct type of dam-
age present in an image is instead counted as a single in-
stance, regardless of its extent or interconnectedness. We
can see that Peel and Material Loss are the most common
types of damage found in the dataset, whereas Lightleaks
are less common. At the same time, Lightleaks are very se-
vere (i.e. cover many pixels) when they occur. Dirt, Fold,
and Staining are common but vary in severity. Further in-
sight can be gained by categorising the images in the dataset
by material and content.

3.3. Image-level Annotations

In addition to the pixel-level damage annotations, we
also provide three types of image-level annotations.

Material categorisation. @ How damage manifests it-
self is correlated to the materials used in the imag-
ing process; each material type has unique proper-
ties and susceptibilities to different forms of damage.
We propose the following categories, based on infor-
mation sourced from the images’ metadata during the
collection process: Parchment, Film emulsion,
Glass,Paper, Tesserae, Canvas, Lime plaster,
Textile, Ceramic, Wood; examples for each category
are shown in Figure 1, rows 1 and 2.

Content categorisation. Besides classifying based on
material, we also provide content categorisation to cap-
ture the differences of overall image attributes across ana-
logue media types, which can vary in complexity and
style—for instance, photographs capture natural scenes,
while paintings are stylised depictions, tile and carpet de-
signs usually consist of repetitive geometric or abstract
patterns. The following categories are proposed based
on the observed differences in types content in each type
of imagery: Artistic depiction, Photographic
depiction,Line art,Geometric patterns;ex-
amples for each category in Figure 1, row 3.

Textual descriptions. We provide textual descriptions for
each image, detailing both content and damage types. The
expert descriptions are derived by correcting draft captions
produced by LLaVA [29]. Additional damage descriptions
were compiled from our pixel-level annotations. For de-
tailed examples and discussion on how much the expert cap-
tions improve those of LLaVA refer to Section 2. in the
Supplementary.

4. Benchmark

We first benchmark Segment Anything, as it is state-of-
the-art for many segmentation tasks. We evaluate the model
in six different prompting settings at the task of segmenting
damage. Next, we evaluate several state-of-the-art seman-
tic segmentation methods on our dataset, and compare them
alongside linear probes of SAM and another state-of-the-art
vision foundation model - DINOv2. For rigorous evaluation
in this supervised setting, we define a LOOCYV protocol that
measures how well models generalise to unseen media ma-
terials and contents, where not only the damaged, but the
undamaged regions exhibit variance as a result of material
and content properties. We further evaluate two diffusion
segmentation methods based on Stable Diffusion, demon-
strating the dataset’s versatility and underscoring the task’s
complexity. We analyze each method’s effectiveness across
Material and Content types within the dataset, finding that
although some are capable of detecting damage within spe-
cific categories or through tailored prompting, no single
method excels across the whole dataset, and all methods
have different shortcomings in addressing our task.
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Figure 4. Qualitative results for SAM at zero-shot damage segmentation. Top row shows initial segments from N prompts as predicted by
SAM (unique colour per prompt), bottom row shows the segments after being assigned binary class (Clean or Damaged) via an oracle.

Table 1. Results from benchmarking SAM at zero-shot damage segmentation across various prompt modes. N corresponds to average
number of prompts (i.e. points, bounding boxes, text) required as input. Point grid was evaluated with 64 points, but those do not need to

be provided a priori.

Test Class Point per class BBox per class Point per instance BBox per instance Point Grid Grounding SAM

Acc F1 mloU N Acc F1 mloU N Acc F1 mloU N Acc F1 mloU N Acc F1 mloU N Acc F1 mloU N
Wood 0.85 0.15 0.10 2 0.86 0.15 0.11 2 0.88 041 0.31 206 090  0.60 0.49 206 0.87 041 0.32 - 0.83 0.05 0.03 2
Ceramic 0.85 0.39 0.27 4 079 009 0.06 4 085 050 035 185 0.89 057 0.44 185 086 033 0.25 - 067 003 0.01 4
Textile 0.89 039 032 2 085 0.l6 0.15 2 093 068 0.56 76 091 0.68 0.7 76 087 037 0.28 - 087 003 0.01 2
Lime Plaster 0.87 041 0.32 3 0.85 031 0.25 3 090 057 0.46 90 090  0.67 0.56 90 090  0.60 0.49 - 0.60  0.02 0.01 3
Canvas 0.88  0.19 0.15 2 08 014 0.10 2 09 033 0.26 95 090 057 044 95 089 032 024 - 093 021 0.12 2
Tesserae 0.89 043 0.36 2 0.86 0.26 0.23 2 090 0.59 0.49 43 093  0.72 0.62 43 091 0.60 0.49 - 0.77  0.03 0.01 2
Paper 092 036 028 3091 023 0.19 3093 044 034 37 095 0.60 049 37 093 045 0.35 - 086 005 0.02 3
Glass 091 035 0.26 5 09 023 0.18 5 092 049 0.38 335 093 063 050 335 093 047 0.37 - 08 0.0 0.05 5
Film emulsion 094 038 0.35 2 095 0.62 0.54 2 095 052 0.45 261 097 0.79 0.69 261 093 0.55 0.47 - 094  0.08 0.04 2
Parchment 092  0.18 0.13 3092 013 0.10 3093 031 0.24 170 094 058 045 170 093 031 0.23 - 088 006 0.03 3
Geom Patterns 090 043 0.35 3 086 0.12 0.10 3 091 0.58 0.47 100 092  0.65 0.54 100 0.89 0.40 0.31 - 0.82 0.04 0.02 3
Line Art 093  0.33 0.23 3093 020 0.16 3095 046 036 38 095 056 045 38 095 044 033 - 092 005 0.03 3
Photo Depiction 092 0.36 0.27 3 0.91 0.30 0.24 3 093 045 0.35 163 094  0.63 0.51 163 093 045 0.35 - 0.91 0.11 0.06 3
Art Depiction 090 031 0.23 3 089 0.21 0.17 3 091 0.44 0.35 93 093  0.63 0.51 93 091 0.45 0.36 - 0.80  0.04 0.02 3
Overall 091 0.33 0.25 309 023 0.19 3092 046 036 112093 063 052 112092 045 0.32 - 085 005 0.02 3

4.1. Zero-shot Segmentation with SAM

In its intended zero-shot setting, SAM requires prompt-
ing which can be done in several ways (points, bounding
boxes, masks, or text, though the latter is not publicly avail-
able), and which would not be available in a real-life dam-
age restoration scenario. Furthermore, SAM is inherently
not a semantic segmentation model; it is designed to seg-
ment individual visual entities without assigning semantic
labels to them or grouping them, meaning that each dam-
age instance must first be segmented individually and then
manually assigned the correct label.

4.1.1. Evaluation protocol

We address these complexities and extensively bench-
mark SAM using an oracle to assign the correct label (Dam-

aged or Clean) post-segmentation. We evaluate the model’s
ability to segment damage by deriving the required prompts
from our ground-truth labels in several settings: point per
segmentation label, point per segmentation instance (con-
nected component), bounding box per segmentation label,
and bounding box per segmentation instance. Additionally,
we also evaluate prompting via a grid of points, which is
the authors’ original solution for cases where a prompt is
unavailable, and prompting via text by employing Ground-
ing SAM [43], where the model is prompted with textual
description of the damage types present in each image. We
report macro-averaged metrics across the entire dataset as
well as for each Material and Content split in Table 1.

7443



Table 2. Results across both Material and Content splits, for all baselines, trained on the task of binary damage segmentation. Best F1

scores for each test class in bold.

Test Class Segformer UPerNet + Swin UPerNet + ConvNeXt DINOv2 + MLP SAM ViT-H + MLP

Acc F1 mloU  Acc F1 mloU  Acc F1 mloU  Acc F1 mloU  Acc F1 mloU
Wood 0.85 048 0.32 0.84 0.36 0.22 0.85  0.59 0.23 0.85 047 0.31 0.81 0.40 0.25
Ceramic 0.87 046 0.46 0.82 043 0.27 0.83 046 0.30 0.82  0.61 0.44 0.80  0.37 0.23
Textile 0.83 049 0.33 0.86  0.60 0.43 0.88  0.60 0.43 0.89  0.59 0.42 0.84 048 0.30
Lime Plaster 0.85  0.66 0.49 0.84 0.58 0.40 0.83 0.64 0.48 0.82 0.61 0.44 0.79 052 0.35
Canvas 093 0.70 0.53 0.92 0.69 0.52 0.92 0.67 0.50 0.90 0.62 0.45 0.82  0.50 0.33
Tesserae 0.85 0.54 0.37 0.81 047 0.31 0.84 047 0.31 0.85 0.52 0.36 0.79 047 0.30
Paper 092 0.56 0.39 0.90 0.53 0.35 092 0.59 0.42 0.89  0.50 0.34 0.84 044 0.28
Glass 0.89  0.30 0.17 0.89 037 0.22 090 044 0.28 0.88 046 0.30 0.86  0.36 0.22
Film emulsion 0.85 0.34 0.20 0.85  0.50 0.33 093 0.71 0.56 0.86 0.46 0.30 0.89  0.63 0.46
Parchment 0.89 0.44 0.28 0.90 0.44 0.28 0.89  0.35 0.21 0.88 0.35 0.21 0.84 0.32 0.19
Geom Patterns 090 0.64 0.48 0.89 0.61 0.44 0.84 057 0.39 0.89 0.62 0.45 0.86  0.52 0.35
Line Art 093  0.62 0.45 093 0.55 0.38 0.92 0.56 0.39 0.89 041 0.26 0.90 046 0.30
Photo Depiction  0.87  0.41 0.26 0.89 0.58 0.40 0.89 054 0.37 0.85 045 0.29 0.83 046 0.30
Art Depiction 0.88  0.49 0.33 0.86 041 0.26 0.87 043 0.27 0.87 045 0.29 0.84  0.36 0.22
Stratified (all) 0.91 0.63 0.46 0.91 0.60 0.43 0.91 0.65 0.48 0.89  0.59 0.42 0.87 0.53 0.36
4.2. Supervised Semantic Segmentation layer Perceptron (MLP).

e DINOVvV2 [38] is a foundation vision model trained in

We benchmark SOTA supervised semantic segmentation
methods alongside linear probes trained over the features of
vision foundation models on two tasks which require pre-
dicting pixel-wise segmentation maps: either for detecting
damage (binary) or for detecting and classifying it (multi-
class).

4.2.1. Evaluation protocol

We split the data by Material and Content categories,
performing a leave-one-out evaluation with one category
left out for testing, and the rest split 8:2 into training and
validation sets. This results in 14 splits: 10 for Material and
4 for Content. This approach assesses model performance
on unseen media properties. For comparison, we train each
model using a stratified split, ensuring all categories are in
training, validation, and test sets. In total, each model is
trained and evaluated 15 times across these settings.

4.2.2. Evaluated methods

Due to the range of scales exhibited by different damage
types with respect to the image plane, we chose to evaluate
segmentation models which have been shown to excel at
recognition at various scales:

e UPerNet [54] is a framework which can leverage
different vision backbones to learn from heteroge-
neous segmentation annotations. The flexibility of this
framework allows us to evaluate both a convolutional
variant, using a ConvNeXt [32] backbone, and a trans-
former variant, using Swin Transformer [31].

e SegFormer [55] utilises a hierarchically structured
Transformer encoder which outputs multiscale fea-
tures, and combines those with a lightweight Multi-

a self-supervised setting, without any labels. The re-
sulting features have been demonstrated to have emer-
gent semantically meaningful properties. The authors
utilise this by attaching a linear classifier, which is
trained for semantic segmentation as a downstream
task, achieving competitive results. We adopt this
setup for our evaluation as well.

* SAM [25] is a foundation vision model that can per-
form zero-shot image segmentation given prompts. To
assess how useful its feature space is for the task of
damage detection and segmentation, we train a linear
probe over the largest available SAM vision encoder
(ViT-H) in the same setting as for DINOv2.

For all except SAM and DINOvV2, we fine-tune from
ADE20K [62] weights. Due to data imbalance towards
Clean, we use macro-averaged Dice loss. We mea-
sure macro-averaged F1 Score and Mean Intersection over
Union (mloU), fine-tuning models until the validation F1
score has not improved for 10 epochs. For completeness,
we also report macro-averaged Accuracy. Models are op-
timized with Adam [24], using the best learning rates and
weight decay from the respective papers.

4.2.3. Data Augmentation

Our dataset consists of images of varying high resolu-
tions and aspect ratios. During training, we apply standard
augmentations: random scaling, cropping to the model’s in-
put size, and flipping. For validation and testing, we split
our images into 512 x 512 pixel overlapping patches, make
predictions on each patch, and stitch them back together us-
ing Hann windows [4 1] before calculating the metrics.
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Table 3. Results across both Material and Content splits, for all baselines, trained on the task of multiclass damage segmentation. Best F1
scores for each test class in bold. Last row is a stratified split over Material x Content.

Test Class Segformer UPerNet + Swin UPerNet + ConvNeXt DINOV2 + MLP SAM ViT-H + MLP
Acc F1 mloU  Acc F1 mloU  Acc F1 mloU  Acc F1 mloU  Acc F1 mloU

Wood 0.14  0.11 0.08 0.14  0.10 0.08 0.14  0.11 0.08 023 0.20 0.15 0.05 0.06 0.05
Ceramic 0.18 0.13 0.10 0.17  0.13 0.10 0.17  0.12 0.09 0.28  0.20 0.16 0.10  0.10 0.08
Textile 0.10  0.10 0.08 0.10  0.10 0.09 0.09  0.09 0.08 0.20 0.18 0.15 0.07  0.07 0.06
Lime Plaster 0.13  0.12 0.09 0.14 0.14 0.10 0.18  0.17 0.12 0.38  0.30 0.22 0.07  0.08 0.06
Canvas 0.17 017 0.13 0.17  0.16 0.13 0.18  0.17 0.13 0.18  0.17 0.13 0.06 0.07 0.05
Tesserae 0.07  0.08 0.06 0.09 0.08 0.07 0.08  0.09 0.07 0.16  0.15 0.12 0.06  0.06 0.05
Paper 0.14  0.11 0.09 0.17  0.13 0.10 0.16 0.12 0.10 0.18  0.11 0.09 0.07  0.06 0.05
Glass 0.15 0.15 0.12 0.18  0.19 0.14 0.16  0.17 0.13 0.15 0.14 0.11 0.07  0.07 0.05
Film emulsion 0.12  0.07 0.06 0.10  0.08 0.07 0.11  0.09 0.07 0.13  0.06 0.05 0.05 0.06 0.05
Parchment 0.14  0.14 0.10 0.12  0.12 0.09 0.15 0.13 0.10 0.18  0.14 0.11 0.07  0.07 0.06
Geom Patterns 0.15  0.08 0.05 0.20 0.17 0.13 0.17  0.16 0.12 0.23  0.19 0.15 0.09  0.09 0.07
Line Art 0.15 0.15 0.11 0.18 0.14 0.12 0.16 0.13 0.10 0.20 0.13 0.11 0.09 0.06 0.05
Photo Depiction  0.13  0.12 0.09 0.13  0.12 0.10 0.16 0.13 0.10 0.14  0.10 0.08 0.07  0.06 0.04
Art Depiction 0.12  0.11 0.09 0.13  0.11 0.09 0.15 0.14 0.10 0.17  0.12 0.09 0.08  0.07 0.05
Stratified (all) 021  0.20 0.15 0.23  0.26 0.21 0.17  0.18 0.14 0.30 0.25 0.18 0.12 0.12 0.09

4.3. Diffusion-based segmentation

In addition to the supervised methods, we also bench-
mark two recent diffusion-based segmentation approaches.
Following DiffEdit [14], we use contrasting predictions
from a diffusion model conditioned on pairs of different
single-word text prompts. Our positive prompts are ~Flaw-
less”, “Unblemished”, ”Undamaged”, paired with corre-
sponding negative prompts “Damaged”, “Deteriorated”,
”Defaced”. Each image is evaluated against all nine re-
sulting prompt pairs; we report metrics for the pair with
the best F1 score. This approach requires no training, rely-
ing on the learned prior of Stable Diffusion [44]. For our
second approach, we benchmark DiffSeg [49], which is an
unsupervised segmentation model relying on self-attention
features extracted from Stable Diffusion; we set the KL-
divergence threshold to 0.5 in order to produce segments
of higher granularity, and use an oracle to assign each pre-
dicted segment to the Damaged or Clean class, same as with
SAMin 4.1.1. Both methods are evaluated on inputs center-
cropped and resized to 512 x 512; for DiffEdit we also pro-
vide results in full resolution in the Supplementary.

4.4. Results

Evaluation results are provided for all modes of prompt-
ing SAM in a zero-shot setting, all methods for the su-
pervised semantic segmentation task (binary and multiclass
setting) as well as for diffusion-based segmentation (text-
guided and unsupervised). None of the benchmarked ap-
proaches manage to consistently perform well across differ-
ent types of materials and contents.

SAM is missing the point. We found that SAM can pro-
duce good segmentation results only if prompted correctly

(Figure 4), but doing so requires an impractical number of
prompts. As shown in Table 1, using points-whether one per
label or per artefact instance-yields poor results. Bounding
boxes per class also perform poorly, especially when arte-
facts are spread across the image, as the boxes are too im-
precise. Text-based prompts perform even worse, indicat-
ing that damage is not easily captured semantically. Point
grid sampling also fails, as it doesn’t guarantee all artefacts,
especially fine ones, are sampled. The only method that
provides adequate segmentation - achieving the highest av-
erage F1 score of 0.63 - is using a bounding box for each
artefact instance, but this requires an average of 112 boxes
per image (up to 3407 for some), making it impractical for
real-world use in terms of both human effort and computa-
tional resources, and essentially solving the detection task
for SAM a priori. Furthermore, an oracle was needed to
assign labels to the segmented regions.

Supervised semantic segmentation. In the supervised set-
ting, models can distinguish some damaged areas in the bi-
nary task, as seen in Figure 5 top row, but struggle with
segmenting and classifying damage types in the multiclass
setting for unseen contents or materials, regardless of pre-
training or architecture, visualised in Figure 5 bottom row.
Table 2 summarizes the binary segmentation results, where
no model achieves an F1 score over 0.7. Notably, DINOv2
outperforms SAM despite being a smaller model. In the
multiclass setting (Table 3), all models perform poorly, with
no F1 score exceeding 0.3. Damage missclassifications are
detailed in Section 3.1. of the Supplementary. DINOv2 per-
forms best, likely due to its semantically meaningful fea-
tures [38], aiding in differentiating damage types. SAM,
however, struggles to distinguish between damage types and
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Figure 5. Qualitative comparison for supervised binary (top row) and multiclass (bottom row) damage segmentation.

Table 4. Results across both Material and Content splits diffu-
sion based text-guided (DiffEdit) and unsupervised (DiffSeg) bi-
nary damage segmentation.

Test class DiffEdit DiffSeg
Acc F1 mloU  Acc F1 mloU

Wood 0.77 0.13 0.07 090 0.18 0.15
Ceramic 0.70 0.13 0.07 090 0.39 0.31
Textile 0.79  0.19 0.11 093 0.57 0.47
Lime Plaster 0.72 0.18 0.10 090 042 0.35
Canvas 0.79  0.21 0.12 091 0.28 0.21
Tesserae 0.76  0.11 0.06 092 053 0.45
Paper 0.81 0.16 0.09 094 0.29 0.23
Glass 0.78 0.19 0.11 094 0.38 0.30
Film emulsion 0.78  0.08 0.04 098 041 0.43
Parchment 0.83 0.13 0.07 093 0.18 0.15
Geom Patterns 0.80 0.20 0.12 094 045 0.39
Line Art 0.84 0.14 0.08 095 0.16 0.13
Photo Depiction 079  0.18 0.10 095 0.36 0.30
Art Depiction 0.79 0.13 0.07 093 030 0.24

produces imprecise segmentations when trained to segment
all artefacts simultaneously, as it is unable to semantically
group artefacts of the same type together within its feature
space. This underscores the fact that the SAM is wholly in-
appropriate for this task, where multiple instances of dam-
age may be present in the same image, and the model needs
to meaningfully distinguish them.

Diffusion-based segmentation. In diffusion-segmentation
approaches, we found that while models may localize or
cluster damaged areas—such as in DiffSeg—the predictions
are too imprecise for acceptable segmentation quality. As

shown in Table 4, the results are comparable to those from
supervised models, with DiffEdit performing worse than
DiffSeg. Qualitatively, DiffEdit sometimes identifies dam-
aged areas but often highlights unrelated features, such as
faces and high-frequency details, due to diffusion models’
tendency to generate fine details at later steps [34]. Diff-
Seg performs slightly better, aided by an oracle for label-
ing, but while it groups damage instances effectively due to
the emergent semantic meaning found in Stable Diffusion’s
features - its segmentation remains imprecise since it relies
on low-dimensional features.

5. Conclusion

Damage is ubiquitous in analogue media, particularly in
heritage artifacts. While inpainting for restoration is rela-
tively well-solved, reliably identifying damaged areas from
digital images remains a significant challenge. We have
introduced a damage taxonomy spanning diverse materi-
als and contents to guide detection systems, and our exten-
sive, permissively-licensed dataset sets a rigorous baseline
for future work. Our benchmark results show that no state-
of-the-art method performs acceptably in detecting dam-
age. Supervised models fail to generalize to unseen materi-
als and contents, while foundation models require excessive
prompt engineering and still struggle to label damage accu-
rately. There is substantial room to develop machine learn-
ing pipelines that can detect damage at a human-equivalent
level, particularly for the pixel-perfect precision required in
conservation. Our experiments highlight the complexity of
the task, and we hope our dataset will inspire advancements
in this area.
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