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Abstract: Computer vision technology is increasingly being used in areas such as intelligent security
and autonomous driving. Users need accurate and reliable visual information, but the images
obtained under severe weather conditions are often disturbed by rainy weather, causing image scenes
to look blurry. Many current single image deraining algorithms achieve good performance but have
limitations in retaining detailed image information. In this paper, we design a Scale-space Feature
Recalibration Network (SFR-Net) for single image deraining. The proposed network improves the
image feature extraction and characterization capability of a Multi-scale Extraction Recalibration
Block (MERB) using dilated convolution with different convolution kernel sizes, which results in
rich multi-scale rain streaks features. In addition, we develop a Subspace Coordinated Attention
Mechanism (SCAM) and embed it into MERB, which combines coordinated attention recalibration
and a subspace attention mechanism to recalibrate the rain streaks feature information learned from
the feature extraction phase and eliminate redundant feature information to enhance the transfer of
important feature information. Meanwhile, the overall SFR-Net structure uses dense connection and
cross-layer feature fusion to repeatedly utilize the feature maps, thus enhancing the understanding of
the network and avoiding gradient disappearance. Through extensive experiments on synthetic and
real datasets, the proposed method outperforms the recent state-of-the-art deraining algorithms in
terms of both the rain removal effect and the preservation of image detail information.

Keywords: image deraining; multi-scale; attention recalibration; feature fusion

1. Introduction

Images acquired outdoors in natural environments often show significant blurring
and visual quality degradation due to rain streaks. Therefore, single image deraining has
become a very important forward operation in many practical multimedia application
scenarios [1–3]. With the continuous development of computer vision technology in recent
years, the single image deraining problem has become a research hotspot [4–7]. Unlike
video deraining, single image deraining has less referable information, so the design of
deep learning network architecture for single image deraining is more challenging.

Previous traditional single image deraining methods often treat the deraining problem
as an optimization problem, using physical filtering to recover clean rain-free
images [8,9]. However, these methods can only remove certain rain streaks that obey
a specific distribution and have limited recovery in the face of different types of rain streaks
in real rainy images.

In recent years, researchers for the single image deraining problem have increasingly
begun to apply deep learning approaches such as convolutional neural networks (CNNs) [10],
generative adversarial networks (GANs) [11,12], and semi/unsupervised [13,14] learning to
enhance performance. Compared with classical methods, these methods extract important
feature information from a large amount of training data by exploiting the powerful
learning ability of their deep networks to better solve single image deraining tasks. Research
methods based on CNNs [15–19] have powerful image feature representation capabilities
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by learning the features of different rain streaks, then removing the rain streaks from the
rainy images. GANs-based research methods have been proposed to further acquire image
features in real rainy images that cannot be synthesized by the system, thus reducing the
gap between recovered images and real clean images. Recently, researchers have proposed
semi-supervised and unsupervised learning methods in order to solve the synthetic data
limitation problem. Their direct extraction of rain streak features from real raw rain maps
improves the generality of the rain removal method. Although the methods described
above have shown positive outcomes in a variety of application environments, they still
have many limitations. It is often very challenging to learn different types of rain streak
features accurately and completely in the single image deraining process. The inaccurate
estimation of rain streak features will lead to incomplete image recovery or lead to excessive
removal of image feature information. Therefore how to fully explore rain streak features
in spaces of different scales is important for deraining single images. In addition, many
existing algorithms rarely try to recalibrate image feature information after image feature
fusion, which leads to the poor preservation of image detail information.

To address the aforementioned problem, we present a Scale-space Feature Recalibra-
tion Network (SFR-Net) that integrates multi-scale feature extraction, attention recalibra-
tion, and feature aggregation for single image deraining. Specifically, the network uses
downsampling to achieve a multiscale hierarchical parallel structure after extracting low-
frequency feature information and then uses an integrated densely connected Multiscale
Extraction Recalibration Block (MERB) to extract and characterize rich image detail features.
The proposed Subspace Coordinated Attention Mechanism (SCAM) is embedded in MERB.
The Coordinated Attention Recalibration Mechanism (CARM) is placed in the SCAM af-
ter cross-layer feature fusion to recalibrate the acquired features. For better information
transfer and cross-layer multi-scale image feature fusion, the network is implemented
by dense connectivity and upsampling, respectively. In summary, the following are our
key contributions:

• We propose an SFR-Net based on densely connected multi-scale feature fusion to
accomplish single image deraining. Its network architecture can learn richer image
feature representations efficiently, from coarse to fine features.

• We propose CARM and SCAM, where CARM collects cross-channel and signifi-
cant location feature information along the X and Y spatial directions, respectively.
SCAM combines CARM and the Subspace Attention Mechanism (SAM) to recali-
brate rain streaks features and reduce useless feature information transfers. The
CARM and SCAM are designed to help the network retain spatial and background
detail information better.

• We propose an MERB. The MERB uses dilated convolutions of different scales to
extract feature information at different scales and fuses this information using Across–
Up connection and Across–Down connection. The SCAM is placed in MERB after
feature stitching to enable it to learn feature information better from the original image.

2. Related Work

In this section, we will briefly review some traditional and deep-learning-based meth-
ods for single image deraining, as well as some multi-scale learning applications in com-
puter vision.

2.1. Single Image Deraining

Before 2017, scholars usually used model-driven methods based on a loss function
between the rain and background layers and optimized it by prior knowledge. For example,
Xu et al. [20] proposed a rain removal algorithm using a guided filter, which does not require
pixel-based statistical information to detect rain streaks features. Zhang et al. [21] designed
a Convolutional-Coding-based Rain Removal (CCRR) algorithm, which first decomposes
a rainy image into a clean image and an image with only rain streaks, and then performs
rain removal using a convolutional low-rank filter. In order to extract the image texture
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layer more efficiently while avoiding excessive smoothing of the image background layer,
Gu et al. [4] decomposed a single image into two separate layers with different sparse
representations to learn the large-scale feature structure and represent the small-scale
texture information of the image.

In order to break the bottleneck of traditional methods, deep-learning-based single im-
age deraining algorithms have been proposed one after another after 2017. Yang et al. [10]
created the JORDER network to deal with overlapping rain streaks in a heavy rain environ-
ment. The JORDER obtains information such as rain streak regions during the detection
phase and then uses this information to perform effective rain removal while losing certain
texture details due to excessive information removal. In the same year, Fu et al. [1] further
proposed a depth detail network (DDN) based on the previous work to avoid losing texture
details; however, the method could not handle too many dense rain streaks. Following
Yang and Fu et al., an increasing number of CNN-based approaches have been proposed.
To alleviate the problem of difficult to reproduce deep network structures, Ren et al. [22]
proposed a simple and effective progressive recursive rain removal network (PReNet). The
lightweight pyramid network (LPNet) [23] consists of fewer parameters, thus making the
network simple to better focus on the internal connections between rain streaks obtained at
different scales. Squeeze-excitation network (RESCAN) [24] employs dilation convolution
to obtain background information and uses recurrent neural networks to reshape rain fea-
tures. GCANet [25] employs smooth dilation convolution instead of dilation convolution
and incorporates contextual information to improve recovery. To promote the interpretabil-
ity of the rain removal network, RCD-Net [26] uses a convolutional dictionary learning
mechanism to encode the shape of the rain and a proximal gradient technique to design
the optimization algorithm. Zhang et al. [12] applied conditional generative adversarial
networks (CGAN) to the single-image rain removal problem in order to render better light,
color, and contrast distributions for the rain removal results. Chen et al. [27] developed an
effective unpaired single image deraining adversarial framework that explores the mutual
properties of unpaired samples by means of double-contrast learning in the deep feature
space, named DCD-GAN. However, the GAN-based approach is not good at capturing de-
tailed information of images and thus has poor results for images with diverse rain streaks.
Recently, semi-supervised and unsupervised learning methods [28,29] have been proposed
to further improve the recovery performance of real rain images, and these methods learn
features directly from real rain data as a way to improve the robustness of the methods.

2.2. Multi-Scale Learning

Multi-scale learning can help expand the deep network’s field of perception and thus
is useful for improving the characterization of image geometric feature information [30].
Since rain streaks exhibit some self-similarity, obtaining correlation information at different
scales can help improve the characterization of image features. Yang et al. [31] introduced a
recurrent hierarchy enhancement network (ReHEN) to explore the association of adjacent
stages step by step. Wang et al. [32] explored the deep cross-scale fusion network (DCSFN)
for deraining. Jiang et al. [33] applied multi-scale and multi-level convolutional neural
networks to fuse features to improve end-to-end single image deraining. Unlike the above
methods, in this paper we perform multi-scale learning of image feature information by
scale-space feature recalibration.

3. Proposed Method

In this section, we describe the overall framework of the SFR-Net proposed in this
paper. In each subsection, we introduce the key modules of the network, including SCAM,
CARM, MERB, and also describe the loss functions used in the experiments.

3.1. The Framework of SFR-Net

The overall structure of SFR-Net is shown in Figure 1. We propose an end-to-end
network for clear recovery of images from rainy days, which consists mainly of MERB for
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feature extraction and CARM for recalibration. At the beginning of the network feature
extraction, we learn the shallow original image features through a 3× 3 convolutional layer
whose output is L0 = Conv3×3(Irain) and use it as the first MERB input. L1 , L2, L3 are
the cross-layer outputs of feature extraction, and the overall network output Lout can be
derived by the following formulas:

Lcat = Contact(L1, L2, L3), (1)

LR1 = (Conv1×1(CARM(Lcat))− Conv1×1(Lcat)), (2)

LR2 = Conv3×3(LR1) + Lcat, (3)

Lout = L0 − Conv3×3(LR2), (4)

where Lcat denotes the output after cross-layer feature stitching. LR1 and LR2 are the outputs
of the first and second feature calibration after feature stitching, respectively. CARM is the
coordinate attention recalibration mechanism. Convn×n(·) indicates the convolution kernel
size is n× n convolution operations.
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Figure 1. The proposed Scale-space Feature Recalibration Network architecture.

3.2. Subspace Coordinate Attention Mechanism

To further solve the single image deraining task, the important question is how to
effectively gather and describe rain streak characteristics for removal. Although a deeper
network is beneficial to extract the features of rain streaks, the ability to characterize the
image features will gradually weaken with the transmission process as the depth of the
network increases, as well as a vast quantity of duplicate feature information.

As a result, the resolution of these difficulties will have a direct influence on the quality
of the recovered images. To eliminate the large number of redundant image information
and extract more important image features, we created a parallel structure by merging
the CARM and the SAM [34], which was inspired by the success of the computer vision
attention mechanism.

The parallel coordination and subspace attention mechanism focuses on acquiring
spatial and channel feature information and allows only features containing useful informa-
tion to be further transmitted. As shown in Figure 2, the SCAM divides the input feature
map (I0) into n mutually exclusive subspaces:

[
I1, I2, . . . Iη , . . . In

]
. We define Iη as a set of

intermediate feature maps, and its overall architecture can be formulated as:
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Wη = Maxpooling3×3
(

Iη

)
+ DWConv1×1

(
Iη

)
, (5)

Ŵη = So f tmax
(
Conv1×1

(
Conv3×3

(
CARM

(
Aη

))))
, (6)

Îη = Ŵη ⊗ Iη , (7)

Iout = Concat
[
Î1, Î2, . . . Îη , . . . În

]
, (8)

where, in Equations (5) and (6), Maxpooling3×3 is the maximum pooling operation with a
kernel size of 3× 3, DWConv1×1 is the depthwise separable convolution with kernel size
of 1× 1, while Conv1×1 and Conv3×3 are the ordinary convolutions with kernel size 1× 1
and convolution kernel size 3× 3, respectively. We characterize the feature information
learning across channels and spaces for each set of segmented subspaces, and Ŵη is the
attentional feature map inferred from the feature information learning of an intermediate
set of subspaces. In addition, we employ a softmax activation mechanism to ensure that Ŵη

is a valid attentional weight that can recalibrate the feature information better. The CARM
is the Coordinate Attention Recalibration Mechanism. Each set of feature maps will obtain
a redefined feature map set Îη after Equation (7) ,where ⊗ is the element multiplication.
The final output of SCAM is derived from Equations (5)–(7) together as Equation (8).
Contact is the recombination of the feature maps of each group.

The SCAM is incorporated in each MERB to address information loss throughout the
multi-scale feature gathering and transmission procedure. Feature refinement in SCAM is
accomplished by the recalibration of feature information utilizing CARM and SAM.
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Coordinate Attention Recalibration Mechanism: In the real situation, the density of
rain streaks is different on each channel of the image. However, many previous methods
for single-image rain removal have not considered or cannot solve this problem well.
Until the channel attention mechanism was proposed, researchers found that the channel
attention mechanism could effectively obtain the weights of rain streak feature information
on different rainy image channels. However, both the channel attention mechanism and the
spatial attention mechanism proposed later [35] ignore the extraction of location-specific
information when oriented to the image deraining problem. The location-specific feature
information can help eliminate rain streaks better. Therefore, inspired by the coordinated
attention mechanism [36], this paper designs a CARM, as shown in Figure 3, and embeds it
in SCAM to enhance the network’s extraction capability for location-specific information
to improve the network performance and accuracy. CARM differs from most previous
attention mechanisms in that it collects cross-channel feature information along the X and
Y spatial directions while also obtaining important perceptual information about direction
and location.
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Figure 3. The proposed Coordinate Attention Recalibration Mechanism.

3.3. Multi-Scale Extraction Recalibration Block

The Multi-scale feature extraction method effectively compensates for the lack of detail
in image geometric features in deep networks, which combine image feature information
at different scales. For further improved network representation, we propose MERB, which
employs interlayer multiscale information fusion and allows information to be merged
between features of different scales. Moreover, this structure ensures that all parameter
layers receive input information, making it possible to learn the characteristic information
of the original image better.

Mathematical formulas can be used to describe the MERB in detail. According to
Figure 4, the input of MERB is set to Fin, and the block can be formulated as follows:

FMaxpooling
a = Maxpooling

(
Fin; θ

Maxpooling
a

)
, (9)

where FMaxpooling
a denotes the output of the first layer after Maximum Pooling, and θ

Maxpooling
a

means the hyperparameter formed by the Maximum Pooling:

F1×1
a = Conv1×1

(
Fin; θ1×1

a

)
, (10)

F3×3
a = Conv3×3

(
Fin; θ3×3

a

)
, (11)

F5×5
a = Conv5×5

(
Fin; θ5×5

a

)
, (12)

where Fn×n
a and θn×n

a denote the output after the first layer of multiscale extraction and the
hyperparameters formed by the first layer of multiscale extraction, respectively, and n× n
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is the size of the convolution kernel through which it passes. The Convn×n(·) denotes the
convolution operation. Further image features are extracted as follows:

F1×1
b = Conv1×1

((
F1×1

a + F3×3
a + F5×5

a

)
; θ1×1

b

)
, (13)

F3×3
b = Conv3×3

((
F1×1

a + F3×3
a + F5×5

a

)
; θ3×3

b

)
, (14)

F5×5
b = Conv5×5

((
F1×1

a + F3×3
a + F5×5

a

)
; θ5×5

b

)
, (15)

where Fn×n
b and θn×n

b denote the output after the first layer of multiscale extraction and the
hyperparameters formed by the first layer of multiscale extraction, respectively, and n× n
is the size of the convolution kernel through which it passes. The Convn×n(·) denotes the
convolution operation. Similarly, we can obtain the output of the third and fourth layers
as follows:

F3×3
c =

(
Conv3×3

(
F1×1

b + F3×3
b + F5×5

b

)
; θ3×3

c

)
, (16)

F5×5
c =

(
Conv5×5

(
F1×1

b + F3×3
b + F5×5

b

)
; θ5×5

c

)
, (17)

F1×1
d =

(
Conv1×1

(
FMaxpooling

a

)
; θ1×1

d

)
, (18)

F5×5
d =

(
Conv5×5

(
F3×3

c + F5×5
c

)
; θ5×5

d

)
. (19)

As shown in Figure 4, MERB will enter the feature recalibration stage after passing the
feature extraction. First, we perform feature stitching on the multi-scale feature information;
then, we use the convolution kernel of size 1× 1 and 3× 3 for further deep extraction;
and finally, we also introduce CARM to recalibrate the feature information. The final output
of MERB is as follows:

Fout = CARM((Conv3×3(Conv1×1(LReLu( Contact(
F1×1

d , F1×1
b , F3×3

c , F5×5
d

)
+ Fin

; η1); η2); η3); η4); η5),

(20)

where Fout denotes the output of the MERB, and SCAM(·) indicates the Subspace Co-
ordinate Attention Mechanism. {η1; η2; η3; η4; η5} indicates the hyperparameters of the
MERB output.

Input Feature

Max Pooling 1 × 1 Conv 3 × 3 Conv

LReLu

5 × 5 Conv

1 × 1 Conv

1 × 1 Conv 3 × 3 Conv 5 × 5 Conv

5 × 5 Conv

3 × 3 Conv 5 × 5 Conv

Contact

1 × 1 Conv

3 × 3 Conv

SCAM

Multi-scale Features Extraction

Output Feature

Features Recalibration

Figure 4. The proposed Multi-scale Extraction Recalibration Block.
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3.4. Loss Function

In general, the recovered image obtained by the rain removal network should be as
close as possible to the original clean image. In the training of the network in this paper,
we use a hybrid loss function combining structural similarity loss (SSIM) [37] with MSE
loss [38]. Specifically, SSIM loss is employed to measure structural similarity, which allows
for greater preservation of high-frequency structural information. MSE loss is an excellent
criterion for image restoration quality evaluation because of its ease of derivation, low
computational cost, and clear physical meaning.

These two loss functions may be expressed as follows:

LMSE =
1
N

N

∑
i=1
‖R− GT‖2, (21)

LSSIM = 1− SSIM(R, GT), (22)

where LMSE and LSSIM represent MSE loss and SSIM loss, respectively. R is the image with
rain, and GT represents the real rain-free image. Then the hybrid loss function in this paper
can be represented by the combination of SSIM loss and MSE loss as:

L = LMSE + λLSSIM, (23)

where λ is a hyperparameter .

4. Experiments

In this section, details of the dataset, the experimental environment, and the param-
eter settings used in the experiments are described in detail. To demonstrate the good
performance of the proposed method for the single image rain removal task, we perform
quantitative and qualitative evaluations on synthetic and real datasets and compare the
results with recent state-of-the-art methods. Finally, a complete ablation study is performed
to demonstrate the significance of the key modules set in the proposed method.

4.1. Experimental Settings
4.1.1. Datasets Setup

Four classical synthetic datasets are used in the training and testing experiments in
this paper, and their specific composition is shown in Table 1. The Rain100L [10] dataset
contains 200 training image pairs and 100 test image pairs in which there is only one
type of rain streak in the rain image, which is a synthetic dataset for light rain scenes.
The Rain100H [10] dataset consists of 1800 training image pairs and 100 test image pairs,
in which the rain images consist of 5 types of rain streaks, which are synthesized for heavy
rain scenes. The Rain800 [12] dataset consists of 700 training image pairs and 100 test image
pairs, while the Rain1400 [1] dataset contains 14 types of rain streaks, from which 12,600
and 1400 image pairs are selected as training and test images, respectively. The real image
dataset with rain is by Li et al. [39]. They proposed two existing datasets consisting of 185
and 34 real images, respectively.

Table 1. Descriptions of synthetic and real-world datasets.

Datasets Rain100L Rain100H Rain800 Rain1400 Li et al. (Scene 1) Li et al. (Scene 2)

Training Set 200 1800 700 12,600 - -
Testing Set 100 100 100 1400 185 34

Type Synthetic Synthetic Synthetic Synthetic Real-world Real-world

4.1.2. Evaluation Metrics

In the field of image processing, the effectiveness of the single image rain removal
problem is often evaluated using the peak signal-to-noise ratio (PSNR) and the structural
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similarity index (SSIM). PSNR is an image evaluation index based on the error between
corresponding pixel points. SSIM evaluates the similarity between two different images in
terms of brightness, contrast, etc., and takes values in the range of 0–1. Therefore, the higher
the values of PSNR and SSIM are when the rain image is better recovered by the deraining
network. Because it is rare to produce a totally clean image in the actual world, it is difficult
to quantify the recovery quality of a real image with rain. As a result, we will therefore
visually evaluate the proposed network on real-world datasets.

4.1.3. Implementation Details

For better extraction of image features, the number of MERBs is set to 12, as shown in
Figure 1. In the training process, this design uses the Adam optimizer, where the default β1
and β2 parameters are 0.9 and 0.999, respectively. All experiments and tests in this paper
use the PyTorch framework, and the graphics card is an NVIDIA Geforce RTX 3080Ti GPU
(12G). To improve performance, the batch size is set to 32, the λ in the loss function is set
to 0.2, and the initial learning rate is set to 0.001. For the Rain100L/H dataset, we train
the network with 200 epochs and halved the learning rate every 50 epochs in the training
process. For the Rain800/1400 dataset, we use 100 epochs, and the learning rate is halved
every 25 epochs.

4.2. Experimental Results
4.2.1. Results on Synthetic Datasets

In order to objectively evaluate the rain removal performance of the network structure
proposed in this paper, we conducted extensive experiments on the synthetic datasets
Rain100L, Rain100H, Rain800 and Rain1400. The experimental results are also compared
with some mainstream advanced methods: GCANet [25], LPNet [23], RESCAN [24],
DDN [1], JORDER [10], PReNet [22], RCD-Net [26], and DCD-GAN [27]. Table 2 shows the
experimental quantification results of the different algorithms on the four synthetic datasets.
It can be seen that the proposed method in this paper improves the PSNR and SSIM values
compared to other methods, both for the small rain dataset with a single rainfall streak
type and for the large rain dataset with more rainfall streak types. This indicates that the
proposed network has better robustness and generalizability.

Table 2. The Comparison Results On Synthetic Datasets.

Datasets Rain100L (PSNR/SSIM) Rain100H (PSNR/SSIM) Rain800 (PSNR/SSIM) Rain1400 (PSNR/SSIM)

Rainy 26.91/0.838 13.35/0.388 21.16/0.652 25.24/0.810
GCANet 31.70/0.932 24.10/0.814 - 27.84/0.841

LPNet 33.39/0.958 24.39/0.820 25.26/0.781 22.03/0.800
RESCAN 36.12/0.970 27.88/0.816 24.09/0.841 29.88/0.905

DDN − 24.95/0.781 22.16/0.732 27.61/0.901
JORDER 36.55/0.974 22.79/0.697 26.24/0.850 27.55/0.853
PReNet 37.11/0.977 28.06/0.888 22.83/0.790 30.73/0.920
RCDNet 35.28/0.961 26.18/0.835 24.59/0.821 33.04/0.9472

DCD-GAN 38.12/0.970 27.88/0.816 25.61/0.813 30.75/0.920
Ours 39.67/0.988 30.90/0.912 30.60/0.904 33.98/0.955

We present various images for visual comparison in addition to the quantitative
evaluation of the rain removal impact of a single image. As shown in Figures 5 and 6,
images derived from the small rain dataset Rain100L and the large rain dataset Rain100H
are provided for visual comparison, respectively, and some areas of the images are selected
and magnified in order to observe changes in image detail information. By observing the
magnified local area, it can be found that although the GCANet algorithm is less effective
in removing rain streaks, a large number of rain streaks remain; JORDER, LPNet, PReNet,
and RESCAN remove a large number of rain streaks, but they all cause different degrees of
background blurring and have certain defects in preserving the image background details.
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For example, the LPNet results on the Rain100L/H dataset all have varying degrees of
texture distortion and blurring; the PReNet algorithm brings about loss of local details and
color distortion. In comparison to the reference clean images, the method in this paper
achieves good results and is able to remove the vast majority of rain streaks on a wide
range of complex rain images.

Figure 5. The performance of different methods on synthetic dataset (Rain100L).

Figure 6. The performance of different methods on synthetic dataset (Rain100H).

Therefore, the SFR-Net designed in this paper greatly increases the interaction of
feature information in scale-space by considering the interaction inside and outside the
network, whether it is the skip connections outside the network or the cross connections
inside the MERB. This design helps to better explore the correlation of image features in
scale-space and can effectively remove rain streaks while retaining the background details
on the synthetic datasets.

4.2.2. Results on Real-World Datasets

To further evaluate the rain removal effect of the method in real scenarios, we tested
the proposed algorithm and the comparison algorithm in this paper on real datasets. For
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the fairness of the performance comparison, all methods use the weights of the pre-trained
models obtained from the Rain100H dataset. As shown in Figures 7 and 8, the method
proposed in this paper produces a more natural and enjoyable recovered image compared
to the mainstream methods. Specifically, it can be seen from the zoomed-in local details
that GCANet has a large amount of rain streak residue and does not recover the image
well; the DDN algorithm also has rain streak residue and poor feature processing of local
regions, resulting in partial texture distortion and blurred image background; while the
JORDER and LPNet algorithms also have blurring and color distortion.

Figure 7. The performance of different methods on real world rainy dataset (Scene 1).

Figure 8. The performance of different methods on real world rainy dataset (Scene 2).

The difference between the rain streaks feature information in the near and far scenes
of rain images in the real datasets, as well as the excessive smoothing and more rain streak
occlusion, may cause significant blurring and poor results after image recovery by the
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comparison methods. In this paper, instead of adding and fusing the feature information
obtained from the hierarchical learning directly layer by layer, the feature information is
stitched together using the residual projection at the end of the network for rainwater streak
feature learning, which is helpful to improve the discriminative computing capability of the
network. Therefore, by comparison, the method in this paper can more effectively remove
rain streaks from real-world images with rain and retain more texture details.

4.3. Ablation Studies

To demonstrate the effectiveness and rationality of the network structure and ex-
perimental parameter settings of the SFR-Net proposed in this paper. We conducted a
series of ablation experiments, all of which were performed under the same experimental
environment and parameter settings. The uniform dataset used for the experiments was
the Rain100L dataset.

4.3.1. Ablation Study for the Proposed Scam

In this study, we present SCAM, which combines coordinated attention and subspace
attention mechanisms. We investigated the effect of network deraining using the channel
attention mechanism (CAM) [40],spatial attention mechanism (SPM) [35], SAM [34], and
CARM, as shown in Table 3.

Table 3. Ablation study on analysis of the proposed SCAM.

Framework CAM SPM SAM CARM CAM + SAM SPM + SAM CARM + SAM

PSNR/SSIM 38.36/0.976 38.90/0.980 38.08/0.978 39.25/0.979 39.21/0.981 38.86/0.981 39.67/0.988

4.3.2. Ablation Study of the Number of SCAM Subspaces

In order to investigate the effect of the number of subspaces in SCAM on the deraining
effect, we conducted experiments with pairs of different numbers of subspaces. In particular,
the number of subspaces is set to n ∈ {4, 8, 12, 16}. The corresponding PSNR/SSIM results
obtained are shown in Table 4. From Table 4, it can be found that increasing the number of
subspaces can relatively obtain higher PSNR/SSIM values, which results in better extraction
performance. However, after n = 8, the improvement in the PSNR seems to be limited.
Therefore, after considering the balance between computational cost and performance, we
choose n = 8 as the default parameter.

Table 4. Ablation study on number of subspaces for SCAM.

Metric n = 4 n = 8 (Default) n =12 n = 16

PSNR/SSIM 39.08/0.9825 39.67/0.988 39.20/0.9827 39.11/0.9826

5. Conclusions

In this paper, we propose an SFR-Net to solve the single image deraining removal
problem, which uses dense connectivity to achieve feature reuse and adequate propagation.
To better acquire and characterize the feature information of rain streaks, a Multi-scale
Extraction Recalibration Block is introduced to extract local and global features. In addition,
this design applies a Subspace Coordinate Attention Mechanism to recalibrate image
features by using coordinated attention recalibrate and subspace attention mechanisms to
reduce useless features and preserve spatial and background information. Quantitative
and visual intuitive results on both synthetic and real datasets show that the proposed
approach outperforms the compared mainstream algorithms. However, the severe weather
scenarios targeted by this design are only for rain, and the real application scenarios often
include haze, rain, and snow in addition to rain. This design will be further upgraded
towards a generalizable performance in a future work exploring inter-domain adaption
to achieve domain migration and weight assignment of synthetic data using multi-source
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synthetic datasets for severe weather with complex noise and degradation factors, which
better simulates severe weather image information and thus improves the robustness and
generalization ability of the algorithm.

Author Contributions: Conceptualization, P.L. and J.J.; methodology, P.L.; software, P.L. and G.J.;
validation, P.L. and G.J.; formal analysis, P.L.; investigation, L.F.; resources, P.L. and J.J.; data curation,
P.L. and G.J.; writing—original draft preparation, P.L.; writing—review and editing, P.L. and J.J.;
visualization, P.L.; supervision, P.L.; project administration, J.J.; funding acquisition, J.J. and G.J. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Scientific Research Project of the Education Department
of Liaoning Province (LJKZ0518, LJKZ0519).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Fu, X.; Huang, J.; Zeng, D.; Huang, Y.; Ding, X.; Paisley, J. Removing rain from single images via a deep detail network.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 June 2017;
pp. 3855–3863.

2. Yang, W.; Tan, R.T.; Feng, J.; Guo, Z.; Yan, S.; Liu, J. Joint rain detection and removal from a single image with contextualized deep
networks. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 42, 1377–1393. [CrossRef] [PubMed]

3. Liu, H.; Shu, N.; Tang, Q.; Zhang, W. Computational Model Based on Neural Network of Visual Cortex for Human Action
Recognition. IEEE Trans. Neural Netw. Learn. Syst. 2018, 29, 1427–1440 [CrossRef] [PubMed]

4. Gu, S.; Meng, D.; Zuo, W.; Zhang, L. Joint Convolutional Analysis and Synthesis Sparse Representation for Single Image
Layer Separation. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017;
pp. 1717–1725.

5. Li, Y.; Tan, R.T.; Guo, X.; Lu, J.; Brown, M.S. Rain streak removal using layer priors. In Proceedings of the IEEE conference on
computer vision and pattern recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 2736–2744.

6. Luo, Y.; Xu, Y.; Ji, H. Removing rain from a single image via discriminative sparse coding. In Proceedings of the IEEE International
Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 3397–3405.

7. Zhang, X.; Li, H.; Qi, Y.; Leow, W.K.; Ng, T.K. Rain removal in video by combining temporal and chromatic properties. In
Proceedings of the IEEE International Conference on Multimedia and Expo, Toronto, ON, Canada, 26 December 2006; pp. 461–464.

8. Kim, J.H.; Lee, C.; Sim, J.Y.; Kim, C.S. Single-image deraining using an adaptive nonlocal means filter. In Proceedings of the IEEE
International Conference on Image Processing, Melbourne, VIC, Australia, 15–18 September 2013; pp. 914–917.

9. Kang, L.W.; Lin, C.W.; Fu, Y.H. Automatic single-image-based rain streaks removal via image decomposition. IEEE Trans. Image
Process. 2012, 21, 1742–1755. [CrossRef] [PubMed]

10. Yang, W.; Tan, R.T.; Feng, J.; Liu, J.; Guo, Z.; Yan, S. Deep Joint Rain Detection and Removal from a Single Image. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 June 2017 ; pp. 1357–1366.

11. Li, R.; Cheong, L.F.; Tan, R.T. Heavy Rain Image Restoration: Integrating Physics Model and Conditional Adversarial Learning.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019;
pp. 1633–1642.

12. Zhang, H.; Sindagi, V.; Patel, V.M. Image De-Raining Using a Conditional Generative Adversarial Network. IEEE Trans. Circuits
Syst. Video Technol. 2020, 30, 3943–3956. [CrossRef]

13. Wei, W.; Meng, D.; Zhao, Q.; Xu, Z.; Wu, Y. Semi-Supervised Transfer Learning for Image Rain Removal. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 3872–3881.

14. Wei, Y.; Zhang, Z.; Wang, Y.; Xu, M.; Yang, Y.; Yan, S.; Wang, M. Deraincyclegan: Rain attentive cyclegan for single image
deraining and rainmaking. IEEE Trans. Image Process. 2021, 30, 4788–4801. [CrossRef] [PubMed]

15. Chen, X.; Huang, Y.; Xu, L. Multi-Scale Hourglass Hierarchical Fusion Network for Single Image Deraining. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition Workshops, Nashville, TN, USA, 19–25 June 2021; pp. 872–879.

16. Wang, Y.T.; Zhao, X.L.; Jiang, T.X.; Deng, L.J.; Chang, Y.; Huang, T.Z. Rain streaks removal for single image via kernel-guided
convolutional neural network. IEEE Trans. Neural Netw. Learn. Syst. 2021, 32, 3664–3676. [CrossRef] [PubMed]

17. Pan, J.; Liu, S.; Sun, D.; Zhang, J.; Liu, Y.; Ren, J.; Yang, M.H. Learning Dual Convolutional Neural Networks for Low-Level
Vision. In Proceedings of the IEEE conference on computer vision and pattern recognition, Honolulu, HI, USA, 21–26 June 2018;
pp. 3070–3079.

http://doi.org/10.1109/TPAMI.2019.2895793
http://www.ncbi.nlm.nih.gov/pubmed/30703011
http://dx.doi.org/10.1109/TNNLS.2017.2669522
http://www.ncbi.nlm.nih.gov/pubmed/28287987
http://dx.doi.org/10.1109/TIP.2011.2179057
http://www.ncbi.nlm.nih.gov/pubmed/22167628
http://dx.doi.org/10.1109/TCSVT.2019.2920407
http://dx.doi.org/10.1109/TIP.2021.3074804
http://www.ncbi.nlm.nih.gov/pubmed/33929960
http://dx.doi.org/10.1109/TNNLS.2020.3015897
http://www.ncbi.nlm.nih.gov/pubmed/32822310


Sensors 2022, 22, 6823 14 of 14

18. Li, P.; Jin, J.; Jin, G.; Fan, L.; Gao, X.; Song, T.; Chen, X. Deep Scale-Space Mining Network for Single Image Deraining. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, New Orleans, LA, USA, 19–24
June 2022; pp. 4276–4285.

19. Zhang, Y.; Liu, Y.; Li, Q.; Wang, J.; Qi, M.; Sun, H.; Xu, H.; Kong, J. A Lightweight Fusion Distillation Network for Image
Deblurring and Deraining. Sensors 2021, 21, 5312. [CrossRef] [PubMed]

20. Xu, J.; Zhao, W.; Liu, P.; Tang, X. Removing rain and snow in a single image using guided filter. In Proceedings of the IEEE
International Conference on Computer Science and Automation Engineering, Zhangjiajie, China, 25–27 May 2012; pp. 304–307.

21. Zhang, H.; Patel, V.M. Convolutional sparse and low-rank coding-based rain streak removal. In Proceedings of the IEEE Winter
Conference on Applications of Computer Vision, Santa Rosa, CA, USA, 24–31 March 2017; pp. 1259–1267.

22. Ren, D.; Zuo, W.; Hu, Q.; Zhu, P.; Meng, D. Progressive Image Deraining Networks: A Better and Simpler Baseline. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 3932–3941.

23. Fu, X.; Liang, B.; Huang, Y.; Ding, X.; Paisley, J. Lightweight pyramid networks for image deraining. IEEE Trans. Neural Netw.
Learn. Syst. 2020, 31, 1794–1807. [CrossRef] [PubMed]

24. Li, X.; Wu, J.; Lin, Z.; Liu, H.; Zha, H. Recurrent squeeze-and-excitation context aggregation net for single image deraining. In
Proceedings of the European Conference on Computer Vision, Munich, Germany, 8–14 September 2018; pp. 254–269.

25. Chen, D.; He, M.; Fan, Q.; Liao, J.; Zhang, L.; Hou, D.; Hua, G. Gated Context Aggregation Network for Image Dehazing and
Deraining. In Proceedings of the IEEE Winter Conference on Applications of Computer Vision, Waikoloa, HI, USA, 7–11 January
2019; pp. 1375–1383.

26. Wang, H.; Xie, Q.; Zhao, Q.; Meng, D. A model-driven deep neural network for single image rain removal. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 3100–3109.

27. Chen, X.; Pan, J.; Jiang, K.; Li, Y.; Huang, Y.; Kong, C.; Fan, Z. Unpaired Deep Image Deraining Using Dual Contrastive Learning.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 19–24 June 2022;
pp. 2017–2026.

28. Yang, H.-D. Restoring Raindrops Using Attentive Generative Adversarial Networks. Appl. Sci. 2021, 11, 7034. [CrossRef]
29. Huang, H.; Yu, A.; He, R. Memory oriented transfer learning for semi-supervised image deraining. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 7728–7737.
30. Yang, W.; Tan, R.T.; Wang, S.; Fang, Y.; Liu, J. Single Image Deraining: From Model-Based to Data-Driven and Beyond. IEEE Trans.

Pattern Anal. Mach. Intell. 2021, 43, 4059–4077. [CrossRef] [PubMed]
31. Yang, Y.; Lu, H. Single image deraining via recurrent hierarchy enhancement network. In Proceedings of the 27th ACM

International Conference on Multimedia, Nice, France, 21–25 October 2019; pp. 1814–1822.
32. Wang, C.; Xing, X.; Wu, Y.; Su, Z.; Chen, J. Dcsfn: Deep cross-scale fusion network for single image rain removal. In Proceedings

of the 28th ACM International Conference on Multimedia, Seattle, WA, USA, 12–16 October 2020; pp. 1643–1651.
33. Jiang, K.; Wang, Z.; Yi, P.; Chen, C.; Huang, B.; Luo, Y.; Jiang, J. Multi-Scale Progressive Fusion Network for Single Image

Deraining. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June
2020; pp. 8343–8352.

34. Saini, R.; Jha, N.K.; Das, B.; Mittal, S.; Mohan, C.K. Ulsam: Ultra-lightweight subspace attention module for compact convolutional
neural networks. In Proceedings of the IEEE Winter Conference on Applications of Computer Vision, Snowmass, CO, USA, 1–5
March 2020; pp. 1616–1625.

35. Zhu, X.; Cheng, D.; Zhang, Z.; Lin, S.; Dai, J. An empirical study of spatial attention mechanisms in deep networks. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 27 October–2 November 2019; pp. 6687–6696.

36. Hou, Q.; Zhou, D.; Feng, J. Coordinate attention for efficient mobile network design. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 13708–13717.

37. Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE
Trans. Image Process. 2004, 13, 600–612. [CrossRef] [PubMed]

38. Zhao, H.; Gallo, O.; Frosio, I.; Kautz, J. Removing rain and snow in a single image using guided filter. IEEE Trans. Comput. Imaging
2017, 3, 47–57. [CrossRef]

39. Li, S.; Araujo, I.B.; Ren, W.; Wang, Z.; Tokuda, E.K.; Junior, R.H.; Cesar-Junior, R.; Zhang, J.; Guo, X.; Cao, X. Single image
deraining: A comprehensive benchmark analysis. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, Long Beach, CA, USA, 15–20 Jun 2019; pp. 3838–3847

40. Hu, J.; Shen, L.; Albanie, S.; Sun, G.; Wu, E. Squeeze-and-Excitation Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 42,
2011–2023. [CrossRef] [PubMed]

http://dx.doi.org/10.3390/s21165312
http://www.ncbi.nlm.nih.gov/pubmed/34450762
http://dx.doi.org/10.1109/TNNLS.2019.2926481
http://www.ncbi.nlm.nih.gov/pubmed/31329133
http://dx.doi.org/10.3390/app11157034
http://dx.doi.org/10.1109/TPAMI.2020.2995190
http://www.ncbi.nlm.nih.gov/pubmed/32750766
http://dx.doi.org/10.1109/TIP.2003.819861
http://www.ncbi.nlm.nih.gov/pubmed/15376593
http://dx.doi.org/10.1109/TCI.2016.2644865
http://dx.doi.org/10.1109/TPAMI.2019.2913372
http://www.ncbi.nlm.nih.gov/pubmed/31034408

	Introduction
	Related Work
	Single Image Deraining
	Multi-Scale Learning

	Proposed Method
	The Framework of SFR-Net
	Subspace Coordinate Attention Mechanism
	Multi-Scale Extraction Recalibration Block
	Loss Function

	Experiments
	Experimental Settings
	Datasets Setup
	Evaluation Metrics
	Implementation Details

	Experimental Results
	Results on Synthetic Datasets
	Results on Real-World Datasets

	Ablation Studies
	Ablation Study for the Proposed Scam
	Ablation Study of the Number of SCAM Subspaces


	Conclusions
	References

