
Mesh Extraction for Unbounded Scenes Using Camera-Aware Octrees

Zeyu Ma, Alexander Raistrick, Lahav Lipson*, Jia Deng
Department of Computer Science, Princeton University

{zeyum, araistrick, llipson, jiadeng}@princeton.edu

Abstract

Mesh extraction from occupancy functions is a use-
ful tool in creating synthetic datasets for computer vi-
sion. However, existing mesh extraction methods have ar-
tifacts or performance profiles that limit their use. We
propose OcMesher, a mesh extractor that efficiently han-
dles high-detail unbounded scenes with perfect view con-
sistency, with easy export to downstream real-time en-
gines. The main novelty is an algorithm to construct an
octree based on a given occupancy function and multiple
camera views. We performed extensive experiments, and
demonstrate OcMesher’s usefulness for synthetic training
& benchmark datasets, generating real-time environments
for embodied AI and mesh extraction from depthmaps or
novel view synthesis methods.

1. Introduction

We tackle the problem of camera-aware mesh extraction:
given an occupancy function and a set of camera poses, we
produce a 3D mesh that is high-detail when viewed from
any camera but has minimum overall cost. An occupancy
function is any mapping f : R3 7→ {0, 1} which indicates
whether any point in 3D space is occupied (i.e. contained
within a solid object) or is unobstructed free-space. Oc-
cupancy functions can represent any closed 3D shape with
arbitrary precision, and can flexibly represent unbounded
scenes, which have visible geometry at arbitrary distances.
However, converting an occupancy function to an efficient
but high-detail mesh remains an unsolved problem.

Mesh extraction from occupancy functions is a useful
tool in creating synthetic datasets for computer vision. Syn-
thetic data from traditional graphics is widely used in com-
puter vision [2, 4, 8, 17, 21, 24, 26–28, 31, 35, 44, 52, 58,
59]. Most recent is Infinigen [42], which proposed to create
assets through procedural generation, i.e through random-
ized mathematical rules. In particular, they use a procedu-
ral occupancy function (i.e. an occupancy function defined

*work done while a student at Princeton University

using randomized rules and noise functions) to generate nat-
ural terrain in unbounded scenes, which must be converted
to a mesh for use in data generation.

Mesh extraction is also applicable to works in novel view
synthesis that represent scene geometry as a density func-
tion [3, 38], signed distance function (SDF) [29, 53], or any
other representation that can be thresholded to produce oc-
cupancy. Mesh-based novel view synthesis is also a grow-
ing research area [5, 43], and we expect work on mesh ex-
traction to aid these efforts.

Extracting a mesh is important step in many computer
graphics pipelines. Major game engines [10], embodied
simulators [25, 36, 45], graphics packages [6] and more
all focus on meshes as input. Sphere tracing [19] can di-
rectly render implicit functions, but are not as performant,
and typically require a true SDF not just occupancy. Mesh
based graphics is widely adopted, efficient, photorealistic,
and can be easily deployed to mobile hardware [5].

However, existing solutions for mesh extraction are un-
satisfactory, especially in unbounded scenes. The most
widely used is Marching Cubes [34], which extracts a mesh
from a uniform grid of evaluated occupancy. This poses two
main issues. First is that it is uniform in resolution: if one
part of the scene needs to be high detail, the entire scene
must use a small grid size, which is slow to evaluate and
produces an overly expensive mesh. Second, it requires the
user to provide a bounding box for the scene to determine
the extents of the grid. The combination of these two issues
is especially troubling, since an unbounded scene with any
detailed foreground object must create a very large, very
detailed grid. Unbounded scenes are important in synthetic
data [42] and are a growing interest in novel view synthe-
sis [3].

A workaround is to perform marching cubes on a warped
or non-uniform grid, but this also has issues. Infinigen
[42] creates a spherical grid centered on the camera loca-
tion, which constructs an efficient mesh for any one cam-
era view. However, most applications require meshes that
are valid from many views, and merging many spherical
grids is impossible. One can re-evaluate new meshes as the
camera moves (as performed in Infinigen), but this is pro-

Figure 1. Infinigen’s spherical marching cubes has low poly artifacts if the camera changes its location significantly. OcMesher produces
meshes with no artifacts for a wide range of camera views.

hibitively expensive, diffcult to integrate with downstream
applications, and introduces flickering and low-detail arti-
facts when cameras move beyond the valid range (Fig. 1).
Similar issues hold in applying existing solutions to scenes
from NeRF and other methods: either the mesh must be pro-
hibitively detailed everywhere, or if detail is non-uniform it
is difficult to ensure the mesh is valid for an arbitrary set of
camera views.

In this paper, we propose OcMesher, a camera-aware
mesh extraction algorithm for unbounded scenes that avoids
the pitfalls of existing solutions. OcMesher can generate a
single mesh that represents unbounded geometry efficiently
and can be rendered without artifacts across any pre-defined
range of camera views. Our solution achieves a combina-
tion of capabilities that was not possible with existing solu-
tions:
• Unbounded scenes: Our solution can efficiently handle

unbounded scenes that include arbitrarily distant geome-
try, without intractable memory requirements.

• Real-time rendering: Our solution generates a single
mesh that can be directly used by a real-time rendering
engine like Unreal Engine [10]. The mesh renders well
across a range of camera views, as long as the camera
stays within an area predefined by the user.

• View consistency: Because only a single mesh is needed,
our solution has perfect view consistency, with zero flick-
ering artifacts across the rendered video frames, regard-
less of the poly count of the mesh. Our perfect view con-
sistency improves data quality.
Our solution constructs an octree [37] instead of a regu-

lar grid. An octree is irregular, multi-resolution grid. Given
a user-defined set of camera views and an occupancy func-
tion, we construct an octree that is high resolution around
surfaces close to any camera view, but low resolution for lo-
cations in empty space or far away from all camera views.
Our algorithm seeks to construct an efficient octree, mini-
mizing the number of total cells used while maintaining the
visual quality of the renders. Once the octree is constructed,
we perform dual contouring [23] to extract a mesh. Fig. 2
illustrates the idea in comparison with existing solutions.

Compared to Marching Cubes, OcMesher requires a set
or range of intended camera poses & intrinsics as an ex-

(a) (b) (c)

Figure 2. (a) Uniform marching cubes mesh extraction cannot ef-
ficiently represent high-detail unbounded scenes; (b) Infinigen’s
solution requires different meshes for new views, so introduces ar-
tifacts; (c) Our algorithm solves these issues by constructing an
efficient octree and extracts the mesh from it to solve the issues.

tra input, and specifies target mesh resolution as a desired
angular resolution (i.e. how big is the biggest projected
face size in any camera?) rather than a grid cell size. This
is well-suited to our downstream applications. In synthetic
dataset generators, the camera trajectory is typically an ar-
bitrary path generated by the user [42, 54], which can be
directly provided to our system. In games or embodied sim-
ulators, the user can provide the intended playable area (i.e.
where is the agent allowed to walk, and what height(s) will
the camera be?) and produce a mesh that is valid for any
reachable location. Angular resolution is also a more intu-
itive control of mesh detail.

The main novelty of our solution lies in our algorithm
to handle many views efficiently with a given occupancy
function, which existing approaches cannot do. Our heuris-
tics are a nontrivial adaptation and combination of exist-
ing techniques. For example, the original marching cubes
algorithm evaluates the occupancy and grows regions for
fine-grained uniform grids, but we evaluate the occupancy
in intermediate-level non-uniform grids, and we grow re-
gions based on both occupancy and visibility.

We perform extensive experiments to validate the effec-
tiveness of our solution. Experiments show that our solu-
tion improves the quality of synthetic data from Infinigen,
and that our solution can generate unbounded environments
that can be rendered at 50 FPS in Unreal Engine, seamlessly
and without artifacts even with large view changes, a capa-
bility not available from existing solutions. Moreover, we
show our solution can extract low-cost high-quality meshes

from BakedSDF[60] or a set of input depthmaps.
We encourage the reader to view the video

here for more qualitative results and please visit
https://github.com/princeton-vl/OcMesher for the code.

2. Related Work
2.1. Direct SDF Renderers.
A potential alternative to mesh extraction is to directly ren-
der an implicit function using ray marching algorithms such
as sphere tracing [19], segment tracing [13], quasi-analytic
error-bounded (QAEB) ray tracing [39], others [7, 16].
Raymarching methods also generally do not accept arbi-
trary occupancy functions, instead requiring an SDF [19],
lipschitz continuity [13], or that the scene is composed of
certain primitives [1]. Our method supports any occupancy
function, including those used in Infinigen, and produces
a mesh, which is necessary to integrate with existing syn-
thetic dataset generators [17, 42] which are overwhelmingly
mesh-based.

2.2. Multi-Resolution Mesh Extraction.
Uniform iso-surface extraction algorithms like Marching
Cubes [34], Marching Tetrahedra [9] and others [12, 48, 49]
are the standard approach to mesh extraction for occupancy
functions. However, they are less well suited when scene
content is unbounded or not all equally important. There-
fore, many existing works divide space into multiresolution
tetrahedra [14, 62], or even polyhedra [40, 56]. Some works
also divide space into an octree and use dual contouring al-
gorithms [22, 23, 41, 46]. Please refer to [57] for a more
complete discussion. However, these works do not answer
the question of how to determine the level of detail (LOD)
when we have multiple cameras.

2.3. View Dependent Mesh Extraction.
To the best of our knowledge, all existing works focus
on a single camera at a time and reuse the mesh for very
few neighboring cameras. Many construct volume grids in
world space and subdivide them recursively [18, 32, 33, 47].
These works usually do not optimize the mesh size based
on criteria such as occlusion and do not scale well for high-
resolution images. For example, Scholz et al. [47] focuses
on real-time approaches and their generated mesh contains
at most 700k triangles for a 1920 × 1080 resolution image
of more than 2 million pixels. Considering the deep depth
dimension and the fact that they do not coarsen occluded tri-
angles, their meshes are far from achieving pixel-level de-
tails in unbounded scenes.

Infinigen [42] uses Marching Cubes in camera-space
spherical coordinates, which is more scalable to high-
resolution images. However, as mentioned previously, it
is impractical for real-time rendering and suffers flicker-
ing and low poly artifacts due to switching between view-
dependent meshes as the camera moves.

(a) Uniform grid (b) + Angular diameter

(c) + Occupancy (d) + Visibility

Figure 3. The mesh representation (2D analogy) gets increasingly
efficient as we apply the 3 LOD criteria one by one.

2.4. Flickering Removal.
Besides generating a static mesh, alternative flickering re-
moval approaches attempt to hide or smooth out LOD tran-
sitions by continuously deforming the mesh [20, 30]. How-
ever, these techniques usually require the geometry to be a
height map [30] or given as an initial high-poly mesh [20],
which is not applicable in our case with an occupancy func-
tion as input. Other blending algorithms only consider
changes in image space [15], ignoring 3D geometry. These
solutions also cannot export a static mesh for use in real-
time rendering engines.

3. Method
Given an occupancy function and a set of camera poses, we
aim to extract an iso-surface mesh that is high-detail when
viewed from any camera but has minimum overall polygon
count and rendering cost. Our strategy is to construct an
octree by recursively subdividing nodes until several level-
of-detail criteria are met (Sec. 3.1), using a coarse-to-fine
strategy to ensure computing the criterion is feasible (Sec.
3.2). We provide an overview in Fig. 4.

3.1. Octree Level of Detail Criteria

We use an octree to achieve different levels of detail for
different parts of the scene. Octrees represent an irregular,
multi-resolution grid using a tree structure, where each node
represents a cube in the space, and nodes can be recursively
subdivided into eight octants. To construct an octree, we re-
cursively subdivide based on the 3 criteria described below
and in Fig. 3, using a coarse to fine strategy as described in
Sec. 3.2.

3.1.1 LOD based on Projected Angular Diameter.
The most important LOD criterion is the projected angular
diameter of the octree node in the camera views, which is

https://youtu.be/YA1c5L0Ncuw
https://github.com/princeton-vl/OcMesher

inversely proportional to the distance to the cameras. We
compute the maximum angular diameter Anode considering
all cameras:

Anode = Lnode/min
∀cam

dist(node, cam) (1)

Where Lnode is the side length of the cube represented by
the node, cam iterates through all the cameras, and dist
computes the distance of the center of the node to each cam-
era. We compare Anode to our target angular diameter Â,
which is computed based on the field of view (FOV) of the
cameras and the image resolution.

If Anode > Â, we either subdivide the node into 8 chil-
dren and compute the angular diameter of each child recur-
sively, or subdivide the node into a denser grid. In practice,
there will always be some node containing one of the cam-
eras, and Anode from Eq. 1 can never be less than Â. To
avoid this issue, we clamp all distances to be at least Dmin
(a hyperparameter set by the user), and assert that the cam-
era is never actually within distance Dmin of the surface.

3.1.2 LOD based on Occupancy.
To save computation, we avoid subdividing any node deter-
mined to be wholly unoccupied, as these nodes should not
contain zero crossings or affect the final mesh.

Exactly determining whether a node is occupied is ex-
pensive. For example, we could completely subdivide every
node to meet the angular diameter criterion, and then merge
empty nodes, but this is prohibitively expensive. Instead,
we determine node occupancy using heuristics based on the
occupancy function value of its 8 bounding vertices, with-
out performing a full subdivision. This misses some nodes
that are actually occupied if we further subdivide, and un-
less handled carefully, will cause dual contouring to create
spiky meshes near any sharp LOD transitions. Therefore,
we need to propagate the occupancy from the existing sur-
face to its neighbors, as discussed later in Sec. 3.2.

3.1.3 LOD based on Visibility.
Finally, we avoid subdividing nodes that are either occluded
by a surface or outside the camera frustum. In either case,
we say that the octree node is not visible since it can only
affect the image through shadows, reflections, or bounce
lighting. For these not-directly-visible areas, we stop subdi-
vision earlier, i.e. we use Âinv > Â as the diameter criterion.
This reduces overall computation and final mesh size since
the sum of angular sizes of nodes visible to the camera is
bounded and should not grow with depth. However, sim-
ilarly to occupancy checking, computing precise visibility
would require completely subdividing all nodes, which is
too expensive. We instead decide which node is visible in
the middle of the subdivision.

Table 1 evaluates the effect of the 3 criteria for the scene
in Fig. 5 in a low-resolution setting, and for the uniform

Table 1. Ablations on LOD Criteria

Octree Leaf Nodes # Mesh Vertices # Mesh Faces
Ang. ✗ Occup. ✗ Vis. ✗ 3.5× 1013 > 1× 109 > 1× 109

Ang. ✓ Occup. ✗ Vis. ✗ 8,686,602 143,726 287,560
Ang. ✓ Occup. ✓ Vis. ✗ 1,035,232 121,802 243,616
Ang. ✓ Occup. ✓ Vis. ✓ 736 1,535 3,079

grid baseline, we could only give the theoretical prediction.
We can see all the criteria, especially the angular diameter
criterion and the visibility criterion, can significantly reduce
redundancy in the octree nodes and the resulting mesh.

3.2. Coarse-to-Fine Octree Construction

We use a coarse-to-fine strategy to compute occupancy and
visibility criteria efficiently. As illustrated in Fig. 4, we con-
struct the octree in 3 steps: the coarse full octree, the occu-
pancy and visibility test, and the fine visible octree. We
explain them step by step.

3.2.1 Coarse Full Octree
First, we construct a coarse full octree based solely on
the projected angular diameter criterion. We initialize the
octree with a single root node with size Lroot. We use
Lroot = 1000m for our Infinigen experiments, but this
value is unbounded - one could equally use 5000km (hori-
zon at sea-level) or 50,000km (approx maximum horizon
distance on earth) with minimal overhead. We initialize
a max-priority queue with the root node, which is sorted
by key Anode, then repeatedly subdivide the top node while
Anode > Âinv.

We limit the size of the coarse octree to Smax = 500, 000.
Once this value is reached, we no longer subdivide and in-
stead mark unprocessed nodes as having a dense grid of N3

virtual children. N is the smallest power of two such that
each virtual child has Anode ≤ Âinv. Crucially, we avoid
storing virtual child nodes in memory, since we can cheaply
compute them on the fly given just Anode.

3.2.2 Occupancy and Visibility Test
We use a flood-fill algorithm to avoid querying the occu-
pancy of nodes that are unlikely to be occupied. We start
with a subset N of nodes in the coarse octree (specifically,
only the nodes on the boundaries of the N3 virtual grids).
For each node in N , we compute the occupancy function
value on the 8 vertices of the node. If both positive (≥ 0)

(a) Coarse full octree (b) Occup. and vis. test (c) Fine visible octree

Figure 4. We construct the octree from coarse to fine.

and negative (< 0) vertices exist, we mark this node as oc-
cupied and put its neighboring nodes into N . We iterate
until we completely test N .

We may miss thin iso-surfaces due to insufficient sam-
pling. But thin objects like plants are usually generated
separately as standalone objects. In any case, this does not
hurt the goal of data generation as we still have accurate and
view-consistent ground truth, even though the mesh is not
perfectly faithful to the procedural occupancy function.

Next, we compute whether each occupied node is also
visible or not. For each camera, we project all nodes onto a
depth buffer and mark nodes as visible in this camera if the
projected depth is smaller than any of the values within a
neighborhood of its projected pixel. A node is then visible
overall if it is visible in at least one camera camera. To
further avoid missing potentially visible nodes in the final
result, we dilate the set of visible nodes by including all
< k-th degree neighbors, where k = 2 is a user-specified
hyperparameter.

3.2.3 Fine Visible Octree
Finally, we divide all visible nodes into high-resolution oc-
trees until all of these octrees’s leaf nodes (referred to as
subnodes) have Asubnode ≤ Â. This process can cause sharp
LOD transitions if a neighboring node that was not consid-
ered occupied turns out to be occupied. Therefore, if we
find a sign change while dividing a node on the border of a
node marked unoccupied, we mark it as occupied such that
it is meshed at high resolution too. This propagation with-
out restriction can undo the work done by the visibility test.
Therefore if a neighbor node is already marked as invisible,
we don’t convert it to be visible.

3.3. Mesh Extraction

We use the dual contouring algorithm [22, 23, 41] to ex-
tract a mesh from the octree. But, instead of quadratic error
functions (QEF), we use bisection to locate the center vertex
of each node, which is more robust to discontinuous occu-
pancy functions.

3.4. Computational Complexity

The majority of the time and the memory are spent in the
fine octree step, where we need to densely query the occu-
pancy functions and extract dense meshes. Such functions
are usually optimized for parallel computation. Therefore
we do these operations in batches on parallel devices such
as GPU to save time. The total complexity depends on many
factors:

Time and Memory ∝ KsceneKcamNcam
Sfov

Â2
(2)

Where Kscene is the complexity of the scene, Kcam de-
scribes how fast the camera moves, i.e., how much new

content each camera has (for completely non-overlapping
cameras, Kcam = 1, but in practice, Kcam ≪ 1), Ncam is
the number of cameras, and Sfov is the solid angle of the
FOV. The last factor Sfov

Â2
comes from the fact that we only

construct the fine octree for the visible part.

4. Experiments
To generate synthetic scenes and videos, we integrated our
method with Infinigen [42]’s scene generator but replaced
their mesh extracting solution with ours. Because Infini-
gen’s assets except terrains do not use occupancy functions,
we turn them off in the experiments. We randomly gener-
ated 42 scenes and for each scene, we rendered a video con-
sisting of N = 192 frames of resolution H ×W = 720 ×
1280 on a cluster of GPUs including NVIDIA GeForce
RTX 3090, RTX A6000, and A40. Each scene is generated
under several settings:
• With Infinigen’s spherical marching cubes, at 3 target res-

olutions. Higher mesh resolution reduces flickering but
incurs more computational cost. We show the 3 target res-
olutions to demonstrate this trade-off. We regenerate the
mesh every 8 frames, which is the default setting from In-
finigen and is a generous comparison due to the low-poly
artifacts at image edges during camera motion, as shown
in Fig. 1.

• With our method using a moderate resolution. We cre-
ate a single mesh from all N frames except for when the
resulting mesh exceeds Blender’s (our rendering Engine)
capacity, which happens for 5 scenes out of the 42 scenes
in total. In those cases, we split the entire video clip into
two clips. This makes the video of these 5 scenes flicker
in the middle frame, but it has negligible effects on the
experiment results compared with the theoretical results.
We render RGB images with Blender’s Cycles Engine,

with 8192 samples per pixel, and save ground-truth depth
maps and camera parameters for each frame. Because we
only consider static terrain, we can compute the ground
truth optical flow Fi→j (1 ≤ i, j ≤ N) for any pair of
frames # i and # j. Each Fi→j [x, y] means pixel (x, y) in
frame # i goes to pixel (x, y) + Fi→j [x, y] in frame # j.

4.1. View Consistency
First, we show that our method has less flickering in the ren-
dered videos, i.e., ours has better view consistency. Quali-
tatively, we show a zoomed-in region of a muddy mountain
scene for a pair of mesh-switching frames (we call such
frames transition frames) rendered with both methods in
Fig. 5. Because the Infinigen solution switches between
meshes, we can see the differences between the two images,
focusing on those reflective regions.

In addition, we can quantitatively measure the view con-
sistency score Si→j between two frames i and j given the
ground truth optical flow Fi→j :

Si→j = SSIM(Ii,warp(Ij ,Fi→j)) (3)

Where Ii and Ij are the RGB images of frame i and
frame j respectively, warp is a function that warps back the
input frame according to the forward flow, and SSIM com-
putes the structural similarity score (SSIM) [55] of two im-
ages. This produces a 2D map the same size as the image,
with values proportional to how consistent the two frames
are. Fig. 5 shows the SSIM map for the zoomed-in regions.

We analyze the complete video sequence for 3 scenes.
In Fig. 6, column (a) shows an overview of the scene for
reference; column (b)(c) shows the SSIM score map S8→9

between the first pair of mesh-switching frames, i.e., frame
#8 and frame #9. Column (b) shows 3 different resolution
settings with the Infinigen solution; (c) shows ours. The
brighter the color, the worse the SSIM score. From left to
right in (b), as the resolution increases, the score gets better.
Yet, ours has much better view consistency even compared
with the best in Infinigen. The only significant inconsis-
tency (yellow area) lies in occlusion boundaries and where
volume scattering makes the rendering noisy.

Fig. 7 (a) shows the SSIM score for adjacent frames,
which details how much flickering is experience when we
watch the video continuously. It shows the frame-wise av-
erage against time on the left. The sharp comb-like peaks

(a) Infinigen

(b) Ours

Figure 5. Two adjacent frames of meshes extracted with (a) Infini-
gen (b) OcMesher (Ours). In the zoomed-in images, we can see
more visual inconsistency in (a). The heatmap shows the quantita-
tive measurement (via flow ground truth, explained in Sec. 4.1).

(a) Images (b) Infinigen with increasing resolution (c) Ours

Figure 6. Quantitative measurement of view consistency for the
first pair of transition frames. The brighter, the worse.

(a) Comparison of frame-by-frame SSIM

(b) Comparison of first-to-nth frame SSIM

Figure 7. Quantitative measurement of view consistency (a) for
adjacent frames and (b) along a pixel trajectory. On the left, Infini-
gen’s transition frames introduce sharp spikes in frame-by-frame
inconsistency. On the right, Infinigen suffers worse 0 → i con-
sistency except for the first 8 before any transition frames occur.
In both cases, our method provides a superior SSIM-vs.-runtime
tradeoff.

indicate periodical flickering in Infinigen during transition
frames. On the right, we show scene-wise average end-
point error (EPE) for transition frames versus the mesh ex-
traction time. We do not include rendering time because it is
very dependent on the rendering engine. Infinigen’s flicker-
ing is reduced by additional mesh resolution, but this incurs
increased runtime. However, even in its highest resolution,
it is still much worse than our method.

Fig. 7 (b) shows the SSIM score along many individual
pixel trajectories, comparing frame 1 to frame i at every
timestep. It also shows the frame-wise average against time
and the scene-wise average against the generation time. We

Figure 8. Rendering quality of different Â values
Figure 9. SSIM against number
of vertices for different Â values

(a) Gunnar Farneback’s algorithm (b) RAFT (c) VideoFlow

Figure 10. End-point-error (EPE) for 3 pre-trained optical flow methods evaluated on OcMesher vs. Infinigen at various resolutions.

Figure 11. RAFT models trained on our dataset achieve better or
comparable results with a lower cost.

can see as soon as the frame goes beyond the first group
of frames where the mesh is reused, the score drops sig-
nificantly in Infinigen, so it is much harder to match corre-
sponding points there. The trade-off curve is similar.

4.2. Effect of Angular Diameter
We set the angular diameter threshold Â such that the indi-
vidual faces of the mesh are not visible in the given image
resolution (720 × 1280 here). And empirically, we found
that setting Â = 3 pixels is good enough. The resulting an-
gular diameters A of the nodes are between 1.5 and 3 pixels.
Fig. 8 shows qualitative results for a range of Â values and
we can see that rendering quality saturates as Â decreases.

Fig. 9 shows that the number of vertices of the mesh in-
creases proportional to 1/Â2 in our method. Compared with
meshes of the same size in Infinigen, our view consistency
is high all the time. So we can choose the Â value that
makes the rendering quality saturate.

4.3. Synthetic Data for Model Evaluation
We compare these datasets as benchmarks for the opti-
cal flow estimation task. With the same method and the
same scene, if a dataset setting produces stable and rea-
sonable errors as the camera moves smoothly, this means
the dataset has fewer distracting factors and can serve as
a better benchmark. We evaluate optical flow for each
pair of adjacent frames using 3 existing methods: Gunnar
Farneback’s algorithm [11] from OpenCV, RAFT [51], and

(a) Mesh
rendering (b) Sphere tracing w. 1×, 0.1×, 0.01× compensation

Figure 12. For an occupancy function derived from a non-distance
function f , we compensate for this by using 0.1×f or even 0.01×
f as the SDF. Sphere tracing still produces noisy results.

VideoFlow [50]. Fig. 10 shows the results of each method
for one scene. On the left, we show frame-wise mean
endpoint error (EPE). Again, we see spikes during transi-
tion frames in Infinigen, especially in the first two meth-
ods which estimate flow independently without neighbor in-
formation. This demonstrates that Infinigen has significant
measurement noise when used as a benchmark dataset. In
contrast, evaluating the models on our data produces consis-
tent and smooth errors, except for the middle frame where
the camera motion suddenly changes direction, which is an
expected phenomenon.

4.4. Synthetic Data for Model Training
We also use the generated datasets as training sets for the
optical flow task. Particularly, we focus on wide baseline
scenarios, which is a more challenging task and more use-
ful for relevant applications like stereo matching. We use
RAFT [51], and train the model from scratch for 50k iter-
ations with batch size 2 on image pairs from 32 out of the
42 scenes, with the rest as a validation set. We train on im-
ages sampled 10 frames apart and exclude images with me-
dian optical flows greater than 50px. We compare the train-
ing results versus the mesh generation cost of the dataset in
Fig 11. We can see that models trained on our dataset attain
better EPE and % <1 px metrics at a lower cost. Infinigen
is prohibitively expensive to achieve similar performance.

(a) The scene and wireframe
visualization

(b) Screenshots of a real-time
video. FPS: 53.46

Figure 13. Our method enables real-time (>50 FPS) scene explo-
ration in Unreal

Figure 14. Re-extracting new view-dependent meshes with Infini-
gen’s solution cannot achieve interactive frame rates, even at ex-
tremely low detail ignoring any mesh load-time.

4.5. Comparison with Ray-marching Alternatives
Ray-marching with compensated SDF does not work well
in practice for rendering. For an occupancy function derived
from a non-distance function f where positive values mean
occupied, and negative unoccupied, we can compensate for
this by using 0.1× f or even 0.01× f as the SDF. We used
an open-sourced sphere tracing implementation with Phong
shading. As shown in Fig. 12, compared with mesh-based
rendering on the left, the result is noisy and has holes in
the images rendered by sphere tracing. In addition, once
the mesh is generated, it takes only 3 minutes to render the
mesh; for sphere tracing, the smaller the multiplier is, the
longer it takes to render the mesh, and it takes an hour to do
sphere tracing in the 0.01× f setting.

4.6. Creating Embodied AI Environments
Most importantly, our method can create simulated virtual
environments in real-time rendering engines like Unity or
Unreal Engine, where an embodied AI agent can explore
and learn. To demonstrate this, we took a scene from the
previous dataset and extracted a mesh that is valid for a large
region of camera rotations and translations along a path of
interest. This results in an unbounded mesh that can be ex-
plored interactively within a certain range of camera poses.
We export the resulting mesh to Unreal Engine. We exper-
imented on a 4K (3840 × 2160) display with one NVIDIA
GeForce RTX 3090 GPU and achieved >50 FPS rendering
frame rate. Fig. 13(a) shows the scene and the wireframe
visualization, and we can see the mesh is denser on those
surfaces closer to the camera view and sparser far away.
Fig. 13(b) shows the screenshots of the real-time video. In
contrast, Infinigen needs to create a new mesh for each new
view, which takes about 0.5 seconds even at low resolution,
as shown in Fig. 14. Even ignoring mesh loading overhead,
this yields a theoretical frame rate of 2.41 FPS. This could
be increased by refreshing the mesh only every few frames,
but this would produce visible seams and low-poly artifacts.

4.7. Mesh Extraction from Neural Functions
We used OcMesher to extract a mesh from a BakedSDF [60]
trained on a standard demonstration scene, with results
shown in Fig. 15. Compared to the mesh produced by
SDFStudio’s[61] uniform marching cubes, ours has simi-
lar visual detail, but less than 30% the total cost (measured
in vertex-count).

(a) Scene

(b) Uniform marching cubes

(c) OcMesher

Figure 15. OcMesher creates camera-aware meshes for neural oc-
cupancy functions

Figure 16. Application of OcMesher to depth maps

4.8. Mesh Extraction from Depth Maps
OcMesher can also extract meshes for arbitrary views from
scenes represented as a set of depth maps, shown in Fig. 16.
We define an occupancy function for the scene by projecting
each 3D point into every depthmap and checking whether
the projected depth is smaller than the interpolated depth in
any frame, in which case we classify it as unoccupied. We
use rendered depth-maps from Infinigen as an example, but
the same technique applies to any set of depthmaps with
known poses. Note that the occluded geometry is under-
constrained and has artifacts.

5. Conclusion
We propose OcMesher, a method to extract meshes for un-
bounded scenes based on a given occupancy function and a
given set of cameras. Unlike previous methods, we gener-
ate a high-resolution mesh that can be reused for all prede-
fined cameras. We expect OcMesher to be a useful multi-
purpose tool for computer vision, and have demonstrated
its usefulness for synthetic training & benchmark datasets,
generating real-time environments for embodied AI, mesh
extraction from novel view synthesis methods, and mesh
extraction from depth maps.

6. Acknowledgements
This work was partially supported by the National Science
Foundation and Amazon.

References
[1] Vectron volume for cinema 4d: https://www.machina-

infinitum.com/vectron-volume. 3
[2] Shaojie Bai, Zhengyang Geng, Yash Savani, and J Zico

Kolter. Deep equilibrium optical flow estimation. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 620–630, 2022. 1

[3] Jonathan T. Barron, Ben Mildenhall, Dor Verbin, Pratul P.
Srinivasan, and Peter Hedman. Mip-nerf 360: Unbounded
anti-aliased neural radiance fields. CVPR, 2022. 1

[4] Daniel J Butler, Jonas Wulff, Garrett B Stanley, and
Michael J Black. A naturalistic open source movie for opti-
cal flow evaluation. In Computer Vision–ECCV 2012: 12th
European Conference on Computer Vision, Florence, Italy,
October 7-13, 2012, Proceedings, Part VI 12, pages 611–
625. Springer, 2012. 1

[5] Zhiqin Chen, Thomas Funkhouser, Peter Hedman, and An-
drea Tagliasacchi. Mobilenerf: Exploiting the polygon ras-
terization pipeline for efficient neural field rendering on mo-
bile architectures. In The Conference on Computer Vision
and Pattern Recognition (CVPR), 2023. 1

[6] Blender Online Community. Blender - a 3D modelling and
rendering package. Blender Foundation, Stichting Blender
Foundation, Amsterdam, 2018. 1

[7] Cyril Crassin, Fabrice Neyret, Sylvain Lefebvre, and Elmar
Eisemann. Gigavoxels: Ray-guided streaming for efficient
and detailed voxel rendering. In Proceedings of the 2009
symposium on Interactive 3D graphics and games, pages 15–
22, 2009. 3

[8] Jeevan Devaranjan, Amlan Kar, and Sanja Fidler. Meta-
sim2: Unsupervised learning of scene structure for synthetic
data generation. In Computer Vision–ECCV 2020: 16th Eu-
ropean Conference, Glasgow, UK, August 23–28, 2020, Pro-
ceedings, Part XVII 16, pages 715–733. Springer, 2020. 1

[9] Akio Doi and Akio Koide. An efficient method of triangu-
lating equi-valued surfaces by using tetrahedral cells. IE-
ICE Transactions on Information and Systems, 74:214–224,
1991. 3

[10] Epic Games. Unreal engine. 1, 2
[11] Gunnar Farnebäck. Two-frame motion estimation based on

polynomial expansion. In Image Analysis: 13th Scandina-
vian Conference, SCIA 2003 Halmstad, Sweden, June 29–
July 2, 2003 Proceedings 13, pages 363–370. Springer, 2003.
7

[12] Sarah F Frisken. Surfacenets for multi-label segmentations
with preservation of sharp boundaries. The Journal of com-
puter graphics techniques, 11(1):34, 2022. 3

[13] Eric Galin, Eric Guérin, Axel Paris, and Adrien Peytavie.
Segment tracing using local lipschitz bounds. In Com-
puter Graphics Forum, pages 545–554. Wiley Online Li-
brary, 2020. 3

[14] Thomas Gerstner and Renato Pajarola. Topology preserving
and controlled topology simplifying multiresolution isosur-
face extraction. IEEE, 2000. 3

[15] Markus Giegl and Michael Wimmer. Unpopping: Solving
the image-space blend problem for smooth discrete lod tran-

sitions. In Computer Graphics Forum, pages 46–49. Wiley
Online Library, 2007. 3

[16] Enrico Gobbetti, Fabio Marton, and José Antonio Igle-
sias Guitián. A single-pass gpu ray casting framework
for interactive out-of-core rendering of massive volumetric
datasets. The Visual Computer, 24:797–806, 2008. 3

[17] Klaus Greff, Francois Belletti, Lucas Beyer, Carl Doersch,
Yilun Du, Daniel Duckworth, David J Fleet, Dan Gnanapra-
gasam, Florian Golemo, Charles Herrmann, et al. Kubric: A
scalable dataset generator. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 3749–3761, 2022. 1, 3

[18] Benjamin Gregorski, Mark Duchaineau, Peter Lindstrom,
Valerio Pascucci, and Kenneth I Joy. Interactive view-
dependent rendering of large isosurfaces. IEEE, 2002. 3

[19] John C Hart. Sphere tracing: A geometric method for the
antialiased ray tracing of implicit surfaces. The Visual Com-
puter, 12(10):527–545, 1996. 1, 3

[20] Hugues Hoppe. View-dependent refinement of progressive
meshes. In Proceedings of the 24th annual conference on
Computer graphics and interactive techniques, pages 189–
198, 1997. 3

[21] Chenfanfu Jiang, Siyuan Qi, Yixin Zhu, Siyuan Huang,
Jenny Lin, Lap-Fai Yu, Demetri Terzopoulos, and Song-
Chun Zhu. Configurable 3d scene synthesis and 2d image
rendering with per-pixel ground truth using stochastic gram-
mars. International Journal of Computer Vision, 126:920–
941, 2018. 1

[22] Tao Ju and Tushar Udeshi. Intersection-free contouring on
an octree grid. In Proceedings of Pacific graphics. Citeseer,
2006. 3, 5

[23] Tao Ju, Frank Losasso, Scott Schaefer, and Joe Warren. Dual
contouring of hermite data. In Proceedings of the 29th an-
nual conference on Computer graphics and interactive tech-
niques, pages 339–346, 2002. 2, 3, 5

[24] Samin Khan, Buu Phan, Rick Salay, and Krzysztof Czar-
necki. Procsy: Procedural synthetic dataset generation to-
wards influence factor studies of semantic segmentation net-
works. In CVPR workshops, page 4, 2019. 1

[25] Eric Kolve, Roozbeh Mottaghi, Winson Han, Eli VanderBilt,
Luca Weihs, Alvaro Herrasti, Daniel Gordon, Yuke Zhu, Ab-
hinav Gupta, and Ali Farhadi. AI2-THOR: An interactive 3D
environment for visual AI. arXiv preprint arXiv:1712.05474,
2017. 1

[26] Hei Law and Jia Deng. Label-free synthetic pretraining of
object detectors. arXiv preprint arXiv:2208.04268, 2022. 1

[27] Jiankun Li, Peisen Wang, Pengfei Xiong, Tao Cai, Ziwei
Yan, Lei Yang, Jiangyu Liu, Haoqiang Fan, and Shuaicheng
Liu. Practical stereo matching via cascaded recurrent net-
work with adaptive correlation. In CVPR, 2022.

[28] Wenbin Li, Sajad Saeedi, John McCormac, Ronald Clark,
Dimos Tzoumanikas, Qing Ye, Yuzhong Huang, Rui Tang,
and Stefan Leutenegger. Interiornet: Mega-scale multi-
sensor photo-realistic indoor scenes dataset. arXiv preprint
arXiv:1809.00716, 2018. 1

[29] Zhaoshuo Li, Thomas Müller, Alex Evans, Russell H Tay-
lor, Mathias Unberath, Ming-Yu Liu, and Chen-Hsuan Lin.

Neuralangelo: High-fidelity neural surface reconstruction. In
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2023. 1

[30] Peter Lindstrom, David Koller, William Ribarsky, Larry F
Hodges, Nick Faust, and Gregory A Turner. Real-time, con-
tinuous level of detail rendering of height fields. In Proceed-
ings of the 23rd annual conference on Computer graphics
and interactive techniques, pages 109–118, 1996. 3

[31] Lahav Lipson, Zachary Teed, Ankit Goyal, and Jia Deng.
Coupled iterative refinement for 6d multi-object pose estima-
tion. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 6728–6737,
2022. 1

[32] Zhiyan Liu, Adam Finkelstein, and Kai Li. Progressive
view-dependent isosurface propagation. In Data Visualiza-
tion 2001: Proceedings of the Joint Eurographics—IEEE
TCVG Symposium on Visualization in Ascona, Switzerland,
May 28–30, 2001, pages 223–232. Springer, 2001. 3

[33] Yarden Livnat and Charles Hansen. View dependent isosur-
face extraction. In Proceedings Visualization’98 (Cat. No.
98CB36276), pages 175–180. IEEE, 1998. 3

[34] William E Lorensen and Harvey E Cline. Marching cubes:
A high resolution 3d surface construction algorithm. In Sem-
inal graphics: pioneering efforts that shaped the field, pages
347–353. 1998. 1, 3

[35] Zeyu Ma, Zachary Teed, and Jia Deng. Multiview stereo with
cascaded epipolar raft. In Computer Vision–ECCV 2022:
17th European Conference, Tel Aviv, Israel, October 23–
27, 2022, Proceedings, Part XXXI, pages 734–750. Springer,
2022. 1

[36] Viktor Makoviychuk, Lukasz Wawrzyniak, Yunrong Guo,
Michelle Lu, Kier Storey, Miles Macklin, David Hoeller,
Nikita Rudin, Arthur Allshire, Ankur Handa, and Gavriel
State. Isaac gym: High performance gpu-based physics sim-
ulation for robot learning. CoRR, abs/2108.10470, 2021. 1

[37] Donald Meagher. Octree encoding: A new technique for
the representation, manipulation and display of arbitrary 3-d
objects by computer, 1980. 2

[38] Thomas Müller, Alex Evans, Christoph Schied, and Alexan-
der Keller. Instant neural graphics primitives with a multires-
olution hash encoding. ACM Trans. Graph., 41(4):102:1–
102:15, 2022. 1

[39] F Kenton Musgrave. Qaeb rendering for procedural models.
pages 509–528. Morgan Kaufmann, 2003. 3

[40] Valerio Pascucci and Kree Cole-McLaughlin. Efficient com-
putation of the topology of level sets. In IEEE Visualization,
2002. VIS 2002., pages 187–194. IEEE, 2002. 3

[41] Ronald N Perry and Sarah F Frisken. Kizamu: A system for
sculpting digital characters. In Proceedings of the 28th an-
nual conference on Computer graphics and interactive tech-
niques, pages 47–56, 2001. 3, 5

[42] Alexander Raistrick, Lahav Lipson, Zeyu Ma, Lingjie Mei,
Mingzhe Wang, Yiming Zuo, Karhan Kayan, Hongyu Wen,
Beining Han, Yihan Wang, et al. Infinite photorealistic
worlds using procedural generation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 12630–12641, 2023. 1, 2, 3, 5

[43] Christian Reiser, Stephan Garbin, Pratul P. Srinivasan, Dor
Verbin, Richard Szeliski, Ben Mildenhall, Jonathan T. Bar-
ron, Peter Hedman, and Andreas Geiger. Binary opacity
grids: Capturing fine geometric detail for mesh-based view
synthesis, 2024. 1

[44] Stephan R Richter, Vibhav Vineet, Stefan Roth, and Vladlen
Koltun. Playing for data: Ground truth from computer
games. In ECCV, pages 102–118. Springer, 2016. 1

[45] Manolis Savva, Abhishek Kadian, Oleksandr Maksymets,
Yili Zhao, Erik Wijmans, Bhavana Jain, Julian Straub, Jia
Liu, Vladlen Koltun, Jitendra Malik, Devi Parikh, and Dhruv
Batra. Habitat: A Platform for Embodied AI Research. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), 2019. 1

[46] Scott Schaefer and Joe Warren. Dual marching cubes: Pri-
mal contouring of dual grids. In 12th Pacific Conference on
Computer Graphics and Applications, 2004. PG 2004. Pro-
ceedings., pages 70–76. IEEE, 2004. 3

[47] Manuel Scholz, Jan Bender, and Carsten Dachsbacher. Real-
time isosurface extraction with view-dependent level of de-
tail and applications. In Computer Graphics Forum, pages
103–115. Wiley Online Library, 2015. 3

[48] William Schroeder, Rob Maynard, and Berk Geveci. Fly-
ing edges: A high-performance scalable isocontouring algo-
rithm. In 2015 IEEE 5th Symposium on Large Data Analysis
and Visualization (LDAV), pages 33–40. IEEE, 2015. 3

[49] Will Schroeder, Spiros Tsalikis, Michael Halle, and Sarah
Frisken. A high-performance surfacenets discrete isocon-
touring algorithm. arXiv preprint arXiv:2401.14906, 2024.
3

[50] Xiaoyu Shi, Zhaoyang Huang, Weikang Bian, Dasong Li,
Manyuan Zhang, Ka Chun Cheung, Simon See, Hongwei
Qin, Jifeng Dai, and Hongsheng Li. Videoflow: Exploiting
temporal cues for multi-frame optical flow estimation. arXiv
preprint arXiv:2303.08340, 2023. 7

[51] Zachary Teed and Jia Deng. Raft: Recurrent all-pairs field
transforms for optical flow. In Computer Vision–ECCV
2020: 16th European Conference, Glasgow, UK, August 23–
28, 2020, Proceedings, Part II 16, pages 402–419. Springer,
2020. 7

[52] Apostolia Tsirikoglou, Joel Kronander, Magnus Wrenninge,
and Jonas Unger. Procedural modeling and physically based
rendering for synthetic data generation in automotive appli-
cations. arXiv preprint arXiv:1710.06270, 2017. 1

[53] Peng Wang, Lingjie Liu, Yuan Liu, Christian Theobalt, Taku
Komura, and Wenping Wang. Neus: Learning neural implicit
surfaces by volume rendering for multi-view reconstruction.
CoRR, abs/2106.10689, 2021. 1

[54] Wenshan Wang, Delong Zhu, Xiangwei Wang, Yaoyu Hu,
Yuheng Qiu, Chen Wang, Yafei Hu, Ashish Kapoor, and Se-
bastian Scherer. Tartanair: A dataset to push the limits of
visual slam. In 2020 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 4909–4916.
IEEE, 2020. 2

[55] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Si-
moncelli. Image quality assessment: from error visibility to
structural similarity. IEEE transactions on image processing,
13(4):600–612, 2004. 6

[56] Gunther H Weber, Oliver Kreylos, Terry J Ligocki, John M
Shalf, Hans Hagen, Bernd Hamann, and Kenneth I Joy. Ex-
traction of crack-free isosurfaces from adaptive mesh refine-
ment data. Springer, 2003. 3

[57] Rephael Wenger. Isosurfaces: geometry, topology, and algo-
rithms. CRC Press, 2013. 3

[58] Magnus Wrenninge and Jonas Unger. Synscapes: A pho-
torealistic synthetic dataset for street scene parsing. arXiv
preprint arXiv:1810.08705, 2018. 1

[59] Yao Yao, Zixin Luo, Shiwei Li, Jingyang Zhang, Yufan Ren,
Lei Zhou, Tian Fang, and Long Quan. Blendedmvs: A large-
scale dataset for generalized multi-view stereo networks. In
Proceedings of the IEEE/CVF conference on computer vi-
sion and pattern recognition, pages 1790–1799, 2020. 1

[60] Lior Yariv, Peter Hedman, Christian Reiser, Dor Verbin,
Pratul P Srinivasan, Richard Szeliski, Jonathan T Barron,
and Ben Mildenhall. Bakedsdf: Meshing neural sdfs for real-
time view synthesis. arXiv preprint arXiv:2302.14859, 2023.
3, 8

[61] Zehao Yu, Anpei Chen, Bozidar Antic, Songyou Peng, Apra-
tim Bhattacharyya, Michael Niemeyer, Siyu Tang, Torsten
Sattler, and Andreas Geiger. Sdfstudio: A unified framework
for surface reconstruction, 2022. 8

[62] Yong Zhou, Baoquan Chen, and Arie Kaufman. Mul-
tiresolution tetrahedral framework for visualizing regular
volume data. In Proceedings. Visualization’97 (Cat. No.
97CB36155), pages 135–142. IEEE, 1997. 3

	. Introduction
	. Related Work
	. Direct SDF Renderers.
	. Multi-Resolution Mesh Extraction.
	. View Dependent Mesh Extraction.
	. Flickering Removal.

	. Method
	. Octree Level of Detail Criteria
	LOD based on Projected Angular Diameter.
	LOD based on Occupancy.
	LOD based on Visibility.

	. Coarse-to-Fine Octree Construction
	Coarse Full Octree
	Occupancy and Visibility Test
	Fine Visible Octree

	. Mesh Extraction
	. Computational Complexity

	. Experiments
	. View Consistency
	. Effect of Angular Diameter
	. Synthetic Data for Model Evaluation
	. Synthetic Data for Model Training
	. Comparison with Ray-marching Alternatives
	. Creating Embodied AI Environments
	. Mesh Extraction from Neural Functions
	. Mesh Extraction from Depth Maps

	. Conclusion
	. Acknowledgements

