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Abstract

Open-domain questions are likely to be open-001
ended and ambiguous, leading to multiple002
valid answers. Existing approaches typically003
adopt the rerank-then-read framework, where004
a reader reads top-ranking evidence to pre-005
dict answers. According to our empirical006
analysis, this framework faces three problems:007
first, to leverage a large reader under a mem-008
ory constraint, the reranker should select only009
a few relevant passages to cover diverse an-010
swers, while balancing relevance and diver-011
sity is non-trivial; second, the small read-012
ing budget prevents the reader from access-013
ing valuable retrieved evidence filtered out by014
the reranker; third, when using a generative015
reader to predict answers all at once based016
on all selected evidence, whether a valid an-017
swer will be predicted also pathologically de-018
pends on the evidence of some other valid an-019
swer(s). To address these issues, we propose to020
answer open-domain multi-answer questions021
with a recall-then-verify framework, which022
separates the reasoning process of each answer023
so that we can make better use of retrieved024
evidence while also leveraging large mod-025
els under the same memory constraint. Our026
framework achieves state-of-the-art results on027
two multi-answer datasets, and predicts signif-028
icantly more gold answers than a rerank-then-029
read system that uses an oracle reranker.030

1 Introduction031

Open-domain question answering (Voorhees, 1999;032

Chen et al., 2017) is a long-standing task where a033

question answering system goes through a large-034

scale corpus to answer information-seeking ques-035

tions. Previous work typically assumes that there036

is only one well-defined answer for each question,037

or only requires systems to predict one correct an-038

swer, which largely simplifies the task. However,039

humans may lack sufficient knowledge or patience040

to frame very specific information-seeking ques-041

tions, leading to open-ended and ambiguous ques-042

Original Question: When did [You Don’t Know Jack]
come out?
Interpretation #1: When did the first video game called
[You Don’t Know Jack] come out?
Evidence #1: You Don’t Know Jack is a video game re-
leased in 1995, and the first release in ...
Answer #1: 1995
Interpretation #2: When did the Facebook game [You
Don’t Know Jack] come out on Facebook?
Evidence #2: In 2012, Jackbox Games developed and pub-
lished a social version of the game on Facebook ...
Answer #2: 2012
Interpretation #3: When did the film [You Don’t Know
Jack] come out?
Evidence #3: “You Don’t Know Jack” premiered April 24,
2010 on HBO.
Answer #3: April 24, 2010

Table 1: An example of open-domain multi-answer
questions. We display only a subset of valid answers.
In fact, [You Don’t Know Jack] can also be a song.

tions with multiple valid answers. According to 043

Min et al. (2020b), over 50% of a sampled set of 044

Google search queries (Kwiatkowski et al., 2019) 045

are ambiguous. Figure 1 shows an example with at 046

least three interpretations. As can be seen from this 047

example, the number of valid answers depends on 048

both questions and relevant evidence, which chal- 049

lenges the ability of comprehensive exploitation of 050

evidence from a large-scale corpus. 051

Existing approaches mostly adopt the rerank- 052

then-read framework. A retriever retrieves hun- 053

dreds or thousands of relevant passages which are 054

later reranked by a reranker; a generative reader 055

then predicts all answers in sequence conditioned 056

on top-ranking passages. With a fixed memory 057

constraint1, there is a trade-off between the size of 058

the reader and the number of passages the reader 059

can process at a time. According to Min et al. 060

(2021), provided that the reranker is capable of 061

selecting a small set of highly-relevant passages 062

with high coverage of diverse answers, adopting a 063

1We follow Min et al. (2021) to constrain memory usage,
which is usually a bottleneck of performance on open-domain
question answering .
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larger reader can outperform a smaller reader us-064

ing more passages. However, as shown by Section065

4.4, this framework is faced with three problems:066

first, due to the small reading budget, the reranker067

has to balance relevance and diversity, which is068

non-trivial as it is unknown beforehand that which069

answers should be distributed with more passages070

to convince the reader and which answers can be071

safely distributed with less to save the budget for072

the other answers; second, the reader has no access073

to more retrieved evidence that may be valuable074

but is filtered out by the reranker, while combining075

information from more passages was found to be076

beneficial to open-domain QA (Izacard and Grave,077

2021b); third, as the reader predicts answers in se-078

quence all at once, the reader learns pathological079

dependencies among answers, i.e., whether a valid080

answer will be predicted also depends on passages081

that cover some other valid answer(s), while ideally,082

prediction of a particular answer should depend on083

the soundness of associated evidence itself.084

To address these issues, we propose to answer085

open-domain multi-answer questions with a recall-086

then-verify framework. Specifically, we first use an087

answer recaller to predict possible answers from088

each retrieved passage individually; this can be089

done with high recall, even when using a weak090

model for the recaller, but at the cost of low preci-091

sion due to insufficient evidence to support or refute092

a candidate. We then aggregate retrieved evidence093

relevant to each candidate, and verify each candi-094

date with a large answer verifier. By separating the095

reasoning process of each answer, our framework096

avoids the problem of multiple answers sharing a097

limited reading budget, and makes better use of re-098

trieved evidence while also leveraging strong large099

models under the same memory constraint.100

Our contributions are summarized as follows:101

• We empirically analyze the problems faced by102

the rerank-then-read framework when dealing103

with open-domain multi-answer QA.104

• To address these issues, we propose to answer105

open-domain multi-answer questions with a106

recall-then-verify framework, which makes107

better use of retrieved evidence while also108

leveraging the power of large models under109

the same memory constraint.110

• Our framework establishes a new state-of-the-111

art record on two multi-answer QA datasets112

with significantly more valid predictions.113

2 Related Work 114

Open-domain QA requires question answering sys- 115

tems to answer factoid questions by searching 116

for evidence from a large-scale corpus such as 117

Wikipedia (Voorhees, 1999; Chen et al., 2017). 118

The presence of many benchmarks has greatly pro- 119

moted the development of this community, such as 120

questions from real users like NQ (Kwiatkowski 121

et al., 2019) and WEBQUESTIONS (Berant et al., 122

2013), and trivia questions like Quasar-T (Dhingra 123

et al., 2017) and TriviaQA (Joshi et al., 2017). All 124

these benchmarks either assume that each question 125

has only one answer with several alternative sur- 126

face forms, or only require a system to predict one 127

valid answer. A typical question answering system 128

is a pipeline as follows: an efficient retriever re- 129

trieves relevant passages using sparse (Mao et al., 130

2021; Zhao et al., 2021) or dense (Karpukhin et al., 131

2020; Xiong et al., 2021; Izacard and Grave, 2021a; 132

Khattab et al., 2021) representations; an optional 133

passage reranker (Asadi and Lin, 2013; Nogueira 134

and Cho, 2019; Nogueira et al., 2020) further nar- 135

rows down the evidence; an extractive or genera- 136

tive reader (Izacard and Grave, 2021b; Cheng et al., 137

2021) predicts an answer conditioned on retrieved 138

or top-ranking passages. Nearly all previous work 139

focused on locating passages covering at least one 140

answer, or tried to predict one answer precisely. 141

However, both Kwiatkowski et al. (2019) and 142

Min et al. (2020b) reported that there is genuine 143

ambiguity in open-domain questions, resulting in 144

multiple valid answers. To study the challenge of 145

finding all valid answers for open-domain ques- 146

tions, Min et al. (2020b) proposed a new bench- 147

mark called AMBIGQA where questions are anno- 148

tated with as many answers as possible. In this new 149

task, the passage reranker becomes more vital in 150

the rerank-then-read framework, particularly when 151

only a few passages are allowed to feed a large 152

reader due to memory constraints. This is because 153

the reranker has to ensure that top-ranking passages 154

are highly relevant and also cover diverse answers. 155

Despite state-of-the-art performance on AMBIGQA 156

(Min et al., 2021), according to our empirical anal- 157

ysis, applying the rerank-then-read framework to 158

open-domain multi-answer QA faces the following 159

problems: balancing relevance and diversity is non- 160

trivial for the reranker due to unknown effect on the 161

performance of the subsequent reader; when using 162

a large reader under a fixed memory constraint, the 163

small reading budget prevents it from making use 164
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of more retrieved evidence that is valuable but fil-165

tered out; when using a generative reader to predict166

all answers in sequence based on all selected evi-167

dence, it learns pathological dependencies among168

answers. To address these issues, we propose to169

tackle this task with a recall-then-verify framework,170

which separates the reasoning process of each an-171

swer with a higher level of evidence usage while172

also leveraging large models under the same mem-173

ory constraint.174

Some previous work argued that a reader can be175

confused by similar but spurious passages, result-176

ing in wrong predictions. Therefore, they proposed177

answer rerankers (Wang et al., 2018a,b; Hu et al.,178

2019; Iyer et al., 2021) to rerank top predictions179

from readers. Our framework is related to answer180

reranking but with two main differences. First, a181

reader typically aggregates available evidence and182

already does a decent job of answer prediction even183

without answer reranking; an answer reranker is184

introduced to filter out hard false positive predic-185

tions from the reader. By contrast, our answer186

recaller aims at finding possible answers with high187

recall, most of which are invalid. Evidence focused188

on each answer is then aggregated and reasoned189

about by our answer verifier. It is also possible to190

introduce another model analogous to an answer191

reranker to filter out false positive predictions from192

our answer verifier. Second, answer reranking typ-193

ically compares answer candidates to determine194

the most valid one, while our answer verifier se-195

lects multiple valid answers mainly based on the196

soundness of their respective evidence but without197

comparisons among answer candidates.198

3 Task Formulation199

Open-domain multi-answer QA can be formally200

defined as follows: given an open-ended question201

q, a question answering system is required to make202

use of evidence from a large-scale text corpus C203

and predict a set of valid answers {a1, a2, ..., an}.204

Questions and their corresponding answer sets are205

provided for training.206

Evaluation To evaluate passage retrieval and207

reranking, we adopt the metric MRECALL@k from208

(Min et al., 2021), which measures whether the209

top-k passages cover at least k distinct answers210

(or n answers if the total number of answers n is211

less than k). To evaluate question answering per-212

formance, we follow (Min et al., 2020b) to use F1213

score between gold answers and predicted ones.214

4 Rerank-then-Read Framework 215

In this section, we will briefly introduce the rep- 216

resentative and state-of-the-art rerank-then-read 217

pipeline from (Min et al., 2021) for open-domain 218

multi-answer questions, and provide empirical anal- 219

ysis of this framework. 220

4.1 Passage Retrieval 221

Dense retrieval is widely adopted by open-domain 222

question answering systems (Min et al., 2020a). A 223

dense retriever measures relevance of a passage to 224

a question by computing the dot product of their 225

semantic vectors encoded by a passage encoder and 226

a question encoder, respectively. Given a question, 227

a set of the most relevant passages, denoted as B 228

(|B| � |C|), is retrieved for subsequent processing. 229

4.2 Passage Reranker 230

To improve the quality of evidence, previous work 231

(Nogueira et al., 2020; Gao et al., 2021) finds it ef- 232

fective to utilize a passage reranker, which is more 233

expressive than a passage retriever, to rerank re- 234

trieved passages, and select the k best ones to feed 235

a reader for answer generation (k < |B|). With 236

a fixed memory constraint, there is a trade-off be- 237

tween the number of selected passages and the size 238

of the reader. As shown by (Min et al., 2021), 239

with good reranking, using a larger reader is more 240

beneficial. To balance relevance and diversity of 241

evidence, Min et al. (2021) proposed a passage 242

reranker called JPR for joint modeling of selected 243

passages. Specifically, they utilized T5-base (Raf- 244

fel et al., 2020) to encode retrieved passages fol- 245

lowing (Izacard and Grave, 2021b) and decode the 246

indices of selected passages autoregressively. JPR 247

is trained to seek for passages that cover new an- 248

swers. To better balance relevance and diversity 249

especially when there are less than k answers for 250

the question, Min et al. (2021) also proposed a tree- 251

decoding algorithm, so that JPR has the flexibility 252

to select more passages covering the same answer. 253

4.3 Reader 254

A reader takes as input the top-ranking passages, 255

and predicts answers. Min et al. (2021) adopted a 256

generative encoder-decoder reader initialized with 257

T5-3b, and used the fusion-in-decoder method from 258

(Izacard and Grave, 2021b) which efficiently ag- 259

gregates evidence from multiple passages. Specifi- 260

cally, each passage is concatenated with the ques- 261

tion and is encoded independently by the encoder; 262
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the decoder then attends to the representations of263

all passages and generates all answers in sequence.264

4.4 Empirical Analysis265

To analyze performance of the rerank-then-read266

framework for open-domain multi-answer ques-267

tions, we built a system that resembles the state-268

of-the-art pipeline from (Min et al., 2021) but with269

two differences2. First, we used the retriever from270

(Izacard and Grave, 2021a). Second, instead of us-271

ing JPR, we used an oracle passage reranker (OPR):272

a passage p is ranked higher than another passage273

p′ if and only if 1) p covers some answer while274

p′ covers none 2) or both p and p′ cover or fail275

to cover some answer but p has a higher retrieval276

score. Following (Min et al., 2021), we retrieved277

|B|=100 Wikipedia passages, k=10 of which were278

selected by the reranker. Table 2 shows model per-279

formance on a representative multi-answer dataset280

called AMBIGQA (Min et al., 2020b). Compared281

with JPR, OPR is better in terms of reranking, with282

similar question answering results3.283

Model
Reranking QA

MRECALL@5 MRECALL@10 F1
JPR 64.8/45.2 67.1/48.2 48.5/37.6
OPR 67.7/46.5 70.3/51.2 48.4/37.0

Table 2: Reranking results and Question Answering re-
sults on the dev set of AMBIGQA using JPR and OPR.
The two numbers in each cell are results on all ques-
tions and questions with multiple answers, respectively.

Though 3,670 diverse gold answers are covered284

by OPR on the dev set, the reader predicts only285

1,554 of them. Our empirical analysis and findings286

are detailed as follows.287

(1) To leverage a large reader under a fixed mem-288

ory constraint, a reranker should select only a few289

highly-relevant passages to cover diverse answers,290

while balancing relevance and diversity is non-291

trivial. As shown by Figure 1a (bottom), the num-292

ber of selected supporting passages4 of predicted293

gold answers has a widespread distribution. There294

may be cases where redundant false positive evi-295

dence is selected and can be safely replaced with296

2Code and models from (Min et al., 2021) were not pub-
licly available in the period of this work.

3With the oracle knowledge of whether a passage contains
a gold answer during reranking, OPR is probably still far from
being a perfect reranker. Notably, we are not striving for a
better rerank-then-read pipeline for multi-answer questions,
but use OPR as a representative case to analyze the problems
a rerank-then-read pipeline may face.

4We abuse the use of supporting passages of an answer to
refer to passages that cover the answer.
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Figure 1: Analysis of how well OPR (the reranker of
a rerank-then-read pipeline) balances relevance and di-
versity on questions with multiple answers in the dev
set of AMBIGQA. The number of retrieved passages is
|B|=100, and the number of passages selected by the
reranker is k=10. Figure (a) shows the ratio of answers
with different numbers of supporting passages selected,
the top half of which is for gold answers missed (top)
by the reader and the bottom half is for predicted ones.
Figure (b) shows the ratio of retrieved supporting pas-
sages that are eventually used by the reader (or the ver-
ifier in our framework).

passages that cover other gold answers. However, 297

it is non-trivial for the reranker to know beforehand 298

whether a passage is redundant, and how many or 299

which supporting passages of an answer are strong 300

enough to convince the reader. 301

(2) Multiple answers sharing a small reading 302

budget prevents a reader from using more evidence 303

that may be valuable but is filtered out by the 304

reranker. Due to the shared reading budget, it is 305

inevitable that some answers are distributed with 306

less supporting passages. As shown by Figure 1a, 307

a gold answer covered by OPR but missed by the 308

reader generally has significantly less supporting 309

passages fed to the reader (3.13 on average) than 310

a predicted gold answer (5.08 on average), but not 311

because of lacking available evidence. There is 312

more evidence in retrieved passages for missed an- 313

swers but filtered out by the reranker. As shown by 314

Figure 1b, OPR has a much lower level of evidence 315

usage for missed answers. 316

(3) As the reader predicts answers all at once 317

conditioned on all selected passages, whether a 318

valid answer will be predicted also pathologically 319

depends on evidence of some other valid answer(s), 320

which partly accounted for the large number of 321

gold answers missed by the reader. For verifica- 322

tion, we attacked OPR’s reader on the dev set of 323

AMBIGQA as follows: a question is a target if and 324

only if 1) it has a gold answer covered by OPR 325

but missed by the reader 2) and it has a predicted 326

gold answer whose supporting passages cover no 327
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答案
召回
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Figure 2: The recall-then-verify framework we propose to answer open-domain multi-answer questions. We first
use the answer recaller to guess possible answers with high recall, the evidence aggregator then aggregates re-
trieved evidence for each candidate, and finally, the answer verifier verifies each candidate based on its aggregated
evidence. As the reasoning process of each answer is separated, and thanks to candidate-aware evidence aggrega-
tion, we can have a high level of evidence usage with a large verifier under a limited memory constraint.

0.3

0.35

0.42

0

40

80

120

0.15

0.25

0.35

0.45

2 3 4+

# 
Sa

m
pl

es

%
 S

am
pl

es
 w

/ 
M

iss
in

g 
A

ns
. R

ec
ov

er
ed

# Originally Covered Ans. (k=10)

# Samples % Samples w/ Missing Ans. Recovered

0.3

0.35

0.42

0

40

80

120

0.15

0.25

0.35

0.45

2 3 4+

# 
Sa

m
pl

es

%
 S

am
pl

es
 w

/ 
M

iss
in

g 
A

ns
. R

ec
ov

er
ed

# Originally Covered Ans.

# Samples % Samples w/ Missing Ans. Recovered

0.3

0.35

0.42

0

40

80

120

0.15

0.25

0.35

0.45

2 3 4+

# 
Q

ue
st

io
ns

%
 Q

ue
st

io
ns

 w
/ 

M
iss

in
g 

A
ns

. R
ec

ov
er

ed

# Originally Covered Ans.

# Questions % Questions w/ Missing Ans. Recovered

0.3

0.35

0.42

0

40

80

120

0.2

0.3

0.4

0.5

2 3 4+

# 
Q

ue
st

io
ns

%
 Q

ue
st

io
ns

 w
/ 

M
iss

in
g 

A
ns

. R
ec

ov
er

ed

# Originally Covered Ans.

# Questions % Questions w/ Missing Ans. Recovered

0.41

0.48

0.45

0

40

80

120

0.35

0.4

0.45

0.5

2 3 4+

# 
Q

ue
st

io
ns

%
 Q

ue
st

io
ns

 w
/ 

M
iss

ed
 A

ns
. R

ec
ov

er
ed

# Originally Covered Ans.

# Questions % Questions w/ Missed Ans. Recovered

Figure 3: Analysis of the pathological dependencies
among answers learned by the reader (of a rerank-then-
read pipeline) on the dev set of AMBIGQA. The hor-
izontal axis is the number of diverse answers covered
by OPR. The left axis shows the ratio of questions for
which the reader recovers some originally missed gold
answer after adversarially removing the supporting pas-
sages of some originally predicted gold answer.

other gold answer; a successful attack on a targeted328

question means that a missed answer is recovered329

after removing a subset of supporting passages of330

some predicted answer5 without removing any sup-331

porting passage of the other gold answers.332

There are 179 targeted questions; for 43.6% of333

them, we successfully recovered at least one missed334

gold answer. Figure 3 shows the success rate break-335

down on the number of answers covered by the336

reader’s input, indicating that predictions tend to337

be brittle when the reader is fed with many diverse338

supporting passages.339

One possible explanation of the pathological de-340

pendencies is that the reader compares the validity341

of answer candidates and predicts the most likely342

ones. However, for 40.0% of successfully attacked343

questions, according to OPR, supporting passages344

of recovered missed answers are more relevant than345

those removed passages of predicted answers. No-346

tably, Min et al. (2020b) also had a similar observa-347

5Removed passages were replaced with the same number
of top-ranking passages that cover no gold answer, so that the
number of passages fed to the reader remained unchanged.

tion on another rerank-then-read pipeline, i.e., it is 348

hard to argue that the predicted answers are more 349

likely than the missed ones. 350

5 Recall-then-Verify Framework 351

5.1 Overview 352

To avoid the issues faced by the rerank-then-read 353

framework, we propose a recall-then-verify frame- 354

work, which separates the reasoning process of 355

each answer so that answers (1) can be individ- 356

ually distributed with maximum supporting pas- 357

sages allowed on the same hardware (2) and are 358

predicted mainly based on their own evidence. Fig- 359

ure 2 shows our framework. Specifically, we first 360

guess possible answers based on retrieved passages 361

using an answer recaller, an evidence aggregator 362

then aggregates evidence for each answer candi- 363

date, and finally, an answer verifier verifies each 364

candidate and outputs valid ones. 365

5.2 Answer Recaller 366

Our answer recaller, based on T5, is trained to pre- 367

dict answer candidates from each retrieved positive 368

passage pi ∈ B that cover some gold answer: 369

âi ∼ P (a|q, pi) (1) 370

We also train the recaller to predict the “irrelevant” 371

token given a negative passage so that the recaller 372

can filter out negative candidates; the number of 373

negatives per positive used for training is denoted 374

as αneg. The set of answer candidates recalled dur- 375

ing inference is denoted as A = {â1, â2, ..., âm}. 376

Though a passage may not contain strong enough 377

evidence to support an answer, by exploiting se- 378

mantic clues in the question and the passage (e.g., 379

the answer type), it is sufficient for even a weak 380

model to achieve high recall. However, this is at the 381

5



cost of low precision, which necessitates answer382

verification based on more supporting passages.383

5.3 Evidence Aggregator384

We aggregate evidence for each answer candidate385

from retrieved passages, which can be formulated386

as a reranking task, i.e., to rerank retrieved passages387

according to their relevance to a question-candidate388

pair, and select top-ranking ones for answer verifi-389

cation. Our evidence aggregator resembles OPR:390

for a specific candidate âi, we encode the question-391

candidate pair with the retriever’s question encoder;392

a passage p is ranked higher than another passage393

p′ if and only if 1) p covers âi while p′ does not394

2) or both p and p′ cover or fail to cover âi but395

the semantic vector of p is closer to that of the396

question-candidate pair. We denote the top-k rele-397

vant passages of âi as Ei.398

5.4 Answer Verifier399

Given a candidate âi and its evidence Ei, our an-400

swer verifier, based on T5-3b, predicts whether âi401

is valid, using the fusion-in-decoder method from402

(Izacard and Grave, 2021b). Each passage from Ei403

is concatenated with the question and the candidate,404

and is encoded independently; the decoder then at-405

tends to the representations of all passages and is406

trained to produce the tokens “right” or “wrong”407

depending on whether the encoded candidate is408

valid or not6. During inference, we compute the va-409

lidity score of a candidate by taking the normalized410

probability assigned to the token “right”:411

P (ai is valid) =

exp(logit(“right”|q, âi, Ei))∑
t∈{“right”,“wrong”} exp(logit(t|q, âi, Ei))

(2)412

Candidates with their validity scores higher than a413

threshold τ will be produced as final predictions.414

6 Experiments415

6.1 Datasets416

We conducted experiments on two multi-answer417

QA datasets, whose statistics are shown in Table 3.418

WEBQSP (Yih et al., 2016) is a semantic parsing419

dataset for knowledge base question answering,420

where answers are a set of entities in Freebase.421

Following (Min et al., 2021), we repurposed this422

6We have tried other verbalizers such as “yes” and “no”,
but found no significant difference.

dataset for textual QA based on Wikipedia7. 423

AMBIGQA (Min et al., 2020b) originates from NQ 424

(Kwiatkowski et al., 2019), where questions are an- 425

notated with equally valid answers from Wikipedia. 426

Dataset
# Question # Answer

Train Dev Test Avg. Median
WEBQSP 2,752 245 1582 22.6 1.0

AMBIGQA 10,036 2,002 2,004 2.2 2.0

Table 3: Statistics of multi-answer QA datasets. Statis-
tics of answers are computed on the dev sets.

6.2 Baselines 427

We compare our recall-then-verify system with two 428

state-of-the-art rerank-then-read systems. 429

REFUEL (Gao et al., 2021) selects 100 top-ranking 430

passages from 1,000 retrieved passages, and pre- 431

dicts answers with a reader based on BARTlarge 432

(Lewis et al., 2020). It also has a round-trip pre- 433

diction mechanism, i.e., to generate disambiguated 434

questions based on predicted answers, which are 435

re-fed to the reader to recall more answers. 436

JPR (Min et al., 2021) is a passage reranker which 437

jointly models selected passages. With improved 438

reranking performance, Min et al. (2021) selected 439

only 10 passages from 100 retrieved passages, and 440

used a reader based on T5-3b which is much larger 441

and more powerful than REFUEL’s reader, while 442

requiring no more memory resources than REFUEL. 443

6.3 Implementation Details 444

Our retrieval corpus is the English Wikipedia from 445

12/20/2018. We finetuned the dense retriever from 446

(Izacard and Grave, 2021a) on each multi-answer 447

dataset. The answer recaller and the answer ver- 448

ifier were initialized with T5-3b; both were pre- 449

trained on NQ and then finetuned on each multi- 450

answer dataset. αneg was 0.1 when finetuning the 451

recaller. We retrieved 100 passages for a question, 452

and verified each candidate with 10 passages. The 453

threshold τ for verification was tuned on the dev 454

set based on the sum of F1 scores on all questions 455

and questions with multiple answers; the best τ on 456

WEBQSP/AMBIGQA are 0.8/0.5, respectively. 457

Memory Constraint: Min et al. (2021) consid- 458

ered a fixed hardware and trained a reader with 459

the maximum number of passages. We follow this 460

memory constraint, under which a reader/verifier 461

7Our train/dev split on WEBQSP is different from Min
et al. (2021)’s, as their split was not publicly available in the
period of this work.
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System
WEBQSP AMBIGQA

Dev* Test Dev Test
REFUEL - - 48.3/37.3 42.1/33.3

JPR 53.6/49.5 53.1/47.2 48.5/37.6 43.5/34.2
Ours 55.4/45.4 55.8/48.8 52.1/41.6 46.2/37.1

Table 4: QA results on multi-answer datasets. The two
numbers in each cell are F1 scores on all questions and
questions with multiple answers, respectively. Results
on the dev set of WEBQSP can not be directly com-
pared, as we used a different train/dev split7.

based on T5-3b can encode up to 10 passages each462

of length no longer than 360 tokens at a time.463

6.4 QA Results464

Due to candidate-aware evidence aggregation and465

a fixed sufficient number of passages distributed466

to each candidate, our recall-then-verify frame-467

work can make use of most retrieved support-468

ing passages (see our improvements over OPR469

in Figure 1b). With a higher level of evidence470

usage, our recall-then-verify system outperforms471

state-of-the-art rerank-then-read baselines on both472

multi-answer datasets, which is shown by Table473

4. Though focused on multi-answer questions, our474

framework is also applicable to single-answer sce-475

nario and achieves state-of-the-art results on NQ.476

Please refer to the Appendix for more details.477

6.5 Ablation Study478

In this section, we present ablation studies on479

AMBIGQA. Please refer to the Appendix for results480

on WEBQSP, which lead to similar conclusions.481

6.5.1 Answer Recalling482

Model Choices for the Answer Recaller As483

shown by Table 5, a recaller based on T5-base can484

achieve a high coverage of gold answers, similar485

to a recaller based on T5-3b, though T5-base is486

commonly recognized as a much weaker model.487

Necessity of Verification To investigate whether488

the recaller has the potential to tackle multi-answer489

questions alone, we tuned the precision of the re-490

caller by varying αneg. As shown in Table 5, with491

increased αneg, the recaller learns to recall answers492

more precisely but still significantly underperforms493

the overall recall-then-verify system. With τ set to494

0.3, our overall system predicts 2309/1379 distinct495

gold answers and has F1 scores of 50.2/41.4 on the496

dev set of AMBIGQA, while a recaller trained with497

αneg=10 predicts less gold answers (2068/1237)498

with significantly lower F1 scores (41.1/34.3). It499

T5 αneg |A| # Hit Recall Precision F1
3b 10 2.2 2068/1237 54.4/39.0 39.6/38.3 41.1/34.3
3b 5 3.3 2206/1328 56.8/41.7 36.6/36.5 39.7/34.7
3b 1 7.2 2714/1690 65.7/50.9 22.2/22.7 29.7/28.2
3b 0 51.2 3364/2211 73.5/61.9 3.8/4.6 6.8/8.2
3b 0.1 28.7 3288/2141 72.6/60.5 6.3/7.5 10.9/12.7

base 0.3 29.2 2974/1928 67.4/54.7 5.2/6.1 9.2/10.6

Table 5: Performance of recallers on the dev set of
AMBIGQA, trained with different models and αneg . #
Hit is the number of distinct gold answers recalled.

is likely that the recaller is trained on false posi- 500

tive passages, which may mislead the recaller to 501

be over-conservative in filtering out hard negative 502

passages. By contrast, using more evidence for ver- 503

ification is less likely to miss true positive evidence 504

if there is any for a candidate, thus not prone to 505

mislead the verifier. 506

Reducing Answer Candidates Though only us- 507

ing our recaller for multi-answer QA falls short, the 508

recaller can be trained to shrink down the number 509

of candidates so that the burden on the verifier can 510

be reduced. As shown by Table 5, a small value 511

of αneg helps reduce answer candidates without 512

significantly lowering recall. 513

6.5.2 Answer Verification 514
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Figure 4: Performance on the dev set of AMBIGQA,
with varying k and τ . In Figure (a), results with k=1
are associated with the top and right axes, while the
others are with the bottom and left axes. As τ increases
(τ ∈ {0.3, 0.4, 0.5, 0.6, 0.7, 0.8}), points of the same
color move from bottom right to top left. In Figure (b),
# Hit is the number of gold answers with their scores
above a threshold. All and Multi denote all questions
and questions with multiple answers, respectively.

Effect of k Figure 4 shows the benefit of using 515

more evidence for verification. As k increases from 516

1 to 10, there is a significant boost in F1 scores. 517

Effect of τ As shown by Figure 4a, the balance be- 518

tween recall and precision can be controlled by τ : 519

a lower τ leads to higher recall and may benefit per- 520

formance on questions with multiple answers. With 521

k=10, our system outperforms the previous state-of- 522
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Figure 5: Analysis of how answer verification (k=10)
is affected by the evidence of other answers on the dev
set of AMBIGQA. The horizontal axis is the number of
answers covered by E . The left axis shows the max
and min changes of predicted score of a gold candidate
on average after adversarially removing supporting pas-
sages of some other answer(s) from E . The left and
right graphs are for missed gold candidates (scores <
0.5) and predicted gold candidates (scores ≥ 0.5), re-
spectively. After attacks, scores of 13.0% of missed
candidates and 3.4% of predicted ones are increased to
above and decreased to below 0.5, respectively.

the-art system for a wide range of τ . As shown by523

Figure 4b, under the best setups (k=10, τ=0.5), our524

system predicts 31.7% and 34.1% more gold an-525

swers than the system using OPR on all questions526

and questions with multiple answers, respectively.527

Dependencies among Answers Despite being528

candidate-aware, aggregated evidence E can also529

include supporting passages of some other gold530

answer(s). We therefore investigated how answer531

verification is affected by the evidence of the other532

gold answers. Specifically, we attacked the verifier533

as follows: a question-candidate pair is a target if534

and only if 1) the candidate âi is a gold answer and535

2) the aggregated evidence Ei includes at least one536

supporting passage of some other gold answer(s)537

that do not cover âi; we removed an arbitrary subset538

of supporting passages of the other gold answer(s)539

at a time8 without removing any supporting pas-540

sages of âi, and recorded the worst changes of the541

predicted validity scores of âi. As shown by Figure542

5, the changes are small, indicating that missed543

gold candidates with low scores are not mainly544

suppressed by some other answer(s), and that pre-545

dicted gold candidates with high scores are verified546

mainly based on their associated evidence.547

6.6 Error Analysis548

Among 3,288 recalled gold answers on the dev set549

of AMBIGQA, the answer verifier misses 1,242 of550

them and outputs 1,323 wrong predictions. We551

manually analyzed 50 random samples, 25 of552

which are missed gold answers and 25 are wrong553

8Removed passages were replaced with the same number
of top-ranking passages that cover no gold answers.

Missed Gold Answers
Evidence is wrong 24%
Evidence is right and straightforward 76%
Wrong Predictions
Predictions are true negatives 20%
Predictions are superficially-different false negatives 52%
Predictions are unannotated false negatives 28%

Table 6: Analysis of our predictions on the dev set of
AMBIGQA. Examples are shown in Appendix.

predictions. Table 6 reports our analysis. 554

For 76% of missed gold answers, our evidence 555

aggregator actually aggregates straightforward true 556

positive evidence. Among these missed answers 557

with straightforward evidence, 58% of them have 558

validity scores higher than 0.2 but lower than the 559

threshold 0.5. We attacked the verifier on missed 560

gold answers with their validity scores below 0.2 561

as in Section 6.5.2, and found that the maximum 562

change of predicted scores on average is small 563

(+0.04), indicating that the low scores can not be 564

attributed to the negative distraction by the other 565

gold answer(s). We conjecture that, as it is difficult 566

even for human annotators to find all valid answers 567

to an open-domain question (Min et al., 2020b), the 568

verifier was trained to refute false negative candi- 569

dates, resulting in unexpected low scores on some 570

straightforward valid answers. 571

Notably, 80% of our “wrong” predictions turn 572

out to be false negatives: 52% of “wrong” pre- 573

dictions are semantically equivalent to some an- 574

notated answer but are superficially different (Si 575

et al., 2021); 28% of “wrong” predictions are unan- 576

notated false negatives. Therefore, it is likely that 577

our system is underrated. 578

For more implementation details, inference 579

efficiency, please refer to the Appendix. 580

7 Conclusion 581

In this paper, we empirically analyze the prob- 582

lems of the rerank-then-read framework for open- 583

domain multi-answer questions, and propose the 584

recall-then-verify framework, which separates the 585

reasoning process of each answer so that 1) we 586

can have a higher level of evidence usage 2) and 587

predicted answers are mainly based on associated 588

evidence and are more robust to distraction by ev- 589

idence of the other gold answer(s), 3) while also 590

leveraging large models under the same memory 591

constraint. On two multi-answer datasets, our 592

framework significantly outperforms rerank-then- 593

read baselines with new state-of-the-art records. 594
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passages. Both OPR and our recall-then-verify826

system share the same passage retriever, which was827

initialized with the checkpoint released by (Izacard828

and Grave, 2021a) and was finetuned on each multi-829

answer dataset following DPR (Karpukhin et al.,830

2020). Specifically, for each question, we retrieved831

100 passages with Izacard and Grave (2021a)’s832

checkpoint; for each gold answer ai, we treated833

top-6 retrieved passages covering ai as positives,834

and top-30 retrieved passages covering no gold835

answer as hard negatives. During finetuning, batch836

size was set to 128; each question in a batch was837

paired with one random positive passage and two838

random hard negatives.839

|B| Retriever WEBQSP (Test) AMBIGQA (Dev)

5
DPR+ 57.0/38.9 55.2/36.3
Ours 56.1/37.7 53.2/28.9

10
DPR+ 59.0/38.6 59.3/39.6
Ours 57.8/35.9 60.0/37.7

100 Ours 68.0/47.8 73.6/57.6

Table 7: Retrieval results in terms of MRECALL. DPR+

is the retriever of JPR (Min et al., 2021). We only
report results on the test set of WEBQSP and the dev
set of AMBIGQA because Min et al. (2021) used a dif-
ferent train/dev split on WEBQSP and the test set of
AMBIGQA is hidden.

Table 7 shows the performance of our retriever.840

Our retriever underperforms DPR+, the retriever of841

JPR (Min et al., 2021), in terms of MRECALL@5842

and MRECALL@10. As DPR+ has not been re-843

leased, it is unknown whether DPR+ still covers844

more gold answers than our retriever when retriev-845

ing 100 passages.846

A.2 Answer Recaller & Answer Verifier847

Our answer recallers used an encoder length of 240848

and a decoder length of 40; they were first pre-849

trained on NQ for 10 epochs and then finetuned on850

WEBQSP/AMBIGQA for 80/20 epochs with early851

stopping. Batch size was set to 320. Our best852

system adopts the recaller trained with αneg=0.1853

because compared with αneg=0, the recaller trained854

with αneg=0.1 shrinks down nearly half of answer855

candidates without a significant drop in recall.856

Our answer verifiers used an encoder length857

of 280; they were first pre-trained on NQ for 3858

epochs and then finetuned on WEBQSP/AMBIGQA859

for 30/10 epochs with early stopping. Batch860

size was set to 320 for k=1 and set to 64 for861

k ∈ {5, 10}. The number of invalid answers used862

for training was set to 10 times the number of863

valid answers. The best threshold τ was chosen 864

from {0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} based on F1 865

scores on the dev set. 866

We used a flat learning rate of 1e-5 with 500 867

warm-up steps. All experiments were conducted 868

on a single machine with eight V100 GPUs. 869

B Experiments 870

B.1 Single-Answer QA Result 871

System k T5 Dev Test
(Izacard and Grave, 2021a) 100 large 51.9 53.7

JPR 10 3b 50.4 54.5
Ours 10 3b 52.8 54.8

Table 8: Exact match scores of different systems on
the single-answer dataset NQ. The column T5 shows
the size of the readers of rerank-then-read systems and
the size of the verifier of our recall-then-verify system.
Izacard and Grave (2021a) adopted the rerank-then-
read framework and used significantly more memory
resources for training than JPR and our system.

Though our framework focuses on multi-answer 872

questions, we also experimented on NQ to demon- 873

strate that our framework is applicable to single- 874

answer scenario without suffering from low pre- 875

cision. Specifically, for each question, we only 876

output the candidate with the highest validity score. 877

As shown by Table 8, we slightly outperform pre- 878

vious state-of-the-art rerank-then-read systems. 879

B.2 Inference Efficiency 880

During inference, the main overhead of our sys- 881

tem is on answer recalling and answer verifica- 882

tion; evidence aggregation is significantly faster 883

as representations of Wikipedia passages are pre- 884

computed. Let Lp be the encoder length and 885

La be the decoder length of the answer recaller. 886

Then the time complexity of answer recalling is 887

O(|B| · (L2
p + La · Lp + L2

a)) where L2
p comes 888

from encoding and La · Lp + L2
a comes from de- 889

coding. The time complexity of answer verification 890

isO(|A|·(k ·L2
p+k ·Lp)) where k ·L2

p comes from 891

encoding and k · Lp comes from decoding. The 892

computation cost can be adjusted by (1) choosing 893

a recaller model of proper time complexity9, (2) 894

tuning αneg to adjust the expected number of can- 895

didates |A| needed for verification, (3) or tuning 896

the number of passages k used for verification. For 897

9As shown in Table 5, a smaller and faster answer recaller
is capable of recalling answers with high coverage.
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example, to reduce the computation cost on a sin-898

gle V100 GPU, a recall-then-verify system using899

a T5-base recaller (αneg=0.7) and a T5-3b verifier900

(k=5) takes 1.9 sec per AMBIGQA question with901

F1 scores of 50.7/38.2 on the dev set (|A| is 16.0 on902

average, τ is set to 0.5), while the rerank-then-read903

system from Min et al. (2021) using a T5-base JPR904

(k=10) and a T5-3b reader is estimated to take 1.5905

sec per question10 with F1 scores of 48.5/37.6.906

B.3 Ablation Study on WEBQSP907

B.3.1 Answer Recalling908

T5 αneg |A| # Hit Recall Precision F1
3b 10 4.6 446/337 62.8/51.3 44.3/45.9 46.2/41.5
3b 5 4.9 452/335 64.4/51.3 44.7/44.5 46.5/39.9
3b 1 7.2 495/379 67.7/55.9 33.5/37.7 38.6/38.3
3b 0 44.4 669/542 72.5/64.2 8.3/11.4 12.5/16.5
3b 0.1 23.9 600/476 70.7/60.9 13.5/17.6 18.8/22.4

base 0.3 28.9 582/460 70.8/59.2 9.5/13.6 14.2/18.3

Table 9: Performance of recallers on the dev set of
WEBQSP, trained with different models and αneg .

Table 9 shows the results of recallers on WEBQSP,909

which were trained with different models and αneg.910

In summary, a weak model suffices to recall an-911

swers with high coverage. Using a large and strong912

model for the recaller benefits precision, but it is913

still difficult for the recaller alone to answer open-914

domain multi-answer questions, which necessitates915

answer verification based on more associated evi-916

dence. However, an answer recaller can help reduce917

the burden on the answer verifier by conservatively918

filtering out negative candidates.919

B.3.2 Answer Verification920
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Figure 6: Performance of answer verification (k=10)
on WEBQSP. # Hit is the number of gold answers with
their scores above a threshold.

As shown by Figure 6, F1 scores on WEBQSP921

are insensitive to a wide range of τ , while a lower922

τ is helpful to predict more gold answers.923

10The average inference time of JPR from Min et al. (2021)
is independent of its parameters given a fixed number of en-
coded tokens and a fixed decoder length, which can be esti-
mated with a randomly initialized JPR. The average inference
time of JPR’s reader was estimated with OPR’s reader.

C Error Analysis 924

Table 10 reports our error analysis on the dev set 925

of AMBIGQA. 926
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Missed Gold Answers > Evidence is wrong (24%)
Question: Who does brooke davis have a baby with?
Gold Answers: Julian Baker
Missed Gold Answer: Julian Baker
Evidence: Brooke Davis is happier than ever; preparing to marry Julian Baker ... The Scott family are
expecting their second child and Haley feels the baby will be a girl ...
Explanation: Evidence is insufficient to infer Brooke Davis has a baby with Julian Baker.
Missed Gold Answers > Evidence is right and straightforward (76%)
Question: What’s the most points scored in an nba game?
Gold Answers: 370; 153; 162; 100; 186
Missed Gold Answer: 162
Evidence: The 1971-72 team holds franchise records in wins (69), most points scored, and largest
margin of victory; both of the latter came in the team’s 63 point win versus Golden State (162-99).
Wrong Predictions > Predictions are true negatives (20%)
Question: When did the song lost boy come out?
Gold Answers: February 12, 2015; January 2015; 4 December 2015; May 9, 2016; 2015; 2017;
November 17, 2017
Prediction: 20 December 2011
Evidence: “The Lost Boy” was written by Holden in 2011 ... Holden recorded it and released as a
charity single on 20 December 2011 ...
Explanation: “Lost Boy” and “The Lost Boy” are different songs.
Wrong Predictions > Predictions are superficially-different false negatives (52%)
Question: How much sports are there in the winter olympics?
Gold Answers: fifteen; 86; 98; seven; 102
Prediction: 15
Evidence: ... the Winter Olympics programme features 15 sports.
Wrong Predictions > Predictions are unannotated false negatives (28%)
Question: How much did it cost rio to host the olympics?
Gold Answers: US$11.6 billion; US$13,100,000,000
Prediction: USD 4.6 billion
Evidence: Indirect capital costs were “not” included, such as for road ... Rio Olympics’ cost of USD
4.6 billion compares with costs of USD 40-44 billion for Beijing 2008 ...

Table 10: Analysis of predictions from our answer verifier. We display all annotated forms of gold answers, which
are separated with semicolons.
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