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Abstract

Scalable and generalizable physics-aware deep learning has long been considered a signif-
icant challenge with various applications across diverse domains ranging from robotics to
molecular dynamics. Central to almost all physical systems are symplectic forms, the geo-
metric backbone that underpins fundamental invariants like energy and momentum. In this
work, we introduce a novel deep learning framework, MetaSym. Our approach combines a
strong symplectic inductive bias obtained from a symplectic encoder, and an autoregressive
decoder with meta-attention. This principled design ensures that core physical invariants re-
main intact, while allowing flexible, data efficient adaptation to system heterogeneities. We
benchmark MetaSym with highly varied and realistic datasets, such as a high-dimensional
spring-mesh system Otness et al. (2021), an open quantum system with dissipation and mea-
surement backaction, and robotics-inspired quadrotor dynamics. Crucially, we fine-tune and
deploy MetaSym on real-world quadrotor data, demonstrating robustness to sensor noise and
real-world uncertainty. Across all tasks, MetaSym achieves superior few-shot adaptation and
outperforms larger State-of-The-Art (SoTA) models.

1 Introduction

Learning to predict the dynamics of physical systems is a fundamental challenge in scientific machine learn-
ing, with applications ranging from robotics, control, climate science, and quantum computing Ghadami &
Epureanu (2022); Zhang et al. (2024); Alexeev et al. (2024). Traditional approaches often rely on carefully
derived differential equations that embed known conservation laws and geometric properties Papatheodorou
et al. (2024) (e.g., Hamiltonian or Lagrangian mechanics). Although these classical models have been tremen-
dously successful in capturing fundamental physics, they can become unwieldy or intractable when faced
with complex real-world phenomena, such as high-dimensional systems, intricate interactions, or partially
unknown forces, that defy simple closed-form representations. Recent progress in deep learning has opened
new avenues for data-driven modeling of dynamical systems, bypassing the need for complete analytical
descriptions Carleo et al. (2019). Neural ODE frameworks Chen et al. (2019), for instance, reinterpret dy-
namic evolution as a continuous function learned by a neural network, while operator-learning approaches
such as Fourier Neural Operators (FNOs) Li et al. (2021) allow for flexible mappings from initial conditions
to solutions of partial differential equations. Despite these advances, deep learning approaches often face
two critical challenges:

• Preserving the underlying physical structure. Standard networks, left unconstrained, may
inadvertently violate symplectic forms, conservation of energy, or other geometric constraints intrin-
sic to physical dynamics Chen et al. (2020). These violations can accumulate over time, producing
qualitatively incorrect long-horizon predictions, e.g. spurious energy drift in Hamiltonian systems.

• Generalizing across related systems. Many real-world applications involve entire families of
similar yet distinct systems (e.g., variations of a robotic manipulator differing in load mass or joint
friction, or molecular systems differing in exact bonding parameters). Training an entirely separate
model for each variant is both data-inefficient and computationally expensive. Without mechanisms
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to share knowledge, a network trained on one system will typically fail to adapt efficiently to another,
even if they exhibit similar physical behaviors. Bridging this sim-2-real gap is crucial for a variety
of tasks such as control and real-time prediction Bai et al. (2024).

The trade-off between flexibility (i.e., capacity to learn diverse dynamics) and the enforcement of physical
constraints can be addressed through specialized architectures that embed geometric priors Chen et al. (2020);
Greydanus et al. (2019) related to the physical system. Notably in the context of Hamiltonian mechanics,
Symplectic Networks (SympNets) incorporate symplectic forms directly into their design, guaranteeing that
learned transformations represent canonical transformations Jin et al. (2020). This preserves key invariants
such as energy and momentum, mitigating error accumulation in long-horizon forecasts.

However, real-world systems also exhibit heterogeneity: varying parameters, boundary conditions, or even
control signals that deviate from conservative dynamics. Thus, meta-learning becomes a natural extension
Schorling et al. (2025). By training on a set of related systems, meta-learning-based methods (e.g., Model-
Agnostic Meta-Learning (MAML), interpretable Meta neural Ordinary Differential Equation (iMODE) and
Fast Context Adaptation Via Meta-Learning (CAVIA) Finn et al. (2017); Li et al. (2023); Zintgraf et al.
(2019b)) acquire high-level inductive biases that can be quickly adapted to novel systems using limited
additional data. Consequently, when one faces a new variant of a familiar system, the network can fine-tune
a handful of parameters, rather than retrain from scratch. This provides robust and scalable performance.

1.1 Contributions

In this work, we introduce MetaSym, a deep-learning framework that addresses the major challenges of
data-driven modeling of physical systems, i.e., preserving underlying geometric structures to ensure physically
consistent behavior over long time-horizons and rapidly adapting to system variations with minimal data.
Our contributions are listed below:

• Symplectic Encoder for Structure Preservation: We propose a specialized neural encoder
(SymplecticEncoder) built on SympNet modules. The inherent structural invariants of the SympNets
provide a strong inductive bias to the SymplecticEncoder, while our bi-directional training pipeline
enforces Hamiltonian consistency, obtained by the canonical transformations that pertain to different
systems. Hence, the SymplecticEncoder’s output conserves key geometric invariants (e.g., energy
and momentum), effectively minimizing error accumulation over long-term rollouts with minimal
architecture size.

• Autoregressive Decoder with Meta-Attention for Adaptation: To handle nonconservative
forces and variations in system parameters, we introduce ActiveDecoder, a transformer-inspired de-
coder module equipped with a meta-attention framework. This decoder incorporates control-inputs,
external forces, and per-system parameters enabling flexible modeling of real-world effects beyond
ideal Hamiltonian dynamics while enabling autoregressive multi-step prediction during inference
time.

• Meta-Learning for Multi-System Generalization: We adopt different meta-learning paradigms
for the SymplecticEncoder and ActiveDecoder of our architecture motivated by specific design choices
explained in Section 3. This yields a single framework that quickly adapts to new or modified systems,
even in real-world scenarios.

By integrating physical constraints and generalizable architectural changes into a novel training pipeline
that utilizes meta-learning updates for both our SymplecticEncoder and ActiveDecoder, we benchmark this
bespoke smaller architecture against other state-of-the-art deep learning methods, including Dissipative
Hamiltonian Neural Networks (DHNNs) Sosanya & Greydanus (2022) and Transformers Vaswani (2017);
Geneva & Zabaras (2022), for modeling various physical systems in both classical and quantum regimes.
These systems include a high-dimensional spring mesh system, an open quantum system whose dynamics are
highly complex and counterintuitive in the classical regime, and a quadrotor with floating base dynamics.
This provides evidence of far reaching implications for a diverse set of physics modeling tasks including
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challenging tasks like real-time quantum dynamics prediction and simulating a variety of complex dynamics
that typically require complex computational methods to solve. To the best of our knowledge, MetaSym
is the first bespoke physics-based deep learning model, to adapt and generalize well to both classical and
non-unitary quantum dynamics.

2 Related Work and Background

Physicists have long utilized the Lagrangian and Hamiltonian formalisms of mechanics to study the dynamics
of physical systems Kibble & Berkshire (2004). Consider q = (q1, . . . , qd) that represents the generalized
coordinates of an d-dimensional configuration space (position), while p represents the corresponding gener-
alized momenta. We can describe the Hamiltonian H(q, p, t) as the total energy of the system. This leads
to Hamilton’s equations as follows:

q̇i = ∂H

∂pi
, ṗi = −∂H

∂qi
, i = 1, . . . , d. (1)

This formalism naturally imbues the phase space (q, p) ∈ R2d with geometric structures that are vital to the
study of these physical systems. One such structure is the symplectic form (ω) given by, ω =

∑n
i=1 dpi∧ dqi.

Concretely, a map Φt : (q(0), p(0)) 7→ (q(t), p(t)) is said to be symplectic if Φ∗
t ω = ω. This implies that the

flow in the phase space preserves the volume Royer (1991).

Inspired by such geometric formulations of mechanics, recent work such as Hamiltonian Neural Networks
(HNNs) and Lagrangian Neural Networks (LNNs) have sought to embed physical priors into deep learn-
ing architectures Greydanus et al. (2019); Cranmer et al. (2020). In particular, SympNets have emerged
as structure-preserving neural architectures designed specifically for learning Hamiltonian systems, ensur-
ing that their learned maps are intrinsically symplectic. These architectures admit universal approximation
theorems and crucially, this construction does not require solving ODEs or differentiating a candidate Hamil-
tonian during training and inference times, which often leads to more efficient optimization compared to other
architectures such as HNNs or LNNs. The collection of all SympNets forms a group under composition, en-
suring that every learned map is invertible with a closed-form inverse. However, due to the fundamental
nature of Hamiltonian systems and symplectic forms, SympNets and similar architectures fail to generalize
to dissipative systems where the symplectic structure is no longer preserved Chen et al. (2020); Cranmer
et al. (2020); Jin et al. (2020). While there have been attempts to reconcile dissipative dynamics and control
inputs to model realistic physical systems by preserving the symplectic framework, such as the Dissipative
SymODEN Zhong et al. (2020; 2024), they often suffer from the lack of generalization to different systems
Okamoto & Kojima (2024).

Generalization between different but related physical systems is also vital for deep learning methods to excel
at physics modeling. Meta-learning serves as the natural avenue for exploring such strategies. Building on a
series of meta-learning strategies Finn et al. (2017); Rajeswaran et al. (2019); Zintgraf et al. (2019a); Nichol
(2018), the iMODE framework represents a notable advancement in applying deep learning to families of
dynamical systems. In this setup, one set of parameters captures the universal dynamics shared across all
systems in a family, while another set encodes the idiosyncratic physical parameters that differentiate one
system instance from another. However, certain drawbacks still persist. Apart from the lack of physics
priors, these existing meta-learning approaches such as iMODE suffer from a lack of scalability Choe et al.
(2023).

3 Methods

In this section, we detail our pipeline for learning, adapting, and predicting the dynamics of physical systems
using, MetaSym, our structure-preserving neural architecture and meta-learning framework. We describe
both the high-level design of our encoder–decoder model and the specialized training procedures implemented
via meta-learning. Figure 1 represents the overview of the architecture. Details on the described training
and meta-learning pipelines are given in Appendix A, while each design choice is based on ablation studies
provided in Appendix D.
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Figure 1: MetaSym integrates a SymplecticEncoder (light-green), ActiveDecoder (light-purple), and Con-
trolNet (pink). The SymplecticEncoder is pre-trained in isolation on conservative state-space data using
shared forward/inverse networks receiving (q(i)

t , p(i)
t , ∆t) and (q(i)

t+1, p(i)
t+1, ∆t) respectively, and thus explic-

itly enforcing time-reversibility. Subsequently, with the SymplecticEncoder frozen, the ActiveDecoder and
ControlNet are then trained autoregressively via teacher forcing, where system-specific adaptation is achieved
by fine-tuning the cross-attention’s query/value parameters (purple dots in cross attention) with few-shot
gradient steps. During inference, the ControlNet processes a sequence of non-conservative coordinates and
control signals {q̃(i)

t:T , p̃(i)
t:T , ∆t, ũ(i)

t:T }, while the SymplecticEncoder projects them onto the conservative man-
ifold and integrates them on it, producing zc. The ActiveDecoder using its cross-attention, perturbs zc to
predict the dynamics of the system for future timesteps, autoregressively. We indicate the next-step predic-
tions of our network with

(
q̂(i)

t+1, p̂(i)
t+1

)
.

3.1 SymplecticEncoder: Structure Preservation

To ensure that predictions preserve fundamental geometric invariants, the encoder module is implemented
as a SymplecticEncoder. Internally, it uses a symplectic neural network (e.g., LASympNet Jin et al. (2020))
consisting of sub-layers that update position q(i)

t and momentum p(i)
t for systems i = 1, ..., n in a manner

designed to approximate Hamiltonian flows and preserve symplecticity. Specifically, each sub-layer either
performs an “up” or “low” transformation,

(Up) q(i)
t ← q(i)

t α(p(i)
t )∆t, p(i)

t ← p(i)
t ,

(Low) q(i)
t ← q(i)

t , p(i)
t ← p(i)

t + β(q(i)
t )∆t.

(2)

Here, we use α and β that can be either linear or activation modules, representing learnable parameters,
ensuring we remain in the class of canonical (i.e., symplectic) maps. By stacking multiple up/low blocks,
we achieve a deep network Φθ : (q(i)

t , p(i)
t , ∆t) 7→ (q(i)

t+1, p(i)
t+1). A crucial mathematical property is that

the composition of symplectic transformations remains symplectic. Thus, when these modules are stacked
together in sequence, regardless of network depth or configuration, the resulting transformation is guaranteed
to be symplectic. This relies on the algebraic properties of the “Up” and “Low” updates, which act as
symplectic shear transformations.

For instance, the Jacobian matrix Jlow of a “Low” update (q, p) 7→ (q, p + β(q)∆t) is lower-triangular with
identity diagonals:

Jlow =
(

I 0
∂β
∂q ∆t I

)
. (3)
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For a map to be symplectic, its Jacobian must satisfy JT ΩJ = Ω. This condition holds for triangular maps
provided the cross-term block (here, ∂β

∂q ) is a symmetric matrix. To ensure this, we implement α and β either
as gradients of a scalar potential or using layers with symmetric weights Jin et al. (2020).

A pivotal feature of Hamiltonian dynamics is time reversibility: if we integrate the system forward from
(q(i)

t , p(i)
t ) to (q(i)

t+1, p(i)
t+1) over time ∆t, then integrating backwards over −∆t should return the system

exactly to (q(i)
t , p(i)

t ). This property lies at the heart of many physical invariants (energy, momentum, etc.)
and is crucial for long-horizon stability in forecasting the behavior of such systems.

To replicate this in the neural network, each forward pass provides the update for the forward and inverse
network. The forward network is characterized as ΦθSE

(q(i)
t , p(i)

t , ∆t) = [q(i)
t+1, p(i)

t+1], and the inverse net-
work Φ−1

θSE
acts as not merely the computationally reversed pass of ΦθSE

, but also switches the sign of ∆t
(i.e., steps “backwards in time”). From a physical standpoint, preserving both a forward and inverse map
enforces the time-reversal symmetry characterizing Hamiltonian flows. We train a single model in both direc-
tions simultaneously by sharing gradients between the forward and inverse instances, effectively minimizing
reconstruction errors. As a result, the network is less susceptible to artificial energy drift and can better
maintain conservation laws over extended forecasts. More specifically, this bi-directional training pipeline
acts as implicit regularization by enhancing the model’s ability to faithfully approximate the underlying
canonical transformations, while allowing consistent backward integration without introducing extraneous
numerical artifacts. However, note that only the forward instance, ΦθSE

, is used during inference.

During training the encoder is provided with a sequence of phase-space points (T-timesteps) and encodes
them onto a conservative latent space zc = [qenc, penc] ∈ R2d×T that is ultimately used by the ActiveDecoder
in the cross attention mechanism to specifically fine-tune the query and value parameters.

Additionally, to ensure that our encoder can generalize quickly across multiple related but distinct physical
systems, we adopt a MAML-style Finn et al. (2017) framework. This meta-learning paradigm works par-
ticularly well in the SymplecticEncoder’s case, since SympNets represent canonical transformations that are
known to have well-defined Hessian Birtea et al. (2020), which is crucial for methods like MAML that use
second-order gradients. For each system i in a mini-batch, we split its trajectory into Iadapt and Imeta sets.
During the fast adaptation loop, we optimize the parameters of the encoder θSE only on Iadapt, by mini-
mizing the mean-squared error between its forward predictions and the ground-truth labels. This process
simulates “specializing” the encoder to system i’s local dynamics using a simple loss function that avoids
gradient-terms that may destabilize the subsequent meta-update of θSE . For the outer loop, we perform
a forward and an inverse pass of the SymplecticEncoder and subsequently we minimize a combined loss
represented as,

Lmeta = 1
TmetaNbatch

∑
t∈Imeta

i∈Nbatch

∥∥∥ΦθSE

(
q(i)

t , p(i)
t ; θ

∗(i)
SE

)
− Φ−1

θSE

(
q(i)

t+1, p(i)
t+1; θ

∗(i)
SE

)
− [q(i)

t+1 − q(i)
t , p(i)

t+1 − p(i)
t ]
∥∥∥2

,

(4)
where Tmeta is the total number of timesteps stored in Imeta set and Nbatch the total number of meta-learned
systems in the batch. While the SymplecticEncoder is trained in isolation, we freeze its parameters during
the ActiveDecoder’s training.

3.2 ActiveDecoder: Autoregressive Decoder

As mentioned in Section 1.1, we train an autoregressive decoder to model non conservative and realistic forces
such friction, or air resistance, that break pure Hamiltonian symmetries. Unlike the SymplecticEncoder,
which strictly enforces canonical updates, the ActiveDecoder can incorporate these extraneous phenomena.

We define q̃(i)
t and p̃(i)

t as the dissipative canonical coordinates, of a system i. An input sequence(
q̃(i)

t:c, p̃(i)
t:c, ∆t, u(i)

t:c

)
∈ R(2d+m+1)×c with a context-window of c timesteps is provided to a linear projec-

tion, where u(i)
t ∈ Rm represents the m-dimensional control-input driving the system at time t. This linear

layer, which we call ControlNet as part of the ActiveDecoder, serves to map the input to a latent vector
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zd ∈ R2d representing the non-conservative part of the system’s dynamics. We then apply a masked multi-
head self-attention over the sequence zd for autoregressive decoding. The masking allows us to model the
causal dependencies of the decoder’s input sequence.

Next, we apply a cross-attention mechanism, augmented with a specialized meta-attention design. To achieve
multi-system generalization and fast adaptation, we use a meta-learning setup akin to a bi-level optimization
inspired by recent progress Li et al. (2025). We separate the ActiveDecoder’s parameters into: global
parameters, θAD, that remain shared across all systems, and local parameters, ζi, that can be interpreted as
system specific parameters. More specifically, in the meta-attention:

• Key parameters remain global and are updated in the outer loop, common to all systems.

• Query/Value parameters are re-initialized for each system and fine-tuned with a few iterations
in the inner loop, allowing the decoder to discover per-system or per-task representations.

For each system i, we split the time-sequenced data, q̃(i), p̃(i), u(i) into an adaptation set , Iadapt containing
Tadapt number of timesteps, and a meta set Imeta with Tmeta number of timesteps. During the inner loop
of the bi-level optimization, we hold θAD fixed and fine-tune ζi by performing a few gradient steps. Each
step iterates over Iadapt feeding the ActiveDecoder (ΦAD) with ground-truth (q(i)

t:c , p(i)
t:c) and control u(i)

t:c,
and minimizing an inner MSE loss across Tadapt number of timesteps:

L(i)
inner = 1

Tadapt

∑
t∈Iadapt

∥∥∥ΦθAD

(
q(i)

t:c , p(i)
t:c, u(i)

t:c; θAD, ζi

)
− [q(i)

t+1, p(i)
t+1]

∥∥∥2
. (5)

This ensures that ζi adapts to system or task specific idiosyncrasies.

Once the local parameters ζi have been adapted to the optimal value ζ∗
i , we evaluate the model’s performance

on Imeta portion of the trajectory. The corresponding outer loss:

L(i)
outer = 1

Tmeta

∑
t∈Imeta

∥∥∥ΦθAD

(
q(i)

t:c , p(i)
t:c, u(i)

t:c; θAD, ζ∗
i

)
− [q(i)

t+1, p(i)
t+1]

∥∥∥2
, (6)

propagates gradients only to θAD. The overall training objective is then the sum over L(i)
outer for all systems

i, over the batch. We finalize the decoder with a Multi-Layer Perceptron (MLP) that outputs the position
and momentum for the next timestep

(
q̂(i)

t+1, p̂(i)
t+1

)
. The architecture is then used autoregressively for future

predictions. The inherent high dimensionality of the ActiveDecoder’s internal representations, coupled with
the lack of well-defined or tractable Hessian guarantees in this setting LeCun et al. (2012), motivates our
adoption of this meta-learning paradigm over traditional methods such as MAML. By selectively adapting
only a carefully chosen subset of ActiveDecoder’s parameters, we are able to minimize both the number of
adaptation steps and the quantity of data required during the meta-learning process.

3.3 Autoregressive Inference

Once both the SymplecticEncoder and ActiveDecoder (Sections 3.1 and 3.2) are trained, we generate future
predictions by rolling out the model autoregressively during inference time. Specifically, at test time, we
are given initial phase-space measurements. We first map to the conservative portion of the phase-space,
(q(i)

t , p(i)
t ) through the SymplecticEncoder. The ActiveDecoder then produces the next predicted phase-space

trajectory (q̂(i)
t+1, p̂(i)

t+1), based on the pipeline highlighted in Section 3.2. However, we subsequently treat
(q̂(i)

t+1, p̂(i)
t+1) as inputs for the next timesteps. This is repeated over the context window provided to the

decoder.

In summary, by pairing our SymplecticEncoder (to ensure structure preservation) that provides a strong
inductive bias with an Autoregressive Transformer-style Decoder (ActiveDecoder) equipped with meta-
attention (to handle individual system variations), MetaSym can rapidly adapt to diverse physical systems
while guaranteeing physically consistent core dynamics. The proof of this strong inductive bias provided by
the SymplecticEncoder and its effect on the training of the ActiveDecoder as part of MetaSym is provided
by Appendix C.
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4 Results

In this section, we evaluate MetaSym’s performance, against a variety of State-of-The-Art (SoTA) models
and benchmarks, especially in long-horizon stability and few-shot generalization. In particular, we report the
behavior of MetaSym against Transformers that have achieved impressive performance in modeling physical
systems Geneva & Zabaras (2022) and DHNNs Sosanya & Greydanus (2022) that model systems via the
Hemholtz decomposition, although they require gradient information and a numerical integrator to obtain
trajectory data. Our model predicts the subsequent timesteps directly, which poses a much harder task that
does not require numerical integration, which can be time-consuming and may hinder real-time performance.
These results also reflect on the effectiveness of our design choices.

As mentioned in Section 1.1, we choose to benchmark MetaSym for three extremely challenging and diverse
datasets. Notably, we choose the spring-mesh system, which tests scalability and closely resembles finite
element modeling of surfaces with different materials. This dataset has provided the state-of-art testbed for
large dimensional systems Otness et al. (2021). Moreover, we utilize a well proven, reproducible dataset of an
open-quantum system under undergoing heterodyne detection leading to representative quantum effects such
as decoherence to demonstrate MetaSym’s robustness to noise and flexibility to model all types of physical
systems. Finally, we choose to predict the dynamics of a quadrotor, a long-standing benchmark in robotics
and challenging due to floating-base dynamics and sensor noise that is simulated using standard Gaussian
additive noise Bansal et al. (2016). Furthermore, we also demonstrate the adaptability of MetaSym to real-
world data by adapting this model Mohajerin & Waslander (2018). The description of each experimental
setup is laid in the next sections, however a more extensive description can be found in Appendix B. All
reported MSE errors are not weighted. In the plots, the errors correspond to each phase-space coordinate,
while in Table 1 the reported errors are calculated across all phase-space dimensions. Finally, information
regarding the utilized compute resources and training hyperparameters are provided in Appendices F & G.

Figure 2: (Left) Time evolution of the system’s position and momentum variables for a representative set of
masses in the spring mesh. The orange curves represent the ground-truth trajectories for each phase-space
coordinate type (i.e., qx, qy, px, and py), while the blue curves depict the model’s predictions. The close
alignment between these trajectories underscores the model’s capacity to accurately capture the underlying
long-term dynamics (600 timesteps) of the coupled spring system using a context window of 30 timesteps.
(Right) Plots illustrating the mean squared error (MSE) of the time evolution of each phase-space
coordinate type (dots) for five (A-E) spring-mesh systems in the test set. Each column encapsulates the
spread of errors observed across all masses in the spring-mesh for a given phase-space coordinate across
multiple timesteps, with the boxes marking their median values. The uniformly low median errors across
all components demonstrate that the model generalizes effectively to different spring-mesh systems for all
phase-space coordinates.
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4.1 Spring-Mesh System

As our first benchmark, we use the 400-dimensional spring-mesh system introduced by Otness et al. Otness
et al. (2021), consisting of a 10 × 10 lattice of point masses connected by elastic springs. Each of the
100 masses possesses two positional and two momentum degrees of freedom, yielding a 400-dimensional
state space. This system, notable for its high dimensionality and complex dynamical couplings, serves as
a canonical testbed for learning physical systems, including deformable volumes and surfaces relevant to
engineering applications Pfaff et al. (2021). Node positions are updated via forces from spring extensions
and compressions, resulting in nontrivial communication and computation patterns across the mesh. For a
more in-depth description of the benchmark, refer to Appendix B.1. Unless stated otherwise, models are
trained using teacher forcing for next-token prediction with a fixed context window of 30 timesteps. This
choice aligns with prior configurations used in large-scale visual-language architectures (e.g., π0: 50 timesteps
Black et al. (2024), OpenVLA: 8 timesteps Kim et al. (2025)). We also provide an ablation study on the
context window, refer to Appendix D. Notably, our models are significantly smaller, yet demonstrate strong
capability for long-term, temporally consistent predictions within this horizon as the results in Figure 2
indicate.
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Figure 3: (Top) Time evolution of the two quadratures measured via heterodyne detection for a representa-
tive quantum system in the test set, characterized by a measurement efficiency η = 0.86 and measurement
strength κ. The orange lines indicate the true measurement trajectories, while the blue lines display the
model’s predictions (MetaSym). The close overlap between these trajectories highlights the model’s effec-
tiveness in capturing the underlying quantum dynamics from heterodyne signals. The context window of the
model is 30 timesteps. (Bottom) Plots showing the mean squared error (MSE) of each of the predicted
quadratures (dots) for five randomly selected test systems. The consistently low median errors (boxes)
across all tested systems underscore the robustness and generalization capabilities of the model.

4.2 Open Quantum System

To benchmark MetaSym on a novel open quantum dynamics task, we consider a parametric oscillator initial-
ized in a coherent state Gardiner & Zoller (2010). The Hamiltonian includes a harmonic term Ĥosc = ωâ†â,
a squeezing term Ĥsqz = iχ

2 (â†2 − â2), and a cubic drive Ĥcubic = β(â3 + â†3), with â, â† the ladder op-
erators in a truncated Fock space of dimension N . Dissipation arises via coupling to a thermal bath with
rate γ and mean occupation ñth. Continuous heterodyne detection yields a stochastic master equation for
the conditional state (Appendix B.2). The only experimentally accessible data are the real and imaginary
quadratures X and P of the heterodyne current, extracted from single-shot trajectories, as the quantum
state itself remains inaccessible. In this context, quadratures (X and P ) denote the non-commuting observ-
ables, serving as the quantum optical analogues to classical position and momentum Milburn (1987). We
simulate this setup by numerically solving the stochastic master equation Johansson et al. (2012), varying
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measurement efficiency η, squeezing strength χ, cubic drive β, oscillator frequency ω, bath occupation ñth,
and initial states. Training and out-of-distribution inference details are in Appendix B.2. As shown in
Figure 3, MetaSym performs well in this strongly stochastic, non-classical regime.
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Figure 4: Represents the translational and angular phase-space evolution of the quadrotor, with training
generated using the Crocoddyl trajectory optimization package Mastalli et al. (2020). Each training system
is initialized with randomized initial conditions and a randomized terminal position over a 1.5s horizon (150
timesteps) with a context window of 30 timesteps. The displayed test trajectories represent the evolution of a
real-world quadrotor. The ground-truth test trajectory (orange line) overlaps with MetaSym’s predictions
(blue line) indicating the excellent predictive capabilites of our architecture. The MSE across 54 real-
world test trajectories is 0.028± 0.091 for a context-window of 30 timesteps. Note we translate the
quaternions to Roll-Pitch-Yaw angles to have better interpretability of the results.

4.3 Quadrotor

For our final benchmark, we evaluate on a quadrotor, a canonical yet challenging system due to its floating-
base dynamics and discontinuous orientation representations Sanyal & Roy (2023); Zhou et al. (2019). The
floating base induces internal covariate shifts during training, as phase-space magnitudes could vary across
time. Regarding its orientation representation, Euler angles suffer from singularities, while quaternions
impose a unit-norm constraint that is typically handled via loss penalties, often leading to local minima and
unstable training. To address this, we represent the pose of the quadrotor (i.e., position and orientation)
using the tangent space of the SE(3) group Solà et al. (2021), which avoids the explicit enforcement of
the unit norm constraint. MetaSym is pretrained using simulation data for a variety of different systems
described in detail in in Appendix B.3. Importantly, the pretrained network is then fine-tuned via the query-
value weight adaptation technique introduced with the ActiveDecoder to a real-world dataset Mohajerin &
Waslander (2018). The results not only demonstrate our method’s efficacy and robustness on real-world
systems but also the fast-adaptation capability of MetaSym that effectively diminishes the sim-to-real gap.
Even though a detailed real-world deployment analysis is beyond the scope of the current paper, we performed
an additional study to verify our model’s inference time. The results indicate that MetaSym can run
on an NVIDIA RTX4090 in 1.551 ms for its full 30-timestep context-window.

4.4 Benchmarks

We benchmarked MetaSym against three baselines: an autoregressive Transformer Vaswani (2017), a physics-
informed dissipative Hamiltonian neural network (DHNN) Greydanus et al. (2019), a naive Multi-Layer
Perceptron (MLP), the Dissipative SymODEN Zhong et al. (2020), the Fourier neural operator (FNO) Li
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Table 1: Trajectory error and parameter count against SoTA baselines for three OOD datasets

Spring Mesh System Quantum System Quadrotor
Models Param. Count Traj. MSE (±σ) Param. Count Traj. MSE (±σ) Param. Count Traj. MSE (±σ)
DHNNs 3.0M 32.468 (28.086) N/A N/A 3138 26.375 (9.160)

Transformer 3.2M 36.653 (15.618) 194 0.950 (0.239) 4680 34.584 (14.063)
Naive Baseline (MLP) 3.5M 323.199 (13.959) 262 0.898 (0.226) 4012 39.311 (13.937)

QLSTM Flurin et al. (2020) N/A N/A 244 0.891 (0.233) N/A N/A
Dissipative SymODEN 3.2M 32.054 (20.337) N/A N/A 3187 29.174 (9.547)

FNO 3.3M 25.187 (24.223) 33602 7.648 (0.411) 3336 27.932 (11.157)
iMODE 3.2M 23.858 (11.552) 202 7.667 (0.436) 3204 57.190 (20.903)

MetaSym (ours) 2.9M 19.233 (15.673) 130 0.859 (0.215) 3036 25.889 (8.967)

et al. (2021), and iMODE Li et al. (2023). Both MetaSym and the Transformer perform autoregressive next-
timestep prediction, whereas the DHNN models the system’s symplectic and dissipative gradients, relying
on an integrator for trajectory unrolling. The MLP also predicts the next state directly. Unlike the others,
the DHNN cannot predict quadrature measurements due to ill-defined derivatives involving complex Wiener
terms Milburn (1987), and its training proved less stable than that of MetaSym and the Transformer. All
models were evaluated in an autoregressive rollout regime. As shown in Table 1, MetaSym consistently
outperforms the alternatives in long-horizon prediction accuracy, particularly when using a 30-timestep
context window. It achieves lower error accumulation and requires fewer parameters, which is especially
advantageous for high-dimensional systems like spring-meshes. The variance present across all models is
attributed to the noise that we artificially added to each network’s input in order to highlight MetaSym’s
robustness and real-world applicability. In quantum dynamics, where real-time prediction and control are
constrained by hardware latency and memory Reuer et al. (2023), MetaSym’s compact architecture offers a
significant advantage over Transformer-based architectures Vaidhyanathan et al. (2024).

5 Conclusion

In this work, we introduced MetaSym, a novel deep-learning framework that combines structure-preserving
symplectic networks with an autoregressive, decoder equiped with meta-learning for modeling a wide range
of physical systems. The core idea rests on striking a balance between strong physical priors—namely
the intrinsic symplectic structure of Hamiltonian mechanics—and the flexibility required to capture non-
conservative effects and heterogeneous system parameters. Our experimental results across diverse domains,
ranging from high-dimensional spring-mesh dynamics to open quantum systems and real-world quadrotor
systems, demonstrated that MetaSym outperforms state-of-the-art baselines in both long-horizon accuracy
and few-shot adaptation with smaller model sizes even for real-world systems.

The SymplecticEncoder approximates canonical flows while preserving key invariants, significantly mitigat-
ing energy drift and ensuring robust long-term predictions. The encoder’s invertible design enforces time-
reversal symmetry and reduces error accumulation. Meanwhile, the ActiveDecoder models departs from ideal
Hamiltonian evolution through autoregressive prediction and meta-attention. The resulting architecture is
computationally efficient, given that it does not require explicit numerical integration during inference, and,
through meta-learning, it readily adapts to system variations with minimal additional data. This approach
offers a scalable and unified framework for high-fidelity physics modeling in realistic settings with provable
near-symplectic properties (see Appendix C.4).

Additionally, while a substantial line of work has explored Meta-PINNs and parameter-aware operator learn-
ing to generalize across varying physical coefficients exist Penwarden et al. (2023); Wang et al. (2021). These
methods effectively adapt to new PDE instances, they typically enforce physical consistency via ’soft’ regular-
ization terms in the loss function. This reliance on soft constraints often necessitates careful hyperparameter
tuning of penalty weights and does not strictly guarantee the preservation of conservation laws during infer-
ence. In contrast, MetaSym enforces symplectic symmetries through ’hard’ architectural constraints within
the encoder. This design ensures that the core conservative dynamics remain on the symplectic manifold by
construction, independent of optimization stability, while relegating only the non-conservative dynamics to
the adaptable decoder.
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Limitations & Future Work: Considering MetaSym’s promising performance, we seek to investigate
several future directions such as incorporating a fully symplectic network for modeling realistic physics by
exploiting the underlying structure of dissipation and our control signals. MetaSym’s effectiveness on real
world system data also remains to be investigated. Another natural extension of few-shot adaptation is
online learning and control, since MetaSym can quickly adapt to new system configurations with minimal
data. This could be leveraged in real-time control loops and model-based Reinforcement Learning (RL)
algorithms. Finally, future research could focus on how to integrate the decoder’s adaptation step with
RL or adaptive Model Predictive Control (MPC) frameworks, effectively enabling self-tuning controllers in
rapidly changing environments.
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A Meta Learning Setup

As mentioned in Section 3, we elaborate on the algorithmic pipeline of our SymplecticEncoder and ActiveDe-
coder modules. In particular, we outline the MAML-based meta-learning strategy for the SymplecticEncoder
and the bi-level adaptation meta-learning for the ActiveDecoder. Figure 8 provides an interpretable insight
into the effect of inner adaptation during the meta-update step and its effectiveness.

A.1 Encoder

Following Section 3.1, Algorithm 1 provides a high-level overview of how the SymplecticEncoder is trained
via MAML meta-learning. More specifically the Model-Agnostic Meta-Learning (MAML) is a meta-learning
framework designed to train models that can adapt quickly to new tasks using only a small amount of data.
The core idea is to learn an set of parameters that is not task-specific, but task agnostic. As a model-
agnostic method, it can be applied to any model trained with gradient descent, including neural networks
for classification, regression (e.g. our case with MetaSym), reinforcement learning, and beyond. During
meta-training, MAML simulates adaptation by sampling systems, performing inner-loop updates on each
system, and then optimizing the initial parameters via meta-gradients computed across systems. This results
in a model that learns how to learn, making it highly effective in few-shot scenarios where fast generalization
from limited supervision is required.

The task-specific gradient steps are performed on parameters that are initialized from a shared parameter
set, denoted as θSE , for each system. These inner-loop (fast adaptation) updates are applied to independent
copies of the initial parameters, denoted θ

(i)
SE , one for each task (i.e., each system i). Crucially, the original

θSE must remain unchanged during these task-specific updates, as it serves as the point from which all
adaptations are made.

Only after the fast adaptation steps across tasks are completed do we compute the meta-gradient, based on
the post-adaptation performance on each task, and use it to update the original initialization θSE via the
outer-loop (meta) update. This structure ensures that θSE is optimized for adaptability, enabling efficient
transfer to unseen systems.
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Algorithm 1 Meta-Learning for the SymplecticEncoder
Require: D = {D(1), . . . ,D(N)}: Training data from N related systems. Each D(i) is a trajectory(

q(i)
t , p(i)

t , u(i)
t

)T

t=1.
1: for epoch = 1 to Nepochs do
2: for each mini-batch of systems B ⊆ {1, . . . , N} do
3: optimizer_theta.zero_grad()
4: inner_optimizer.zero_grad()
5: for each system i ∈ B do
6: Split the trajectory D(i) into:
7: Iadapt ⊂ {1, . . . , T (i)

adapt}, Imeta = {1, . . . , T (i)
meta} \ Iadapt.

8: Lmeta ← 0
9: Fast Adaptation: Adapt system-specific parameters

10: θ
(i)
SE ← θSE.clone().detach() ▷ Detach

11: for k = 1 to K do
12: inner_optimizer.zero_grad()
13: L(i)

inner ← 0
14: for t ∈ Iadapt do
15:

(
q̂(i)

t+1, p̂(i)
t+1
)
← ΦθSE

(
q(i)

t , p(i)
t , u(i)

t ; θ
(i)
SE

)
16: L(i)

inner ← L
(i)
inner +

∥∥ [q̂(i)
t+1, p̂(i)

t+1]− [q(i)
t+1, p(i)

t+1]
∥∥2

17: end for
18: (L(i)

inner/T
(i)

adapt).backward()

19: inner_optimizer.step() ▷ Update θ
(i)
SE only

20: end for
21: Meta Update: Update the global parameters θSE

22: for t ∈ Imeta do
23: θSE ← θ

(i)∗
SE .clone() ▷ No detach

24:
(
q̂(i)

t+1, p̂(i)
t+1
)
← ΦθSE

(
q(i)

t , p(i)
t , u(i)

t ; θSE

)
25: Lmeta ← Lmeta +

∥∥ [q̂(i)
t+1, p̂(i)

t+1]− [q(i)
t+1, p(i)

t+1]
∥∥2

26: end for
27: end for
28: (Lmeta/T (i)

meta).backward() ▷ equation 4
29: optimizer_theta.step() ▷ Update θSE only
30: end for
31: end for

A.2 Decoder

Algorithm 2 provides a high-level overview of how the ActiveDecoder is trained via meta-learning.

B Experimental Setup

B.1 Spring Mesh System

Spring networks are a simple proxy for numerous physical scenarios involving deformable solids and cloth (in
computer graphics, mechanics, or robotics). Each pair of connected particles exchanges spring forces that
depend on displacements from rest lengths. Viscous damping terms further shape the evolution. While the
individual dynamics (Hooke’s law) are straightforward, the combination of hundreds of coupled springs can
give rise to complex large-scale deformations and oscillations. By benchmarking on a spring-mesh, we can
examine how MetaSym learns large deformations, wave propagation through a membrane, or the impact of
damping.
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Algorithm 2 Meta-Learning for the ActiveDecoder
Require: D = {D(1), . . . ,D(N)}: Training data from N related systems. Each D(i) is a trajectory of states(

q(i)
t , p(i)

t , u(i)
t

)T

t=1.
1: for epoch = 1 to Nepochs do
2: for each mini-batch of systems B ⊆ {1, . . . , N} do
3: optimizer_theta.zero_grad()
4: for each system i ∈ B do
5: Split the trajectory D(i) into:
6: Iadapt ⊂ {1, . . . , T (i)

adapt}, Imeta = {1, . . . , T (i)
meta} \ Iadapt.

7: Inner loop: Adapt local parameters ζi

8: for k = 1 to K do
9: for t ∈ Iadapt do

10: inner_optimizer.zero_grad()
11: ζi.randomize() ▷ Reinitialize ζi

12:
(
q̂(i)

t+1, p̂(i)
t+1
)
← ΦθAD

(
q(i)

t:c , p(i)
t:c, u(i)

t:c; θAD, ζi

)
13: L(i)

inner ←
∥∥ [q̂(i)

t+1, p̂(i)
t+1]− [q(i)

t+1, p(i)
t+1]

∥∥2

14:
(
L(i)

inner/T
(i)

adapt
)
.backward() ▷ equation 3.2

15: inner_optimizer.step() ▷ Update ζi only
16: end for
17: end for
18: Outer loop: Meta-update for the global parameters θAD

19: optimizer_theta.zero_grad() ▷ No update to ζi now
20: L(i)

outer ← 0
21: for t ∈ Imeta do
22:

(
q̂(i)

t+1, p̂(i)
t+1
)
← ΦθAD

(
q(i)

t:c , p(i)
t:c, u(i)

t:c; θAD, ζ∗
i

)
23: L(i)

outer ← L
(i)
outer +

∥∥ [q̂(i)
t+1, p̂(i)

t+1]− [q(i)
t+1, p(i)

t+1]
∥∥2

24: end for
25:

(
L(i)

outer/T
(i)

meta
)
.backward() ▷ equation 3.2

26: optimizer_theta.step() ▷ Update θAD only
27: end for
28: end for
29: end for

The training dataset consists of 25 distinct spring-mesh systems, each characterized by a unique set of
physical parameters, including spring stiffness, damping coefficients, and initial conditions as indicated by
Table 2a. These parameters are sampled from a predefined distribution to ensure sufficient diversity within
the training set. Each system is simulated over a time span of 2000 irregular timesteps, capturing the full
trajectory of node displacements and momenta. The resulting dataset provides a rich representation of
dynamical behaviors within the parameter space.

To assess generalization and robustness, we construct a test dataset comprising ten additional spring-mesh
systems. Unlike the training set, the parameters for these systems are drawn from distributions that differ
from those used during training as indicated by Table 2b, introducing a domain shift that mimics real-world
variations. This OOD test set enables a rigorous evaluation of the model’s ability to extrapolate beyond
the observed training dynamics and adapt to unseen conditions. For further information regarding the
spring-mesh benchmark refer to Otness et al. (2021).

By incorporating both in-distribution training data and OOD validation data, this experimental setup ensures
a comprehensive assessment of the model’s learning capacity, robustness, and generalization performance
when applied to novel physical configurations.
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Parameters Values
γdecay [kg/s] Uniform(0.1, 0.2)

mass [kg] Uniform(0.1, 2.0)
Kspring [N/m] Uniform(0.001, 0.5)

Init. Conds. [m] Uniform(0, 0.6)
dt [s] Uniform(0.001, 0.03)

Mesh Size [nx × ny] 10 × 10

(a) In-distribution parameters T = 2000

Parameters Values
γdecay [kg/s] Uniform(0.01, 0.05)

mass [kg] Uniform(3.0, 5.0)
Kspring [N/m] Uniform(1.0, 3.0)

Init. Conds. [m] Uniform(0.9, 2.5)
dt [s] Uniform(0.1, 0.3)

Mesh Size [nx × ny] 10 × 10

(b) Out-of-distribution parameters T = 2000

Table 2: Parameter ranges for in-distribution and out-of-distribution regimes.

B.2 Open Quantum System Derivation

Understanding the behavior of quantum systems plays a vital role in the development of promising technolo-
gies such as quantum computing, metrology, and sensing. While deep learning has found great success in
several areas such as quantum control Vaidhyanathan et al. (2024), error correction Bausch et al. (2024) and
tuning Ares (2021); Gebhart et al. (2023), predicting the measurement record based on modeling quantum
dynamics has long remained elusive. In many scenarios, the system of interest is open: it couples to an en-
vironment (or bath) that can introduce thermal noise and dissipation. Furthermore, continuous monitoring
(e.g., via homodyne detection) adds additional measurement backaction, reflecting fundamental constraints
from quantum mechanics Jacobs & Steck (2006). Capturing these noise and measurement effects is pivotal
for accurately predicting quantum trajectories and devising robust control protocols.

Unlike closed Hamiltonian evolutions, open quantum systems require one to solve Stochastic Master Equa-
tions (SMEs) incorporating decoherence and measurement terms. These equations produce trajectories of the
(mixed) quantum state conditioned on the noisy measurement record. In many practical settings, however,
we only have direct access to certain observables (e.g., position and momentum quadratures) rather than the
full quantum state. Hence, training a deep learning network to model the quantum system and to predict
future measurement outcomes becomes a natural and practically relevant challenge. The SME describes the
evolution of the conditioned quantum state ρc(t) under the effect of environmental and measurement noise
as Jacobs & Steck (2006)

dρc(t) = −i
[
H, ρc(t)

]
dt +

∑
j

D
[
L̂j

]
ρc(t)dt +√ηH

[
M̂
]
ρc(t)dWt, (7)

where the dissipator is D[L̂]ρ = L̂ρL̂†− 1
2

{
L̂†L̂, ρ

}
. Each Linblad operator, L̂j , represents a collapse operator

that encodes coupling to the environment (e.g., photon loss to a reservoir, thermal excitations, dephasing,
etc.) Manzano (2020). The stochastic backaction term, H[M̂ ]ρ = M̂ρ+ρM̂†−Tr

[(
M̂ + M̂†

)
ρ
]

ρ, describes
continuous monitoring of an observable M̂ , with η the measurement efficiency (0 ≤ η ≤ 1). The Wiener
increment, dWt, captures the randomness inherent in quantum measurement outcomes.

B.2.1 Setup for Parameteric Oscillator

In Section 4.2, we focus on a single-mode bosonic system with annihilation operator â and creation operator
â†. The Hamiltonian is:

H = ωâ†â + iχ

2
(
â†2 − â2)+ β

(
â3 + â†3) , (8)

with ω, χ and β being the oscillator frequency, squeezing strength and cubic driving term respectively. We
also include two Linblad operators:

L̂1 =
√

γ (n̄th + 1)â, L̂2 =
√

γn̄thâ†, (9)
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where γ is the coupling rate to the thermal bath, and n̄th is the average occupation number.

A common measurement technique often employed in experimental settings is called heterodyne measure-
ment. Heterodyne detection continuously measures both quadratures of the output of our dissipative qubit
by mixing it with a local oscillator at a slightly shifted frequency and then demodulating the resulting beat
signal. This yields two simultaneous photocurrents, often referred to as the in-phase (I) and quadrature
(Q) components. This reflects a key practical outcome of solving equation 7 is that ρc(t) depends on this
random measurement trajectory.

We employ heterodyne detection of the field operator â. Based on this measurement scheme, we can get
seperate the real and imaginary parts to obtain quadrature values that roughly correspond to X and P
while adding quantum noise and measurement uncertainities due to quantum mechanical effect Flurin et al.
(2020).

In the following Tables 3b & 5a, we describe the parameters used to generate our dataset by solving the
SME in order to generate training data.

Parameter Value
oscillator frequency
ω

Uniform(0.5, 1.0)

squeezing strength
χ

Uniform(0.1, 0.4)

thermal occup.
⟨nth⟩

Uniform(0.1, 0.5)

meas. efficiency η Uniform(0.7, 1.0)

(a) In-distribution parameters. Time step dt = 0.5, total
duration T = 600.

Parameter Value
oscillator frequency
ω

Uniform(0.1, 0.4)

squeezing strength
χ

Uniform(0.5, 0.8)

thermal occup.
⟨nth⟩

Uniform(0.6, 0.7)

meas. efficiency η Uniform(0.4, 0.6)

(b) Out-of-distribution parameters. Time step dt = 0.5,
total duration T = 600.

Table 3: Parameter ranges used in training and evaluation of quantum trajectories. The in-distribution set
represents conditions seen during training, while the out-of-distribution set introduces significant shifts in
frequency, squeezing, thermal noise, and measurement efficiency.

We also include, Figure 5, that illustrates the stochastic evolution of the position quadrature X for our
system. The nature of the system’s stochasticity is revealed by the shaded confidence interval, the shape of
which is dictated by equation 7.

B.3 Quadrotor

The quadrotor system challenges data-driven methods with its floating-base dynamics. To generate the train-
ing and OOD validation datasets we use Crocoddyl trajectory optimization package based on the dynamics
model proposed by Geisert & Mansard (2016). The training dataset comprises 30 systems with randomized
parameters such as inertia, torque constant and rotor lengths as indicated in Table 4a. Each trajectory is
generated from a randomized initial condition to a random terminal position with zero velocity, within a
pre-set bounding box, to avoid unrealistic velocities.

In the same manner the OOD validation set contains 10 trajectories, each one corresponding to a system
with parameters drawn from the distributions indicated in Table 4b.

The results in Figure 6 verify the accuracy and effectiveness of our method for simulated floating-base
dynamics systems. This consists the pre-training executed before fine-tuning the architecture on the real-
world quadrotor dataset illustrated in the main text.

C O(ρ) Near-Symplectic Architecture

In this section, we prove that composing our SymplecticEncoder ΦθSE
with our ActiveDecoder ΦθAD

handling
control signals and dissipative effects yields a near-symplectic map, with an explicit bound on preserving
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Figure 5: Quantum System’s position quadrature X evolution: The faint gray traces represent individual
single-shot trajectories, showing the inherent randomness caused by measurement backaction and thermal
noise, directly visualizing the noisy nature of the dataset. The blue shaded region marks the confidence
interval, quantifying the standard deviation of the quantum state’s fluctuations over time. This demonstrates
the jagged unpredictability of individual runs. The ensemble average (solid blue line) converges to the smooth,
and deterministic prediction of the Master Equation (red dashed line) over multiple trajectories.

Parameter Value
Inertia Idiag Uniform(0.1, 0.2)
mass m Uniform(0.5, 3.0)
dcogs Uniform(0.2, 0.5)
Ctorques Uniform(0.001, 0.1)

(a) In-distribution parameters. Time step dt = 0.01,
duration T = 250.

Parameter Value
Inertia Idiag Uniform(0.3, 0.7)
mass m Uniform(3.0, 5.0)
dcogs Uniform(0.5, 0.7)
Ctorques Uniform(0.1, 0.2)

(b) Out-of-distribution parameters. Time step dt =
0.01, duration T = 500.

Table 4: Parameter distributions for simulating quadrotor dynamics. The in-distribution set covers training
conditions, while the out-of-distribution set reflects variations in inertia, mass, center of gravity shift, and
torque coupling beyond the training domain.

approximate symplectic geometry even when tested in adverse dissipative conditions. This formalizes the
realistic effects we can introduce to MetaSym and the inductive bias provided by symplectic invariants.

C.1 Overall Map

The full transformation is

(qt, pt) 7→ zc = ΦθSE
(qt, pt) 7→ zd = ΦθAD

(zc, ut, dt).

Hence, at the global level, we define

Φθ(qt, pt, ut, dt) := ΦθAD

(
ΦθSE

(qt, pt), ut, dt

)
.

We aim to show that if ΦθAD
remains a small (bounded) perturbation O(ρ) from identity in zc-space, then

Φθ preserves the symplectic structure up to a small error term. This is called O(ρ) near-symplecticity. We
assume that the dissipation dt and control-input ut are seperable for the sake of this proof.
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Figure 6: (Left) Represents the translational and angular phase-space evolution of the quadrotor, with
training and test trajectories generated using the Crocoddyl trajectory optimization package Mastalli et al.
(2020). Each task is initialized with randomized initial conditions and a randomized terminal position over
a 1.5s horizon (150 timesteps) with a context window of 30 timesteps. The ground-truth test trajectory
(orange line) overlaps with MetaSym’s predictions (blue line) indicating the excellent predictive capabilites
of our model. (Right) Plots summarizing the mean squared error (MSE) of each of the phase-space
coordinates evolution for five randomly generated test systems (dots). The consistently low median errors
(boxes) across all components underscore the robustness and generalization capabilities of the model.

C.2 SymplecticEncoder

From Jin et al., we know that LA-SympNets are fully symplectic due to their construction Jin et al. (2020).
By extension, we can show that our SymplecticEncoder ΦθSE

is symplectic.
Definition C.1 (Symplectic Property). Let X = R2d represent the canonical phase space with coordinates
x ∈ (q, p). We write

J =
(

0 Id

−Id 0

)
,

the standard 2d× 2d symplectic matrix. A differentiable map Ψ : X → X is strictly symplectic if

dΨ(x)⊤ J dΨ(x) = J ∀x ∈ X .

This implies det(dΨ) = 1 (volume preservation).

We know
ΦθSE

: X → Z ⊆ R2d

is strictly symplectic, i.e.

dΦθSE
(x)⊤ J dΦθSE

(x) = J, det(dΦθSE
(x)) = 1.

Internally, since ΦθSE
is a composition of symplectic sub-blocks (e.g. LA-SympNets). Its parameters, θSE ,

can be partially meta-learned as long as the strict symplectic property is retained.
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C.3 Decoder with Control and Dissipation

We define
ΦθAD

: Z × U ×D → Z,

where:

• Z ⊆ R2d is the latent phase-space output by ΦθSE
,

• U ⊆ Rm represents control signals (bounded by ∥ut∥ ≤ Umax),

• D ⊆ Rr represents dissipative parameters (bounded by ∥dt∥ ≤ Dmax), which model forces that
remove or drain energy (e.g. friction or drag).

In order to account for the effects of the cross attention, the decoder modifies the latent state by

ΦθAD
(zc, ut, dt) = zc + FθAD

(zc, ut, dt),

where FθAD
can be cross-attention with magnitude modulated by ∥ut∥, or a damping formula modulated by

∥dt∥.

C.4 O(ρ) Near-Symplectic Proof and Explicit Bound

In this section, we prove that if zc 7→ zc + FθAD
(zc) is a bounded perturbation from identity (in partial

derivatives), then the composition with a strict symplectic map remains close to preserving J .

Bounded Perturbation Assumption. For the ActiveDecoder map, we take the partial derivative w.r.t.
zc in FθAD

is bounded by a linear-type function of (∥ut∥, ∥dt∥):∥∥∥∂FθAD

∂zc
(zc, ut, dt)

∥∥∥ ≤ α0 + αu ∥ut∥ + αd ∥dt∥,

for some constants α0, αu, αd ≥ 0. This covers cross-attention (scaled by ∥ut∥) and dissipative (scaled by
∥dt∥) terms. Since ∥ut∥ ≤ Umax and ∥dt∥ ≤ Dmax, we define:

ρ := α0 + αu Umax + αd Dmax.

Hence, max(zc,ut,dt)
∥∥dzc

ΦθAD
− I
∥∥ ≤ ρ. Equivalently,∥∥∥dzc

FθAD
(zc, ut, dt)

∥∥∥ ≤ ρ, ∀(zc, ut, dt).

The Composed Map. Recall we define the global map

Φθ(qt, pt, ut, dt) = ΦθAD

(
ΦθSE

(qt, pt), ut, dt

)
.

Writing x = (qt, pt) ∈ R2d for convenience, we have

zc = ΦθSE
(x) and zd = ΦθAD

(
zc, ut, dt

)
.

To show near-symplecticity, we study

dΦθ(x, ut, dt) = dzcΦθAD

(
zc, ut, dt

)︸ ︷︷ ︸
I + A, ∥A∥ ≤ ρ

× dΦθSE
(x)︸ ︷︷ ︸

strictly symplectic.
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Theorem C.1 (O(ρ) Near-Symplectic Composition). Suppose ΦθSE
is strictly symplectic, i.e.

dΦθSE
(x)⊤ J dΦθSE

(x) = J and det(dΦθSE
(x)) = 1.

Also assume dzcΦθAD
satisfies the bounded-perturbation condition max ∥dzcΦθAD

−I∥ ≤ ρ over ∥ut∥ ≤ Umax,
∥dt∥ ≤ Dmax. Then for the composed map Φθ, we have:∥∥dΦθ(x)⊤ J dΦθ(x)− J

∥∥ ≤ C ρ,

for a constant C > 0 depending on the norm of dΦθSE
(x). Hence Φθ is ϵ-symplectic with ϵ = C ρ. Further-

more,
det
(
dΦθ(x)

)
= 1 + O(ρ),

implying near-volume preservation as well.

Proof. Let x = (qt, pt), zc = ΦθSE
(x), and I + A = dzcΦθAD

(zc, ut, dt) with ∥A∥ ≤ ρ. Then

dΦθ(x, ut, dt) = (I + A) dΦθSE
(x).

Hence
dΦ⊤

θ J dΦθ = dΦ⊤
θSE

(I + A)⊤ J (I + A) dΦθSE
.

Expanding (I + A)⊤J(I + A) = J + A⊤J + JA + A⊤JA = J + O(∥A∥), we substitute dΦ⊤
θSE

J dΦθSE
= J :

dΦ⊤
θ J dΦθ = J + O(∥A∥) = J + O(ρ).

In operator norm, ∥dΦ⊤
θ J dΦθ − J∥ ≤ C ρ. Since dΦθSE

is volume-preserving, det(dΦθ) = det(I + A)× 1 =
1 + O(ρ).

Explicit Cross-Attention Bound. For instance, if FθAD
includes a cross-attention term scaled by ∥ut∥

plus a dissipative term scaled by ∥dt∥, we might write

FθAD
(zc, ut, dt) = α CrossAttn(zc, ut) − γ (d⊤

t ⋆ zc),

where d⊤
t ⋆zc indicates some parametric dissipator. If CrossAttn has partial derivative in zc normed by ∥ut∥,

and d⊤
t ⋆ zc is linear in ∥dt∥, then ∥∥∥∂FθAD

∂zc

∥∥∥ ≤ α0 + αu ∥ut∥ + αd ∥dt∥,

giving the same ρ = α0 + αuUmax + αdDmax.

We choose not to explicitly bound this perturbation during training to allow for MetaSym to model extremely
dissipative systems. In Appendix D.2, we provide the perturbation bound Cρ emperically for systems
undergoing extreme dissipation and control. We observe that this bound is < 1 even under these extreme
settings.

D Ablation Studies

To rigorously assess the efficacy of our proposed framework relative to current state-of-the-art (SoTA) meth-
ods, we conduct a series of ablation studies. All experiments are performed on a moderately complex yet
tractable spring-mesh system consisting of a 3× 3 node grid. Unless otherwise noted, all other hyperparam-
eters remain identical to those in Tables 2a & 2b.

D.1 Modeling Conservative Systems

The SymplecticEncoder is designed to explicitly preserve symplectic structure by learning a generalized
latent, symplectic basis, which captures the conservative phase-space dynamics. By design, it conserves
invariant quantities such as energy and volume in phase space Jin et al. (2020). The ActiveDecoder models
system-parameter variations and captures dissipative and control-related effects as bounded perturbations
to the symplectic manifold (see Section C.4). Hence the architecture is equipped to model fully-conservative
systems and adapt to changing parameters. We conduct two different experiments in order to verify the
efficacy of our architecture and the validity of our claims.
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D.1.1 Conservative Spring-Mesh System

We test our architecture against a conservative spring-mesh at test time. Specifically, the ActiveDecoder
has been pre-trained on dissipative data and we adapt it using our meta-learning procedure to 25 fully
conservative spring meshes. The achieved trajectory MSE across these systems is 0.050± 0.016. This
demonstrates that our meta-learning paradigm can accommodate substantial variations in system parameters
through the ActiveDecoder. Simultaneously, the architecture respects the relevant physical invariances.

D.1.2 Conservative Harmonic Oscillator

A harmonic oscillator is the prototypical example taught in many undergraduate courses in dynamics. It
constitutes a well-studied system with analytical solutions. Stability analysis and dynamics’ research Strogatz
(2015) has equipped us with the tools necessary to study these linear systems in depth. By extension, we
can understand further our architecture’s true predictive capabilities in terms of physical invariances, such
as energy and phase-space volume conservation.

The Ordinary-Differential Equation (ODE) modelling the harmonic oscillator’s dynamics in phase-space
coordinates is considered in equation 10,

d

dt

(
x(t)
p(t)

)
=
(

0 1
m

−mω2 0

)(
x(t)
p(t)

)
, (10)

where ω =
√

k
m is the oscillator frequency with mass m and spring constant k. The position is indicated by

x(t) and the momentum coordinate by p(t). The analytical solution for this is given by equation 11,(
x(t)
p(t)

)
=
(

cos(ωt) 1
mω sin(ωt)

−mω sin(ωt) cos(ωt)

)(
x0

p0

)
. (11)

where (x0, p0) are the initial conditions.

We train MetaSym with harmonic oscillators with varying masses and spring constants depicted in Table 5b.
The results in terms of phase-space trajectories, energy-conservation are highlighted in Figure 7.

Parameter Value
Mass (m [kg]) Uniform(0.5, 1.0)
Spring Const. (k [N/m]) Uniform(0.5, 4.0)
Init. Pos. (x0 [m]) Uniform(−1.0, 1.0)
Init. Vel. (v0 [m/s]) Uniform(−1.0, 1.0)

(a) In-distribution parameters. Time step dt = 0.01, total
duration T = 3000.

Parameter Value
Mass (m [kg]) Uniform(2.5, 3.0)
Spring Const. (k [N/m]) Uniform(5.0, 6.0)
Init. Pos. (x0 [m]) Uniform(1.0, 1.5)
Init. Vel. (v0 [m/s]) Uniform(−1.5,−1.0)

(b) Out-of-distribution parameters. Time step dt = 0.01,
total duration T = 800.

Beyond energy conservation, Hamiltonian dynamics preserve phase-space volume according to Liouville’s
theorem. For the one-dimensional harmonic oscillator, this implies that the area enclosed by any closed
orbit in the (x, p) phase-space must remain invariant over time. To quantitatively assess whether MetaSym
respects this structural property, we compute the phase-space area enclosed by both the ground-truth and
predicted trajectories using a discrete line-integral (shoelace) estimator. More specifically, the enclosed
phase-space area of a closed discrete trajectory {(qi, pi)}N−1

i=0 is computed as

AN = 1
2

∣∣∣∣∣
N−1∑
i=0

(qipi+1 − qi+1pi)

∣∣∣∣∣ .
In the continuum limit N →∞, this converges to the symplectic line integral

A =
∮

p dq =
∫∫

dq ∧ dp,

24



Under review as submission to TMLR

0 1 2 3 4 5 6
10

5

0

5

10
x 

[m
]

Actual
Prediction

0 1 2 3 4 5 6
Time [s]

20

10

0

10

20

p 
[k

g 
m

 / 
s]

Actual
Prediction

(a) Time-evolution

0 1 2 3 4 5 6
Time [s]

0

2

4

6

8

10

M
ec

ha
ni

ca
l E

ne
rg

y 
[J]

Actual
Prediction

(b) Energy Conservation

6 4 2 0 2 4 6
x [m]

6

4

2

0

2

4

6

p 
[k

g 
m

 / 
s]

Actual
Prediction

(c) Phase-space trajectory

Figure 7: (a) MetaSym predicts the dynamics of the harmonic oscillator with high accuracy, since the
prediction overlaps with the ground truth. (b) The energy drift of MetaSym during autoregressive rollouts
remains negligible and uniformly bounded, as evidenced by the small, repetitive oscillations observed over
time rather than any secular growth. (c) The overlapping prediction and ground-truth closed-orbits further
support our claims of physical-invariance preservation.

corresponding to the symplectic area enclosed by the orbit.

Concretely, for the representative system, the true enclosed area is Atrue = 21.602, while MetaSym predicts
Apred = 21.619, corresponding to a relative deviation of less than 0.08%. This close agreement indicates
that MetaSym not only reproduces the correct qualitative closed-orbit geometry (Fig. 7c), but also preserves
phase-space volume to high accuracy during autoregressive rollouts. Such behavior is consistent with an
approximately symplectic evolution and supports the claim that MetaSym captures fundamental geometric
invariants of conservative dynamics beyond pointwise trajectory fitting.

D.2 Empirical Perturbation Bound Estimation

The ActiveDecoder models the dissipative and control-input effects of a system as perturbations to the
symplectic manifold that the conservative dynamics of a given system evolve on. While Section C.1 provides
a definitive argument in favor of this interpretation, calculating this bound analytically is not possible. To
further support our claims we performed an ablation study that calculates this bound empirically, using
the pretrained weights for a dissipative 3x3 spring-mesh system with parameters such as decay that are
chosen to represent a real deformable surface such as polypropylene undergoing extreme deformation (eg. a
trampoline). In this edge case, The bound Cρ is calculated as below:

∥dΦ⊤
θ∗JdΦθ∗ − J∥2 = 0.999 (12)

where J =
(

0 Id

−Id 0

)
and Φθ∗ the trained network.
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D.3 Effectiveness of Meta-Attention Mechanism

Our meta-learning framework adapts the Query and Value projections of the cross-attention in the ActiveDe-
coder, enabling task-specific modulation of decoded representations. As shown in Table 6, this meta-attention
approach consistently outperforms MetaSym without meta-attention as well as standard pre-training and
fine-tuning, across three dynamical systems with realistic dissipation and inertial parameters.

Meta-learning shapes the parameter initialization such that gradients on a small adaptation set are more
informative and better aligned with task-specific directions, enabling rapid specialization and improved
training dynamics during adaptation. As a result, the model achieves lower MSE across all systems despite
limited adaptation data, consistent with prior theoretical and empirical findings on gradient-based meta-
learning in few-shot regimes Raghu et al. (2020); Beck et al. (2025)In this ablation, we consider common
nominal values for all system parameters in order to focus on the efficacy of the meta-learning mechanism
rather than robustness to high-noise settings.

Table 6: Meta-Learning comparison across different OOD systems.

3×3 Spring-Mesh Quantum System Quadrotor
MSE with ActiveDecoder finetuning(±σ) 0.405 (0.536) 1.068 (0.165) 8.814 (3.328)
MSE w/o Meta-Attention (±σ) 0.613 (0.432) 1.000 (0.200) 16.457 (15.184)
MSE with Meta-Attention (±σ) 0.230 (0.115) 0.898 (0.241) 8.397 (5.906)

Finally, as showcased by Fig. 8 for the quadrotor, the fast-adaptation achieves smooth convergence as the
overall training converges with significant loss minimization. This proves the smooth dynamics of our meta-
learning framework and the absence of severe instabilities that could have hindered its performance.

Figure 8: Inner Adaptation convergence for early training stage (left) and close-to-convergence training stage
(right) for a quadrotor.

In Figure 9, we also include heat maps that demonstrate the changes in queries and values due to the
fine-tuning phase for two arbitrary system configurations.

E Context-Window Study

The context-window choice is application and task-dependent in general, since it comes as a trade-off between
accuracy and long-term prediction. We provide in Table 7 a comprehensive study of different context-window
lengths. In all of our results and studies we use a context-window of 30-timesteps, because we prioritize the
long-term prediction capabilities of MetaSym.
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(a) Adaption of queries and values during fine-tuning
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(b) Adaption of queries and values during fine-tuning

Figure 9: Adaption of queries and values during fine-tuning for two arbitrary systems.

Context Window MSE (σ)
2 0.2864 (0.2154)
10 0.4482 (0.3134)
20 0.9214 (0.8841)
30 1.5903 (1.6514)
50 3.5574 (3.8716)
100 8.4024 (7.7815)

Table 7: Mean Squared Error (MSE) with standard deviation (σ) for different context window sizes. As
expected for Markovian dynamics, the error compounds as the context-window increases, however MetaSym
retains a good trade-off between long-term prediction and accuracy.

F Compute Resources

The dataset for the 10x10 spring mesh system and the associated baselines and benchmarks were run on a
Lambda cloud instance consisting of a NVIDIA A100 with 40GB of GPU memory and 200GB of RAM. All
other experiments were run on a system containing 252GB of RAM, 32 core processor and a 24GB NVIDIA
RTX 4090.

G Hyperparameters for Benchmarks

This section includes the hyperparameters of our framework, which we used to benchmark each system as
outlined in Table 1. This ensures the reproducibility and completeness of our method.
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Table 8: Hyperparameter settings for MetaSym when benchmarking the spring-mesh.

Hyperparameter Encoder Decoder
Optimizer Outer: AdamW

Inner: Adam
Outer: AdamW
Inner: AdamW

Learning Rate Outer: 0.001
Inner: 0.003

Outer: 0.007
Inner: 0.01

Inner Steps 3 10
Context Window N/A 30
Dropout 0.1* 0.1
Layers 3 1
Attention Heads N/A 4
Early Stopping Epochs 110 312
Train / Val. dataset split [%] 80 / 20 80 / 20
Adapt / Infer. dataset split [%] N/A 30 / 70

*DropConnect

Table 9: Hyperparameter settings for MetaSym when benchmarking the open-quantum system.

Hyperparameter Encoder Decoder
Optimizer Outer: AdamW

Inner: Adam
Outer: AdamW
Inner: AdamW

Learning Rate Outer: 0.001
Inner: 0.003

Outer: 0.008
Inner: 0.03

Inner Steps 3 15
Context Window N/A 30
Dropout 0.2* 0.2
Layers 3 1
Attention Heads N/A 4
Early Stopping Epochs 294 354
Train / Val. dataset split [%] 80 / 20 80 / 20
Adapt / Infer. dataset split [%] N/A 30 / 70

*DropConnect

Table 10: Hyperparameter settings for MetaSym when benchmarking the quadrotor.

Hyperparameter Encoder Decoder
Optimizer Outer: AdamW

Inner: Adam
Outer: AdamW
Inner: AdamW

Learning Rate Outer: 0.001
Inner: 0.003

Outer: 0.01
Inner: 0.008

Inner Steps 3 15
Context Window N/A 10
Dropout 0.4* 0.45
Layers 3 1
Attention Heads N/A 4
Early Stopping Epochs 34 222
Train / Val. dataset split [%] 80 / 20 80 / 20
Adapt / Infer. dataset split [%] N/A 30 / 70

*DropConnect
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