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A B S T R A C T   

Place recognition is widely used for global localization technology. However, the existing place recognition 
solutions are limited by the requirement for the same type of sensors to be used in both the localization process 
and the mapping process. Therefore, the existing heterogeneous 3D map cannot be used for place recognition 
directly with the existing methods, leading to underutilization of information. In addition, most of the existing 
global feature descriptors used in place recognition solutions are still not highly descriptive and perform poorly 
under changed viewpoint scenes. To resolve these challenges, this paper presents a place recognition solution 
using virtual light detection and ranging (LiDAR) and polar grid height coding image (PGHCI) descriptors in the 
existing heterogeneous 3D map. First, virtual LiDAR is proposed to generate a series of virtual scans that are 
similar to the real scan of the localization sensor from the existing map, overcoming the limitation of the existing 
place recognition methods. Next, a novel PGHCI descriptor for place recognition is generated, and a method that 
overcomes the recognition difficulty of changed viewpoints in the same scene is presented. Two weighted dis-
tances for similarity estimation are analyzed, and the performance of the PGHCI descriptor with different pa-
rameters is evaluated. Finally, the performance of the PGHCI descriptor and the solution proposed in the paper is 
evaluated on several popular benchmark datasets and our own dataset. Comprehensive experiments demon-
strated that the PGHCI descriptor has higher descriptiveness and is robust with respect to the changed viewpoint 
scene, as shown by the comparison of precision-recall (PR) curves using datasets with multiple scenes. The 
proposed place recognition solution has 100% success rates in the evaluation exclude under occluded conditions, 
showing that it is feasible to achieve robust place recognition using a heterogeneous 3D map.   

1. Introduction 

Place recognition is a classic problem in robotics applications and 
refers to a procedure of discerning places that have been visited. It is 
widely used to provide robust initial estimates for global localization 
technology by matching data of localization sensors with an existing 
map. Based on localization sensor data, current place recognition solu-
tions can be divided mainly into two categories: image-based and 3D 
point cloud-based. Image-based methods suffer from a limited view field 
of photo and illumination changes (Wu et al., 2018; Wang et al., 2019). 
3D point cloud-based solutions have recently attracted more attention 
because point cloud data cover a larger field and are insensitive to 
illumination. 

Existing 3D point cloud-based place recognition solutions usually 

include the following steps. First, feature extraction is carried out for 
each scan in a 3D map (features here include but are not limited to global 
features and feature sets composed of local shape features). Then, the 
distances between the features of the query scan from the localization 
sensor and the features of each scan in the 3D map are obtained by 
similarity estimation. Finally, the minimum distance between two fea-
tures that is smaller than a threshold value indicates that place recog-
nition is successful. Although many insightful 3D point cloud-based 
solutions have been proposed, some problems still remain to be solved. 

Existing 3D point cloud-based place recognition solutions are based 
on similarity estimation between query scans and scans in 3D maps. 
These solutions request scans in a 3D map to be from the same type of 
sensor as the localization sensor (He et al., 2016; Kim and Kim, 2018; 
Wang et al., 2019; Guo et al., 2019; Cop et al., 2018). Therefore, the 
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existing heterogeneous 3D map from a different type of sensor cannot be 
used for place recognition directly with the existing solutions. In the 
localization process, rotating multibeam LiDAR is usually used (Wang 
et al., 2019; Guo et al., 2019). Heterogeneous 3D maps derived from 
terrestrial laser scanners (TLSs) (Liu et al., 2017), building information 
models (BIMs) (Liu et al., 2021); and 2D laser range finders (Zhang and 
Singh, 2017) cannot be used for place recognition with existing 
methods. However, there are many existing heterogeneous 3D maps. 
The use of the existing heterogeneous 3D maps for place recognition will 
avoid redundant data collection efforts. In addition, the descriptiveness 
of existing global feature descriptors used in the existing place recog-
nition solutions can be improved. Poor recognition is obtained in some 
cases, particularly under the condition that LiDAR is set on the same 
place with changed viewpoints (Kim and Kim, 2018). 

To resolve the above issues, we proposed a novel place recognition 
solution that can be used in the existing heterogeneous 3D map, as 
shown in Fig. 1. In our paper, one scan is equivalent to one frame. The 
contributions of this work beyond state-of-the-art methods are as 
follows:  

(1). We developed a heterogeneous 3D map-based place recognition 
solution using virtual LiDAR and a polar grid height coding image 
(PGHCI) descriptor. Using the concept of virtual LiDAR, the 
proposed solution overcomes the limitation of existing place 
recognition methods that require the use of same types of sensors 
in the mapping process and localization process.  

(2). The proposed PGHCI descriptor adopts a polar grid and encodes a 
3D point cloud into a 2D image. Therefore, the PGHCI descriptor 
is highly descriptive and features rotational invariance.  

(3). Jensen–Shannon (JS) divergence was adopted to estimate the 
rotation transform between two PGHCI descriptors under 
changed viewpoints. We considered the distribution of each 
column within the PGHCI descriptor. The adopted method is 
more accurate than the forcible method and overcomes the dif-
ficulty of recognition of changed viewpoints in the same scene.  

(4). Two weighted distances were applied to estimate the similarity 
between two PGHCI descriptors, and we analyzed the applica-
bility of two weighted distances for different types of sensors. 

The rest of the paper is organized as follows. Section 2 describes the 
related work; Section 3 introduces solution of place recognition that 
utilizes virtual LiDAR and the PGHCI descriptor; Section 4 presents the 
experimental results. Section 5 summarizes and concludes this work. 

2. Related work 

In this section, we first present a brief introduction of LiDAR and 
some applications using virtual LiDAR. Then, we review 3D point cloud- 
based place recognition solutions. 

2.1. Brief introduction of LiDAR and virtual LiDAR 

LiDAR (light detection and ranging) has become a common tech-
nology for the acquisition of 3D point clouds. A LiDAR sensor can obtain 
the distance of an object by emitting a pulsed laser and receiving the 
reflected signals from the object. The fundamental principle of major 

Fig. 1. The solution for place recognition in existing heterogeneous 3D map. The inputs of the solution are a real scan and an existing 3D map. The output is the place 
information of the sensor used for real scan collection. Virtual LiDAR is proposed to generate virtual scans. We can match real scan from the sensors with virtual 
scans. The match steps include calculating PGHCI descriptors, rotation transformation and estimating similarity. 

Fig. 2. The laser ray from a vritual LiDAR hits a planar model.  
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LiDAR is time of flight (TOF). Direct TOF obtains the time between 
sending and receiving the pulsed laser by a high-precision timer. Indi-
rect TOF obtains the time by measuring the phase shift. First, the time of 
flight is multiplied by the speed of light to obtain the distance. Then, 
combining the distance of the object with the angles at which the laser 
was emitted, the point of the object can be obtained. 

Some model-based methods focus on producing virtual LiDAR data. 
Ray casting is used to simulate each laser ray emitted by the virtual 
LiDAR (Gusmão et al., 2020). Different from the LiDAR, the point of the 
model is obtained by calculating the intersection of the laser rays 
emitted from the virtual LiDAR and the surface of the model, as shown in 
Fig. 2. The laser ray is emitted at a preset yaw and pitch angle that are 
parameters of the virtual LiDAR. The first point that the laser ray hits is 
the point of model. 

Based on the existing model, some studies focused on applications 
using virtual LiDAR. In the construction domain, virtual LiDAR plays an 
important role in construction progress tracking (Bosché et al., 2014; 
Bosché et al., 2015), building component quality control (Bosché and 
Guenet, 2014) and rescue after the disaster (Ma et al., 2016). In the 
above applications, virtual LiDAR is proposed to generate an as-plan 
point cloud from the BIM model. In the autonomous driving domain 
(Yue et al., 2018; Hanke, 2018; Zhao et al., 2021), virtual LiDAR is 
proposed to create large point cloud datasets with point-level labels 
from a dynamic virtual environment. Many models exist for the dynamic 
virtual environment. Synthetic datasets greatly develop supervised deep 
learning algorithms which are data driven, bringing the overall safety 
validation effort for automated driving functions to an economically 
feasible level (Linnhoff et al., 2020). 

Major existing heterogeneous 3D maps are not models. Therefore, 
virtual LiDAR data cannot be obtained using the above methods. The 
virtual LiDAR proposed in this paper converts the original point cloud 
into data that are similar to the data of the localization sensor. More 
details can be found in Section 3.1. 

2.2. 3D point cloud-based place recognition solution 

3D point cloud-based place recognition solutions are divided mainly 
into three categories. The first category is the bag of words (BOW)-based 
methods. These methods detect the key points in the frame and then 
calculate the 3D local feature descriptor of each key point. The 3D local 
feature descriptor is a vector that is converted from the surface shape 
information contained in the detected feature point neighborhood. 
Detailed studies of local feature descriptors are reported in the literature 
(Guo et al., 2014; Yang et al., 2016; Han et al., 1802; Yang et al., 2020). 
The 3D local feature descriptors are converted into words of a dictionary 
that have been subsequently constructed offline. Then; place recognition 
is carried out based on a histogram of the words. Steder et al. (Steder 
et al., 2011) used normal aligned radial feature (NARF) to construct a 
bag-of-words model and achieved good results. Other key point de-
tectors can also be applied in the construction of word bag models, such 
as intrinsic shape signatures (ISS) (Yu, 2009), Harris3D (Sipiran and 
Bustos, 2011) and KPQ-SI (Mian et al., 2010). Binary shape context 
(BSC) (Dong et al., 2017), Signature of Histograms of Orientations 
(SHOT) (Tombari et al., 2010), Quintuple Local Coefficient Images 
(QLCI) (Tao et al., 2020) and other local feature descriptors can also be 
used for local feature extraction. However, it is still a huge challenge to 
realize 3D key point detection with a high repetition rate (Boroson and 
Ayanian, 2019). Under the condition of the same scene with different 
viewpoints, the result of place recognition will be greatly affected if the 
repetitive detection result of key points cannot be achieved. 

Extraction of global feature descriptors can solve the above prob-
lems. Methods based on global feature descriptors are widely used for 
place recognition. Compared with the BOW-based methods, these 
methods reduce the computational complexity and improve the 
robustness of the algorithm by extracting the features of the acquired 
whole point cloud. Muhammad et al. presented Z-projection 

(Muhammad and Lacroix, 2011) that calculates the normal vectors and 
saves the angles between the normal corresponding to each point and 
the Z axis to construct the feature descriptor. He et al. proposed multi- 
view 2D projection (M2DP) (He et al., 2016) that projects the 3D 
point cloud onto several two-dimensional planes and obtains the point 
cloud distribution matrix. The feature descriptor is generated through 
singular value decomposition (SVD) of the matrix. Under the condition 
of the same scene with changed viewpoints, the above methods cannot 
achieve place recognition results, because both descriptors are not 
rotationally invariant. Scan Context (SC) (Kim and Kim, 2018) and 
LiDAR IRIS (Wang et al., 2019) construct arc-shaped grids for rotating 
LiDAR and extracting features inside the grids to construct feature de-
scriptors. The Scan Context selects the highest value within the raster to 
acquire feature descriptors, and the LiDAR IRIS conducts LoG-Gabor 
filtering and thresholding operations on the LiDAR IRIS image to 
obtain feature descriptors. To achieve rotation invariance, Scan Context 
uses the forcible solution to match feature descriptors, while LiDAR IRIS 
uses the Fourier transform. Although Scan Context and LiDAR-IRIS have 
rotational invariance characteristics, they also show poor recognition, 
particularly under the condition that LiDAR is set on the same place with 
a changed viewpoint. This is because the methods obtaining rotational 
invariance are not sufficiently accurate in addition to the low descrip-
tiveness of the above descriptors. All of the above methods encode 
spatial information into feature descriptors. DEscriptor of LiDAR In-
tensities as a Group of HisTograms (DELIGHT) (Cop et al., 2018), In-
tensity Signature of Histograms of OrienTations (ISHOT) (Guo et al., 
2019) and Intensity Scan Context (ISC) (Wang et al., 2020) make use of 
echo intensity information to construct feature descriptors. Intensity 
information needs to be calibrated prior to using different LiDARs. The 
calibration result of intensity information affects place recognition with 
these descriptors. 

The proposed PGHCI descriptor is created based on a polar grid, 
endowing the descriptor with rotational invariance. The value of each 
grid is assigned by the height distribution of the points in the grid, 
making the descriptor more descriptive. In addition, a more accurate 
method that obtains rotational invariance is adopted in the place 
recognition procedure. The combination of all of the above character-
istics makes the proposed descriptor more robust for place recognition in 
challenging scenes. 

To date, two methods using deep learning have been employed to 
carry out place recognition. The first approach is to carry out place 
recognition by extracting features. 3D feature learning is also a research 
hotspot. Elbaz et al. (Elbaz et al., 2017) extended 2D feature extraction 
to 3D point clouds by projecting 3D point clouds onto 2D planes. In 
(Gojcic et al., 2019; Zeng et al., 2017); the authors constructed the voxel 
point cloud and extracted the features of each voxel space. Finally, the 
features were obtained through the connecting layer. After the publi-
cation of PointNet (Qi et al., 2017) and PointNet++ (Qi et al., 2017), the 
subsequent papers (Deng et al., 2019; Wang and Solomon, 2019; Lu 
et al., 2019; Wang et al., 2019) used this approach for reference in 
feature extraction. The approach takes the point as input directly and the 
overall feature of the point cloud as output. Based on 3D feature 
learning, Liu et al. (Liu, 2019) proposed the SEQLPD network to extract 
the features of the point cloud and carry out place recognition. In this 
paper, a complete workflow for place recognition using deep learning 
was built. Some other similar works have also been reported (Chen et al., 
2020; Yin et al., 2020; Sun et al., 2020). The second approach is to 
extract semantic information for place recognition. Dube et al. (Dube 
et al., 2017) proposed the Seg-Match network that performs location 
recognition after semantic segmentation of point clouds. The result of 
semantic segmentation affects place recognition using this kind of 
method. Although deep learning has far surpassed traditional methods 
in the field of image target recognition, deep learning-based methods 
require a large amount of data for parameter training. There is still a lack 
of point cloud training data covering various scene categories. 
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3. Proposed place recognition solution 

In this section, we present a solution using virtual LiDAR and polar 
grid height coding image descriptors for place recognition in existing 
heterogeneous 3D maps. The workflow of our solution is shown in Fig. 3. 
The heterogeneous 3D map is converted into a series of virtual scans that 
are similar to real scans through virtual LiDAR. The real scan from the 

localization sensor is matched with virtual scans. The match steps 
include the calculation of PGHCI descriptors, rotation transformation 
and similarity estimation. If the minimum distance between the PGHCI 
descriptors of the real scan and virtual scan is smaller than the threshold 
value, the corresponding place can be obtained. In this section, virtual 
LiDAR is presented first. Then, the PGHCI descriptor is described in 
detail. 

Fig. 3. The workflow of place recognition solution based existing heterogeneous 3D map.  

Fig. 4. The workflow for generating virtual scan for place recognition in existing 3D map.  

Fig. 5. The location of virtual LiDAR in an existing heterogeneous 3D map.  
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3.1. Virtual LiDAR 

In this section, virtual LiDAR is proposed as the basis of our place 
recognition solution in an existing heterogeneous 3D map. First, a 
semiautomatic method that generates the location of virtual LiDAR in an 
existing heterogeneous 3D map is introduced. The requisite parameters 
of virtual LiDAR are subsequently described. Finally, the principle of the 
proposed virtual LiDAR is demonstrated. According to the location and 
parameters of virtual LiDAR, out method can convert heterogeneous 3D 
maps into a series of virtual scans that are similar to real scans of 
localization sensors. The workflow for generating virtual scans is shown 
in Fig. 4. 

3.1.1. Location of virtual LiDAR 
To convert the existing heterogeneous 3D map into a series of virtual 

scans, we should obtain the position and posture of each scan in the map. 
First, we pick the requisite control points manually. The requisite con-
trol points are usually in the inflection corner. The number of requisite 
control points depends on the complexity of the passable area in the 
existing heterogeneous 3D map. For example, six control points need to 
be picked in a map, as shown in Fig. 5. After picking the control points, 
the location of virtual LiDAR vLi

(
vLx

i , vLy
i , vLz

i
)
, i ∈ [vLn] will be generated 

by interpolation. The symbol [vLn] denotes {vL1, vL2, …, vLn− 1, vLn}. 
Because the location of the control points is known, the location of 
virtual LiDAR can be acquired. The posture of virtual LiDAR includes 
yaw, roll and pitch angle. Considering the rotation invariance of our 
PGHCI descriptor, we set the yaw of each scan to a constant value. The 
localization sensor is usually placed horizontally. Therefore, the yaw, 
roll and pitch angles of virtual LiDAR are set to zero values. 

3.1.2. Requisite parameters of virtual LiDAR 
Rotating multibeam LiDAR is used for place recognition as a major 

sensor. Its parameters (as shown in Fig. 6) mainly include the mea-
surement range, vertical field of view (FOV) and resolution of the angle 
(horizontal and vertical). To generate a series of virtual scans that are 
similar to the real scan of the rotating multibeam LiDAR, the vertical 
FOV and resolution of the angle (horizontal and vertical) of the virtual 
LiDAR need to be set. 

After obtaining the range and resolution of the vertical and hori-
zontal angles, the vertical and horizontal angles of the laser ray Li,j(i ∈
[θ/α], j ∈ [360/β]) can be calculated by interpolation. In addition, [Av]

and [Ah]can be obtained after interpolation. [Av] is a set of vertical angles 
of all laser rays. [Ah]is a set of horizontal angles of all laser rays. The 
symbol maxDis refers to the maximum range of virtual LiDAR. 

3.1.3. The principle of proposed virtual LiDAR. 
After obtaining the location, posture and parameters of virtual 

LiDAR, we can generate virtual scans based on existing heterogeneous 
3D maps. Different from the scanning process of LiDAR, the generation 
of virtual scans of virtual LiDAR is a filtering process. The laser ray Li,j 
hits at most one point. Therefore, there are most (θ/α)*(360/β) points in 
a virtual scan. The filtering process filters all of the points of the existing 
heterogeneous 3D map to obtain the virtual scan points. We denote all 
points of the existing heterogeneous 3D map as P = {P1,P2,P3,⋯,Pm}, 
where m is the number of points. The generation of a virtual scan at 
location vLkis described in detail as follows: 

For each point Pi
(

Px
i Py

i Pz
i
)

in P, it is first evaluated whether its 
distanceDi is smaller than maxDis: 

Di = ‖vLk − Pi‖ (1) 

Fig. 6. Several configurable parameters of virtual LiDAR. (a) is a side view of virtual LiDAR: θ is the vertical FOV, α is the resolution of vertical angle; (b) is a top view 
of virtual LiDAR: β is the resolution of horizontal angle. The horizontal FOV of virtual LiDAR is 360◦. 

Fig. 7. An illustration of the generation of a PGHCI descriptor.  
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If Di > maxDis, point Piwill be removed. Else, the procedure will 
advance to the next step. 

It is judged whether Pi belongs to a laser ray according to the vertical 
angle Vi and horizontal angleHi. 

Vi = arctan

⎛

⎜
⎝

Pz
i − vLz

k̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
Px

i − vLx
k

)2
+ (Py

i − vLy
k)

2
√

⎞

⎟
⎠

Hi = arctan
(

Py
i − vLy

Px
i − vLx

)

(2)  

If Vi ∈ [Av]&Hi ∈ [Ah], Pi will be considered to belong to a laser ray. 
Then, Pi will be compared with the previous point that belongs to the 
same laser ray. The point closer to the virtual LiDAR will be retained. 

After the process of filtering P, the point cloud of a virtual scan in a 
location will be obtained. 

When the virtual scans at each location of virtual LiDAR are calcu-
lated, we can obtain all virtual scans that represent heterogeneous 3D 
maps for place recognition. Compared to the original heterogeneous 3D 
map, the data size of virtual scans is smaller. 

3.2. Polar grid height coding image descriptor for place recognition 

In this section, we present a method to generate PGHCI descriptors 
and describe how to overcome the recognition difficulty of changed 
viewpoints in the same scene by JS divergence. Next, two weighted 
distances for similarity estimation are analyzed, and the performance of 
the PGHCI descriptor with different parameters is evaluated. 

3.2.1. Generation of PGHCI descriptor 
We take the measurement theory of rotating multibeam LiDAR used 

for place recognition into consideration and refer to some approaches 
that use the same type of sensors for road detection (Sun Peng-peng 
et al., 2018). After comprehensive consideration, we propose PGHCI 
descriptors, as shown in Fig. 7. After we obtain a scan from rotating 
multibeam LiDAR or virtual LiDAR, we place all of the points of a scan 
into a polar grid first. Then, we assign the value of each grid by the 
height distribution of the points in the grid. 

The origin of the polar coordinate is the center of a 3D scan. The 

polar grid is acquired after we divide a 3D scan into horizontal 
azimuthal and radial bins in polar coordinates. Then, the whole point 
cloud P of a 3D scan is separated into Nh*Nr mutually exclusively point 
cloud Pij (i ∈ [Nh], j ∈ [Nr]). Nh is the number of partitions in the 360◦

range, and Nr is the number of partitions in a limited range (it refers to 
the effective observation range of a laser scanner for a specific appli-
cation). Nh and Nr are set to 40 and 20, respectively, in the paper. Please 
see Section 3.2.4 for details about these two parameters. 

After we partition all of the points of a 3D scan into bins, a value is 
assigned to each bin by the height distribution of the points in the bin. 
Each bin is divided into Nv partitions according to the vertical angle 
between the point and the center. The symbol Pijk (i ∈ [Nh], j ∈ [Nr ],

k ∈ [Nv]) refers to the kth partition of point cloud Pij. The value of Nv is 
set according to the analysis of frequently used rotating multibeam 
LiDAR, rather than analysis of the experiments for the parameters. The 
vertical angular range of rotating multibeam LiDAR is limited. For 
example, the vertical angle field values of Velodyne HDL-64E (64 beam 
LiDAR), Velodyne HDL-32E (32 beam LiDAR) and Velodyne VLP-16C 
(16 beam LiDAR) are 26.8◦, 40◦ and 30◦, respectively. Considering 
that the proposed descriptor should be general to the frequently used 
rotating multibeam LiDAR, we set Nv = 8. This ensures that there are at 
least two laser beams in each partition within the bin, helping to resist 
the effects of noise. If the value of Nv is larger than 8, there are not 
enough two laser beams in each partition within the bin when using 
Velodyne VLP-16C. If the value of Nv is smaller than 8, an overlarge 
partition within the bin will hide many details. In conclusion, we set Nv 
= 8 in the paper. The bin encoding function is: 

∅
(
Pijk
)
=

{
1, if (Pijk∕= ∅)

0, othrewise  

f
(
Pij
)
=
∑Nv

k=1
∅
(
Pijk
)
*2k (3)  

Vij = f (Pij)

where ∅() is the function that determines whether the point set Pijk is 
empty and f() is the function that calculates the value of each bin. If the 
values of all bins are obtained, we can obtain a PGHCI descriptor I. 

Fig. 8. An illustration of changed viewpoint affection on PGHCI descriptors.  
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I =
⋃Nh,Nr,

i=1,j=1
Vij (4)  

Because a polar grid is adopted in the generation of the PGHCI 
descriptor, it compensates for the insufficient information caused by the 
sparsity of far points and brings rotational invariance to the descriptor. 
In addition, the height distribution of the points in the grid is considered. 
The coding method retains the 3D information, making the PGHCI 
descriptor more descriptive. 

3.2.2. JS divergence for rotation-invariance 
Prior to estimating the similarity of two PGHCI descriptors, we need 

to transform the descriptors to obtain rotational invariance. The zero 
axis of polar coordinates (which has a constant angle between the front 
of the vehicle) affects the PGHCI descriptors. This phenomenon makes 
the two PGHCI descriptors different under the changed viewpoints in the 
same place, as shown in Fig. 8. Notably, the changed viewpoint causes 
the fluctuating zero axis of polar coordinates, and it affects the PGHCI 
descriptor involuntarily. However, we find that the difference between 
two PGHCI descriptors on the changed viewpoint scene is the column 
index. If we find the corresponding column index within both PGHCI 
descriptors, rotational invariance will be acquired. 

We can think of each column within the PGHCI descriptor as a 
discrete distribution. JS divergence can be used to measure the simi-
larity of two discrete distributions. JS divergence is a variant of Kull-
back–Leibler (KL) divergence (Peng et al., 2008), and KL divergence also 
refers to relative entropy. For the discrete probability distributions P(x) 
and Q(x), defined on the same probability space, KL divergence is given 
by: 

KL(P||Q) =
∑

P(x)log
P(x)
Q(x)

(5)  

Both the KL and JS divergences can be used to analyze the similarity 
between distributions. However, the KL divergence is asymmetric, and 
its range is not fixed. By contrast, JS divergence is symmetric, and its 
range is (Wu et al., 2018). Therefore, JS divergence is adopted for 
similarity analysis. The zero value of the JS divergence indicates that 

two distributions are the same, and the value of 1 indicates that two 
distributions are the opposite. In other words, a smaller JS divergence 
indicates that the two distributions are more similar. Defining the 
quantity M = (P + Q)*(0.5), we can express the JS divergence as: 

JS(P||Q) =
1
2

KL(P||M)+
1
2

KL(Q||M) (6)  

JS divergence is adopted to estimate the similarity of each column 
within PGHCI descriptors. The different indices of the corresponding 
columns are calculated by Algorithm 1, and the overview of this algo-
rithm is shown in Fig. 9. 

Algorithm 1.  

Input: Given two PGHCI descriptors Iq and Ic. 
Output: corresponding column index difference T; the max similar index S_min. 
For t: 0 → Nh 

Iqt = Transform(Iq,t); 
St = JS_Calculate(Iqt, Ic); 

end 
S_min = Min([St]); 
T = Corresponding(S_min)  

where Transform() is the function that changes the index of each 
column in the PGHCI descriptor. JS_Calculate() is the function that 
calculates the mean JS divergence of all corresponding columns. Cor-
responding () is the function that returns the index difference of the 
corresponding columns. 

3.2.3. Similarity estimation using weighted distances 
After obtaining two transformed PGHCI descriptors, we need to 

develop the distance measure to estimate the similarity between two 
descriptors for place recognition. In this paper, we obtain two distances 
by comparing each pixel value of the PGHCI descriptor. Because each 
pixel value of the PGHCI descriptor is encoded with an 8-bit binary 
method, there are two measures to calculate similarity. The first 
approach is to adopt pixel values to calculate directly. The second 
approach is to convert each pixel value into binary values for calcula-
tion. In the first approach, the pixel value must be normalized first. We 

Fig. 9. The workflow of obtaining rotation invariance.  
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Fig. 10. Two similar values between two pixels using two weighting methods.  

Fig. 11. The PR curves of PGHCI with different parameters.  
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can write the distance as: 

PN1 =
P

255

cq
j ∈ Iq, cc

j ∈ Ic

M1 =
1

Nh

∑Nh

j=1

(

1 −
cq

j ∙cc
j

‖cq
j ‖‖cc

j ‖

)

(7)  

where P is the pixel value, PN1 is the normalized pixel value in the first 
way, Iq is the normalized image of the query scan, Ic is the normalized 
image of the candidate scan,cq

j is the jth clowns of Iq, andM1 is the dis-
tance calculated using the first approach. The second method is given 
by: 

PS2 = 1 −
cnt(toBinary(P1)toBinary(P2))

8

M2 =
1
N
∑N

i=1
PS2i

(8)  

where PS2is the normalized similar value in the second way, toBinary() 
is the function that converts pixel value into binary, and cnt() is the 
function that counts the number of 1.M2 is the distance calculated using 
the second approach. 

For example, for P1: 142, its binary is 10001110, and for P2: 200, its 
binary is 11001000. In the first approach, the normalized similar value 
between P1 and P2 is 0.773. In the second approach, the normalized 
similar value is 0.625. We can see the interpretation in Fig. 10. 

The range of distance is (Wu et al., 2018); and a smaller distance 
indicates that the two PGHCI descriptors are more similar. In fact, M1 
and M2 are two different weighted approaches. In the second approach, 
the weights at different heights are the same. By contrast in the first 
approach, greater height has more weight. In a real scene, according to 
the data from different rotating multibeam LiDARs, different distances 
have their own advantages. More analysis details can be found in 
experiment Section 4.2.2. 

3.2.4. Parameters analysis of the PGHCI descriptor 
First, considering that the effective observation range of a rotating 

multibeam LiDAR is approximately 100 m and the sparsity of far points, 
we set the maximum sensing range of the LiDAR sensor to 80 m. 

Nh and Nr are the important parameters of the PGHCI descriptor. 
These parameters affect the size of bins. Larger Nh and Nr will make the 

bin smaller, indicating that the PGHCI descriptor is more descriptive but 
is also more sensitive to noise. In addition, more time needs to be spent 
calculating the similarity of two PGHCI descriptors for place recogni-
tion. By contrast, smaller Nh and Nr with larger bins are more robust to 
noise and spend less time matching. Consequently, the value of Nh and 
Nr should be set to achieve the trade-off between the descriptor’s 
descriptiveness and efficiency. 

To determine the appropriate values of Nh and Nr, we examine the 
performance of the PGHCI descriptor on the KITTI data 00 (the dataset 
details can be found in Section 4.1.1) under different values of Nh and Nr. 
The PR curve (evaluation criteria can be found in Section 4.1.2) is used 
to assess the performance. Using four Nh and four Nr (Nh ∈

{40,60,90,120}, Nr ∈ {10,20,30,40}), a total of 16 experiments were 
performed. 

When the value of Nr is 10 (Fig. 11(a)), the value of Nh is increased 
from 40 to 120. It is observed that the performance becomes increas-
ingly worse with increasing values of Nh. A similar trend is observed in 
Fig. 11(b)–(d). When the values of Nr are constant, the performance 
improves with smaller Nh values. This indicates that the large horizontal 
angle range plays an important role in the descriptiveness. 

Fig. 12(a) shows the PR curves for varying values of Nr when the 
value of Nh is 40. As shown in Fig. 12(a), the worst performance is ob-
tained when the value of Nr is 10. Too large bins hide many details, 
affecting the descriptiveness of the PGHCI descriptors. For the Nr values 
of 20, 30 and 40, the PGHCI descriptors have comparable performance. 
However, when the value of Nr is 20, there are only 800 bins within the 
PGHCI descriptor. This is beneficial for saving the time in the calculation 
of similarity, as shown in Fig. 12(b). Therefore, we set Nr = 20, Nh = 40 
in the paper. In subsequent experiments, we found that the performance 
of the PGHCI descriptor with selected parameters was more robust than 
those of the other methods on several datasets from different sensors 
(64-beam LiDAR and 16-beam LiDAR). This indicates that our selected 
parameters have high generalizability. If place recognition is needed in a 
new dataset with higher resolution, the PGHCI descriptor will have more 
descriptiveness with slightly larger Nh and Nr. Because the resolution is 
high enough, a too large bin will hide many details. By contrast, if place 
recognition is needed in a new dataset with lower resolution, slightly 
smaller Nh and Nr will be good choices. 

4. Experiment 

In this section, our global feature descriptor is evaluated over three 
datasets against two similar open source state-of-the-art algorithms: 

Fig. 12. (a) The PR curves of PGHCI with different parameters. (b) The time performances of PGHCI with different parameters.  
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Scan Context (Kim and Kim, 2018) and LiDAR IRIS (Wang et al., 2019). 
In addition, two existing heterogeneous 3D maps are used to evaluate 
our place recognition solution. 

4.1. Experimental setup 

In this section, the datasets and evaluation criteria are demonstrated. 

4.1.1. Datasets 
Experiments evaluating descriptor performance are carried out on 

three datasets: KITTI odometry sequences (Geiger et al., 2012), 
Queensland Centre for Advanced Technologies (QCAT) 3D map (Guo 
et al., 2019) and our own dataset. These datasets have a clear differ-
ences, such as the type of LiDAR sensors used and changed or unchanged 
viewpoint at the same place. 

Fig. 13. Our own dataset collected at our campus. (a) The reconstructed 3D map. (b) Trajectory chart of the people walking with a backpack mobile laser system. (c) 
Our backpack mobile laser scanner. 

Fig. 14. (a) A 3D map of an indoor scene. (b) A 3D map of an outdoor scene.  
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We selected three KITTI odometry sequences 00, 05 and 08 that 
contained 4541, 2761 and 4071 scans, respectively. 64-beam LiDAR 
(Velodyne HDL-64E) was used for data collection. In sequences 00 and 
05, the viewpoint is unchanged when the vehicle revisits the place. In 
the sequence 08, the viewpoint is changed. A QCAT 3D map is generated 
by the continuous-time SLAM algorithm (Bosse and Zlot, 2009) on the 
“Gator” platform (Romero et al., 2016). It can be divided 2055 scans. 
The 16-beam LiDAR (Velodyne VLP-16C) is mounted above the vehicle 
and is rotated by a motor at a 45◦ angle. In this dataset, the robot moves 
in both the same and opposite directions at revisited places. Our 3D map 
is generated by Google’s cartographer (Hess et al., 2016) on the campus; 
as shown in Fig. 13(a). It contains 2946 scans. The 16-line LiDAR 
(Velodyne VLP-16C) is mounted above the backpack mobile laser 
scanner, as shown in Fig. 13(c). The high-fidelity IMU and GPS are in-
tegrated into the backpack mobile laser system, ensuring a high preci-
sion for the location and posture of each scan. In this dataset, the people 
move in the same direction at revisited places. The resolution of our own 
dataset is lower than that of the QCAT dataset. 

The existing heterogeneous 3D maps include indoor scenes and 
outdoor scenes, as shown in Fig. 14. The indoor 3D map was captured on 
the first floor of a building at Wuhan University and was derived from 

Navvis m3. Navvis m3 is a trolley mobile laser scanner composed of 
three 2D laser range finders and other sensors. Two 2D laser range 
finders are mounted vertically to capture the point cloud. The outdoor 
3D map is the WHU-TLS campus dataset (Dong et al., 2020) that was 
captured at the Friendship Square at Wuhan University using the RIEGL 
VZ-400. RIEGL VZ-400 is a TLS. Indoor and outdoor heterogeneous 3D 
maps contain 21.83 million and 109.05 million points; respectively. 

4.1.2. Evaluation criteria 
The performance of our PGHCI descriptor is evaluated using a 

precision-recall (PR) curve. The PR curve is obtained by calculating the 
precision and recall under different thresholds. 

Precision =
numberofcorrectmatches

totalnumberofmatches

Recall =
numberofcorrectmatches

totalnumberofcorrespondingmatches

(9)  

where the number of correct matches refers to the number of pairs whose 
Euclidean distance is smaller than 4 m and their descriptor similarity is 
less than the threshold. The total number of matches refers to the number 

Fig. 15. The PR curves of PGHCI with different methods for overcoming changed viewpoint in the same scene. (a) KITTI sequence 05; (b) KITTI sequence 08; (C) our 
own dataset; (d) the QCAT dataset. 
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of pairs in which their descriptor similarity is less than the threshold. The 
total number of corresponding matches refers to the number of pairs whose 
Euclidean distance is smaller than 4 m. We note that the distance of 4 m 
is set as the default according to (Kim and Kim, 2018; Wang et al., 2019). 

The performance of our place recognition solution is evaluated using 
the success rate. The success rate is equal to the precision with a 100% 
value of recall. 

4.2. Evaluation of PGHCI descriptor 

In this section, the method for overcoming changed viewpoints in the 
same scene, two weighted distances that calculate the similarity of two 
descriptors and the performance of our PGHCI descriptor are evaluated. 
To conduct a more complete experiment, we calculate the similarity 
between the selected scan and all of the remaining scans. For example, 
the similarity estimation will be conducted 10 (4 + 3 + 2 + 1 + 0) times 

Fig. 16. The PGHCI descriptor for scans of the different scenes. (a) The PGHCI descriptor of a scan of the narrow road scene. (b) The PGHCI descriptor of a scan of the 
spacious scene. 

Fig. 17. The PR curves of PGHCI with different weight distances. (a) KITTI sequence 05; (b) KITTI sequence 08; (C) our own dataset; (d) QCAT dataset.  
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if there are 5 scans in the dataset. However, if there are 4500 scans in the 
dataset, the similarity estimation will be conducted 10,127,250 times. 
This is time-consuming. Therefore, we made a trade-off between time 
and number of experimental times. In the KITTI odometry sequences and 
our own dataset, we pick a frame every three frames. Sequence 00 is 
used to assess the parameters of our PGHCI descriptors, and the other 
datasets are used to evaluate the performance of the three descriptors. 
We use Scan Context implemented in MATLAB1 and LiDAR IRIS 
implemented in C++2. 

4.2.1. Performance of PGHCI with different rotation-invariance methods 
In this section, three methods that overcome the difficulty of 

recognition of changed viewpoints in the same scene are evaluated. The 
first method adopts the JS divergence proposed in this paper. The second 
method obtains rotational invariance using the mean of each column 
within the PGHCI descriptor. The mean value is used instead of the JS 
divergence to estimate the similarity between two corresponding col-
umns. The third method transforms the PGHCI descriptors and calcu-
lates the similarity until the smallest similarity is obtained. The first, 
second and third methods are referred to as JS, Mean and Forcible, 

respectively. The PR curve of the PGHCI descriptor was used as an 
assessment index, as shown in Fig. 15. After acquiring rotational 
invariance, similarity estimation is necessary for the PR curve. To con-
trol the variable, the best distance for similarity estimation is adopted. 

It is observed from Fig. 15 that the three methods perform equally 
well for KITTI sequence 05. For KITTI sequence 08, the forcible method 
shows slightly worse performance. For our own dataset and the QCAT 
dataset, the JS method shows the best performance, followed by the 
Mean method and the Forcible method shows the worst performance. 
For KITTI sequences 05 and 08, narrow roads cause many columns 
within PGHCI descriptors to lack content, as shown in Fig. 16(a). As a 
result, there is no obvious gap between the three methods. The major 
scans for our own dataset and QCAT dataset are collected in the spacious 
scene, making each column within PGHCI descriptors contain abundant 
information, as shown in Fig. 16(b). Therefore, the JS method shows the 
best performance. 

4.2.2. Performance of PGHCI with two weighted distance 
In this section, two distances that calculate the similarity of two 

descriptors for place recognition are evaluated. The first method is to 
adopt pixel values for direct calculation. The second method is to 
convert each pixel value into binary values for calculation. We called the 
first method measure1 and the second method measure2. The PR curve 

Fig. 18. The PR curves of different descriptors. (a) KITTI sequence 05; (b) KITTI sequence 08; (C) our own dataset; (d) QCAT dataset.  

1 https://github.com/irapkaist/scancontext.  
2 https://github.com/JoestarK/LiDAR-Iris. 
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of the PGHCI descriptor as an evaluation index. To control the variable, 
the JS divergence is adopted for rotational invariance. 

As shown in Fig. 17, measure1 shows better performance on the 
KITTI sequences 05, 08 and QCAT datasets. For our own dataset, the 
performance of the PR curve is better with measure2. The common 
feature of the KITTI sequences 05, 08 and QCAT is that they have a 
higher resolution of point clouds. By contrast the resolution of our own 
dataset is lower. High-resolution point clouds contain redundant infor-
mation. For example, the redundant points of ground make little dif-
ference for the result of place recognition and the redundant points of 
moving vehicles have the opposite effect for the result. By contrast, the 
higher points of immobile buildings and trees play an important role in 
place recognition. Therefore, measure1 with a higher weight in higher 
positions shows better performance with the high resolution of the point 
cloud. If the resolution of the point cloud is low, information about each 
altitude is indispensable. Because the hither points are not abundant, if 
we reduce the weight of the lower points, it will make the result worse. 
Therefore, measure2 with equal weight performs better in the low res-
olution of the point cloud. 

4.2.3. Performance of PGHCI against with other descriptors. 
In this section, our global feature descriptor PGHCI is evaluated 

against two similar open source state-of-the-art algorithms, Scan 
Context and LiDAR IRIS. 

As shown in Fig. 18, our PGHCI descriptor shows better performance 
than other descriptors in all datasets. This indicates that the PGHCI 
descriptor has greater descriptiveness. Particularly for sequence 08 (the 
viewpoint is changed), our PGHCI descriptor performs far better than 
the other descriptors. This indicates that the PGHCI descriptor is robust 
with respect to the changed viewpoint scene. The Scan Context assigns 
the value of each bin by the maximum height of points within the bin. It 
is clear that Scan Context encodes less information than the PGHCI 
descriptor. In addition, Scan Context acquires rotational invariance in a 
forcible way that worsens JS. Therefore, PGHCI performs better than 
Scan Context. The LiDAR IRIS obtains a binary signature image for each 
point cloud after several LoG-Gabor filtering and thresholding opera-
tions on the LiDAR-IRIS image. Eight LoG-Gabor filters with different 
parameters were tested on a validation dataset for proper parameters. 
However, there is no reasonable explanation for the selected parameters 
in the paper. We find that LiDAR IRIS performs worst for the datasets 
that are downsampled from the original datasets. For KITTI sequences 
05 and 08 and our own dataset, we pick a frame every three frames. This 
means that the distances between two adjacent frames increase, 
increasing the difficulty of place recognition. The QCAT dataset remains 
unchanged, so that the distances between two adjacent frames in the 
QCAT dataset are smaller. LiDAR IRIS performs better than Scan Context 
for the QCAT dataset, indicating that LiDAR IRIS with selected param-
eters in the paper performs well on the simple dataset. 

4.3. Evaluation of place recognition solution in existing heterogeneous 3D 
maps 

In this section, the place recognition solution using virtual LiDAR 
and PGHCI descriptors in existing heterogeneous 3D maps is evaluated. 
The two existing heterogeneous 3D maps described in Section 4.1.1 are 
used to evaluate our solution. The 16-line LiDAR (Velodyne VLP-16C) is 
selected as the localization sensor. It is used to obtain real scans in the 
same scene as the above existing 3D map. The ground truth of real scans 
can be obtained by registration in a manual way. The corresponding 
place of real scans can be obtained through our solution. 

The first step of our solution is to generate a series of virtual scans 
that are similar to the real scan of the localization sensor (here, VLP- 
16C) from two existing maps. Six and seven requisite control points 
are selected to generate the locations of virtual LiDAR in the indoor and 
outdoor maps, respectively. The interval range of each location of vir-
tual LiDAR is set to 3 m. In the existing heterogeneous 3D map, 114 

locations are generated to set virtual LiDAR. There are 26 locations of 
virtual LiDAR in the indoor scene and 88 locations of virtual LiDAR in 
the outdoor scene, as shown in Fig. 19. The postures of virtual LiDAR are 
set to zero. The parameters of VLP16 are as follows: measurement range 
100 m, vertical FOV 30◦, resolution of vertical angle 2◦ and resolution of 
horizontal angle 0.3◦. The parameters of virtual LiDAR are set according 
to the above parameters. 

After obtaining the location, posture and parameters of virtual 
LiDAR, we can generate virtual scans based on existing heterogeneous 
3D maps. A real scan and a virtual scan are shown in Fig. 20. The size of 
the original heterogeneous 3D indoor map from Navvis m3 is 680.2 Mb, 
and the size of the corresponding virtual scans is 1.8 Mb. The size of the 
original heterogeneous 3D outdoor map from TLS is 3.45 Gb, and the 
size of the corresponding virtual scans is 5.0 Mb. Although our virtual 
scans cover a partial passable region of a heterogeneous 3D outdoor 
map, an enormous gap in the size of the data shows that virtual LiDAR 
efficiently compresses the data size. 

The second step of our solution is to match the real scan with all of 
the virtual scans. To find the corresponding virtual scan, generation of 
PGHCI descriptors, rotation transformation and similarity estimation 
are conducted. The minimum distance between the PGHCI descriptors of 
the real scan and virtual scans can be obtained after repeating the above 
procedures. In addition, the Euclidean distance corresponding to the 

Fig. 19. The locations of real scans, virtual scans, and control points. In the 
figure, the blue point is the location of the virtual scan; the red point is the 
location of the picked control point; the origin is the location of the real scan. 
To display the location more clearly, the points of ground and roof are removed 
in the indoor scene and the points of ground are removed in the outdoor scene. 
(a) A top view of the 3D map of the indoor scene; (b) top view of the 3D map of 
the outdoor scene. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 
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minimum distance can also be obtained. Table 1 lists the related details. 
The interval range of each virtual scan is set to 3 m. Therefore, the 

Euclidean distance used to calculate the success rate was set to 1.5 m to 
ensure that each real scan had only one corresponding virtual scan. In 
other words, if the corresponding Euclidean distance is smaller than 1.5 
m, a unique virtual scan corresponding to a real scan can be found. This 

indicates that a 100% success rate can be obtained. The figures for the 
difference value (DV) of distances are obtained as shown in Figs. 22 and 
23. The DV is the difference value between all distances and the mini-
mum distance. 

As shown in Fig. 22 and Table. 1, we find that the success rate of 
place recognition is 100% with real scan1, real scan2 and real scan3 in 
the indoor scene. This indicates that place recognition is accomplished 
through our solution in real scan1, real scan2 and real scan3. Place 
recognition failed with real scan4 in the indoor scene. When the unique 
virtual scan corresponding to real scan4 is found, there are 14 error 
matches. Therefore, the success rate of real scna4 is 6.67%. As a person 
stands close to the LiDAR with a distance of less than 0.5 m, the laser is 
occluded partially during the scanning process. As a result, real scan 4 
missed partial 3D information of the scene, making the whole points 
similar to a corridor, as shown in Fig. 21(a). Insufficient 3D data result in 
incorrect matching pairs with the virtual scans generated in the corridor 
scene, as shown in Fig. 21(c). The virtual scan at the location nearest to 
the location of real scan 4 is shown in Fig. 21(b). 

As shown in Fig. 23 and Table. 1, we observe that the success rate of 
place recognition is 100% for all real scans in the outdoor scene. This 
indicates that place recognition is accomplished in the outdoor scene 
through our solution. Outdoor scenes have more features than indoor 
scenes. There are more similar structures in the indoor scene. Generally, 
it is feasible to use virtual LiDAR for place recognition in existing het-
erogeneous 3D maps. 

Fig. 20. (a) A real scan from VLP-16C; (b) a virtual scan from virtual LiDAR.  

Fig. 21. (a) Top view of real scan 4 that missed partial 3D information of scene; (b) top view of the virtual scan at the location nearest to the location of real scan 4; 
(c) top view of the virtual scan under the corridor scene. 

Table 1 
Success rate of the proposed solution under indoor and outdoor scenes.  

Scene Scan Minimum distance 
between two PGHCI 

Corresponding 
Euclidean distance(m) 

Success 
rate 

indoor real 
scan1  

0.07  1.26 100% 

real 
scan2  

0.13  0.53 100% 

real 
scan3  

0.26  1.27 100% 

real 
scan4  

0.17  6.4 6.67% 

outdoor real 
scan1  

0.33  0.14 100% 

real 
scan2  

0.27  0.21 100% 

real 
scan3  

0.26  0.07 100% 

real 
scan4  

0.28  0.95 100%  
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5. Conclusions 

The current place recognition methods require the use of the same 
type of sensors in the mapping and localization processes. Therefore, the 
heterogeneous 3D map cannot be used for place recognition directly 
with the existing method. This requirement restricts the applicability of 
existing methods, as it is highly likely that different types of sensors are 
used in mapping and localization processes. This paper presented a so-
lution using virtual LiDAR and a polar grid height coding image 
descriptor for place recognition in the existing heterogeneous 3D map. 

The proposed virtual LiDAR allows for the use of different types of 
LiDAR in the processes of 3D map creation and localization. Through 
generating virtual scans that are similar scans of real LiDAR, this method 
overcomes the limitation of the existing place recognition methods that 
require the use of the same types of sensors in the mapping and locali-
zation processes. In addition, virtual LiDAR can compress the data size of 
existing heterogeneous 3D maps by generating virtual scans. We 
compare the size of all virtual scans with that of the original 3D map and 
find that our method significantly reduces the data size. 

The proposed PGHCI descriptor adopts a polar grid and encodes a 3D 
point cloud into a 2D image. The polar grid endows the PGHCI 
descriptor with rotational invariance and compensates for the insuffi-
cient information due to the sparsity of far points. The value of each bin 

is assigned according to the height distribution of the points in the bin. 
All of the above considerations provide more descriptiveness for the 
descriptor, promoting place recognition. The adoption of JS divergence 
further increases the robustness of the descriptor, particularly under 
changed viewpoints. Comprehensive experiments demonstrated that the 
PGHCI descriptor has higher descriptiveness and is robust to the 
changed viewpoint scenes, as shown by the comparison of the PR curves 
using datasets with multiple scenes. We also find that the JS method is a 
more accurate method for estimating the rotation transform between 
two PGHCI descriptors. In addition, the applicability of two weighted 
distances for different types of sensors with two weighted distances is 
analyzed. The analysis can serve as prior knowledge for place recogni-
tion using different LiDAR sensors. 

We integrated virtual LiDAR and PGHCI descriptors into the pro-
posed solution for place recognition in the heterogeneous 3D map. The 
experiments show that the proposed place recognition solution has a 
high success rate of up to 100% in the evaluation, except in the excep-
tional cases where scanning is mostly occluded in the localization pro-
cess and place recognition may fail completely. Therefore, the proposed 
place recognition solution is feasible for achieving robust place recog-
nition using a heterogeneous 3D map, given a satisfactory scanning 
condition. 

Similar to other 3D point cloud-based place recognition solutions, 

Fig. 22. DV figures of real scans in the indoor scene. The locations of virtual scans are shown by circles and locations of real scans are shown by squares. (a) DV figure 
of real scan1; (b) DV figure of real scan2; (c) DV figure of real scan3; (d) DV figure of real scan4; 
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the proposed solution is not sufficiently robust in scenes that have 
similar structures. For example, when we conduct place recognition in a 
building that has multiple floors with similar structures, false results 
may be obtained. The supplementation of texture information may help 
to improve the robustness of place recognition in this condition. We will 
integrate texture information into the generation of descriptors in future 
work. In addition, the approach of global localization will be developed 
based on our place recognition results. Our method can be used to 
provide an initial position for coarse registration and fine registration. 
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