N-Gram Trie Speculative Decoding for Faster LLM In-Context Inference

Anonymous ACL submission

Abstract

As an important method of prompt engineering,
In-Context Learning (ICL) provides generaliza-
tion and knowledge enhancement capabilities
for Large Language Models (LLMs) (Dong
et al., 2024). However, the extensive length
of retrieved contexts and the limited token
throughput in autoregressive models constrain
model’s reasoning speed. To resolve this con-
straint, we propose N-Gram-Trie, a novel ap-
proach that exploits the potential overlap be-
tween the context and model output. The strat-
egy utilizes context to construct an n-gram trie.
The trie will be used to construct drafts that
benefit the LLM to increase the speed of to-
ken generation. We evaluate our method on
the summarization, Retrieval-Augmented Gen-
eration (RAG) and context Question Answer-
ing (context QA) tasks. Experiment results
on Vicuna-7B, Llama2-7B-Chat, and Llama3-
8B-Instruct all demonstrate demonstrate a sig-
nificant increase in speed without compromis-
ing accuracy. In comparison experiments, our
method achieves the best mean speedup among
various baselines.

1 Introduction

In-Context Learning (ICL) has emerged as a trans-
formative paradigm in the field of prompt engineer-
ing, fundamentally reshaping how Large Language
Models (LLMs) adapt to and perform on diverse
tasks. By leveraging context information provided
within the input prompt, ICL enables LLMs to gen-
eralize across tasks and domains without requiring
task-specific fine-tuning. This capability has pro-
found implications for the scalability and versatility
of LLMs, allowing them to excel in various appli-
cations, such as context question answering, sum-
marization and Retrieval-Augmented Generation
(RAG). The ability to dynamically incorporate con-
textual knowledge has made ICL a cornerstone of
modern LLM deployment, driving advancements in
both academic research and industrial applications.

Despite its remarkable success, ICL faces a sig-
nificant challenge: the extensive length of retrieved
contexts and the inherent limitations of autoregres-
sive token generation will result in slow reasoning
speeds. As the complexity and length of context
information increase, the computational overhead
grows substantially, leading to delays in token gen-
eration and reduced efficiency. This bottleneck is
particularly problematic in real-time applications,
such as interactive systems or large-scale retrieval-
augmented tasks, where speed is critical. Address-
ing this issue is essential to unlocking the full po-
tential of ICL and enabling its broader adoption in
time-sensitive scenarios.

Speculative decoding (Leviathan et al., 2023;
Cai et al., 2024; Li et al., 2024; He et al., 2023;
Luo et al., 2024) can effectively accelerate model
inference. This approach employs a smaller, faster
draft model to predict potential token sequences,
which are then verified by the larger target model
in parallel. By reducing the number of sequen-
tial decoding steps required by the target model,
speculative decoding achieves significant speedups
while maintaining output quality. However, this
method often requires additional computational re-
sources and careful tuning to balance the trade-off
between speed and accuracy. REST (He et al.,
2023) employs an external corpus to generate draft
tokens, where the output tokens serve as prefixes
to search for matching suffixes within the corpus.
However, the excessive reuse of nodes and the
global corpus tire reduce the acceptance rate of
draft tokens. Lookahead Decoding (Fu et al., 2024)
utilizes n-gram token histories as drafts for ver-
ification. While this method shows promise, its
utility is primarily confined to scenarios where out-
put tokens exhibit repetitive patterns, restricting its
applicability in more diverse or dynamic contexts.

We propose N-Gram-Trie, a novel approach de-
signed to accelerate token generation by exploiting
the overlap between the context and the model’s



output. Then a trie is constructed by using the set
of prefixes and suffixes. Build a trie from the pre-
fix and suffix sets. In the model prediction stage,
the draft is constructed through the nodes in the
trie, which significantly improves reasoning speed
without compromising output quality.

We evaluate our approach on summariza-
tion (Nallapati et al., 2016), Retrieval-Augmented
Generation (Xia et al., 2024; Joshi et al., 2017)
and context Question Answering (context QA) (Ka-
malloo et al., 2023) tasks. Multiple base models
including Vicuna-7B (Zheng et al., 2023), Llama2-
7B-Chat (Touvron et al., 2023) and Llama3-8B-
Instruct (Al@Meta, 2024) are selected to be tested.
Experiment results show that our method exhibits
remarkable speedups on multiple models (mean
2.27x on Vicuna-7B, 2.10x on Llama2-7B-Chat
and 1.56x on Llama3-8B-Instruct). Through the ex-
periment comparison of the inference effect of the
model, we prove that our method can accelerate the
model in the process of context prompt inference
without affecting the inference ability of the base
model. We also conduct many further experiments
around the speedup effect. This work not only ad-
dresses a critical limitation of ICL but also provide
a effective method for more efficient and scalable
deployment of LLMs in real-world applications.

The contribution of this paper can be summa-
rized as follows:

e We propose an n-gram trie speculative decod-
ing method. It can effectively use the potential
overlap of the context and output tokens to ac-
celerate model inference speed.

e We design a novel n-gram trie construction
method. The trie constructed by n-gram sam-
pling can effectively improve the acceptance
rate of the draft.

e We conduct extensive experiments on several
models. It shows our excellent acceleration
effect on summarization, RAG and context
QA tasks.

2 Related work

2.1 In-Context Learning

In-Context Learning (ICL) is an approach which
makes LLLMs perform better on specific-domain
task. By giving only a few examples or hints, LLMs
can find the underlying patterns of the context and
answer the question correctly. (Dong et al., 2024).

There are many approaches that can be applied to
ICL. (Gu et al., 2023) extract the context by pre-
training in a large corpus that contains long context.
(Wei et al., 2023) propose symbol tuning, which
uses tagged symbols as fine-tuned data for LLMs
to study. (Wei et al., 2022) leverages instruction
tuning in LLMs to enhance the zero-shot learning
in LLMs.

Also, there are also large variety of downstream
applications in the In Context learning. Prompt
engineering is one of them. We can write an ac-
curate prompt to make LL.Ms easier to understand
the downstream tasks and give a satisfying answer.
Prompt engineering are widely used in downstream
tasks, such as Context QA, RAG, Few-shot Learn-
ing and Summary. Context QA (Kamalloo et al.,
2023) tasks need LLM:s to read the context and find
the potential answers. Concatenating the context
and question as prompts, LLMs can read them and
give an answer in a efficient way. Like Context QA,
RAG (Li et al., 2023) also needs retrieved context
to carry out user’s query. In Few-shot Learning,
some examples about downstream tasks are usu-
ally given. LLMs can study the potential patterns
between them and complete the task based on the
given pattern. Summarization also needs the ability
of context-reading.

2.2 Speculative Decoding

Speculative decoding (Leviathan et al., 2023) has
been first proposed to ease the problem of through-
put in LLM generation. Using a small draft model
to explore the token way, target LLM just need to
verify in one step without calculating repeatedly
for getting these tokens.

Now, many speculative methods are based on
the guess and verify approach. For example,
Medusa (Cai et al.,, 2024) uses some trained
Medusa head to predict the next n-tokens, but the
prediction is not continuous and it degrades ac-
cept rate. Based on Medusa (Cai et al., 2024),
Hydra (Ankner et al., 2024) take the continuation
of the draft into consideration. The draft head can
predict tokens with However, both Medusa and
Hydra need extra training cost for draft models.
Also, some works focus on the reusing of the for-
mer tokens or the external corpus. For instance,
REST (He et al., 2023) uses an external corpus
as draft. The output tokens is used as prefix to
search for the suffix in the corpus. But the smaller
corpus decreases accept rate while the bigger cor-
pus makes REST harder to find the right suffix.



Lookahead decoding (Fu et al., 2024) uses n-gram
token history as draft to verify. But it is useful
only when the output token is repeatedly gener-
ated. LLMA (Yang et al., 2023) also try to use the
overlap between the input and output, but it sim-
ply use all the retrieved tokens to make evaluation
without clipping the drafts. PLD (Saxena, 2023)
copy prompts as the drafts, but it simply copy the
first-match suffix without matching all the potential
suffixes in the prompt.

2.3 Tree Attention

Tree attention (Miao et al., 2023) is proposed to
solve the problem how a tree-structured token se-
quences can be decoding in parallel. By using an
attention mask, the drafts can be easily integrated
in one mask in inference. In the attention mask,
Now tree attention is widely used in multi-draft
verification.

Speclnfer (Miao et al., 2024) uses some small
draft models to independently predict the potential
tokens sequences, the tokens will then be clipped
and put in the attention masks. Medusa (Cai et al.,
2024) uses some positional draft heads to predict
the top-k tokens in the next i place. It uses atten-
tion mask to integrate the top-k tokens into token
sequences for prediction. REST (He et al., 2023)
retrieved many tokens in a big suffix-array datas-
tore. After clipping the tokens, He et al. also use
tree attention mask to make a trie tree for faster
decoding.

3 Proposed Method

The structure of N-Gram-Trie is shown in Figure
1. In the in-context prompt tasks, we first build an
n-gram trie based on the context. The tree records
the dependencies between preceding and following
tokens of context. Subsequently, in the process of
model inference, the draft of model inference is
constructed by speculative decoding through the
dependencies of n-gram trie, which can accelerate
model inference speed.

3.1 N-Gram Trie Construction

Trie is a tree structure used to store and retrieve
strings efficiently by organizing tokens in a prefix-
based hierarchy. Its key advantage is faster suffix
finding, which makes it suitable for speculative de-
coding (He et al., 2023). However, traditional Trie
relies on massive documents to build for higher ac-
ceptance rate. It is difficult to construct an effective

Algorithm 1 Trie Generation

Input: 7" Token list
D: Collected n-gram sample results
L,: Maximum prefix length
Output: 7
1: Init root as T > an empty root node
2: for < P;,S;, f > D do
32 forje (0,L,)do
4: subprefix < Pj[j : Ly
5: key « subprefix + S;
6: node < root
7
8
9

for ¢t € key do
for childinnode.children do
if t = child.token then

10 node < child

11: node. frequency.update(f)
12: end if

13: end for

14: if ¢ ¢ node.children then

15: new < Node(t, )

16: node.children.insert(new)
17: node < new

18: end if

19: end for

20:  end for

21: end for

22: return 7T

retrieval scheme in the case of a small amount of
corpus. To this end, we design n-gram trie, sam-
pled by n-gram sliding window, and then used the
sampling results to build the trie. This method can
effectively improve the efficiency and accuracy of
suffix retrieval by constructing additional depen-
dency chains.

N-Gram Sampling Specifically, for the context
token list T = {t1, to, ..., t; }, we set a sliding win-
dow of n-grams for sampling. The sampling length
is n. The sliding window moves token by token
from the beginning to the end over 7. In the slid-
ing window workspace, we set a maximum prefix
length L, to split tokens in the window. The split
part will be the prefix part and the suffix part of the
segment tokens. The prefix P; and suffix .S; can be
expressed as follows:

Py = {ti,tiv1, - tivr,—1} }z e [1,1],
Si = {tivrys tivLyr1s - titn—1}
(1)
where ¢ denotes the start index of the window. We
establish the dependency between the prefix and



Sliding Window

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

prefix 3 of i |
l capital of Gemany is the :
suffix 3 i E> !

l The|capital of Gemany is the |city |state of Berlin. It is
the seat of the President of Germany ...

Context

‘What is the capital
. of Germany?

The capital of

Germany is Berlin. I
@ 55 i

N-Gram Trie

Query with Context Prompt

Anwer the following question based on the
H context:

# Context:

! The capital of Gemany is the city state of

' Berlin. It is the seat of the President of

i | Germany ...

! # Question:

i \_What is the capital of Germany?

H —_

; LLM: The |
1 i — i
E [> i Trie: The capital of Germany is the-eity i
i | I
\ i LLM: The capital of Germany is Berlin. |

Figure 1: The structure of N-Gram-Trie. We sample through a sliding window of n-grams and get the prefixes and
suffixes from the documents in that window. A trie can be constructed based on the set of prefixes obtained by
window sliding sampling. In the process of model inference, the trie is used for speculative decoding to quickly
predict the model output. The n in the n-gram sampling in the example of the figure is 6 and the maximum prefix

length L, is 3.

suffix for each tokens group, and obtain the depen-
dency set D by sliding window sampling. D can
be defined in the following form:

D ={< P8, f>lic[Ll]}, 2

where f is the frequency of dependency < F;, S; >
during the sampling process.

Trie Construction We build trie 7 based on the
sample results D and the construction process is as
shown in Algorithm 1.

Specifically, for the prefix P; in the sample set D,
we traverse and split it according to the maximum
prefix length to obtain its sub-prefixes SF;. The
process can be defined as:

SP; = {5F;;]j € (0,Lp)}
= {Pz[] : Lp]|.7 € (07 Lp)}vi S [171]7

where j € (0, L,) denotes the cut length of the
sub-prefix. By constructing additional prefix nodes,
the corresponding prefix can be effectively found
according to the model output in the retrieval pro-
cess.

We take the dependency of each subprefix and
its suffix as the basic unit for trie insertion. During
insertion, the token ¢ is used as the basic units
of the tree nodes. We iterate from the root node,
sharing a node for the same token. If there is no
corresponding token in the current nodes, insert an
additional token. The insertion logic is as follows:

de — child, +f t & node.children
"= nodey, if t ¢ node.children

3)

“4)

where child is the child of node and child.token =
t, node; is a new node built by ¢ and inserted into
the children of the original node. In this way, we
let suffix nodes with the same prefix share the same
prefix.

Note that we also record the frequency f of each
node as it is inserted, in order to provide a prior-
ity reference for subsequent retrieval. Finally, by
exploiting the samples in D, we can construct an
efficient and accurate n-gram trie 7.

3.2 Draft Collecting and Matching

As shown in the gray area in Figure 1, in-context
learning combines context with user query through
templates in the prompt engineering. The query
with context will serve as the reasoning basis for
the target model. We define the tokens that have
been generated by the s time step target model as
Ts = {t1,ta, ..., tx, }. We will build the draft after s
time step through the n-gram trie 7 constructed in
the former subsection that stores prefix and suffix
dependency of context. Then, the target model will
verify and revise the draft.

Draft Construction When searching for the
draft, we firstly extract the suffix of new tokens
T for prefix matching. At first, the length of the
prefix token will be set to L. If T matches the
prefix chain in 7, we can extract the suffix of this
prefix and break matching. If not found, we sub-
stract one token from prefix tokens until match the
or prefix tokens length is 0. Then, we can obtain
a suffix tree 7 that matches the gernerated tokens



o .:\&% o & ¥ &

& X &S
FFITFESFS

He

hates

writing

papers
likes

flowers

playing

games

Prie Attention Mask

Figure 2: An Example of Tree Attention. The tokens
in the orange part of the attention mask are visible to
each other, and the tokens in the gray part are invisible
to each other

Ty of the target model. To improve the acceptance
rate of the draft, we prune the suffix tree according
to the frequency f of nodes and extract nodes with
lower f. The draft tree is not always very big, so
sometimes the pruning is not used.

Specifically, refering to (He et al., 2023) and
(Cai et al., 2024), we set a min-heap for storage of
suffix chains. For each node vy in 75, we build a
draft dj, based on its path chain with the root node
of 75. The priority of the draft is determined by the
frequency of vg. This process can be expressed as:

dp =< Path(vr,vk), fie >
=< {vr‘vvlv"'vvia"'avk})fk‘ >, (5)
i€[l,k],v € g,

where Path(v,, vi) means the nodes from node v,
to node vy. v, is the root node of 75 and fy, is the
frequency of vy.

Then, v, will be placed in the min-heap in order
of priority. Finally, alternative drafts are retained
according to the length of min-heap. In this way,
redundant nodes can be effectively removed and
the pruning of suffix tree 75 can be realized.

Model Verification Figure 2 shows an example
of tree attention verifying the draft trie. For the
draft trie 75, deep traverse it to obtain a linear list
of tokens. In order to realize the tree attention, we
set the same position id for the nodes of the same
level. The specific form can be expressed as:

p; = Level(v;) + h,v; € 74, (6)

where p; is the position id of ¢;. Level(v;) is the
level of v;. h is the length of the preceding model
tokens. This makes the tokens in each chain of the
trie continuous.

Then, following tree attention meathod, we use
attention mask to convert the draft tree into a 2-
dimention mask m. For any tokens ¢; and t;, m; ;
is 0 if there is a relationship between v; and v; in
Ts, Otherwise it is 1. By matching the mask and
position ids. The taget model can verify multiple
branches of trie simultaneously.

4 Experiments

4.1 Experiment Setting

We implement all the experiments on one NVIDIA
RTX 4090 with python version 3.9. All the exper-
iments are run on greedy decoding. The pytorch
version is 2.5.1 with CUDA version is 12.2.

4.1.1 Baselines

We choose the baselines provided on the Specu-
late Bench (Xia et al., 2024): vanilla inference
without any speculative methods, speculative Sam-
pling (Chen et al., 2023), Medusa (Cai et al., 2024),
SPACE (Yi et al., 2024), Hydra (Ankner et al.,
2024), Lookahead (Fu et al., 2023) and REST (He
et al., 2023). For Speculative Sampling, we used
Llama-68m (Miao et al., 2024) as draft model to
match Llama2-7b and use Vicuna-68m to match
Vicuna-7b-v1.3. For Lookahead and REST, we
simply use the same experiment setup in Spec-
Bench(Xia et al., 2024).

4.1.2 Datasets

For datasets, we choose RAG, summary in Spec-
bench (Xia et al., 2024). The RAG dataset contains
80 data from Natural Questions. Five retrieved doc-
uments from Wikipedia (Li et al., 2023) are con-
catenated. (Kwiatkowski et al., 2019) and the sum-
mary dataset is randomly chosen by CNN/Daily
Mail (Nallapati et al., 2016). In addition, we make
TriviaQA (Joshi et al., 2017) dataset for additional
RAG task and make Hagrid (Kamalloo et al., 2023)
dataset for context QA task. For TriviaQA task, we
use bge-m3 (Chen et al., 2024a) and bge-reranker-
v2-m3 (Chen et al., 2024b) to search for 5 relevant
documents in Wikipedia corpus. For Hagrid task,
we simply concatenate the given context and the
question.

4.1.3 Base models

To conduct the experiments, we use three mod-
els for validation. One is Vicuna-7B-v1.3 (Zheng
et al.,, 2023), One is Llama-2-7B-chat (Tou-
vron et al., 2023) and the other is Llama-3-8B-
Instruct (Al@Meta, 2024).



Spec-Bench .. .
Model Method Summary RAG TriviaQA Hagrid Mean Speedup
Vanilla 1.00x (1.00) 1.00x(1.00) 1.00x(1.00) 1.00x(1.00) 1.00x
SpS 1.69%x(2.44) 1.59%x(2.30) 1.74x(249) 1.40x(2.46) 1.61x
Medusa 1.48%x(2.01) 1.45x(2.08) 1.45x(2.03) 1.56x (2.17) 1.49x
Vicuna-7B SPACE 1.69x(2.26) 1.47x(1.91) 1.57x(2.26) 1.26x(2.05) 1.50x
Hydra 1.86x (2.70) 1.88x (2.90) 1.86x (2.84) 1.52x(2.98) 1.78x
Lookahead | 1.29x(1.54) 1.19x(1.48) 1.27x(1.46) 0.95x(1.47) 1.18x
REST 1.13x(1.65) 1.32x(1.89) 1.31x(1.71) 1.33x(1.82) 1.27x
Ours 1.75x (2.39) 3.48x (5.19) 1.92x (2.36) 1.94x (3.07) 2.27x
Vanilla 1.00x(1.00)  1.00x(1.00) 1.00x(1.00) 1.00x(1.00) 1.00x
SpS 1.25%x(1.54) 147x (1.91) 1.35x(1.86) 1.38%(1.62) 1.36x
Llama2-7B-Chat Lookahead | 1.44x (1.59) 1.40x(1.63) 1.53x (1.71) 1.38x(1.97) 1.44 %
REST 1.03x(1.54) 1.14x(1.91) 1.22x(1.68) 1.42x (1.47) 1.20x
Ours 1.28% (1.76) 3.62x (5.00) 1.89x (2.88) 1.61x (2.34) 2.10x
Vanilla 1.00x(1.00)  1.00x(1.00) 1.00x(1.00) 1.00%(1.00) 1.00x
Lookahead | 1.25x (1.60) 1.18x (1.51) 1.58x (1.54) 1.38x (1.73) 1.50x
Llama3-8B-Instruct | ppqy 0.93x(1.54) 1.14x(1.91) 113x(1.61) 1.02x(1.69) 1.05x
Ours 1.06x (1.42) 1.77x (2.11) 1.75x (1.86) 1.68x (2.34) 1.56 %

Table 1: Speedup Ratio and Accept Length Comparison. The data on the left means speedup and the data on the
right means average accept length. The best performance for each metric is highlighted in bold font, while the
second-best performance is indicated with an underline.

4.1.4 Hyperparameters

In the experiment, there are two hypermeter that
need to be tuned: matched prefix L, and gram-
length n. So we conduct the experiment to test
the efficiency. The details can be seen in table3.
Also, we use FAISS (Douze et al., 2025) to store
the embedding of the corpus using IVF-PQ method.
The parameter of the number of clusters is 4096
and the parameter that the vector will be separated
is 64. The clusters that will be searched is set to 16.
We firstly encode all the corpus text using bge-m3
(Chen et al., 2024a), and search top-100 relevant
texts for questions in triviaQA (Joshi et al., 2017).
Then we rerank the texts using bge-reranker-v2-
m3 (Chen et al., 2024b) to get the top-5 relevant
contexts.

4.1.5 Metrics

Like other speculative decoding, we use average
accept length, mean speedup and sentence F1-score
in our evaluation. Average accept length shows the
length that the drafts are accepted in every decod-
ing step. Usually the accept length is higher, the
speedup can be higher. Mean speedup indicates the
speedup of tokens throughput compared with de-
coding without any speculative method (baseline).

Sentence F1-score is used to evaluate whether
the output result is the same. Because of the ran-

dom possibilities, the results may vary.

4.2 Main Results

The experiment results can be seen in Table 1. We
can see that our method achieves optimal accelera-
tion results compared to the baseline for all tasks
except the summarization task. On average, the
mean speedup of our method has achieved a mean-
ingful improvement over the baselines (2.27 X on
Vicuna-7B, 2.10x on Llama2-7B-Chat and 1.56 x
on Llama3-8B-Instruct). It is worth noting that our
method performs better than REST (He et al., 2023)
on each model and task in the same speculative de-
coding with trie, demonstrating the superiority of
our n-gram trie.

4.2.1 RAG Task

The experiment result on Spec-Bench RAG dataset
show that the accept length of the drafts achieves
5.19 on Vicuna-7B, 5.00 on Llama2-7B-Chat and
2.11 on Llama3-8B-Instruct, making the speedup
rate achieve 3.48 %, 3.62x and 1.77 x. Its acceler-
ation performance is much better than that of the
basic method REST. Experiment results in multi-
ple models show that our method has the strongest
speedup effect. It is far ahead of second place on
all models.

On TriviaQA dataset, the speedup rate of our



Hillary Clinton's security detail has added a second " Scooby " van to her motorcade ,
The second van , a GMC , is mechanically identical to the first van , a Chevrolet

for such an elaborate security measure .

raising questions about the need

, but has different license plates. The Secret Service has employed de co y vehicles to confuse and disc ourage would-be a

ttackers , but the use of two identical vans has raised e y eb rows .

The vans were seen driving separately to Clinton's a

ppointed location before leaving together in a seven-car motorcade. The Secret Service has decl ined te comment on the sec
urity arrangements for dignitaries. The use of two Scooby vans has been observed in other instances , including when Presi

dent Barack Obama returns to the White House after long trips

ft and cars it uses to transport VIPs ,
s with two deco ys . </s>

. The Secret Service frequently deploys duplicates of aircra
including Marine One, the president's customized hel icopter, which usually travel

Figure 3: A Case on Summary Dataset. The inference exploration in one step. In the figure, the words are separated

in tokens. Yellow text is generated by n-gram trie.

method achieves 1.92x on Vicuna-7B, 1.89x
on Llama2-7B-Chat and 1.75x on Llama3-8B-
Instruct. The speed-up performance is also the best.
Even though the accept length of our approach is
smaller than Hydra (Ankner et al., 2024) on Vicuna-
7B, we still have a better throughput performance
in this task.

4.2.2 Context QA Task

Our approach achieves the best results on all mod-
els (1.94x on Vicuna-7B, 1.61x on Llama2-7B-
Chat and 1.68x on Llama3-8B-Instruct) on Ha-
grid datset, which outperforms other approaches by
0.19x-0.99x. Compared to the basic method REST,
we have more speedup on all models. This fully
demonstrates the advantages brought by n-gram
trie.

4.2.3 Summary Task

The performance of our method on Spec-Bench
Summary dataset is not the best. This is mainly
due to the fact that in this task, the target drafts are
often put in a certain place, which usually don’t
need to get all the drafts in global. Global draft-
getting method will result in wrongly draft clip-
ping and unnecessarily draft-searching. But our
method still ranks second (1.75x on Vicuna-7B,
1.28x on Llama2-7B-Chat and 1.06x on Llama3-
8B-Instruct) in terms of speedup and outperform
REST.

4.24

In order to evaluate the effect of accelerated in-
ference on model accuracy, we conduct precision
tests on three base models. The experiment results
are shown in Table 2. We can observe that the re-
sponses from our method are almost identical to
those of the original model. This is because the
draft of the speculative decoding is verified by the
target model. When inconsistent tokens appear,
the output will be corrected based on the output of
the target model. Therefore, this method does not
affect the accuracy of the model.

Model Response Quality

Dataset  Spec-Bench Hagrid TriviaQA
Vicuna-7B
Vanilla 1.0000 1.0000 1.0000
SpS 0.9871 0.9936 0.9954
Medusa 0.9667 0.9905 0.9922
Hydra 0.9726 0.9894 0.9972
Lookahead 0.9857 0.9948 0.9939
REST 0.9695 0.9915 0.9922
Ours 0.9756 0.9942 0.9891
Llama2-7B-Chat
Vanilla 1.0000 1.0000 1.0000
SpS 0.9838 0.9811 0.9866
Lookahead 0.9787 0.9754 0.9769
REST 0.9702 0.9792 0.9815
Ours 0.9739 0.9546 0.9743
Llama3-8B-Instruct

Vanilla 1.0000 1.0000 1.0000
Lookahead 0.9837 0.9947 0.9913
REST 0.9888 0.9961 0.9951
Ours 0.9682 0.9619 0.9724

Table 2: The Sentence F1-score between Every Method
and Baseline. Because of many random possibilities,
the output may not be always the same, the results vary
between 95 percent and 100 percent.

4.3 Case Study

To fully demonstrate the speedup effect of our
method, we conduct a case study on the Summary
dataset. The example is shown in Figure 3. As can
be seen from the figure, our speculative decoding
method based on n-gram trie correctly predict the
large model output many times. A large number of
useful drafts provide an effective speedup scheme
for in-context based model inference.

4.4 Hyperparameter Analysis

In this section, we will will conduct experiments
on the hyperparameters n and L, in our method
to get the best hyperparameter configuration. We
use the RAG task of the Spec-bench (Xia et al.,
2024) on Llama2-7B-Chat to test the performance



llama2-Sum

llama2-RAG

llama3-Sum

60%

50%

40%

30%

Percentage (%)

20%

10%

70%

60%

50%

40%

30%

Percentage (%)

20%

10%

6.9 80% 1775 70% | 693
70%
60%
60%
_ _50%
£ 50% B
& 8, 40%
£ 40% g
5 5
g S 30%
8 30% 8
. 20%
13 0% 140
62 ., 10% 10.5 10% -
.3 35 34 38 4.0
17 13 11 08 o5 28 19 09 06 04 04 03 L2 25 11 09 06 04 02 L0
eh A3 L 0% s 22 0% =Ll L0,
o 3
6 8 10 4 6 8 10 2 6 8 10
llama3-RAG vicuna-Sum vicuna-RAG
755 539 752
50% 70%
60%
40%
g ® 50%
3 o, o
g 30% 8 40%
= 2
g g
$ 20% g 30%
12.8 20%
2.0 10% 8.4 12.5
73
5.6 10%
4.6
36 33 24 34
DDD.% 08 06 05 02 04 11, o DDDD&.&.&.&.D o Eh2h,15 08 04 05 03 03 24
2 4 6 8 10 2 4 6 8 10 2 4 6 8 10

Figure 4: The accept length percentage in summary task and RAG tasks between models. The frequency of smaller
accept length is usually larger except in the longest accept length

WL, | 2 3 4 5
8 | 7575 7148 6349 54.06
9 |7022 6896 7202 6834
10 |83.05 80.05 75.65 74.56
11 |70.69 82.68 7646 74.86
12 | 7421 8249 7255 74.64
13 | 8745 9246 88.02 8552
14 | 9152 78.64 84.80 74.06
15 | 8025 75.09 77.41 73.99
16 | 73.72 87.51 83.77 89.34

Table 3: Token Output Speed. The value in the table is
token output number per second with different n and
Ly

of N-Gram-Trie. We try the value between 8-16
for n-gram length n and 2-5 for maximum prefix
length L,. The performance of the N-Gram-Trie
with different hyperparameter is shown in the Fig-
ure 3. We can find that when n is small, the speedup
effect will gradually deteriorate with the increase of
L,. We think this is because the excessively long
L, limits the length of the suffix, which in turn
reduces the acceleration ability. When n is large,
the token generation speed first speeds up and then
slows down as L, increases. This is mainly be-
cause when the suffix is not short, the longer prefix
can better match the token of the model inference.
Furthermore, it can be proved that when n value is
large, appropriate redundant nodes can effectively
improve the acceleration effect of speculative de-
coding. Statistically, we can see that the best choice
of n is 13 and the maximum prefix length L, is set

to 3.

4.5 Further Study

In order to explore the distribution of accep-
tance length of different models. We test Vicuna-
7B (Zheng et al., 2023), Llama2-7B-Chat (Touvron
et al., 2023), and Llama3-8B-Instruct (Al@Meta,
2024) on the Spec-Bench (Xia et al., 2024) dataset.
The experimental results are shown in Figure 4. In
this figure, it can be seen that the accept length
concentrates in 1 (which means that no tokens are
accepted). Besides, most of accept length is smaller
than 4. And the percentage of the accept length de-
creases except in accept length = 11.

5 Conclusion

In this paper, we propose N-Gram-Trie, which
reuse the context to build drafts to enhance in-
context based model inference. By n-gram sam-
pling from the context, we can obtain the prefix
and suffix dependency set. We use trie to model-
ing the context based on the dependency set and
retrieval on the tire to build the speculative decod-
ing draft. By utilizing the overlap of context and
model output, our approach effectively accelerates
in-context based model inference. We test the sum-
mary, RAG, and context QA tasks on multiple large
language models. Experiment results on multiple
datasets show that our method can greatly improve
the model inference speed in the context prompt
domain without affecting the output quality.



6 Limitations

This approach presents several limitations. First,
while the trie-based generation and search mech-
anism offers efficiency advantages, its current im-
plementation has suboptimal aspects. A key is-
sue arises when multiple suffix candidates share
identical frequency scores, which may lead to the
premature elimination of potentially useful draft
outputs due to the fixed threshold imposed by the
num_draft parameter. Second, the method exhibits
strong dependency on the quality of external re-
trieved corpora - performance degradation becomes
inevitable when processing noisy or irrelevant re-
trieval results. To address these challenges, our
future work will focus on developing enhanced
trie construction algorithms that incorporate more
sophisticated frequency weighting schemes and
context-aware candidate selection strategies.

References

Al@Meta. 2024. Llama 3 model card.

Zachary Ankner, Rishab Parthasarathy, Aniruddha
Nrusimha, Christopher Rinard, Jonathan Ragan-
Kelley, and William Brandon. 2024.  Hydra:
Sequentially-dependent draft heads for medusa de-
coding. Preprint, arXiv:2402.05109.

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng,
Jason D Lee, Deming Chen, and Tri Dao. 2024.
Medusa: Simple llm inference acceleration frame-
work with multiple decoding heads. arXiv preprint
arXiv:2401.10774.

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving,
Jean-Baptiste Lespiau, Laurent Sifre, and John
Jumper. 2023. Accelerating large language model
decoding with speculative sampling.  Preprint,
arXiv:2302.01318.

Jianlv Chen, Shitao Xiao, Peitian Zhang, Kun Luo, Defu
Lian, and Zheng Liu. 2024a. Bge m3-embedding:
Multi-lingual, multi-functionality, multi-granularity
text embeddings through self-knowledge distillation.
Preprint, arXiv:2402.03216.

Jianlv Chen, Shitao Xiao, Peitian Zhang, Kun Luo, Defu
Lian, and Zheng Liu. 2024b. Bge m3-embedding:
Multi-lingual, multi-functionality, multi-granularity
text embeddings through self-knowledge distillation.
Preprint, arXiv:2402.03216.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Jingyuan
Ma, Rui Li, Heming Xia, Jingjing Xu, Zhiyong Wu,
Tianyu Liu, Baobao Chang, Xu Sun, Lei Li, and
Zhifang Sui. 2024. A survey on in-context learning.
Preprint, arXiv:2301.00234.

Matthijs Douze, Alexandr Guzhva, Chengqi Deng, Jeff
Johnson, Gergely Szilvasy, Pierre-Emmanuel Mazaré,
Maria Lomeli, Lucas Hosseini, and Hervé Jégou.
2025. The faiss library. Preprint, arXiv:2401.08281.

Yichao Fu, Peter Bailis, Ion Stoica, and Hao Zhang.
2023. Breaking the sequential dependency of 1lm
inference using lookahead decoding.

Yichao Fu, Peter Bailis, Ion Stoica, and Hao Zhang.
2024. Break the sequential dependency of llm in-
ference using lookahead decoding. arXiv preprint
arXiv:2402.02057.

Yuxian Gu, Li Dong, Furu Wei, and Minlie Huang.
2023. Pre-training to learn in context. Preprint,
arXiv:2305.09137.

Zhenyu He, Zexuan Zhong, Tianle Cai, Jason D Lee,
and Di He. 2023. Rest: Retrieval-based speculative
decoding. Preprint, arXiv:2311.08252.

Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke
Zettlemoyer. 2017. triviaqa: A Large Scale Distantly
Supervised Challenge Dataset for Reading Compre-
hension. arXiv e-prints, arXiv:1705.03551.

Ehsan Kamalloo, Aref Jafari, Xinyu Zhang, Nandan
Thakur, and Jimmy Lin. 2023. HAGRID: A human-
IIm collaborative dataset for generative information-
seeking with attribution. arXiv:2307.16883.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Jacob Devlin, Ken-
ton Lee, Kristina Toutanova, Llion Jones, Matthew
Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob
Uszkoreit, Quoc Le, and Slav Petrov. 2019. Natu-
ral questions: A benchmark for question answering
research. Transactions of the Association for Compu-
tational Linguistics, 7:452-466.

Yaniv Leviathan, Matan Kalman, and Yossi Matias.
2023. Fast inference from transformers via spec-
ulative decoding. In International Conference on

Machine Learning, pages 19274-19286. PMLR.

Chaofan Li, Zheng Liu, Shitao Xiao, and Yingxia Shao.
2023. Making large language models a better founda-
tion for dense retrieval. Preprint, arXiv:2312.15503.

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang
Zhang. 2024. EAGLE: Speculative sampling requires
rethinking feature uncertainty. In International Con-
ference on Machine Learning.

Xianzhen Luo, Yixuan Wang, Qingfu Zhu, Zhiming
Zhang, Xuanyu Zhang, Qing Yang, Dongliang Xu,
and Wanxiang Che. 2024. Turning trash into treasure:
Accelerating inference of large language models with
token recycling. Preprint, arXiv:2408.08696.

Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao
Cheng, Zeyu Wang, Zhengxin Zhang, Rae Ying Yee
Wong, Alan Zhu, Lijie Yang, Xiaoxiang Shi, Chu-
nan Shi, Zhuoming Chen, Daiyaan Arfeen, Reyna


https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://arxiv.org/abs/2402.05109
https://arxiv.org/abs/2402.05109
https://arxiv.org/abs/2402.05109
https://arxiv.org/abs/2402.05109
https://arxiv.org/abs/2402.05109
https://arxiv.org/abs/2302.01318
https://arxiv.org/abs/2302.01318
https://arxiv.org/abs/2302.01318
https://arxiv.org/abs/2402.03216
https://arxiv.org/abs/2402.03216
https://arxiv.org/abs/2402.03216
https://arxiv.org/abs/2402.03216
https://arxiv.org/abs/2402.03216
https://arxiv.org/abs/2402.03216
https://arxiv.org/abs/2402.03216
https://arxiv.org/abs/2402.03216
https://arxiv.org/abs/2402.03216
https://arxiv.org/abs/2402.03216
https://arxiv.org/abs/2301.00234
https://arxiv.org/abs/2401.08281
https://lmsys.org/blog/2023-11-21-lookahead-decoding/
https://lmsys.org/blog/2023-11-21-lookahead-decoding/
https://lmsys.org/blog/2023-11-21-lookahead-decoding/
https://arxiv.org/abs/2305.09137
https://arxiv.org/abs/2311.08252
https://arxiv.org/abs/2311.08252
https://arxiv.org/abs/2311.08252
https://arxiv.org/abs/1705.03551
https://arxiv.org/abs/1705.03551
https://arxiv.org/abs/1705.03551
https://arxiv.org/abs/1705.03551
https://arxiv.org/abs/1705.03551
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://arxiv.org/abs/2312.15503
https://arxiv.org/abs/2312.15503
https://arxiv.org/abs/2312.15503
https://arxiv.org/abs/2408.08696
https://arxiv.org/abs/2408.08696
https://arxiv.org/abs/2408.08696
https://arxiv.org/abs/2408.08696
https://arxiv.org/abs/2408.08696

Abhyankar, and Zhihao Jia. 2024. Specinfer: Accel-
erating large language model serving with tree-based
speculative inference and verification. In Proceed-
ings of the 29th ACM International Conference on Ar-
chitectural Support for Programming Languages and
Operating Systems, Volume 3, ASPLOS ’24, page
932-949. ACM.

Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xin-
hao Cheng, Zeyu Wang, Zhengxin Zhang, Rae
Ying Yee Wong, Alan Zhu, Lijie Yang, Xiaoxiang
Shi, et al. 2023. Specinfer: Accelerating genera-
tive large language model serving with tree-based
speculative inference and verification. arXiv preprint
arXiv:2305.09781.

Ramesh Nallapati, Bowen Zhou, Cicero Nogueira dos
Santos, Caglar Giilgehre, and Bing Xiang. 2016.
Abstractive text summarization using sequence-to-
sequence rnns and beyond. In Proceedings of the
20th SIGNLL Conference on Computational Natural
Language Learning, CoNLL 2016, Berlin, Germany,
August 11-12, 2016, pages 280-290. ACL.

Apoorv Saxena. 2023. Prompt lookup decoding.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurelien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023. Llama 2: Open foundation and fine-
tuned chat models. Preprint, arXiv:2307.09288.

Jason Wei, Maarten Bosma, Vincent Y. Zhao, Kelvin
Guu, Adams Wei Yu, Brian Lester, Nan Du, An-
drew M. Dai, and Quoc V. Le. 2022. Finetuned
language models are zero-shot learners. Preprint,
arXiv:2109.01652.

Jerry Wei, Le Hou, Andrew Lampinen, Xiangning Chen,
Da Huang, Yi Tay, Xinyun Chen, Yifeng Lu, Denny
Zhou, Tengyu Ma, and Quoc V. Le. 2023. Symbol
tuning improves in-context learning in language mod-
els. Preprint, arXiv:2305.08298.

Heming Xia, Zhe Yang, Qingxiu Dong, Peiyi Wang,
Yongqi Li, Tao Ge, Tianyu Liu, Wenjie Li, and Zhi-
fang Sui. 2024. Unlocking efficiency in large lan-
guage model inference: A comprehensive survey of

10

speculative decoding. In Findings of the Associa-
tion for Computational Linguistics ACL 2024, pages
7655-7671, Bangkok, Thailand and virtual meeting.
Association for Computational Linguistics.

Nan Yang, Tao Ge, Liang Wang, Binxing Jiao, Daxin

Jiang, Linjun Yang, Rangan Majumder, and Furu
Wei. 2023. Inference with reference: Lossless
acceleration of large language models. Preprint,
arXiv:2304.04487.

Hanling Yi, Feng Lin, Hongbin Li, Peiyang Ning, Xi-

aotian Yu, and Rong Xiao. 2024. Generation meets
verification: Accelerating large language model infer-
ence with smart parallel auto-correct decoding. arXiv
preprint arXiv:2402.11809.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan

Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric. P Xing, Hao Zhang,
Joseph E. Gonzalez, and Ion Stoica. 2023. Judg-
ing llm-as-a-judge with mt-bench and chatbot arena.
Preprint, arXiv:2306.05685.


https://doi.org/10.1145/3620666.3651335
https://doi.org/10.1145/3620666.3651335
https://doi.org/10.1145/3620666.3651335
https://doi.org/10.1145/3620666.3651335
https://doi.org/10.1145/3620666.3651335
https://doi.org/10.18653/V1/K16-1028
https://doi.org/10.18653/V1/K16-1028
https://doi.org/10.18653/V1/K16-1028
https://github.com/apoorvumang/prompt-lookup-decoding/
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2109.01652
https://arxiv.org/abs/2109.01652
https://arxiv.org/abs/2109.01652
https://arxiv.org/abs/2305.08298
https://arxiv.org/abs/2305.08298
https://arxiv.org/abs/2305.08298
https://arxiv.org/abs/2305.08298
https://arxiv.org/abs/2305.08298
https://doi.org/10.18653/v1/2024.findings-acl.456
https://doi.org/10.18653/v1/2024.findings-acl.456
https://doi.org/10.18653/v1/2024.findings-acl.456
https://doi.org/10.18653/v1/2024.findings-acl.456
https://doi.org/10.18653/v1/2024.findings-acl.456
https://arxiv.org/abs/2304.04487
https://arxiv.org/abs/2304.04487
https://arxiv.org/abs/2304.04487
https://arxiv.org/abs/2306.05685
https://arxiv.org/abs/2306.05685
https://arxiv.org/abs/2306.05685

	Introduction
	Related work
	In-Context Learning
	Speculative Decoding
	Tree Attention

	Proposed Method
	N-Gram Trie Construction
	Draft Collecting and Matching

	Experiments
	Experiment Setting
	Baselines
	Datasets
	Base models
	Hyperparameters
	Metrics

	Main Results
	RAG Task
	Context QA Task
	Summary Task
	Model Response Quality

	Case Study
	Hyperparameter Analysis
	Further Study

	Conclusion
	Limitations

