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Abstract
For binary classification in d dimensions, it is
known that with a sample size of n, an excess
adversarial risk of O(d/n) is achievable under
strong parametric assumptions about the under-
lying data distribution (e.g., assuming a Gaussian
mixture model). In the case of well-separated
distributions, this rate can be further refined to
O(1/n). Our work studies the non-parametric
setting, where very little is known. With only
mild regularity conditions on the conditional dis-
tribution of the features, we examine adversar-
ial attacks with respect to arbitrary norms and in-
troduce a straightforward yet effective estimator
with provable consistency w.r.t adversarial risk.
Our estimator is given by minimizing a series of
smoothed versions of the robust 0/1 loss, with a
smoothing bandwidth that adapts to both n and d.
Furthermore, we demonstrate that our estimator
can achieve the minimax excess adversarial risk
of Õ(

√
d/n) for linear classifiers, at the cost of

solving possibly rougher optimization problems.

1. Introduction
Supervised machine-learning models like (generalized) lin-
ear models, kernel methods, and neural networks have
enjoyed tremendous practical success in many applica-
tions involving high-dimensional data, such as images.
Yet, these models are highly sensitive to small perturba-
tions known as adversarial examples (Szegedy et al., 2013;
Tsipras et al., 2019; Su et al., 2017; Schmidt et al., 2018),
which are often imperceptible by humans. While vari-
ous strategies such as adversarial training (Madry et al.,
2018) can mitigate this empirically, lack of robustness re-
mains highly problematic for many safety-critical applica-
tions (e.g, autonomous vehicles), and motivates a better un-
derstanding of the phenomena at play. In the era of so-
called large-language models (LLMs) like ChatGPT and
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their rapid adaptation by the general public for all kinds
of duties like image generation, text generation, chatbots,
encyclopedic knowledge assistants, etc., the impact of ad-
versarial examples (in the form of adversarial prompts) will
be even more devastating. For example see (Carlini et al.,
2023) and the references therein.

In this work, we consider the statistical problem of com-
puting a Bayes-optimal robust linear classifier for a binary
classification problem on Rd without any parametric as-
sumptions on the underlying distribution of the data, be-
yond the requirement of some regularity of the conditional
density of the distribution of the features. Efficiently com-
putable consistent estimators in the adversarial setting are
a big deal because it is known that unlike the case of or-
dinary classification, convex surrogates don’t exist in the
adversarial case (Bao et al., 2020). To summarize,

– Risk-Consistency. We construct a sequence of linear clas-
sifiers (indexed by the sample size n and input dimen-
sion d), whose adversarial risk / classification error ap-
proaches the optimal value over all linear models, in the
limit n → ∞ such that d log(n)/n → 0. See Theorem 4.1.
Our estimator relies on Gaussian smoothing of the data,
wherein the smoothing bandwidth hn gracefully adapts to
the sample size n and the input dimension d. In the special
case of Euclidean-norm attacks, our proposed estimator can
be efficiently computed via smooth optimization methods
on the Euclidean unit-sphere (a smooth manifold) (Boumal
et al., 2018). The bandwidth parameter hn trades between
ease of optimization and rate of statistical convergence of
the adversarial risk estimator to the Bayes-optimal value.

– Minimax Optimality. Under a stronger smoothness con-
dition on the conditional distribution of the features, we
recover in Theorem 4.2 rates which are uniformly optimal
over all attack strengths, and match the minimax optimal
rate of classification in the absence of adversaries.

2. Preliminaries and Problem Setting
2.1. Linear Classification and Adversarial Attacks

Consider a binary classification problem in Rd, consisting
of learning the label y ∈ {±1} of a random data point
with feature vector x ∈ Rd. Let P be the unknown joint
distribution of the pair (x, y). We are given access to an iid
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sample Dn = {(x1, y1), . . . , (xn, yn)} ⊆ Rd×{±1} from
P . For any w ∈ Rd, consider the linear (in fact, affine)
function fw : Rd → R defined by fw(x) := x⊤w. This
induces a linear classifier (aka half-space)

Cf (x) := sign(f(x)) =

{
1, if f(x) ≥ 0,

−1, else.
(1)

Let ∥ · ∥ be any norm on Rd used to measure the strength
of the attacker, and let ∥ · ∥⋆ be the dual norm, defined by

∥w∥⋆ := sup
z∈Rd, ∥z∥≤1

z⊤w. (2)

Popular examples in the literature include ℓp norm ∥ · ∥p,
with p ∈ [1,∞], especially for p = 1 (sparse attacks),
p = ∞ (entry-wise bounded attacks), and p = 2. Note
that if p⋆ ∈ [1,∞] is the harmonic conjugate of p, i.e., if
1/p+1/p⋆ = 1, then the dual norm for ∥ · ∥p is ∥ · ∥p⋆ . For
example, the ℓ2-norm is auto-dual, whilst the ℓ1-norm and
the ℓ∞-norm are duals of one another.

If w ̸= 0, we can always normalize it so that ∥w∥⋆ = 1,
without modifying the induced classifier Cfw . We therefore
consider the following restricted subset of linear models

Flin := {fw | w ∈ Rd, ∥w∥⋆ = 1}. (3)

Note that the same function space was considered in (Bao
et al., 2020) in the specific case of Euclidean-norm attacks.
Though the scope of our work is linear models, our results
are applicable to the case of models with frozen represen-
tations (i.e., pre-training), since we do not make any struc-
tural / parametric assumptions on the distribution of the
features. Equivalently, this case corresponds to scenarios
where the attacker can inject perturbations into the feature
map ϕ(x) of an input x at test time (Bietti & Mairal, 2019).

2.2. Adversarial Risk and Adversarial Regret

Definition 2.1 (Adversarial Risk). Given an attack budget
ϵ ≥ 0, the adversarial risk (aka robust classification error)
Eϵ(f) = Eϵ(f ;P ) of a model f ∈ Flin is defined by

Eϵ(f ;P ) := P(∃δ ∈ Rd, ∥δ∥ ≤ ϵ | Cf (x+ δ) ̸= y), (4)

where (x, y) is a labelled random test example from P .

Note that E0(f) is the non-adversarial risk (aka ordinary
classification error) of f . It is clear that Eϵ(f) ≥ E0(f)
for any ϵ ≥ 0. More generally, the function ϵ 7→ Eϵ(f) is
nondecreasing.

Definition 2.2 (Adversarial Regret). Given a linear model
f ∈ Flin, its adversarial regret is the quantity

Rϵ(f) := Eϵ(f)− inf
g∈Flin

Eϵ(g), (5)

i.e the excess adversarial risk of f relative to the optimum
value over the function class Flin of linear classifiers.

Note that, by design inff∈Flin
Rϵ(f) = 0 for all ϵ ≥ 0.

Observe that, for any f ∈ Flin,

Eϵ(f) = P(yf(x) ≤ ϵ) = Ex,y [θϵ(yf(x))], (6)

where θϵ : R → {0, 1} is the unit-step function shifted to
the right by an amount ϵ, i.e

θϵ(t) := θ0(t− ϵ) =

{
0, if t ≥ ϵ,

1, otherwise.
(7)

Indeed, for any w ∈ Rd with ∥w∥⋆ = 1, one computes

inf
∥δ∥≤ϵ

y((x+ δ)⊤w) = yx⊤w + inf
∥δ∥≤ϵ

yδ⊤w

= yx⊤w − ϵ∥w∥⋆ = yx⊤w − ϵ.

Also see Proposition 3 of (Bao et al., 2020). The quantity
mw(x, y) := yfw(x) = yx⊤w has a geometric meaning as
the margin of the data point (x, y) w.r.t to the decision-
boundary (a hyperplane) induced by fw. Indeed, in the
euclidean setting, |mw(x, y)|/∥w∥2 is exactly equal to the
distance of x to the decision boundary of the classifier fw.
Moreover, mw(x, y) > 0 for points which are correctly
classified by fw, whilst mw(x, y) ≤ 0 for wrong classi-
fied points. Thus, (6) demands that even correctly classi-
fied points whose margin is not greater ϵ are counted as
incorrectly classified, in the adversarial setting.

Given the training dataset Dn and the attack budget ϵ, the
task of the machine-learner is to output a binary linear clas-
sifier f̂n ∈ Flin.

2.3. The Adversarial 0/1 Loss

Our goal is to find the linear model f ∈ Flin with the least
possible adversarial risk Eϵ(f). Since Eϵ(f) depends on
the unknown distribution P of (x, y), this cannot be done
directly. Vanilla empirical risk minimization (ERM) corre-
sponds to computing f̂n ∈ Flin which minimizes the em-
pirical version of Eϵ(f), namely

Ên,ϵ(f) = Eϵ(f ; P̂n) =
1

n

n∑
i=1

θϵ(yif(xi))

=
1

n
#{i ∈ [n] | yif(xi) ≤ ϵ} ∈ [0, 1],

(8)

where P̂n := (1/n)
∑n

i=1 δ(xi,yi) is the empirical distribu-
tion corresponding to the random dataset Dn. Because of
the discontinuity of the margin loss t 7→ θϵ(t) at t = ϵ, the
empirical risk Ên,ϵ(f) cannot be optimized directly. More-
over, as established in (Bao et al., 2020; Dan et al., 2020),
there is no convex surrogate for this loss which is Bayes-
consistent. Our idea is to replace θϵ by a smoothed surro-
gate, which is computationally tractable.
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Definition 2.3. An estimator f̂n,ϵ ∈ Flin computed on the
training dataset Dn is said to be consistent if it has vanish-
ing adversarial regret, i.e Rϵ(f̂n,ϵ)

n→∞−→ 0 for all ϵ ≥ 0.

We stress that our definition of consistency is relative to
linear models, which are the main focus of this paper.

2.4. Notations

The maximum of two real numbers a and b will be denoted
a ∨ b. The maximum of a and 0 is denoted a+. As usual,
Φ (resp. φ) denotes the Gaussian cumulative distribution
(resp. probability density) function. Given a real matrix
A ∈ Rd×m, its singular-values σ1(A) ≥ σd(A) ≥ . . . ≥
σd(A) correspond to the sorted list of positive square-roots
eigenvalues of the positive-semidefinite matrix A⊤A. The
operator norm of A, denoted ∥A∥op, corresponds to σ1(A),
while the the Frobenius (aka Hilbert-Schmidt) norm of A,

denoted ∥A∥F , corresponds to
√∑d

j=1 σj(A)2. The num-
ber of nonzero singular-values of A, correspond to its rank,
denoted rank(A). The effective rank of A, denote r(A),
is defined by r(A) := ∥A∥2F /∥A∥2op. Note that if A is a
nonzero matrix, then 1 ≤ r(A) ≤ rank(A) ≤ min(m, d).

O(n), Ω(n), o(n), etc. are standard standard notations,
while the avatars Õ(n), Ω̃(n), etc., mean that there are hid-
den factors which are at most poly-logarithmic in n. All
asymptotics will be w.r.t the limit n → ∞. An event occurs
with high probability (w.h.p) if its occurrence probability is
at least 1− o(1) in the limit n → ∞.

3. The Proposed Estimator
3.1. Smooth Surrogate for Adversarial Loss

Let Q : R → [0, 1] be a function verifying the following
conditions: (1) Q is strictly increasing. (2) The tail of Q
behaves like limt→∞ Q(t) = 0. For example, the survival
function of any random variable is such a function. Given
a bandwidth parameter h > 0, define a function θε,h by

θε,h(u) := Qh(u− ϵ), where Qh(u) := Q(u/h). (9)

Note that if in addition Q is continuous, then θε,h con-
verges pointwise to θε in the limit h → 0+. Let ℓε,h be the
loss function induced by θε,h, i.e., ε ≥ 0 and h > 0,

ℓε,h(y, y
′) := θε,h(yy

′), (10)

This leads to a smoothed version of the empirical adversar-
ial 0/1 risk defined in (11), namely

Ên,ε,h(f) :=
1

n

n∑
i=1

ℓε,h(yi, f(xi))

=
1

n

n∑
i=1

θε,h(yif(xi)) ∈ [0, 1].

(11)
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Figure 1. The Effect of Smoothing. Mild smoothing (small
h) makes the underlying optimization problem computationally
tractable without changing the value of the optimal empirical ad-
versarial risk. Refer to Lemma 3.1. Extreme smoothing (large h)
makes the optimization problem very easy but essentially destroys
the information contained in the training dataset Dn.

Note that in the nonrobust case ϵ = 0, choosing Q = QG =
Gaussian survival function corresponds to the probit loss
considered in (Keshet et al., 2011) in another context.

3.2. Link with Kernel Density Estimation

An important example is when Q is the survival function
of a random variable with density. In this case, one can
alternatively write the smoothed margin function (9) as a
convolution product θε,h = θε ⋆Q(·/h), the smoothed loss
then corresponds replacing the empirical marginal distribu-
tion of the data points x1, . . . , xn ∈ Rd by its kernel den-
sity estimate (KDE), constructed via the smoothing func-
tion sQ := Q′, i.e

Ên,ε,h(f) = En,ε,h(f ; P̂n) = Eε(f ; P̂n ⋆ sQ(·/h)︸ ︷︷ ︸
KDE

), (12)

where ⋆ denotes convolution. Because of the way the
adversarial risk functional Eε is defined, the RHS in the
above can be seen to correspond to a 1-dimensional kernel
density estimation (KDE) for the distribution of margins
mf (x, y) := yf(x), with (x, y) ∼ P .

3.3. The Estimator

For an appropriate choice of smoothing bandwidth h =

hn, our proposed estimator f̂n,ε,h is defined as any mini-
mizer of the smoothed empirical adversarial risk functional
Ên,ε,h over the linear function class Flin, that is

f̂n,ε,h ∈ arg min
f∈Flin

Ên,ε,h(f). (13)

The rest of this section will be spent discussing algorithmic
aspects of the above estimator. We begin with the following
lemma establishes an explicit formula for a sub-gradient of
the empirical smoothed risk Ên,ε,h(fw).
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Lemma 3.1. For any w ∈ Rd, let mi(w) := yix
⊤
i w be the

margin of the data point (xi, yi) w.r.t the linear model fw.
Then, the smoothed empirical adversarial risk functional
w 7→ Ên,ε,h(fw) is differentiable on Rd with gradient

∇wÊn,ε,h(fw) =
1

nh

n∑
i=1

Q′ ((mi − ε)/h) yixi. (14)

Moreover, if Q is twice differentiable with bounded sec-
ond derivative, i.e ∥Q′′∥∞ ≤ α for some α ≥ 0, then
for any ε ≥ 0, the smoothed empirical adversarial risk
functional w 7→ En,ε,h(fw) is L-smooth on Rd, with
L = α∥Σn∥op/h2 and Hessian given by

∇2
wÊn,ϵ,h(fw) =

1

nh2
X⊤Dϵ(w)X, (15)

where X is the n × d matrix with rows x1, . . . , xn (i.e
the design matrix), Σn := X⊤X/n is the empirical co-
variance matrix (aka the normalized Gram matrix), and
Dϵ(w) is the n × n diagonal matrix given by Dϵ(w)ii :=
Q′′((mi(w)− ε)/h) for all i ∈ [n].

For example, in the cause of the Gaussian survival func-
tion Q = QG, it is easy to see that the hypothesis of
proposition are verified with α = ∥Q′′

G∥∞ = 1/
√
2πe.

Likewise, in the case where Q = QS := 1 − σ, with
σ(t) := 1/(1 + e−t) being the sigmoid, the hypothesis
holds with α = ∥σ′′∥∞ ≤ 1.

Proof of Lemma 3.1. Indeed, one can write

Ên,ε,h(fw) =
1

n

n∑
i=1

θε,h(mi) =
1

n

n∑
i=1

Q ((mi − ε)/h) ,

and so differentiating w.r.t w and noting that ∇mi(w) =
yixi gives the first part of the result. Now, differentiating
(14) to w gives

nh2∇2
wÊn,ε,h(fw) =

n∑
i=1

Q′′(
mi − ε

h
)xix

⊤
i = X⊤Dϵ(w)X.

It follows that uniformly on w ∈ Rd, the operator norm of
the Hessian ∇wÊn,ε,h(fw) is upper-bounded by

∥∇2
wÊn,ε,h(fw)∥op ≤ ∥Dϵ(w)∥op

∥X∥2op
nh2

=
∥Dϵ(w)∥op∥Σn∥op

h2
≤ α∥Σn∥op

h2
,

which completes the proof.

3.4. Algorithm for Computing the Estimator

In the case where the attack is measured w.r.t Euclidean
norm, or more generally, Mahalanobis norms, (13) thus

corresponds to a smooth optimization optimization on a
smooth sphere-like Riemannian manifold. This is a stan-
dard problem, and there are lots of efficient algorithms
(Boumal et al., 2018). We use trust-region-based meth-
ods (Absil et al., 2007) implemented in the Manopt library
(Boumal et al., 2014).

In the case of general ℓp-norms with p ̸∈ {2,∞}, the prob-
lem (13) can be tackled using the methods developed in
(Sato, 2023).
Remark 3.1. Note that we are only able to guarantee con-
vergence to a stationary point of Ên,ϵ,h. However, in all our
experiments, we observe that the numerically obtained sta-
tionary point is also the global optimum. A rigorous study
of this aspect will done in a future work, possibly leverag-
ing ideas from (Diakonikolas et al., 2019).

4. Statistical Analysis
We now establish a deviation bound which proves that, for
an appropriate sample-size dependent sequence of band-
widths hn → 0, our proposed estimator f̂n,ε,hn ∈ Flin

defined in (13) is Bayes-consistent over the linear function
class Flin in the sense that its adversarial risk converges
with large n to that of the optimal robust linear classifier.

4.1. Assumptions

We will consider the regime where the sample size n and
the input-dimension d scale like so

n → ∞ such that (d/n) log n → 0. (16)

This includes the fixed-dimensional regime where d is
bounded. The above condition is of course more general
as d is allowed to grow with n, as long as the condition
(d/n) log n → 0 is respected.
Definition 4.1. Given a random variable z, its Lévy con-
centration function (LCF) is defined for any δ ≥ 0 by

LCF(z, δ) := sup
u∈R

P(|z − u| ≤ δ). (17)

LCFs control how much mass a random variable can con-
centrate around any given point. They are encountered in
convex geometry, problems of random matrix theory, and
concentration of random polynomials, just to name a few.
We refer the reader to (Rudelson & Vershynin, 2014) and
the numerous references therein.

For the statistical analysis of the adversarial regret of our
proposed estimator (13), we will make the following mild
regularity assumption on the distribution P of the data
Assumption 4.1 (”Small-Ball” Assumption). For a ran-
dom labelled test data point (x, y) ∼ P , assume that

sup
∥w∥⋆=1

LCF(yx⊤w, δ) ≤ η(δ), (18)
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for some increasing function η verifying limδ→0 η(δ) = 0.

Assumption 4.1 is very mild, and holds under rather very
general conditions. We will see that the assumption holds
if the distribution of the feature vector x conditioned y = l
for any fixed value l ∈ {±1} of the label y has density (w.r.t
to Lebesgue measure on Rd). The assumption will allow us
control the variations of the margin loss θϵ : t 7→ 1t≤ϵ in
the vicinity of the discontinuity at t = ϵ, uniformly over
the linear function class Flin and the attack strength ε > 0.

Remark 4.1. In a completely different context, a condition
similar to Assumption 4.1 has been used in the analysis
of benign overfitting in linear neural networks regression
(Chatterji et al., 2022) (see Assumption A.4 therein).

It turns our that for Assumption 4.1 to hold, the following
condition is sufficient.
Condition 4.1. For any label l ∈ {±1}, the distribution of
the feature vector x conditioned the event y = l, admits a
density (w.r.t Lebesgue measure on Rd).

Proposition 4.1. If Condition 4.1 holds, then Assumption
4.1 prevails.

4.2. Risk-Consistency of Our Proposed Estimator

The following is one of our main theoretical results. It
establishes that the adversarial risk of the linear classifier
f̂n,ε,hn (13) converges to the optimal linear classifier. Note
that f̂n,ε,hn is a random function, as it depends on the ran-
dom training data Dn := {(x1, y1), . . . , (xn, yn)}.
Theorem 4.1. Let Assumption 4.1 be in order. In the limit
(16), if (hn)n is a sequence of bandwidths tending to 0,
then w.h.p over training data Dn, it holds that

sup
ε≥0

Rε(f̂n,ε,hn
) = O

(
λ(hn) +

√
d log n

n

)
n→∞−→ 0, (19)

where λ(hn) := η(hn

√
log 1/hn) + Q(

√
log 1/hn) and

the function η is as in Assumption 4.1.

4.3. Minimax Optimality

We now obtain quantitative rates for the excess adversarial
risk under Assumption 4.1. We do this via an appropriate
choice of bandwidths hn. The following important conse-
quence of Theorem 4.1.
Theorem 4.2. Suppose Assumption 4.1 is in order. Let the
smoothing function Q have exponential-tail (e.g Gaussian
survival function QG). Consider the choice of bandwidth

hn ≍ η−1

(√
d log n

n

)1+Ω(1)

. (20)

Then, in the limit (16), it holds w.h.p over Dn that

sup
ε≥0

Rε(f̂n,ε,hn
) = O

(√
d log n

n

)
n→∞−→ 0. (21)

Note that in Theorem 4.2, the rate
√

d/n (ignoring log-
factors) is matches the minimax rate for non-parameteric
classification. Let us examplify Theorem 4.2 in the case
where the class-conditional distributions of the the features
are multivariate Gaussians.

Corollary 4.1. Suppose that for (x, y) ∼ P , the dis-
tribution of yx is a mixture of (multivariate) Gaussians,
and let the smoothing function QG and bandwidth hn ≍
(
√
(d/n) log n)1+Ω(1). Then, w.h.p over Dn,

sup
ε≥0

Rε(f̂n,ε,hn
) = O

(√
d log n

n

)
. (22)

The result follows from Theorem 4.2 above and the follow-
ing lemma by which η(δ) = O(δ) for Gaussian mixtures.

Lemma 4.2. Suppose there exists an absolute constants
b ≥ 0 such that for all w ∈ Rd, the random variable yx⊤w
has density bounded by b. Then, Assumption 4.1 holds with
η(δ) = 2bδ.

In particular, this is the case when the distribution of z :=
yx is a mixture of (multivariate) Gaussians.

Proof. Indeed, if fw ≤ b is the density of yx⊤w, then

LCF(yx⊤w, δ) := sup
u∈R

P(|yx⊤w − u| ≤ δ)

= sup
u∈R

∫ u+δ

u−δ

fw(z)dz ≤ b · 2δ = 2bδ,

which proves the first part of the claim.

In particular, if the distribution of z ∼
∑

k πkN(µk,Σ)
(a setting considered in (Dan et al., 2020)), then for ev-
ery w ∈ Rd, the random variable Z⊤w has distribu-
tion

∑
k πkN(µ⊤

k w, ∥w∥Σ), which has density bounded by
O(1/∥w∥Σ) = O(1), over the sphere ∥w∥⋆ = 1.

For example, in the case of euclidean-norm attacks, this
bound reduces to the spectral norm O(∥Σ−1∥op).

5. Related Work
There has been a sustained interest in characterizing the
statistical hardness of adversarial learning. In this section,
we review the works which are most relevant to ours.
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5.1. Non-Existence of Consistent Convex Surrogates

Consistency and calibration results (Bartlett et al., 2005)
provide reassurance that optimizing a surrogate does not
ultimately hinder the search for a function that achieves
the risk, and thus allow such a search to proceed within
the scope of computationally efficient algorithms. In the
case of ordinary learning corresponding to the 0/1 loss
θ0 : t 7→ 1t≤0, it has been shown in (Bartlett et al., 2005)
that consistent convex loss functions exist. In fact, all the
classically used convex loss functions (logistic loss, etc.)
are consistent for classification.

However, Bao et al. (2020) recently established negative
results which expose a stark separation between tractabil-
ity of learning half spaces in the aforementioned ordinary
regime, and the case of robust / adversarial classification.
More precisely, they show that in contrast to the case of
ordinary learning where calibrated and consistent convex
surrogates to the 0/1 loss θ0 : t 7→ 1t≤0 exist Bartlett et al.
(2006), no consistent loss functions exist for the adversar-
ial 0/1 θε : t 7→ 1t≤ε (with ε ̸= 0), over linear mod-
els f ∈ Flin. The issue is the discontinuity at the point
t = ε. In the case of ordinary / non-adversarial classifi-
cation where ε = 0, this discontinuity can be handled by
using a convex loss function. In the case of adversarial clas-
sification where ε > 0, such a convexification of θε is not
possible (Bao et al., 2020). In particular, this implies that
regularization based heuristics for training would-be robust
models is neither calibrated nor consistent for robustness,
in general! An exception studied in (Awasthi et al., 2021)
is the realizable case, where the data distribution is separa-
ble in the general sense (23). Our results don’t contradict
the observations of (Bao et al., 2020; Awasthi et al., 2021)
, since actually, our surrogate losses will be non-convex.

5.2. Known Positive Results

Well-Separated and Parametric Settings. A number
of works have proposed linear classifiers which provably
achieve consistency with quantitative rates in favorable set-
tings. Notably, in the case of Gaussian and Bernoulli
mixture models which are reminiscent of a parametric as-
sumption, Schmidt et al. (2018) established a d/n minimax
lower-bound on the adversarial regret (5). Correspond-
ing upper-bounds of

√
d/n and d/n were established for

these data distributions. Moreover, the bound d/n has been
shown to be tight in general (Schmidt et al., 2018; Dan
et al., 2020; Bhattacharjee et al., 2021). Similar results
were obtained in (Dan et al., 2020) in the case of Gaussian
mixtures. In the case of well-separated data, (Bhattachar-
jee et al., 2021) proposed a modified max-margin algorithm
which achieves a 1/n bound on the adversarial risk. Such
so-called fast rates are reminiscent large-margin assump-
tions, which can be fully captured by the so-called Massart

noise condition (Massart & Nédélec, 2006)

|P(y = 1 | x)− 1/2| ≥ γ, (23)

for some γ ∈ (0, 1/2] and almost all x ∈ Rd. In contrast to
the aforementioned works, we consider the case where no
such parametric or large-margin assumption on the under-
lying distribution is made, and establish a non-parametric
error rate of

√
d/n (ignoring log-factors) (Vapnik & Cher-

vonenkis, 1971; Massart & Nédélec, 2006). Moreover, this
rate is optimal since it is well-known that

√
d/n is opti-

mal in classical / non-robust classification without further
distributional assumptions like (23).

The General Setting. Departing from the aforemen-
tioned parametric of well-separatedness assumptions,
(Bhattacharjee & Chaudhuri, 2020) proposed a two-stage
estimator which is provably consistent. The first stage con-
sists in pruning the dataset Dn so as to only keep a maxi-
mal ϵ′-separated subset, for some ϵ′ > ϵ. The second stage
amounts to running a weighted nearest neighbors classifier
on the pruned dataset. Let us mention some weaknesses of
the above method. First, though quite general, the resulting
estimator suffers a notable irreducible computational draw-
back due to the first stage. Indeed, computing a maximal
ϵ′-separated subset is reminiscent of finding a maximal in-
dependent set on a bipartite graph with n vertices. Due to
NP-hardness (Feige, 2002), the complexity of this problem
is impractical in the large-n limit. Furthermore, the con-
sistency results in (Bhattacharjee & Chaudhuri, 2020) for
their proposed estimator are non-quantitative (i.e no rates).

Since the setting of the method proposed in ((Bhattacharjee
& Chaudhuri, 2020) described above is most similar to the
setting considered in our work, we now provide a detailed
comparison with our proposed estimator (13). First, from
a computational standpoint, observe from Lemma 3.1 that
our proposed estimator corresponds to a non-convex but L-
smooth optimization problem with L = O(∥Σn∥op/h2

n),
where we have the choice of smoothing bandwidth hn such
that hn → 0. As in Lemma 3.1, Σn := X⊤X/n is the em-
pirical covariance matrix of the features. For concreteness
if we take ∥Σn∥op = O(1), then L = O(1/h2

n) which con-
trols the computational complexity associated with com-
puting our estimator. On the other hand, the adversarial
regret of our estimator is of order λ(hn) +

√
d log(n)/n

(where λ is a decreasing function depending on η in As-
sumption 4.1) thanks to Theorem 4.1, allowing us to trade-
off between computational complexity / optimization diffi-
culty (small large L) and rate of statistical convergence by
appropriately tuning hn. In particular, if we are only in-
terested in consistency (and no quantitative rates), then our
proposed estimator can be made to run in linear time (i.e
fast optimization) by tuning the smoothing bandwidth hn

such that hn → 0 only very slowly.
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Figure 2. Gaussian Experiment. Showing the adversarial risk (6) of our proposed estimator f̂n,ϵ,hn defined in (13) as a function of
sample size n and Euclidean-norm attack strength ϵ. Left: isotropic features (i.e Σ = Id). Right: Non-isotropic features. The horizontal
broken lines correspond to the Bayes-optimal adversarial risk (25) the given value of ϵ. Error-bars correspond to 10 runs of computing
our estimator, each one corresponding to a different draw of the training dataset Dn. As the sample size n is increased, notice how the
adversarial risk of our estimator approaches the Bayes-optimal adversarial risk, for each level of the attack strength ϵ, in accordance to
Theorem 4.2 and Corollary 4.1.
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Figure 3. Non-Gaussian Experiment. As in Figure 2, error-bars correspond to 10 runs of computing our estimator f̂n,ϵ,hn (13), each
one corresponding to a different draw of training dataset Dn. Left: isotropic features (i.e Σ = Id). Right: Non-isotropic features. As
the sample size n is increased, notice how the adversarial risk of our estimator approaches the Bayes-optimal adversarial risk, for each
level of the attack strength ϵ, in accordance to Theorem 4.2.

5.3. The Case of Regression

In the setting of linear regression, (Xing et al., 2021) stud-
ied Euclidean-norm attacks with general covariance matri-
ces. They showed that the optimal robust model is a ridge
regression whose ridge parameter depends implicitly on the
strength of the attacks. (Javanmard et al., 2020) studied
tradeoffs between ordinary and adversarial risk in linear
regression, and computed exact Pareto optimal curves in
the case of Euclidean-norm attacks on isotropic features.
Their results show a tradeoff between ordinary and adver-
sarial risk for adversarial training. (Javanmard & Mehrabi,
2021) also revisited this tradeoff for latent models and show
that this tradeoff is mitigated when the data enjoys a low-
dimensional structure.

Recently, the study of robustness in linear regression for
general norms and feature covariance matrices has been
initiated in (Scetbon & Dohmatob, 2023; Dohmatob &

Scetbon, 2023) in a student-teach setup.

Finally, let us mention (Hassani & Javanmard, 2022) which
established tradeoffs between accuracy and robustness to
Euclidean-norm attacks on two-layer neural networks in
random features regime. (Dohmatob & Bietti, 2022) ex-
tended this analysis to other learning regimes including
stochastic gradient descent (SGD) and the so-called ”lazy
training” regime (Chizat et al., 2019).

6. Empirical Validation
In this section, we present some empirical verification of
our theoretical results. All experiments were run on a single
modern CPU laptop.

Gaussian Experiment. Consider the distribution

P(y = ±1) = 1/2, x | y ∼ N(yµ,Σ), (24)

7
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where µ ∈ Rd with ∥µ∥Σ = 1 is a fixed vector and the
d × d positive-definite matrix Σ is the feature covariance
matrix. We try both Σ = Id and Σ = diag(σ2

1 , . . . , σ
2
d),

with σ2
k = k−2 for all k ∈ [d]. This data model corre-

sponds to the setting of Schmidt et al. (2018); Dobriban &
Wager (2018); Dan et al. (2020), and the Bayes-optimal ro-
bust linear classifier is known analytically. Note that for
this problem, it is well-known (Bhagoji et al., 2019; Do-
briban et al., 2020) that the optimal value of the adversarial
risk is attained over linear models and is explicitly given by

Eopt
ϵ = Φ(−(1− ϵ/∥µ∥2)+ · SNR), (25)

where SNR := ∥µ∥2/σd is a measure of signal-to-
noise ratio. We set the input-dimension to d = 20 for
this experiment. For each value of sample size n ∈
{100, 200, . . . , 1000, 2000, 3000, . . . , 10000}, we generate
a dataset Dn = {(x1, y1), . . . , (xn, yn)} of n iid sam-
ples, and then compute the estimator f̂n,ϵ,hn

described in
Section 3.3, where hn is the bandwidth parameter, taken
as hn =

√
(d/n) log n, in accordance with the choice

in Corollary 4.1. We consider Euclidean-norm attacks of
strength ϵ ranging in {0.1, 0.2, . . . , 0.9, 1}.

The results of this experiment are shown in Figure 2.

Non-Gaussian Experiment. Next we turn from the
Gaussian mixture setting and consider a setup where

z | y ∼ N(yµ, Id), x = max(z, 0) (entry-wise). (26)

This setup captures the structure of a two-layer neural net-
work with ReLU activation in the so-called random fea-
tures regime where only the parameters of the output layer
are learned. The rest of the experimental setup is as in the
previous experiment (the ”Gaussian Experiment”).

The results of this experiment are shown in Figure 3.

Comparison with (Bao et al., 2020). It should be noted
that (Bao et al., 2020) doesn’t attempt any analysis of con-
sistency, and therefore contains no regret analysis (rates).
In particular, minimizing their proposed surrogate losses
(sigmoid, etc.) don’t provably converge to Bayes-optimum
adversarial risk. In contrast, our work principally explores
the problem of consistency and we show that for a class
of non-convex smooth loss function (e.g sigmoid, Gaus-
sian, etc.), the resulting estimator is consistent w.r.t adver-
sarial 0/1 risk; we also establish an explicit regret of order
Õ(1/

√
n) rate of convergence. A key idea in our work is to

not consider static surrogate losses as in (Bao et al., 2020),
but to adapt a smoothing bandwidth h = hn so that it van-
ishes with sample size n at a precise rate (20).

Nothwithstanding, Figure 4 (Right) shows the result of a
small experiment comparing our proposed estimator with

that proposed in (Bao et al., 2020). The dataset, is a
2D Gaussian dataset given by x | y ∼ N(yµ,Σ) and
P(y = ±1) = 1/2, where Σ = diag(σ2

1 , σ
2
2), with

σ1 = 1, σ2 = 0.1. This is a modification of the dataset
”twonorm” described in Section 10 of (Bao et al., 2020)
where they had σ1 = σ2 = 0.1 (left plot). For a smoothing
bandwidth parameter, we use the surrogate loss function
θϵ,h(u) = Q((u − ϵ)/h), with Q = QS . The case h = 1
corresponds to the the estimator proposed in (Bao et al.,
2020), while h = hn as in (20) corresponds to the estima-
tor proposed in our work. As we can see (right plot), the
estimator from (Bao et al., 2020) fails to be consistent here,
while our adaptive estimator (left plot) is consistent, as pre-
dicted by Theorem 4.2. Similar results are observed with
the choice Q = QG.
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Figure 4. Inconsistency of non-adaptive smoothing bandwidth.
Left. Gaussian mixture problem with σ1 = σ2 = 0.1. Right.
σ1 = 1, σ2 = 0.1. Non-adaptive bandwidth h = 1 corre-
sponds to (Bao et al., 2020); unlike our proposed estimator (adap-
tive bandwidth hn), it fails to achieve the optimal adversarial risk.

7. Conclusion
In this work, we have considered the problem of consis-
tent adversarially robust classification in a setting where no
parametric or well-separatedness assumptions are made, in
contrast with previous works We have proposed a estima-
tor which simultaneously enjoys low-computational com-
plexity and statistical guarantees in the form of quantitative
rates of convergence to the Bayes-optimal adversarial risk.
Our estimator is based on smoothing the adversarial 0/1
loss, with a smoothing bandwidth which effectively adapts
to the sample complexity and input-dimension.

Non-linear Models. Our work can be extended in a num-
ber of directions. Notably, our work has focused on lin-
ear models. Even though our theoretical results developed
here are already very interesting in this regime, analyzing
neural networks (at least its so-called linearized and kernel
regimes) would be an interesting direction to pursue.

Statistics vs Optimization. Finally, the theoretical analy-
sis in this work has focused on the statistical properties of
the proposed estimator. The optimization related aspects of
computing our proposed estimator (provable convergence
to global optimum instead of just stationary points) will be
pursued in a future extension of our work.
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Impact Statement
As we usher in the era of large language models (LLMs)
and ChatGPT, the challenge of adversarial examples gains
unprecedented importance, magnified by the widespread
distribution of unsanitized and untraceable content and
models across the internet. Our research delves into theo-
retical and algorithmic analyses of robust regression within
a non-parametric framework, introducing the first estimator
proven to be optimally robust in such a complex environ-
ment.

This paper aims to contribute significantly to the advance-
ment of Machine Learning, meticulously examining the so-
cietal impacts of our findings. We are confident that our
work, which carefully navigates the intricacies of adversar-
ial robustness, offers exclusively positive implications for
the field and society at large.
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A. An Oracle Bound: Proof of Theorem 4.1
Recall the definition of adversarial risk Eϵ(f) and excess adversarial risk Rϵ(f) from Section 2.1

Theorem 4.1. Let Assumption 4.1 be in order. In the limit (16), if (hn)n is a sequence of bandwidths tending to 0, then
w.h.p over training data Dn, it holds that

sup
ε≥0

Rε(f̂n,ε,hn
) = O

(
λ(hn) +

√
d log n

n

)
n→∞−→ 0, (19)

where λ(hn) := η(hn

√
log 1/hn) +Q(

√
log 1/hn) and the function η is as in Assumption 4.1.

Proof. Let f̂ = f̂n,ϵ,h be a minimizer of Ên,ϵ,h over the linear function class Flin and let f⋆ be a minimizer of Eϵ over
Flin. Then, for any f ∈ Flin, one has

0 ≤ Eϵ(f̂)− Eϵ(f⋆) = Eϵ(f̂)− Ên,ϵ,h(f̂) + Ên,ϵ,h(f̂)− Ên,ϵ,h(f⋆)︸ ︷︷ ︸
≤0

+Ên,ϵ,h(f⋆)− Eϵ(f⋆)

≤ Eϵ(f̂)− Ên,ϵ,h(f̂) + Ên,ϵ,h(f⋆)− Eϵ(f⋆) ≤ 2∥Eϵ − Ên,ϵ,h∥Flin
.

(27)

We deduce that

Rϵ(f̂) := Eϵ(f̂)− inf
f∈Flin

Eϵ(f) ≤ 2∥Eϵ − Ên,ϵ,h∥Flin
. (28)

On the other hand, we can further decompose

∥Eϵ − Ên,ϵ,h∥Flin
= ∥Eϵ − Ên,ϵ + Ên,ϵ − Ên,ϵ,h∥Flin

≤ ∥Eϵ − Ên,ϵ∥Flin︸ ︷︷ ︸
gap due to ERM on margin loss

+ ∥Ên,ϵ − Ên,ϵ,h∥Flin︸ ︷︷ ︸
gap due to smoothing of margin loss

, (29)

where ∥U − V ∥F := supf∈F |U(f)− V (f)|.

11
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Combining (28) and (29) from the sketch of the proof in the main text, we get

Eϵ(f̂n,ϵ,h)− inf
f∈Flin

Rϵ(f) ≤ ∥Eϵ − Ên,ϵ∥Flin︸ ︷︷ ︸
usual ERM error

+ ∥Ên,ϵ − Ên,ϵ,h∥Flin︸ ︷︷ ︸
empirical error due to smoothing

(30)

We now bound the different terms in the RHS of (30) separately.

Bounding the first term in (30). Consider the binary function class Gϵ on Rd × {±1} given by

Gϵ := {(x, y) 7→ θϵ(−yf(x)) | f ∈ Flin}. (31)

Thanks to Lemma C.2, we know that the VC dimension of Gϵ is at most 4d. Then, applying the Vapnik-Chervonenkis (VC)
theory uniform convergence (Vapnik & Chervonenkis, 1971) gives

∥Eϵ − Ên,ϵ∥Flin
≲

√
d log n

n
w.h.p over training data Dn. (32)

Bounding the second term in (30). In Proposition B.1, it is established that for small h and large n, the following orcale
bound holds w.h.p,

∥Ên,ϵ,h − Ên,ϵ∥Flin
≲ λ(h) +

√
d log n

n
. (33)

Combining with (30) and (32), we obtain that w.h.p,

Eϵ(f̂)− inf
f∈Flin

Eϵ(f) ≲ λ(h) +

√
d log n

n
, (34)

which completes the proof.

B. Controlling the Bias in Adversarial Risk Due to Smoothing
We now prove inequality (33), which was instrumental in the proof of Theorem 4.1.

Proposition B.1. With the same conditions and notations as in Theorem 4.1, it holds w.h.p over the training data Dn that

∥Ên,ϵ,h − Ên,ϵ∥Flin
= O

(
λ(hn) +

√
d log n

n

)
.

Proof. Vary h = hn and t = tn > 0 such that

h → 0+, t → ∞, ht → 0+. (35)

For each f ∈ Flin and i ∈ [n], consider the binary random variable

zt,i(f) := 1|yif(xi)−ϵ|≥ht =

{
1, if |yif(xi)− ϵ| ≥ ht,

0, else.
(36)

Note that the sequence zt,1(f), . . . , zt,n(f) is an iid sequence of Bernoulli random variables with mean αt(f) ∈ [0, 1]
given by

αt(f) := E [zt,i(f)] = P(|y1f(x1)− ϵ| ≥ ht). (37)

Recall the function θϵ(u) := 1u≤ϵ and θϵ,h(u) := Q((u− ϵ)/h) for any u ∈ R, introduced in (7) and (9) respectively, and
observe that if |u− ϵ| ≥ ht, then

|θϵ,h(u)− θϵ(u)| ≤

{
|1−Q((u− ϵ)/h)| = Q(−(u− ϵ)/h) = Q(|u− ϵ|/h), if u− ϵ ≤ −ht,

|Q((u− ϵ)/h)− 0| = Q((u− ϵ)/h) = Q(|u− ϵ|/h), if u− ϵ ≥ ht

≤ Q(t),

(38)
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Where have used the property that Q is non-increasing and Q(−a) ≥ 1/2 for all a ≥ 0. We deduce that: every f and i,

|θϵ,h(yif(xi))− θϵ(yif(xi))| ≤ 1− (1−Q(t))zt,i(f). (39)

Now, consider the {0, 1}-valued function class on Rd × {±1} given by

Ht := {(x, y) 7→ 1|yf(x)−ϵ|≥ht | f ∈ Flin}. (40)

Thanks to Lemma C.1, we know that the VC dimension of Ht is at most 4d, and so by (Vapnik & Chervonenkis, 1971), it
holds w.h.p over training data Dn that1

sup
f∈Flin

∣∣∣∣∣ 1n
n∑

i=1

zt,i(f)− αt(f)

∣∣∣∣∣ ≲
√

d log n

n
, (41)

where all the hidden constants are independent of d, n, h, and t. Combining with (39), we deduce that, for large n and
small h, the following chain of inequalities holds w.h.p over training data Dn

1

n

n∑
i=1

|θϵ,h(yif(xi))− θϵ(yif(xi))| ≤ 1− (1−Q(t)) · 1
n

n∑
i=1

zt,i(f)

=
1

n

n∑
i=1

(1− zt,i(f)) +
1

n

n∑
i=1

Q(t)zt,i(f)

≲ 1− αt(f) +

√
d log n

n
+Q(t)αt(f) +

√
d log n

n

≲ βt(f) +

√
d log n

n
,

(42)

where βt(f) is defined by

βt(f) := 1− αt(f) +Q(t)αt(f). (43)

Taking t =
√

k log 1/h and applying Lemma B.1 ensures that, for any fixed positive k and for h → 0+,

βt(f) ≲ η(
√
kh
√
log 1/h) +Q(

√
k log 1/h), for all f ∈ Flin. (44)

We deduce that, for large n and small h, it holds w.h.p over the training data Dn, that

∥Ên,ϵ,h − Ên,ϵ∥Flin
= sup

f∈Flin

1

n

n∑
i=1

|θϵ,h(yif(xi))− θϵ(yif(xi)))|

≲ η(h
√
log 1/h) +Q(

√
k log 1/h) +

√
d log n

n
,

(45)

which completes the proof.

Lemma B.1. Suppose the function class Flin is nice. Then, for any fixed positive k and in the limit h → 0+ with
t =

√
3 log 1/h, it holds that ∥βt∥Flin

≲ η(
√
kh
√

log 1/h) +Q(
√
k log 1/h).

Proof. For small ht > 0 with ht → 0+, one computes

βt(f) = 1− αt(f) +Q(t)αt(f)

≤ 1− αt(f) +Q(t)

≤ η(ht) +Q(t),

(46)

where,

1Note that the Õ(1/
√
n) rate cannot be improved to o(1/

√
n) even for a single f ∈ Flin since this would contradict the CLT.

13



Consistent Adversarially Robust Linear Classification: Non-Parametric Setting

– The first inequality is a basic Gaussian tail-bound, and the fact that αt(f) ≤ 1.

– The second inequality invokes Assumption 4.1 to get 1− αt(f) = P(|yf(x)− ϵ| ≤ ht) ≤ η(ht) for (x, y) ∼ P .

Finally, choosing t =
√
k log 1/h with h → 0+ ensures that ht =

√
kλ(h) ≍ λ(h), and so βt(f) ≤ η(

√
kh
√

log 1/h) +

Q(
√
k log 1/h) as claimed.

B.1. Proof of Theorem 4.2

Let f̂ = f̂n,ε,h be a minimizer of Ên,ε,h over the function class Flin. For any f ∈ Flin, one computes

Rε(f̂) ≤ Eε(f̂)− Eε(f) = Eε(f̂)− Ên,ε,h(f̂) + Ên,ε,h(f̂)− Ên,ε,h(f)︸ ︷︷ ︸
≤0

+Ên,ε,h(f)− Eε(f)

≤ Eε(f̂)− Ên,ε,h(f̂) + Ên,ε,h(f)− Eε(f)

≤ 2 sup
f∈Flin

|Eε(f)− Ên,ε,h(f)|.

Thus, defining ∥Eϵ − Ên,ϵ,h∥Flin
:= supf∈Flin

|Êϵ(f)− Ên,ϵ,h(f)|, we deduce that

Rε(f̂) ≤ 2∥Eε − Ên,ε,h∥Flin
. (47)

On the other hand, we can further decompose

∥Eε − Ên,ε,h∥Flin
= ∥Eε − Ên,ε + Ên,ε − Ên,ε,h∥Flin

≤ ∥Eε − Ên,ε∥Flin︸ ︷︷ ︸
regret due to ERM

+ ∥Ên,ε − Ên,ε,h∥Flin︸ ︷︷ ︸
regret due to smoothing

.
(48)

The first term in the above decomposition is controlled using classical uniform convergence arguments (Vapnik & Chervo-
nenkis, 1971; Vapnik, 2000); it is of order O(

√
(d/n) log n) since the VC pseudo-dimension of Flin is at most d. Thanks

to Proposition B.1, we know that the second term is of order λ(h) +
√
(d/n) log n w.h.p. Combining with (47) then gives

(4.1).

Finally, taking the bandwidth hn as in (20) balances both terms in (4.1) and we obtain (21).

C. VC Dimension Computations
Let F be a real-valued function class on an abstract set X .

Lemma C.1. Let α, β ∈ R with β ≥ 0, and define a binary-valued function class H := {(x, y) 7→ 1|yf(x)−α|≥β | f ∈ F}.
Then, we have the upper bound

VCdim(H) ≤ 4 ·VCpdim(F). (49)

In particular, if F = F is the linear function class on Rd, then VCdim(H) ≤ 4d.

Proof. First observe that, in terms of VC dimension, the function class H can be equivalently defined as a collection of
sets like so

H = {Tα,β(f) | f ∈ F}, where Tα,β(f) := {(x, y) ∈ X × {±1} | |yf(x)− α| ≥ β}. (50)

Now, for any t ∈ R and f ∈ F , define St(f) := {(x, y) ∈ X ×{±1} | yf(x) ≤ t}, and consider the function class St(F)
on X × {±1} given by

St(F) := {St(f) | f ∈ F}. (51)

Since |yf(x) − α| ≥ β iff yf(x) ≤ α − β or −yf(x) ≤ −α − β, it is clear that (x, y) ∈ Tα,β(f) iff (x, y) ∈
Sα−β(f) ∪ S−α−β(f), and so Tα,β(f) = Sα−β(f) ∪ S−α−β(f). It follows that,

H ⊆ {A ∪B | A ∈ Sα−β(F), B ∈ S−α−β(−F)}, (52)
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where −F := {−f | f ∈ F}.

Thanks to van der Vaart & Wellner (1996, Lemma 2.6.17, part (iii)), we deduce that

VCdim(H) ≤ VCdim(Sα−β(F)) + VCdim(S−α−β(−F))

= VCdim(Sα−β(F)) + VCdim(S−α−β(−F))

= VCdim(Sα−β(F)) + VCdim(¬Sα+β(F))

= 2 ·VCdim(Sα−β(F)).

(53)

where we have used the fact that VCdim({S′ | S ∈ S}) = VCdim(S) for any collection of sets S.

Finally, If thanks to Lemma C.2, we have

VCdim(St(F)) ≤ 2 ·VCpdim(F). (54)

Combining with (53) then gives VCdim(H) ≤ 4VCpdim(F).

In particular, for the half-space function class F on Rd, we have VCpdim(F) ≤ d, which then gives VCdim(H(F)) ≤ 4d,
and the proof is complete.

Lemma C.2. Let ϵ ∈ R be fixed and define a collection of subsets of X × {±1} by

H := {Λ(f) | f ∈ F}, where Λ(f) := {(x, y) ∈ X × {±1} | yf(x) ≤ ϵ}. (55)

Then, VCdim(H) ≤ 2 ·VCpdim(F).

Proof. For any f ∈ F and y ∈ Y , define fy : X → R by fy(x) := y(x)− ϵ+ y, and let Fy := {fy | f ∈ F}. Thus, Fy is
an affine translation of F . Then, one computes

Λ(f) = ∪y∈{±1}{(x, y) | x ∈ X , yf(x) ≤ ϵ}
= ∪y∈{±1}{(x, y) | x ∈ X , fy(x) ≤ y}
= ∪y∈{±1}{(x, t) ∈ X × R | fy(x) ≤ t} ∩ (X × {y})
= ∪y∈{±1}SG(Fy) ∩ (X × {y})
= ∪y∈{±1}Λy(f),

(56)

where Λy(f) := SG(Fy)∩ (X ×{y}). For every y, let Λy(F) := {Λy(f) | f ∈ F}. We deduce from the previous display
that,

H = {∪y∈{±1}Λy(f) | f ∈ F} ⊆ {A ∪B | A ∈ Λ+(F), B ∈ Λ−(F)}, (57)

and so, thanks to (?)Lemma 2.6.17, part (iii))]vaartwellner96book, we obtain

VCdim(H) ≤
∑

y∈{±1}

VCdim(Λy(F)). (58)

Now, observe that Λy(F) = {A ∩ (X × {y}) | A ∈ SG(Fy)}, and so by (?)Lemma 2.6.17, part (ii))]vaartwellner96book,
we get

VCdim(Λy(F)) ≤ VCdim(SG(Fy)). (59)

Now, since the transformation f 7→ fy is obviously a bijection between F and Fy , the VC pseudo-dimensions of F and
Fy are equal. We deduce from (59) that

VCdim(Λy(F)) ≤ VCdim(SG(Fy)) = VCdim(SG(F)) =: VCpdim(F). (60)

Combining with (58) gives the claimed result.
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D. Proof of Proposition 4.1
Proof. Under Condition 4.1, it is clear that for (x, y) ∼ P , the random vector z := yx has density. Indeed, if N ⊆ Rd is a
null-set w.r.t the Lebesgue measure on Rd, then one computes

P(z ∈ N) = P(y = 1)P(x ∈ N | y = 1) + P(y = −1)P(−x ∈ N | y = −1) = 0 + 0 = 0, (61)

since −N := {−v | v ∈ N} is also a null-set. It follows that every continuous transformation of z also has density, and
thus has a continuous CDF. In particular, for every w ∈ Rd, the ”margin” random variable m(x, y;w) := yx⊤w = z⊤w
has a continuous CDF.

Now, let R be a large positive number. By the preceding argument and the compactness of the set

SR := {(w, u) ∈ Rd+1 | ∥w∥⋆ = 1, |u| ≤ R},

the function δ 7→ sup(w,u)∈SR
P(|z⊤w − u| ≤ δ) is continuous on (0,∞), and so

lim
δ→0+

sup
(w,u)∈SR

P(|z⊤w − u| ≤ δ) = sup
(w,u)∈SR

lim
δ→0+

P(|z⊤w − u| ≤ δ)

= sup
(w,u)∈SR

P(z⊤w = u) = 0.
(62)

On the other hand, if |u| > R, then |z⊤w − u| ≥ |u| − |z⊤w| > R− |z⊤w|, and so

sup
∥w∥⋆=1, |u|>R

P(|z⊤w − u| ≤ δ) ≤ sup
∥w∥⋆=1

P(R− |z⊤w| ≤ δ) ≤ sup
∥w∥⋆=1

P(|z⊤w| > R− δ)

≤ P( sup
∥w∥⋆=1

|z⊤w| > R− δ) = P(∥z∥ > R− δ)

= P(∥z∥ > R− δ)
δ→0+−→ P(∥z∥ > R)

R→∞−→ 0.

(63)

In the last two steps, we have used the fact that the random variable ∥z∥ has density since every norm on Rd is continuous.
Combining (62) and (63) completes the proof of the claim.
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