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ABSTRACT

Large Language Model (LLM)-based agents have emerged as a transformative
approach for open-ended problem solving, with information seeking (IS) being a
core capability that enables autonomous reasoning and decision-making. While
prior research has largely focused on improving retrieval depth, we observe that
current IS agents often suffer from low search efficiency, which in turn constrains
overall performance. A key factor underlying this inefficiency is the sparsity of
target entities in training tasks, which limits opportunities for agents to learn and
generalize efficient search behaviors. To address these challenges, we propose
WebLeaper, a framework for constructing high-coverage IS tasks and generating ef-
ficient solution trajectories. We formulate IS as a tree-structured reasoning problem,
enabling a substantially larger set of target entities to be embedded within a con-
strained context. Leveraging curated Wikipedia tables, we propose three variants
for synthesizing IS tasks—Basic, Union, and Reverse-Union—to systematically
increase both IS efficiency and efficacy. Finally, we curate training trajectories by
retaining only those that are simultaneously accurate and efficient, ensuring that
the model is optimized for both correctness and search performance. Extensive
experiments conducted on five IS benchmarks—BrowserComp, GAIA, Seal-0,
WideSearch, and xbench-DeepSearch—demonstrate that our method consistently
achieves improvements in both effectiveness and efficiency over strong baselines.

1 INTRODUCTION
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While numerous studies have sought to enhance the IS capabilities of agents through complex
question—answering pipelines and advanced fine-tuning strategies (Wu et al.,2025a} |Li et al.,[2025c{b;
Tao et al.| [2025} |Q1ao et al.| [2025} [Lu et al.| [2025)), most existing approaches primarily concentrate on
improving the search depth, giving comparatively little attention to search efficiency. Our preliminary
experiments indicate that current LLM-based agents search inefficiently. As shown in Figure[I] the
distribution of valid actions for a competitive IS agent peaks around 0.04, meaning that in most
cases, only a small fraction of actions are effective (Wong et al., 2025} | Xue et al., 2025). This low
valid-action rate reflects suboptimal search behaviors, including redundant query reformulations,
retrieval of irrelevant information, and unnecessarily long search chains. Such inefficiencies not only
increase computational and time costs but also limit the agent’s overall IS performance.
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The design of synthetic training tasks incurs this inefficiency. In typical IS agent setups, the agent
begins with a set of known entities and incrementally gathers information to infer all target entities.
However, prior work often constructs tasks in which the target entities are overly sparse (Wu et al.,
2025a; |Li et al.| 2025cgb)). Such sparsity limits the agent’s exposure to informative cues, reducing
opportunities to learn to locate relevant information within a constrained context window. As a result,
the agent spends more actions processing irrelevant content, weakening its search strategies, leading
to lower performance. Furthermore, it can bias the measurement of search efficiency, which we prove
in a later section. This bias makes it difficult to obtain an accurate training signal, thereby obstructing
the systematic learning of more efficient search behaviors. These limitations underscore the need to
redesign training tasks, enabling optimized seeking efficiency and stronger IS capabilities.

To address these challenges, we propose WebLeaper, a framework designed with two core objectives:
(1) to construct new IS tasks containing a substantially larger number of target entities; and (2)
to generate solution trajectories that achieve both high accuracy and high efficiency. For the first
objective, we model the IS process as a tree-structured reasoning task, which compactly accom-
modates more target nodes within a limited context. Based on this formulation, we systematically
increase task complexity through three dataset variants. First, leveraging curated Wikipedia tables,
we synthesize Basic version, which directly addresses the challenge of entity sparsity by creating a
high-density search space within a single, structured source. To mirror more realistic scenarios that
demand integrating information from multiple sources, our Union variant constructs tasks that require
synthesizing facts across different sources, thereby increasing search ambiguity. Finally, to mitigate
the risk of agents adopting simplistic, keyword-based shortcuts, the Reverse-Union variant reverses
the logical flow, compelling the agent to first deduce intermediate entities from scattered clues before
completing the main search task. For the second objective, we construct task-completion trajectories
that are filtered according to Information-Seeking Rate (ISR) and Information-Seeking Efficiency
(ISE), retaining only those that solve the task both accurately and efficiently. Models trained on this
curated dataset yield our final IS agent.

We conduct extensive experiments to evaluate our approach across five benchmarks: Browser-
Comp (Wei et al., 2025), GAIA (Mialon et al.,|2023), Seal-0 (Pham et al., 2025)), WideSearch (Wong
et al.} 2025), and xbench-DeepSearch (Xbench-Team,|2025). Our method achieves consistent im-
provements on all benchmarks. Ablation studies on the dataset design further confirm the effectiveness
of our proposed components. We summarize our contribution as follows:

* We design a new information-seeking task formulation on a tree-structured reasoning problem,
leading to the inclusion of a substantially larger set of target entities within a constrained context.
Based on this formulation, we construct the Basic, Union, and Reverse-Union datasets.

* We generate and filter task-solving trajectories using the proposed Information-Seeking Rate (ISR)
and Information-Seeking Efficiency (ISE) metrics, retaining only those trajectories that solve tasks
both accurately and efficiently.

* We conduct extensive experiments on five public IS benchmarks, BrowserComp, GAIA, Seal-0,
WideSearch, and Xbench-DeepSearch, achieving consistent improvements over strong baselines.

2 DEFINITIONS

An Information-Seeking (IS) task challenges an agent to answer a complex natural language question
by navigating a vast information space to assemble a complete set of required entities. This process is
inherently sequential, involving the progressive discovery of entities, understanding their properties
(attributes), and leveraging relationships between them to uncover further entities. This section
formally defines the components of such a task and the metrics for evaluating an agent’s performance,
emphasizing the importance of identifying both final and intermediate entities in the reasoning chain.

2.1 INFORMATION-SEEKING TASK

An entity e € £ is the fundamental unit of information. An Information-Seeking (IS) task is the
process of identifying and collecting a specific set of target entities from &£, based on a question.
Formally, an IS task is a tuple: 7 = (g, R) , where ¢ is the natural language question and R C £ is
the set of the target entities that collectively satisfy the conditions posed by g.

Critically, the required set R includes not only the final, explicit answers but also all intermediate
entities that are necessary stepping stones in the reasoning process. Consider the question:

q : Which player of a team in the 2004—05 season, who was born in the 1990s? )

This team was founded in 1966 and is an East German football team.
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To solve this, an IS agent must seek for information online, and find the target entity set as answer:
R = {Robert Rudwaleit, Danny Kukulies, . . .}. 2)

2.2 INFORMATION-SEEKING AGENT

We focus on an Information-Seeking Agent that interacts with a web environment to solve an IS task 7
within the ReAct framework (Yao et al.,|2023). The agent’s operation is a sequential decision-making
process occurring over discrete time steps t = 1,...,7T. At each step, the agent analyzes its current
state (including the initial question and all previously gathered information), generates a thought
for planning its next move, executes a tool-based action to seek new information, and receives an
observation from the environment. This entire process is captured in the agent trajectory is defined as

HT:(q7717a1,0177'2,062,027...,TT,O(T,OT), (3)
where 7; is the planning thought, «; is the seeking action, and o; is the resulting observation at step i.
At the end of the process, the agent has obtained a set of entities O C &£, which is the union of all
unique entities discovered across all steps.

2.3 QUANTIFYING INFORMATION COLLECTION AND EFFICIENCY

To guide an agent towards successfully solving IS tasks, its performance framework must value
the entire reasoning process, not merely the final output. Our central thesis is that by explicitly
quantifying the value of all required information discovered, we can create a stronger signal for
learning effective search strategies. To this end, we define principles to formalize the performance
(the total information gain) and the efficiency (the gain per action) of the agent’s collection process.

Information-Seeking Rate (ISR) Recall that R denotes the set of target ground-truth entities
for the task, with cardinality n = |R|. O is the set of entities actually obtained by the agent
during its operation. The intersection R N O therefore contains all required entities that were
successfully retrieved. The information collection rate directly measures the fraction of required

entities successfully obtained by the agent:

ISR:\RHO|:|RHO|. @
R n

ISR € [0, 1], and higher values indicate more thorough coverage of the required information.

Information-Seeking Efficiency (ISE) While ISR measures completeness, the information collec-
tion efficiency reflects the average number of action steps to discover the target entity:
n
ISE = — 5
T &)
where 7' is the total number of steps of the solving trajectory. Higher ISE implies greater IS efficiency.
The stability of measuring ISE is important for providing unbiased training signals.

Proposition 1 (Variance of ISE). Let X; denote the number of steps the agent takes to discover the
i-th new entity in R. Therefore ISE = 7 = ﬁ Assume X1, ..., X, beiid. random variables

i=1 <1

with finite mean pi > 0 and finite variance o, X; > 0 almost surely, then:
1
Var(ISE) = O <n) . ©)

This proposition shows that as the number of target entities n grows, measuring ISE becomes a more
stable and reliable performance metric. The detailed proof is provided in Appendix[A.2]

3 METHOD

To enhance the information efficiency of the IS agent, our approach trains the model on a calibrated
task 7 = (g, R) together with the corresponding task-solving trajectory #. In prior IS agent training
setups, the dataset typically contained only a limited number of target entities (/). This design
substantially restricts the potential improvement in information-seeking efficiency and, in turn, limits
the agent’s overall capability. The limitation incurs two problems:

» With a small volume of R, it is difficult to train the agent to retrieve information efficiently within
a limited context length.

* Our method relies on measuring the information-seeking efficiency ISE. As shown in Eq. (6), a
small set of target entities introduces measurement bias in the ISE metric.
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Figure 2: An overview of WebLeaper. The reasoning structure is modeled as a tree. A root entity
(question entity) connects to a set of second-layer entities. (a) Version-I (Basic) constructs a simple
reasoning tree from a single information source. (b) Version-II (Union) creates a complex task by
finding a maximal union between two trees that share a common set of relations within their subtrees
(e.g., both have has_nationality). (c¢) Version-III (Reverse-Union) reverses the reasoning process.
It provides fuzzed clues (third-layer entities) as question entities, forcing the agent to first deduce a
second-layer anchor entity (an entity from the second layer), then other relevant subtrees.

To overcome these shortcomings, we introduce WebLeaper, a novel data synthesis framework specifi-
cally designed to boost information-seeking efficiency. Our method consists of two main components:
(1) a QA synthesis pipeline for generating calibrated tasks, and (2) a trajectory construction process
for producing realistic task-solving sequences. We describe the QA synthesis pipeline and trajectory
construction process in detail in the following subsections. For detailed walkthroughs of the examples
for each synthesis version, please refer to Appendix [A.8]

3.1 ENTITY-INTENSIVE TASK SYNTHESIS
3.1.1 VERSION-I: Basic

In an information-seeking task, the reasoning structure matters. We use a tree, denoted as T}, to
represent this structure, where nodes are entities and edges are relations between them. The IS agent
must start with some known entities in the tree and reason along the edges to determine the target
ones. To incorporate as many target entities as possible, we use this tree structure for its compact and
hierarchical organization.

Synthesizing such a task 7 = (g, R) requires a large volume of relevant entities, which is non-
trivial. Following the one-entity-at-a-time collection strategy of prior work is prohibitively expensive.
Therefore, we exploit the structured tables contained in Wikipedia articles, which encapsulate rich
relational information. These tables naturally provide groups of entities connected by specific
relationships, enabling us to efficiently construct the reasoning tree 7T;. We crawled approximately 2
million tables from Wikipedia and applied a multi-stage cleaning procedure, retaining only large, well-
formed, and structurally homogeneous tables. The detailed data cleaning procedure and construction
rationale are described in Appendix [A.6]

To construct the reasoning structure illustrated in Figure[2{a), we populate its layers using information
from a single table. The entities extracted from the table title form the root of the tree (i.e., the
question entities). Next, we employ an LLM to select the most representative, non-redundant column
of values from the table—typically the primary key—as the second-layer entities (e.g., ‘Czestaw
Mitosz’). An edge between the root entity and a second-layer entity indicates that the table contains
this entity. The third-layer entities are derived from the remaining columns of the table, with their
values representing attributes of the corresponding second-layer entity (e.g., ‘country: Poland’, ‘year:
1980%). In this layer, an edge signifies that the second-layer entity possesses the given property
defined by the third-layer entity.



Under review as a conference paper at ICLR 2026

Each second-layer entity and its associated third-layer entities form a subtree, which we denote as S; ;.
These subtrees, each possessing a set of relations Rel(S; ;) that connect its layers, represent cohesive
units of information (e.g., a specific laureate and all their details). The full reasoning tree 7; is thus
composed of a set of such subtrees {.5; ; }. The question provides the root entities, while all entities
in the subtrees (both second and third layers) constitute the final answer. The detailed construction
process and the required reasoning path for the example task are explained in Appendix [A.8.T]

Notably, we use Wikipedia primarily for two reasons. First, it is a large, comprehensive, widely-used
encyclopedic resource with broad domain coverage. Second, its semi-structured tables offer rich,
clean, reliable relational data—ideal for entity-intensive task synthesis—with sufficient quality and
diversity to build various complex meaningful tasks.

3.1.2 VERSION-II: Union

While effective, the reasoning structure of our basic tasks is derived from single sources, limiting their
structural complexity and the scope of questions we can pose. To address this, we aim to construct
tasks with a more intricate reasoning structure that spans multiple information sources by uniting
reasoning trees from our Basic version that share similar themes and structures.

To generate more challenging questions, we propose uniting reasoning subtrees in Basic version
that share similar themes and structures. A naive approach, such as randomly combining subtrees,
often results in semantically incoherent questions. To systematically discover the most substantial
integration opportunities, our approach models this as a Union operation, which identifies multiple
reasoning trees whose respective subtrees share some common relations.

The primary challenge is to systematically search the entire collection of trees to find all groups
that are suitable for union. To avoid a combinatorial explosion from enumerating all possible
combinations, we develop an algorithm to efficiently discover only maximal unions. This problem is
formally modeled as Maximal Biclique Enumeration (see Appendix[A.7), which effectively identifies
groups of reasoning subtrees and their shared subtree relations.

As illustrated in Figure[2(b), the reasoning trees for “Nobel Prize in Literature laureates” and “Booker
Prize winners” both contain subtrees where second-layer entities (authors) are connected to third-layer
entities via relations like ‘has_nationality’ and ‘has_name’. Our method identifies this shared subtree
structure. Relations not shared across all sets of subtrees, such as ‘has_gender’ (present only in the
Nobel tree), are discarded during the union.

Once a maximal union is identified, we leverage an LLM to synthesize a question based on the
common features of the selected subtrees. For instance, the question “Which authors have won both
the Nobel Prize in Literature and the Booker Prize?” requires identifying the two sets of laureates as
intermediate ‘Target Entities’ and then finding their intersection to produce the final ‘Target Entities’.
The complete walkthrough is in Appendix

3.1.3 VERSION-III: Reverse-Union

While the Union method generates complex, multi-source tasks, a vulnerability remains: an agent
could solve the query and use direct keyword searches on the constituent sources (e.g., search ‘Nobel
Prize winners,” then ‘Booker Prize winners’). This approach circumvents the intended synthesis of
information, reducing the cognitive load and failing to stimulate true reasoning capabilities similar to
WebSailor (Li et al.,[2025c)). To address this, we introduce Reverse-Union, a paradigm designed to
enforce a more robust cognitive workflow by reversing the standard reasoning flow. As illustrated in
Figure[2|(c), this method combines two stages to construct a challenging task:

* Deductive Fuzz: This stage implements the fuzz by defining the ‘Question Entities’ as a set of
descriptive third-layer entities. Instead of being named directly, a central ‘anchor’ entity (an entity
from the second layer) is described through its corresponding third-layer entities. In the example,
the description “the 1980s prize-winner that wrote a novel about a group of British boys stranded
on an uninhabited island” serves as clues in the form of ‘Question Entities’. An agent must first
deduce from these clues to identify the anchor entity, ‘William Golding’.

* Union-based Search Construction: After fuzzing the anchor, this stage constructs the expansive
search part of the task, ensuring the anchor serves only as a bridge to the final answer. To achieve
this, we first select a specific third-layer entity from the anchor’s subtree (e.g., his country) to act
as a pivot. We then formulate the remainder of the question to compel an agent to use this pivot to
launch a new search across the unified trees. The final Target Entities are thus defined as the set
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of second-layer entities that share this pivot attribute (i.e., are also British) and satisfy the original
intersection condition (i.e., winning both prizes).

By structuring tasks this way, Reverse-Union prevents agents from succeeding with simple keyword
searching and mandates a more robust, multi-step reasoning process. The detailed process of question
generation and the required reasoning path are explained in Appendix[A.8.3]

3.2 INFORMATION-GUIDED TRAJECTORY CONSTRUCTION

After synthesizing the task, this section elaborates on the construction of task-solving trajectories. As
shown in Eq.@), our agent solves a task within the ReAct framework (Yao et al.,[2023)). We equip the
agent with the following tools:

* Search This action enables the agent to conduct Google search by several queries. The parame-
ters of this tool are {queries, filter_year}, enabling temporal filtering of search results. This tool
would return the top relevant URLs and their snippets as the observation.

» Visit This action enables the agent to visit multiple URLs. The parameters of this tool are
{urls, goal}. This tool would return the summarized visited paragraphs as the observation.

After generating a large set of trajectories by executing our constructed tasks with an open-source
model, we apply a filtering procedure to select high-quality examples for training. Our goal is to
retain trajectories that demonstrate both accuracy in collecting the required entities and efficiency in
the use of actions, in accordance with the metrics defined in Section[2.3] Specifically, we impose the
following selection criteria:

Coverage Criterion. We require that the trajectory achieve sufficient completeness in information
collection. Formally, we keep only those trajectories whose ISR satisfies ISR > «, where « is a
predefined coverage threshold. To compute ISR, we accumulate the obtained target entities in all
actions. We compute ISR as Eq.([).

Efficiency Criterion. We further require that the trajectory maintain high efficiency in discovering
useful entities. This translates into selecting those trajectories whose ISE satisfies ISE > (3, where (3
is a predefined efficiency threshold. For ISE, we accumulate the obtained target entities in Visit
actions. The reason for not including Search in ISE is that we observe entities found in Search are
less precise and would be updated by the following Visit action. We compute ISR as Eq.(3).

Through this filtering process, we ensure that the retained trajectories are both accurate in acquiring
the target entities and efficient in their action usage, providing strong supervision signals for training
agents to perform precise and effective information-seeking. This efficiency-oriented filtering is
effective because it selects trajectories with high valid action density to teach focused planning and
reduce redundancy, while our entity-intensive tasks provide sufficient high-quality trajectories and
stabilize ISE (Var(ISE) = O(%)) as a reliable signal, forming a mutually reinforcing cycle.

4 EXPERIMENTS

4.1 SETUP

Benchmarks We conduct extensive evaluations of our method on five challenging QA benchmarks
that demand complex information-seeking capabilities, namely BrowseComp (Wei et al., [2025)),
GAIA (Mialon et al.} 2023)), xbench-DeepSearch (xbench-DS) (Xbench-Team, [2025)), Seal-0 (Pham
et al., [2025)), and WideSearch (Wong et al.| 2025). For GAIA, we adopt the 103-sample text-only
validation subset (Li et al.,[2025d), while for all other benchmarks, we utilize their complete test sets.

Baselines We select a representative set of mainstream and competitive information-seeking
agents as our baselines, including proprietary agents (Claude-4-Sonnet (Anthropic 2025),
OpenAI-o03 (OpenAl, [2025a), OpenAI DeepResearch (OpenAlL 2025b)) and open-source
agents (ASearcher (Gao et al. 2025), DeepDive (Lu et al.l 2025), DeepDiver-V2 (Team),
MiroThinker (Team et al., 2025b), Kimi-K2 (Team et al.,|[2025a)), WebExplorer (Liu et al.l [2025),
WebDancer (Wu et al.}2025a), WebSailor (Li et al., [2025c), WebShaper (Tao et al.|[2025)).

Training Configurations To maintain the basic deep search ability, we combine our data with 5,000
WebSailor-V2 (Li et al.,[2025b) data to train the model. We separately merge 5,000 WebSailor-V2
data with Basic, Union, and Reverse-Union data of WebLeaper, which stimulates the IS ability
to a larger degree (with « in ISR set to 0.3 and 3 in ISE set to 0.1). On this basis, we employ



Under review as a conference paper at ICLR 2026

Table 1: Main results on multiple benchmarks. All benchmarks except WideSearch report Pass@1.
WideSearch reports Success Rate (SR), Row F1, and Item F1. Bold scores indicate the highest values
among all open-source agents.

| | | | | WideSearch
Model / Framework BrowseComp GAIA = xbench-DS = Seal-0
| | | | | SR Row F1  TItem F1
Proprietary Agents
Claude-4-Sonnet 12.2 68.3 64.6 - 23 31.7 57.9
OpenAI-o3 49.7 70.5 66.7 18.9 4.5 34.0 52.6
OpenAl DeepResearch 51.5 67.4 - - - - -
Open-Source Agents
ASearcher-Web-32B 5.2 52.8 42.1 - - - -
DeepDive-32B 14.8 - 50.5 - - - -
DeepDiver-V2-38B 13.4 - 53.0 - - - -
MiroThinker-32B-DPO-v@.2 13.0 64.1 - - - - -
Kimi-K2-Instruct-1T 14.1 57.7 50.0 - 1.1 29.7 54.4
WebExplorer-8B 15.7 50.0 53.7 - - - -
WebDancer-QwQ-32B 3.8 51.5 38.3 - 0.0 93 34.5
WebSailor-32B 10.5 532 533 21.3 0.0 2.1 5.5
WebShaper-QwQ-32B - 53.3 35.0 - 0.0 9.9 31.5
WebLeaper-Union 22.1 69.9 62.3 35.1 4.0 22.2 34.5
WebLeaper-Reverse-Union 23.0 67.0 66.0 37.2 4.0 25.8 40.8

Qwen3—3OB—A3B—Thinking—25®7E| as the base model, trained using Megatron frameworkﬂ The
training follows a standard SFT procedure. In our experiments, SFT on the final dataset (approxi-
mately 15k samples) was completed in about 6 to 8 hours on a cluster of 64 H20 GPUs.

Evaluation Metrics and Inference Hyper-parameters The overall evaluation follows the settings
specified by each benchmark. For BrowseComp, GAIA, xbench-DS, and Seal-0, we report the
pass@1 scores obtained via LLM-as-a-judge evaluation as the final results. For WideSearch, we
report the success rate (SR) for fully retrieving all target results, along with two F1 scores—Row F1
and I'tem F1—which are computed using a combination of string matching and LLM-as-a-judge
evaluation, in alignment with the official evaluation protocol. During LLM inference, we configure
the sampling parameters (temperature and top-p) to 0.6 and 0.95, respectively.

4.2 OVERALL PERFORMANCE

As shown in Table[T} WebLeaper achieves state-of-the-art performance compared to mainstream open-
source agents on five challenging information-seeking QA benchmarks. Notably, on benchmarks other
than BrowseComp and WideSearch, it even delivers performance comparable to, or surpassing, that
of agents built on Claude-4-Sonnet and OpenAI-o03. Even on the highly challenging BrowseComp
benchmark, WebLeaper significantly outperforms Kimi-K2-Instruct-1T, despite the latter having a
much larger parameter scale. It is also worth noting that the Reverse-Union data, which incorporates
greater task complexity on top of the Union data, employs an fuzz strategy that further facilitates the
model’s ability to integrate information-seeking with planning and reasoning, thereby enhancing its
overall information-seeking QA capability.

Crucially, WebLeaper’s robustness is demonstrated by its strong performance on test sets that are not
limited to Wikipedia. While our agent is trained on Wikipedia-derived data, it is evaluated on five
diverse, real-world benchmarks that require querying and reasoning over the entire live web. The
consistent and significant improvements across these varied benchmarks strongly suggest that our
method learns a generalizable skill of efficient information seeking, rather than overfitting to the
specific structure of Wikipedia.

Overall, the observed performance improvements validate that our proposed approaches—entity-
intensive task synthesis and information-guided trajectory construction—significantly enhance the
agent’s information-seeking capabilities, even under a modest parameter budget.

lhttps ://huggingface.co/Qwen/Qwen3-30B-A3B-Thinking-2507
Zhttps://github.com/NVIDIA/Megatron-LM
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Table 2: Ablation study on training results across different data sources (for efficiency considerations,
we use the WideSearch (English subset) and BrowseComp (200 subset), while the full sets are used
for the other benchmarks). Numbers in parentheses denote the difference compared to training only
with the WebSailor-V2-5k data. { denotes a mixed version that includes the WebSailor-V2-5k data.

Data Source | BrowseComp  WideSearch GAIA Seal-0 xbench-DS | Avg.
WebSailor-v2-5k 25.17 33.15 67.69 34.23 60.00 44.05
WebSailor-v2-10k 24.50 38.91 66.02 33.93 62.67 45.21
Basic-5k! 20.67 (-450) 3226 (-0.89)  40.78 (-26.91)  30.03 (-4.20) 5833 (-1.67) | 36.41 (-7.64)
Union-5k! 27.50 (+2.33) 41.70 (+8.55) 69.90 (+2.21)  35.14 (+0.82)  62.33 (+2.33) | 47.31 (+3.26)

Reverse-Union-10k’ | 27.67 (+2.50) 44.07 (+10.92)  66.99 (-0.70)  37.24 (+3.01) 66.00 (+6.00) | 48.39 (+4.34)

GAIA BrowseComp WideSearch

Performance

25
ISR-Only ISE-Only ISR + ISE ISR-Only ISE-Only ISR + ISE ISR-Only ISE-Only ISR + ISE

Figure 3: Ablation study results on information-guided trajectory construction strategies.

4.3 CAPABILITY GAINS INDUCED BY ENTITY-INTENSIVE TASK SYNTHESIS

To investigate the effectiveness of our entity-intensive task synthesis method, we conduct a compara-
tive analysis against training solely on the WebSailor-V2 dataset (using 5,000 and 1,000 samples,
respectively), a synthetic corpus specifically designed to stimulate the agent’s deep search capability.

As shown in Table[2] we investigate the impact of different entity-intensive task synthesis strategies
through an ablation study on all these benchmarks. The Basic setting exhibits substantial drops
across all three datasets compared to WebSailor-V2-5k. This poor performance can be attributed
to the inherent limitations of the Basic data construction method: tasks generated under this setting
tend to be overly simple, allowing the model to infer complete answers from only a few information
sources. Such shortcut patterns encourage the model to overfit to superficial cues rather than learning
to integrate diverse information, ultimately impairing generalization.

In contrast, the Union strategy consistently outperforms WebSailor-V2-5k, achieving an average
improvement of +3.26. By combining heterogeneous information sources and increasing the com-
plexity of task construction, Union mitigates the shortcut problem inherent in Basic, forcing the
model to reason over dispersed and complementary evidence. This leads to more robust performance
across datasets and demonstrates the effectiveness of the proposed data construction approach.

Furthermore, compared to Union, Reverse-Union introduces a certain degree of reasoning com-
plexity into the information-seeking process, making it more challenging for the model to readily
identify where to begin entity retrieval. This design particularly enhances the model’s planning and
decision-making capabilities in information-seeking tasks. The improvement in these abilities is
clearly reflected in performance, leading to substantial and widespread gains across all benchmarks.

4.4 IMPACT OF INFORMATION-GUIDED TRAJECTORY CONSTRUCTION

We compare the proposed information-guided trajectory construction strategies across ISR-Only,
ISE-Only, and ISR+ISE on three representative benchmarks—GAIA, BrowseComp, and
WideSearch—to examine the independent and combined effects of ISE and ISR.

On GAIA and BrowseComp, ISR+ISE achieves the best performance, suggesting that integrating
precision and efficiency constraints produces trajectories that are both goal-directed and concise,
thereby reducing redundant exploration. This indicates that in more complex browsing tasks, relevance
and efficiency constraints complement each other to generate higher-quality trajectories.

In contrast, on WideSearch, the three strategies deliver comparable results, with performance differ-
ences falling within the margin of variance. This suggests that for broad search tasks, the specific
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Figure 4: Effectiveness and efficiency comparison between WebLeaper and WebSailor-Vv2.

choice of trajectory filtering plays a less critical role—likely because training on entity-intensive
synthesized data already provides strong broad search capabilities.

4.5 JOINT GAINS IN EFFICIENCY AND EFFECTIVENESS

As illustrated in Figure[d] WebLeaper consistently outperforms the baseline in terms of both effec-
tiveness and efficiency. In the WideSearch and BrowseComp benchmarks, our approach achieves
markedly higher performance scores while requiring fewer average action rounds, indicating that
the search process is not only more accurate but also more efficient. Similarly, in the GAIA and
xbench-DS tasks, our method improves effectiveness while simultaneously reducing the operational
cost. This demonstrates that our design enables a more targeted search strategy, resulting in reduced
interaction steps without sacrificing—and in fact enhancing—the quality of the results.

Overall, these results validate that our proposed method achieves superior joint optimization of
information-seeking efficiency and task performance compared to the baseline. This reflects our key
insight: an agent should not merely learn to search, but rather learn to search efficiently and wisely,
thereby achieving a better balance between efficiency and effectiveness.

4.6 EXPLORATION ON HYPER-PARAMETERS ISR v AND ISE

To validate the robustness of our information-

guided trajectory construction (Section B.2), we Table 3: Performance (Pass@1) on Browser-
conduct a sensitivity analysis of the core filtering hy- - Comp (200 subset) for different o (ISR thresh-

perparameters: « (Information-Seeking Rate, ISR,  ¢]1d) and 3 (ISE threshold) combinations. A
threshold) and 8 (Information-Seeking Efficiency, value of 0 disables the filter.

ISE, threshold) (both defined in Section 23). «
ensures trajectory accuracy by retaining only se- 8\ | 0.3 0

quences with sufficient target entity coverage, while 01 27' 5 75
[ enforces efficiency by excluding overly time- 0 | 4'0 13'7
consuming trajectories. : ;

We trained WebLeaper-Reverse-Union with differ-

ent /3 combinations, using BrowserComp (200 subset) for evaluation; a threshold of 0 disables the
corresponding filter. Table[3]shows the results: the highest performance is achieved with v = 0.3 and
B = 0.1 (our current configuration). Disabling either filter degrades performance, and no filtering
yields the lowest score, confirming both constraints are critical for high-quality training data.

The selection of a = 0.3 and 8 = 0.1 balances data quality and quantity. Excessively high thresholds
would shrink the dataset below the sample size of baselines, while overly low thresholds introduce
low-quality trajectories. This “sweet spot” preserves a comparable sample size while removing
poor-quality sequences, ensuring fair baseline comparisons and validating our parameter choice.

4.7 RESULTS ON DIFFERENT BACKBONE

To showcase its broader applicability across diverse model architectures, we evaluate our method on
multiple backbones, placing particular emphasis on the Qwen3-4B-Thinking-2507 model. For this
comprehensive evaluation, we adopt two training configurations: the baseline setup entails exclusive
fine-tuning on 5,000 high-quality samples from the WebSailor-V2 dataset, while our proposed
method leverages a mixed training corpus that integrates 5,000 WebSailor-V2 samples with our
carefully curated WebLeaper-Reverse-Union data.
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Table 4: SFT results on Qwen3-4B-Thinking-2507. Bold scores indicate the highest values.

| | | | | WideSearch
Model / Framework BrowseComp GAIA  xbench-DS & Seal-0
| | | | SR Row F1  Item F1
QOwen3-4B-Thinking-2507
WebSailor-v2 16.2 55.3 53.3 30.9 1.5 15.7 30.3
WebLeaper-Reverse-Union 17.7 58.3 54.7 32.1 3.5 21.1 38.1

As illustrated in Table ] even when deployed on the relatively compact Qwen3-4B-Thinking-2507,
training augmented with WebLeaper data delivers consistent and substantial performance enhance-
ments across all evaluated benchmarks relative to the baseline. This result underscores the funda-
mental nature of the advantages brought by entity-intensive task synthesis and information-guided
trajectory construction strategies—advantages that transcend constraints imposed by specific model
scales or architectural paradigms, thus validating the generalizability of our approach.

5 RELATED WORK

5.1 INFORMATION SEEKING AGENT

LLM-powered information-seeking agents can be broadly categorized into 3 streams: (1) enhancing
core models via supervised fine-tuning [2023; [Wu et al.| 20254} [Li et al |, [2025¢ib;
et all, 2023}, [Su et all, 2025} [Fang et al., [2025a)); (2) advancing agent architecture for improved
planning and robustness (Qiao et al.l 2025 [Xu et al., 2025a; [Li et al., 2025a)); and (3) developing
multi-agent systems for collaborative problem-solving (Wu et al.,2023; [Hong et al.| [2024). Our work
aligns with the first category but addresses a key limitation. Prior methods often train on tasks focused
on correctness with single-fact answers, which is insufficient for large-scale information gathering.
We posit that the number of entities in an answer—its entity richness—is a critical dimension for
evaluating an agent’s completeness and efficiency. This paper aims to bridge this gap by creating and
utilizing entity-rich QA data to enhance agent capabilities for comprehensive information acquisition.

5.2 AGENT DATA SYNTHESIS

Synthetic data generation is pivotal for agent training, with primary applications in tool use (Wul
et al., 20254} [Tao et al, 2025} [Shen et al 2025] [Fang et al., 2025b), code generation (Jimenez
et al., SHEN et al.| 2025} Xu et al.} [2025¢; [Shao et al.,[2025), and GUI automation (Xu et al.]
2025D; [Sun et al.l [2025; [Pahuja et al., [2025). These efforts primarily combat data scarcity. Within
the information-seeking domain, existing data synthesis approaches increase task difficulty through
multi-step reasoning (Wu et all, [2025bja; [Tao et al., 2025) or long-horizon planning
[2025). We contend that such methods often overlook the semantic richness of the training data itself.
In contrast, our approach centers on synthesizing QA data with high entity-level complexity. We
hypothesize that this focus on data semantics is a crucial and complementary path to improving agent
reasoning and world knowledge alignment.

6 CONCLUSION

In this paper, we addressed the critical challenge of low search efficiency in LLM-based information-
seeking agents, a bottleneck that constrains their overall performance. We argued that the sparsity of
target entities in conventional training tasks is a primary contributor to this inefficiency. To overcome
this, we introduced WebLeaper, a novel framework for constructing entity-intensive IS tasks and
generating efficient solution trajectories. By formulating IS as a tree-structured reasoning problem
and systematically increasing task complexity through our Basic, Union, and Reverse-Union task
synthesis variants, we created a rich training environment. Furthermore, our information-guided
trajectory curation, using ISR and ISE metrics, ensures that the agent learns from solutions that are
both accurate and efficient. Our extensive experiments demonstrated that WebLeaperconsistently
improves performance across five challenging benchmarks, validating that enhancing search efficiency
is a powerful lever for boosting the overall capabilities of IS agents.
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A APPENDIX

A.1 DECLARATION ON THE USE OF LLMS

We declare that the use of LLMs during the preparation of this manuscript was strictly limited to
language-related assistance, such as sentence refinement and grammatical correction. All substantive
content was independently authored by the authors and rigorously reviewed and verified following
any LLM-assisted modifications. During the experiments, all usage of LLMs was solely for academic
research purposes, with no inappropriate applications. Detailed experimental settings are provided in
the Experiments section of this paper. No other reliance on LLMs is involved in this work.

A.2 PROOF OF PROPOSITION[I]

This appendix provides the detailed mathematical derivation for Proposition 1} as presented in
Section[2.3] The purpose of this proof is to formally establish that the variance of the Information-
Seeking Efficiency (ISE) metric is inversely proportional to n, the number of required entities. This
property, Var(ISE) = O(1/n), demonstrates that ISE becomes an increasingly stable and reliable
performance measure as the complexity of the task (i.e., the size of n) grows.

Proof. Recall from the main text that the Information-Seeking Efficiency (ISE) is defined as
ISE = ., @

where T is the total number of action steps taken to discover all n required distinct entities in the set
R.

Step 1: Modelling the random variables. Let X; denote the number of steps the agent spends to
discover the i-th new required entity in R. By assumption:

* Xi,...,X, are independent and identically distributed.
e 1 :=E[X;] > 0 (finite mean).
» 0% := Var(X;) < oo (finite variance).

* X, > 0 almost surely (each discovery takes a positive number of steps).

The total number of steps is

Step 2: Sample mean and basic properties. Define the sample mean

— T 1
X::E:E;Xi.

By standard properties of i.i.d. random variables:
2

E[X]=p, Var(X)= % 8)
From the ISE definition Eq.(5), we have the exact identity
1
X

Step 3: Reduction to the variance of a smooth function. We have ISE = f(X) with f(z) = 271
Since 4 > 0 and X; > 0 a.s., the function f is infinitely differentiable in a neighborhood of (.

Write o

Op =X — 1
so that E[6,,] = 0 and Var(d,,) = o2 /n. By the Strong Law of Large Numbers, §,, — 0 almost surely
as n — oo. Thus, for large n, with high probability |6,,| < /2, ensuring that a Taylor expansion of
f around g is valid.
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Step 4: Taylor expansion with remainder control. On the event {|§,,| < p/2}, we expand
f(p+ dy,) using Taylor’s theorem to second order:

1 1 4 52
=— — — + 2+ R3(5n), 9
Pt p p? ol 3(0n) ©
where the remainder term satisfies |R3(5,)| < C|§,|? for some C' > 0 depending only on .

Step 5: Mean and second moment calculations. From Eq.(9):

17 1 B2
E|l—|=-2 B[R, (5,)], 10
2| = iR 10
1 1 E[§2
E [:2] =t Lf] +O(E[|6,]) - (1D
By Eq.(8), E[62] = 0/n. Also, finite variance plus Holder’s inequality yields E[|6,,[3] = O(n~3/2).
Therefore: )
. 1 o 1
E[l/X]|=—+4+ —— — 12
1% = 5+ = +o( 1) (12)
-2 1 o? 1
El/X|=—+—— — . 1
1% = 5+ 5o ) (13

Step 6: Computing the variance. Using Var(Y) = E[Y?] — (E[Y])? with Y = 1/X:
1 o? 1 1 o2 1\ 2
Var(ISE) = — +—— tol = — =+ —5=+o=
p2 o ptn n TR n

()
= anteln )
nEn n

where the constant term % cancels exactly.

Step 7: Conclusion. We have shown that
o? 1
Var(ISE) = — —
w(ISE) = 5 +(n) |
which in particular implies the order bound Var(ISE) = O(n~1).

This completes the proof. O

A.3 REINFORCEMENT LEARNING EXPERIMENTS

To further explore the potential of WebLeaper’s data, we conduct reinforcement learning (RL)
experiments by applying GRPO to our advanced SFT model. The core goal is to verify whether
integrating RL can further boost the performance of our best-performing SFT model, leveraging RL’s
strength in optimizing action quality.

RL has proven effective in advanced reasoning tasks by exploring logical step spaces, but its objective
in the information-seeking domain is distinct: optimizing the quality of external tool actions (e.g.,
search, visit). We design a dense, granular reward signal based on a soft F-score that combines recall
(ISR) and precision, creating a rich and accurate learning signal. This reward mainly encourages the
agent to prioritize "better steps", which is our first motivation. The length of the reasoning content
main also varies properly for this purpose.

Table 3] presents the performance comparison between the SFT baseline and SFT+RL. Results show
that RL significantly improves performance across all benchmarks: GAIA sees a 3.3-point gain,
xbench-DS improves by 3.0 points, and WideSearch’s Success Rate (SR) jumps by 2.5 points. This
validates that RL, when combined with WebLeaper’s high-quality synthetic data, effectively enhances
the agent’s action optimization capability in information-seeking tasks.
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Model BrowseComp GAIA xbench-DS  WideSearch (SR)  WideSearch (Item F1)

SFT 37.8 69.9 69.0 1.5 45.4
SFT+RL  38.8 (+1.0) 732 (+3.3) 72.0(+3.0) 4.0 (+2.5) 48.5 (+3.1)

Table 5: Performance comparison between SFT and SFT+RL across benchmarks.

A.4 CLARIFICATION ON ToOL CALL EFFICIENCY AND REASONING CONTENT LENGTH

Our core objective in introducing ISE filtering is to enhance the quality and efficiency of tool calls,
not to restrict the length or depth of reasoning content. These two dimensions are fundamentally
distinct: tool call efficiency focuses on minimizing redundant, irrelevant, or unnecessary interactions
with external tools (e.g., redundant searches, unfocused URL visits), while reasoning content length
refers to the performance of the agent’s internal cognitive process (e.g., step-by-step chain-of-thought
(CoT) reasoning, intermediate deduction for complex constraints). The ISE metric targets the
former—ensuring each tool call contributes meaningfully to entity retrieval—without imposing
arbitrary limits on the latter.

Notably, the length of reasoning content dynamically adapts to serve our efficiency goal and the
inherent complexity of the task. For tasks requiring deep exploration (e.g., multi-step logical
deduction, adaptive constraint satisfaction), the agent’s reasoning process naturally expands to
accommodate structured planning (e.g., decomposing complex queries into subgoals, verifying
intermediate entities). However, this expanded reasoning is directed toward optimizing tool call
precision—e.g., generating more targeted search queries or validating the relevance of retrieved
information—rather than indulging in unfocused divergent exploration. For complex tasks like
AIME-style problems or long-form CoT reasoning, our framework preserves the necessary cognitive
depth by allowing reasoning content to scale with task difficulty, while ISE filtering only suppresses
unproductive tool calls (e.g., repetitive searches with minor keyword variations) that do not advance
the reasoning process.

In summary, strict ISE constraints do not hinder adaptive exploration or complex reasoning. Instead,
they decouple tool call efficiency from reasoning length: reasoning content evolves to support targeted,
high-quality tool interactions, and task complexity inherently shapes the depth of reasoning—all while
ISE ensures tool usage remains purposeful and resource-efficient. This design balances exploration
and efficiency, avoiding both tool call redundancy and overly rigid reasoning suppression.

A.5 DATA STATISTICS
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Figure 5: The distribution of our training data.

Figure 3]illustrates the distribution of our training data.

Figure[6displays the entity count distribution of our training data. A significant portion of our samples
contain at least 100 entities, underscoring the inherent difficulty of our dataset. As formalized in
Equation [6] this complexity is crucial for robustly measuring efficiency, which in turn leads to
improved overall performance.
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Figure 6: Entity Count Distribution in Training Data. A significant portion of our samples contains at
least 100 entities, underscoring the inherent difficulty of our dataset. This complexity, as formalized
in Equation equation [} is crucial for robustly measuring efficiency, which in turn contributes to
improved overall performance.

A.6 DATA CLEANING AND BASIC TASK CONSTRUCTION

This section elaborates on the data processing and construction methodology for the Basic version
tasks introduced in Section[3.1.11

Rationale for Tree Structure In information-seeking tasks, the reasoning structure is paramount.
We chose a tree structure for our basic tasks because it offers a compact and hierarchical organization
of entities. This structure is highly efficient for representing a large number of interconnected entities
that stem from a common query concept, mirroring many real-world information-gathering scenarios.
A reasoning tree is composed of a root (question entity) and a set of subtrees, where each subtree
represents a cohesive unit of information.

Multi-Stage Table Cleaning To ensure the quality and suitability of the data used for task synthesis,
we crawled approximately 2 million tables from Wikipedia and subjected them to a rigorous multi-
stage cleaning procedure. This was essential because raw web tables are often noisy and inconsistent.
The stages were as follows:

* Size Filtering: We first discarded tables that were either too small (fewer than 10 rows or 3
columns) to capture meaningful relational information, or too large (more than 200 rows or 20
columns) to be processed efficiently and form a coherent task.

* Semantic and Structural Filtering: We then removed semantically irrelevant columns that
frequently appear in web tables, such as those containing serial numbers, notes, or references.
Tables with significant formatting errors (e.g., numerous merged cells that disrupt the relational
structure) were also excluded.

 Isomorphism and Homogeneity: Finally, we retained only groups of isomorphic tables (tables
sharing the same column headers and structure). This step was crucial for ensuring structural
homogeneity across our dataset, which is a prerequisite for identifying common subtree structures
needed for the Union operation described later.

The resulting collection contains clean, well-structured tables with a set of meaningful fields as
columns and multiple rows, where each row can be transformed into a subtree.

Reasoning Tree Population To construct the three-layer reasoning tree from a single table, we
populate the layers as follows:

* First Layer (Question Entities): Entities mentioned in the table’s title or caption are extracted
to form the root of the tree.
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* Second Layer (Roots of Subtrees): We employ an LLM to analyze the table’s columns and
select one that contains no duplicate entries. This column is treated as the key, and its values
become the second-layer entities of the tree. Each of these entities serves as the root of a
subtree. The LLM is effective at identifying columns like ‘Name’ or ‘Title’ that serve this unique
identification purpose.

» Third Layer (Leaves of Subtrees): The values in the remaining columns of the table constitute
the third layer, representing the leaf entities associated with each second-layer entity.

A.7 MAXIMAL UNION ALGORITHM FOR TASK SYNTHESIS

This section provides the formal definition and algorithmic implementation for discovering maximal
union groups, as introduced in Section [3.1.2] The core of our approach is to reformulate the search
for compatible reasoning trees as a Maximal Biclique Enumeration (refer to [T|problem on a bipartite
graph.

Problem Formulation

Let Toase = {71, T3, .., Tn} be our collection of basic reasoning trees. We first construct a bipartite
graph G = (U, V, E), where U = Tp,s is the set of all trees, and V' is the set of all unique relation
names found within the subtrees across all trees in Tpse. An edge (75, v;) € E exists if the relation
v; is present in any subtree of tree 7; (i.e., v; € Rel(T;), where Rel(T;) = [J, Rel(S; «)).

In this construction, a maximal union directly corresponds to a maximal biclique (U,V), where
U C Uisasetoftrees and V C V is a set of their common relations. Our goal is to find all such
maximal bicliques that satisfy certain size and semantic constraints. Formally, we seek to find all
maximal pairs (U, V) that satisfy:
find maximal (U, V)
subjectto  VT; € U,V C Rel(T;), (14)

|Z/l| 2 kminy |V| Z M min-

Here, maximality means that no other tree can be added to ¢/ and no other relation can be added to
V without violating the biclique property. Solving this by reformulating it as a standard maximal
biclique enumeration problem is computationally efficient compared to an exhaustive search.

Algorithm and Implementation Details

* Input: A collection of base reasoning trees Tpase; @ minimum number of trees for a valid union,
kmin; @ minimum number of common relations, 7 y;iy.

¢ Goal: To find all maximal union groups, which are the solutions (4, V) to Eq. that also
satisfy the semantic matching criteria below.

* Subtree Relation Matching Criteria: To ensure the semantic coherence of unions, we impose
strict matching criteria. For relations connecting the second and third layers, we require
they share the same standardized name, data type, and domain. For the second-layer entities
themselves (the roots of the subtrees), we relax this constraint, requiring only a match in data
type and domain. This flexibility allows for the union of trees with conceptually similar but
differently named second-layer entities (e.g., fusing a tree where entities are *Authors’ with
another where they are *Writers’).

* Output: A set of maximal union groups F, where each element is a tuple (U’, V') that meets
the specified criteria.

The process is detailed in Algorithm [I]

A.8 DETAILED EXAMPLES OF TASK SYNTHESIS

This section provides detailed explanations and reasoning walkthroughs for the examples of the three
task synthesis versions presented in Section [3|and Figure
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Algorithm 1: Maximal Union Identification Algorithm

Input: A collection of base reasoning trees Tpase, minimum trees ki, minimum common
relations myin .
Output: A set of maximal union groups F.
F + 0
// 1. Construct the bipartite graph from trees and subtree relations
Let U be the set of trees from Ty,se and V' be the set of unique standardized relation names found
within the subtrees of all trees in Tpase;
Construct the graph G = (U, V, E) where an edge (u,v) € E exists if tree u contains the
relation v in its subtrees (i.e., v € Rel(uw));
// 2. Enumerate maximal bicliques from the graph
B + EnumerateMaximalBicliques(G);
// Leverages standard algorithms like MICA or Eclat
// 3. Filter and validate bicliques to form final union groups
for each maximal biclique (U', V") in B do
// Check size constraints from Eq. (1)
if |U’| < kmin or |V < mupin then
L continue;

// Validate semantic compatibility of second-layer entities
Let T34, Dig be the type and domain of the second-layer entities of the first tree in U’;
is_compatible < true;
for each tree u € U’ do
if u’s second-layer entity type # Ti; or domain # D,, then
is_compatible < false;
L break;

// If all checks pass, add to the set of valid union groups
if is_compatible then
L F+« FU{U,V"h}

return F;

A.8.1 VERSION-I: BASIC

The goal of the basic version is to create a task with a clear, hierarchical reasoning structure derived
from a single, self-contained set of entities.

Example Question: Who were the Nobel Prize winners in Literature between 1980 and 1990? Please
include their name, country, award year, and gender.

Construction Process: The task is constructed from a single Wikipedia table, forming a reasoning
tree. The layers shown in Figure[2{(a) are populated as follows:

* First Layer (question entities): Derived from the table’s title and a specified constraint, forming
the query’s scope: Literature Nobel Prize, year 1980—1990.

* Second Layer (subtree roots): Populated from the table’s key column (e.g., author names):
Czestaw Mitosz, William Golding, .. ..

* Third Layer (subtree leaves): Consists of values from the remaining columns, represent-
ing attributes for each second-layer entity. For example: man, Poland, 1980 for Czestaw
Mitosz. The edges connecting the second to the third layer represent relations like ‘has_gender’,
‘has_country’, ‘has_award_year’.

Reasoning Path: An agent is expected to follow this hierarchical structure:

* Identify Scope: Recognize the ‘Question Entities’ from the query: Nobel Prize in Literature,
1980-1990.

* Retrieve Second-Layer Entities: Retrieve the second-layer entities, which are the authors:
Czestaw Mitosz, William Golding, ....

19



Under review as a conference paper at ICLR 2026

* Gather Attributes: For each second-layer entity, follow the relations to retrieve their associated
third-layer entities, such as Poland, 1980, man for Czestaw Mitosz.

A.8.2 VERSION-II: UNION

This version increases structural complexity by requiring the agent to perform relational operations
across distinct reasoning trees.

Example Question: Which authors have won both the Nobel Prize in Literature and the Booker
Prize? For each, provide their name, nationality and the year they won the Nobel.

Construction Process: Once a maximal union is identified (e.g., between the reasoning trees for ‘No-
bel Prize laureates’ and ‘Booker Prize winners,” which share common relations like ‘has_nationality’
within their subtrees), an LLM generates a task requiring information integration. The LLM is
prompted to find an interesting relationship, such as the intersection of the two sets of second-layer
entities (authors), and then weave this logic into a natural language question.

Reasoning Path: The task is constructed from a maximal union of two distinct reasoning trees. To
solve this, an agent must:

* Retrieve First Entity Set: Identify the first concept, ‘Nobel Prize in Literature,” and retrieve the
full set of corresponding second-layer entities from the first tree, REnobel (T1)-

* Retrieve Second Entity Set: Identify the second concept, ‘Booker Prize,” and retrieve its full
set of second-layer entities from the second tree, Rpooker (T2)-

* Find Intersection: Perform a relational join to find the intersection of the two sets of second-
layer entities based on name. The final ‘Target Entities’ are the entities present in both sets, such
as {William Golding, J.M. Coetzee, ...}, along with their requested third-layer attributes.

A.8.3 VERSION-III: REVERSE-UNION

This version introduces a challenging cognitive workflow by intentionally obfuscating the query’s
entry points.

Motivation and Design: The Union method, while creating multi-source tasks, has a vulnerability:
an agent could solve it with simple keyword searches for each source, bypassing deeper reasoning.
Reverse-Union inverts the information flow, forcing an agent to first deduce a core ‘anchor’ entity
(a second-layer entity) from descriptive clues and then use that entity as a pivot to expand its search.

Example Question: Who are the authors from the same country as the 1980s prize-winner that wrote
a novel about a group of British boys stranded on an uninhabited island, and who have also won both
this reward and the Booker Prize? For each of them, what is their name, country, and the respective
years they won each award?

Construction Process: The construction builds upon the unified space from Version-1I with a
‘reverse’ logic:
* Source: We use the unified information space from the Nobel and Booker prize union.

 Select Anchor: An entity at the intersection of the second layers is chosen as the ‘anchor,” e.g.,
William Golding.

* Obfuscate Anchor: Instead of naming the anchor, unique descriptive clues based on its third-
layer attributes are generated: “the 1980s prize-winner” and “wrote a novel about... British
boys...” These clues become the ‘Question Entities’.

* Create Union Trigger: A third-layer attribute of the anchor, his nationality (British), is selected
as the pivot for the next stage of the query.

Required Reasoning Process: To solve this task, an agent must execute a two-stage process:
* Deduction Stage: The agent must first resolve the descriptive clues (which are third-layer

entities) to identify the second-layer anchor entity. The clues “1980s prize-winner” and “novel
about stranded British boys” uniquely point to William Golding. This inferential step is crucial.
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Figure 7: Distribution of Search, Visit, and total tool call.

 Union Stage: Having deduced William Golding, the agent identifies his nationality (a third-layer
entity in his subtree): British. This becomes the pivot for the main query. The agent must then
find all second-layer entities who (1) share this third-layer attribute (British) and (2) have won
both the Nobel Prize and the Booker Prize. This requires filtering the unified entity space to find
the final set of ‘Target Entities’, which includes authors like William Golding, Kazuo Ishiguro,
and J.M. Coetzee.

A.9 TooL CALL ANALYSIS

As shown in Figure[7] our method involves a significantly large number of actions, including Search,
Visit, and total tool calls. The density distributions indicate that tool calls often exceed several dozen
per instance, with many cases surpassing 50 actions. This high frequency of actions reflects the
intensive interaction and comprehensive exploration carried out by our approach, ensuring that the
method thoroughly leverages available tools to achieve optimal performance.

A.10 CLARIFICATIONS BETWEEN INFORMATION-SEEKING TASK AND ENTITY MINING

This section clarifies the scope of our entity-centric information-seeking (IS) framework and distin-
guishes it from mere "entity mining". We argue that modeling IS through an entity-centric lens is a
reasonable, generalizable, and widely-adopted foundation for tackling complex IS tasks, rather than a
restrictive simplification.

Definition and Rationale of Entity-Centric IS As formally defined in Section 2} an IS task is a
tuple ' = (q, R), where an agent interprets a natural language question ¢ and navigates the web to
collect a complete set of required entities R. We define "entities" broadly to include not only final
answers (e.g., "Alan Turing") but also intermediate reasoning stepping stones and attributes (e.g.,
"1950 Turing Award") that are critical for coherent inference.

This entity-centric task modeling is powerful for three core reasons: ENTITIES AS ATOMIC INFOR-
MATION UNITS. Abstract questions (e.g., about events, procedures, or concepts) ultimately rely on
grounding entities (e.g., “‘subprime mortgages” for the 2008 financial crisis) as building blocks for
answers. UNAMBIGUOUS SEQUENTIAL REASONING. Discrete entities enable objective progress
tracking, such as deducing anchor entities before retrieving related targets (a core mechanism in
our Reverse-Union tasks). CROSS-TASK VERSATILITY. It generalizes to descriptive, causal, and
procedural IS tasks, as all inherently involve collecting and connecting relevant entities.

Community Consensus and Universality Our entity-centric view aligns with a growing consensus
in the field. Leading works such as WebResearcher (Qiao et all [2025) model IS as collecting
"reasoning entity chains" (analogous to our R), DeepDive (Lu et al.}[2025)) uses "entity coverage rate"
(a precursor to our ISR), and industrial systems like MiroThinker (Team et al}, [2025b) conceptualize
IS as assembling "concept entity graphs". This paradigm is empirically validated and widely adopted
for its effectiveness.

In all, the definition of information-seeking task is different from traditional entity mining. It’s wildly
adopted by current agent community.
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A.11 DISCUSSION OF PERFORMANCE ON MULTILINGUAL, OUT-OF-DISTRIBUTION, AND
PRACTICAL SCENARIO

WebLeaper’s generalization capability in real-world scenarios is ensured through multiple inherent
mechanisms and empirical validations: the agent architecture based on the ReAct framework
possesses inherent noise resilience, as its "thinking" stage prior to action enables the
model to proactively assess the relevance and quality of retrieved information, identify and filter
redundant noise such as ads and irrelevant snippets, and dynamically adjust search strategies to adapt
to the messy nature of the real web.

Centered on real-world and multilingual applicability, our experimental design adopts five benchmarks

constructed from real web content—BrowserComp [2025), GAIA (Mialon et al| [2023)),
Seal-0 2023), WideSearch 2025), and xbench-DeepSearch (Xbench-Team|

[2025)), which cover common real-world challenges including ambiguous expressions, truncated
entities, and scattered information. Furthermore, a portion of tasks in xbench-DeepSearch and
WideSearch are presented in Chinese, making these benchmarks multilingual. Most of the selected
benchmarks are not derived from Wikipedia, resulting in an out-of-distribution (OOD) evaluation
setting. This helps mitigate bias in our synthetic data, as the evaluation is decoupled from the source
of our training data synthesis. WebLeaper consistently outperforms strong baselines across these
benchmarks, providing direct and robust empirical evidence for its generalization ability.

Furthermore, the dual-metric trajectory filtering mechanism of ISR (Information-Seeking Rate)
and ISE (Information-Seeking Efficiency) further enhances the model’s robustness: ISR requires
the model to fully cover target entities, fostering its persistence and thoroughness in mining key
information amid noise, while ISE suppresses ineffective "noise-chasing" behaviors and trains the
model to prioritize high-value actions. Collectively, these designs ensure that WebLeaper can
effectively excel at complex, noisy real-world application scenarios.
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