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Abstract

Extracting sensory information from text, par-
ticularly olfactory references, is challenging
due to limited annotated datasets and the im-
plicit, subjective nature of sensory experi-
ences. This study investigates whether GPT-
4o-generated data can complement or replace
human annotations. We evaluate human- and
LLM-labeled corpora on two tasks: coarse-
grained detection of olfactory content and fine-
grained sensory term extraction. Despite lex-
ical variation, generated texts align well with
real data in semantic and sensorimotor embed-
ding spaces. Models trained on synthetic data
perform strongly, especially in low-resource
settings. Human annotations offer better recall
by capturing implicit and diverse aspects of
sensoriality, while GPT-40 annotations show
higher precision through clearer pattern align-
ment. Data augmentation experiments confirm
the utility of synthetic data, though trade-offs
remain between label consistency and lexical
diversity. These findings support using syn-
thetic data to enhance sensory information min-
ing when annotated data is limited.

1 Introduction

Despite the key role of sensory experiences in hu-
man communication, computational methods for
detecting and interpreting olfactory—and more
broadly sensory—references in text remain limited,
mainly due to the lack of high-quality annotated
datasets. Annotating olfactory references is chal-
lenging because they can be implicit, metaphorical,
and culturally dependent. Unlike concrete cate-
gories like named entities, smell-related references
are context-dependent and subjective, requiring hu-
man judgment to disambiguate.

We explore synthetic data generated by large lan-
guage models (LLMs), specifically GPT-40 (Ope-
nAl, 2023), to address these challenges. We investi-
gate whether generated data can substitute or com-

plement real-world datasets in sensory information
mining. Focusing on olfaction, we introduce the
Olfactory Synthetic Dataset (referred to as Dy in
this paper), a novel resource designed to mirror the
real-world Odeuropa Corpus (D7) (Menini et al.,
2022)". We release the full dataset?, including GPT-
40 and expert-annotated versions, as a contribution
to the research community. The dataset generation
and annotation process, and source code for experi-
ments are fully documented for reproducibility.

We evaluate synthetic data utility across three
axes: (1) Corpus-level similarity, assessing lex-
ical and semantic alignment between D; and D
to gauge how closely generated texts match real
sensory language; (2) Model performance, com-
paring sentence classification and sensory term ex-
traction on both datasets to test if models trained on
synthetic data perform comparably; and (3) Data
augmentation, measuring the effect of adding syn-
thetic examples to samples of real-world datasets.

Our study shows synthetic data can effectively
support sensory information extraction, offering a
scalable alternative for domains with limited anno-
tations, notably for other sensory modalities like
sound and taste. Unlike prior work, we compare
models trained on LLLM-labeled synthetic data with
those trained on human-labeled data to assess trade-
offs in sensory domain labeling methods.

The remainder of this paper is organized as fol-
lows: Section 2 reviews related work; Section 3
details dataset generation and both human and au-
tomatic labeling protocols; Section 4 describes
the dataset comparison methodology; Section 5
presents our experimental results; Section 6 draws
conclusions, and Section 7 discusses limitations
and future directions. Additional information pro-
vided is in the appendix.

"https://github.com/Odeuropa/benchmarks_and_corpora
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2 Related Work

Recent advances in large language models (LLMs)
have increased interest in data creation, annotation,
and augmentation across NLP tasks. One grow-
ing line of research explores LLMs as synthetic
data generators to reduce reliance on costly man-
ual annotations, especially in specialized domains
involving complex or subjective phenomena such
as sensory information extraction.

Synthetic Data Generation with LLMs in NLP
Several studies evaluate the potential and limits
of LLM-driven synthetic data generation. Long
et al. (2024) survey the expanding use of LLMs for
NLP benchmark creation. Li et al. (2023) analyze
synthetic data’s impact on text classification, show-
ing benefits in low-resource settings but limited
semantic depth and contextual realism. Almeida
and Matos (2024) explore zero-shot data genera-
tion for information retrieval, highlighting prompt
design’s importance.

Methodological gaps raise reproducibility con-
cerns, including inconsistent evaluation protocols
and limited expert involvement (Nafis et al., 2025;
Chim et al., 2025). Overuse of synthetic examples
may cause model collapse; Shumailov et al. (2024)
and Seddik et al. (2024) identify thresholds where
performance drops, implying stricter control over
synthetic-to-real data ratios.

The trade-off between synthetic and human-
labeled data is discussed by Mgller et al. (2024),
showing classifiers trained on human data generally
outperform those using LLM-generated examples,
except for rare classes where synthetic augmenta-
tion helps. Zero-shot LLMs underperform small
human-trained models, underscoring expert anno-
tation’s value.

These issues are especially relevant for sensory
information extraction, where LLMs exhibit lexical
bias and struggle with subjective nuance, limiting
their effectiveness as substitutes for human annota-
tors (Mohta et al., 2023).

Sensory Information Mining Contextual lan-
guage models have been applied to detect sen-
sory references in text. Menini et al. (2022) used
MacBERTh (Arevalo and Fonteyn) to detect ol-
factory information in historical texts. Rule-based
systems like Massri et al. (2022) offer interpretabil-
ity but lack adaptability.

Khalid and Srinivasan (2022) used BERT with
Lancaster Sensorimotor Norms (Lynott et al., 2020)
to predict sensory modalities as bag-of-words. Ken-
nington (2021) integrated sensorimotor features
into ELECTRA (Clark et al., 2020), while Boscher
et al. (2024) combined contextual embeddings with
sensorimotor representations using lexical heuris-
tics (Mpouli et al., 2020), word embeddings, and
multilingual dictionaries (Sagot and FiSer, 2012).
Despite promising results, these methods strug-
gle with subjective content without expert over-
sight (Zhao et al., 2023).

Real-World vs. Synthetic Data in Sensory Do-
mains Boscher et al. (2024) compared a real-
world olfactory corpus, Odeuropa (Menini et al.,
2022) with a GPT-4o0-generated auditory dataset,
but did not analyze real vs. synthetic data for
the same modality. Their auditory dataset (1,000
balanced sentences) was a proof-of-concept, not
benchmarked against annotated corpora.

This reveals a broader gap: the lack of validated
real-world sensory datasets and rigorous compar-
isons between synthetic and real data within the
same modality. Current pipelines often over-rely
on LLMs, have limited expert validation, and suffer
from cultural or subjective generation biases.

Positioning of the Present Work This paper ad-
dresses these issues by evaluating LLM-generated
olfactory datasets against real-world annotated
corpora. Unlike prior work focused on modal-
ity comparison or raw generation, we perform a
fine-grained analysis of lexical coverage, semantic
variability, and trained model performance. Our
pipeline includes expert intervention during gen-
eration and annotation and ensures reproducibility
by providing prompts, annotation guidelines, and
the full dataset with both human and model-based
annotations for comparison.

3 Dataset Generation

We aim to generate a synthetic dataset Dy, compa-
rable to the real-world dataset D;—the Odeuropa
Text Dataset—to evaluate whether it can support
sensory information extraction tasks. D consists
of 2,176 sentences, with 602 (28%) labeled as olfac-
tory by experts, featuring over 5,500 odor-related
terms such as aroma, scent, or sweet.

This section details the synthetic generation pro-
tocol of Dy via the GPT-40 (OpenAl, 2023) web



interface, prompting strategies, annotation proce-
dures, and evaluation of model-human agreement
at both sentence and token levels.

3.1 Generation Protocol and Prompt Design

We adapted prompting strategies from Boscher et al.
(2024), initially designed for auditory data. We
design two distinct prompts intended to generate
syntactically and semantically diverse positive (P1)
and negative (P2) sentences. The dataset generation
prompts are provided in Appendix A in Table 6.

A total of 500 positive (olfactory) and 1,700 neg-
ative (non-olfactory) sentences were generated to
match the class ratio of the original corpus D;. Ex-
amples of synthetic positive and negative sentences
are given in Table 1, with sensory terms in bold for
positive sentences.

Table 1 Positive vs. Negative Sentences Examples

Positive Negative

“The aroma of fresh-
baked bread lingered
warmly.”

“A fearless diver plumbed
unexplored reefs below.”

3.2 Annotation Protocol

Each generated sentence undergoes a two-levels
annotation, consistent with Dq: (1) sentence-level
classification (positive/negative) and (2) token-
level annotation for sensory terms in positive ex-
amples. We compare two annotation methods:

Automatic Annotation with GPT-4o (D}M): In
the first scenario, all annotations are performed au-
tomatically by the same model used for data gen-
eration, without any human correction. Sentences
generated using prompt P2 are labeled as negative,
while those generated with prompt P1 are labeled
as positive. Then, positive sentences are passed to
the LLM, which is queried using prompt P3 (see Ta-
ble 6 in Appendix Appendix A) to extract olfactory
terms.

Human Expert Annotation (DEX): In parallel,
we conduct a human-guided annotation process led
by a domain expert. Annotation is carried out by
a research engineer specialized in digital human-
ities. Each sentence is first labeled as potentially
positive or negative based on expert judgment. Pos-
itive sentences are then manually annotated at a
token level to identify terms conveying olfactory
information, whether explicitly or implicitly. In am-
biguous cases, only tokens that are clearly olfactory

in context are retained. Each sentence is ultimately
classified as positive if it contains at least one such
token, and as negative otherwise.

3.3 Human vs. Model Annotation Agreement

While GPT-4o provides scalable generation and
initial annotation, manual expert validation may
be necessary to ensure quality for nuanced sen-
sory datasets like Dy. To assess annotation relia-
bility, we evaluate the agreement between D5Xand
D5Mfor both sentence- and token-level labeling.

Sentence Classification: Among 1,700 negative
sentences produced by GPT-40, 596 (35%) were
reclassified as positive by the expert. These typ-
ically contained implicit olfactory cues—such as
references to nature or animals—highlighting GPT-
40’s reliance on explicit keyword detection. For
example, sentences like “Puppy chased butterflies
beside flowering backyard fence” and “Blue jays
perched on cedar branches in spring” were labeled
as negative by GPT-40 but judged as positive by
the expert due to their olfactory context, especially
inferred from tokens in bold.

Moreover, we obtain a Cohen’s Kappa coeffi-
cient (Cohen, 1960) x equal to 0.52 for binary sen-
tence classification of D5Xv.s. DEM, confirming a
moderate agreement between the two annotation
methods (Landis and Koch, 1977). This suggests
that while there is a fair level of consistency be-
tween the automatic and expert annotations, some
divergences remain, particularly for sentences with
implicit or context-dependent olfactory cues, which
are more challenging for the LLM to detect.

Token-Level Annotation: We compared token-
level labels across both annotations. The result-
ing score of K = 0.503 confirms only moderate
alignment between human- and model-based an-
notations, consistent with findings at the sentence
level and justifying an analysis of both strategies.
Appendix C discusses the sensory vocabulary di-
vergences between both annotations.

In Section 5, we discuss how the annotation
method affects Dy’s similarity to D; and the im-
pact on model performance when augmenting data
with synthetic examples.

4 Methodology

After generating the synthetic dataset D, it is com-
pared to the real-world dataset D1 to: (1) assess lin-
guistic and semantic similarity; (2) evaluate model



performance when trained on each; and (3) deter-
mine Dsy’s utility for augmentation or substitution.

4.1 Corpus Comparison

To quantify lexical and semantic similarity between
Dy and D4, we adopt the corpus comparative met-
rics suggested by Mgller et al. (2024):

Token Overlap: We measure similarity by comput-
ing the Jaccard similarity between each sentence
$9 € Dy and its most similar sentence s1 € D1,
based on the overlap of their token sets.

Semantic Similarity: Cosine similarity between
the sentence embeddings of s; and s3 is computed
using (1) SentenceBERT (Reimers and Gurevych,
2019) and (2) 11-dimensional sensorimotor sen-
tence embeddings proposed by (Boscher et al.,
2024; Lynott et al., 2020). For both embedding
models and for each sentence ss, the highest sim-
ilarity score with any s; € D is retained, and
distributions are visualized via density plots.

4.2 Corpus Classification

We compare classification performances obtained
either on D; or Ds, through two sensory informa-
tion extraction tasks:

Task 1 — Binary Sentence Classification: Clas-
sify sentences to determine whether they con-
tain olfactory references or not using three mod-
els: SENSE-LM (Boscher et al., 2024), vanilla
BERT (Devlin et al., 2019), and Logistic Regres-
sion over sentence sensorimotor features as defined
by (Lynott et al., 2020).

Task 2 — Sensory Term Extraction: Identify
sensory expressions (e.g., ‘“coffee,” “tobacco”)
from positively labeled sentences with two con-

sidered models, BERT and SENSE-LM.

Evaluating model performance on D vs. Dy
assesses whether they yield comparable scores and
similar model rankings. For both tasks, macro-
averaged Precision, Recall, and F1-score are com-
puted and averaged over 10 cross-validation folds,
with standard deviations reported.

4.3 Data Augmentation with Synthetic
Examples

To assess the impact of synthetic data on model
performance, we augment the real-world dataset
D1 with examples from D5, evaluating both clas-
sification tasks from Section 4.2. The training set

is defined as Dyin = D' U D32, and the test set
as Diest = D72, with ng = 0.2 x |Dy|. The total
training size is N = nj + no, and the values of n;
and n9 vary by scenario. Results are reported as
the average over 10 folds with standard deviation.

4.3.1 Data Augmentation with Constant
Real-World Data Sample

In this setup, the number of real examples n;
is fixed and synthetic samples are progressively
added, increasing the number of artificial examples
na. In our experiments n; is set to 100, while no
reaches 1750 in Task 1, and 400 in Task 2. This
setup allows to examine how models benefit from
increasing synthetic input in low-data regimes.

4.3.2 Data Augmentation a Variable Size
Real-World Data Sample

We consider an initial training dataset composed
only of n; examples from D;, and we gradually
add synthetic examples from D5 by augmenting a
coefficient p € {0,10,...,100}, s.t. ng = 755 X
ny with n; € {50,100, 200,500, 1000, 1750}
for binary sentence classification , and n; €
{50,100, 200, 300,400} for sensory terms extrac-
tion. This setup tests how model performance
evolves as the addition of synthetic data supple-
ments real data under several initial dataset sizes.

4.3.3 Data Augmentation with Variable Ratio
of Synthetic Data

In this scenario, we fix the training set size N
to several values (50-1750 for binary sentence
classification, 50-400 for sensory term extrac-
tion) and vary the proportion of synthetic data
p € {0,10,...,100}, such that ny = 155 x N
and n; = N — no. This setup evaluates how much
synthetic data can replace real data without sig-
nificantly affecting classifier performance, and to
what extent scores remain stable or degrade as the
synthetic ratio increases.

5 Evaluation

This section evaluates how synthetic corpora Do
compare with the real-world corpus D; across
the three axes defined in Section 4: (1) similar-
ity between corpora, (2) model ranking consistency
across datasets, and (3) efficacy of synthetic data
in substituting real-world data. Text pre-processing
pipelines and experimental hyper-parameters are
reported in Appendix B.
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Figure 1: Comparison of sentence similarity distribu-
tions between positive sentences of generated (D5) and
original (D;) corpora, using three metrics—token over-
lap, cosine similarity based on BERT embeddings, and
cosine similarity based on sensorimotor embeddings.

5.1 Corpus Comparison

Figure 1 presents the similarity between D and Do
across all terms using the metrics from Section 4.1:
token overlap (left), Sentence-BERT semantic sim-
ilarity (middle), and sensorimotor similarity (right)
(Boscher et al., 2024). The X-axis shows the best
token overlap or cosine similarity for each gen-
erated sentence annotation compared to Dy; the
Y-axis shows sentence density per metric bin.

Token overlap (left panel) is low, indicating dis-
similar vocabulary. Semantic similarity (middle) is
moderate, while sensory similarity (right) is higher,
typically between 0.8 and 1. Despite lexical differ-
ences, due to a contextual and historical domain
shift between both datasets (historical texts in Dy
and contemporary data in D5), generated sentences
exhibit shared semantic and sensorimotor features
with real-world data, supporting the use of syn-
thetic corpora for classification tasks. Extended
results in Appendix D show stronger alignment
when limited to positive terms.

Regarding sensory vocabulary, D%M uses a re-
stricted range of positive terms (318), often repeat-
ing generic words like scent, aroma, and perfume.
In contrast, D5X is more lexically diverse (902
unique positive terms) and aligns more closely with
D1 annotations. Extended statistical analyses and
tests in Appendix C show that the distribution and
ranking of positive terms in DEX do not signifi-
cantly differ from D1, unlike DM,

5.2 Corpus Classification

We compare classification model performance on
Dy and D, for two tasks: binary sentence classifi-
cation and sensory term extraction (see Section 4.2).
Our goal is to assess if models perform consistently
across datasets and if their ranking remains stable
between real and synthetic data.

Binary Sentence Classification Table 2 shows
the performance of SENSE-LM, BERT, and lo-
gistic regression evaluated using 1) D; (left), 2)
D, with human annotations DEX(center), and 3)
automatic annotations D%M(right). While models
perform better on synthetic data—regardless of an-
notation source—model rankings remain consistent
across datasets. This suggests that synthetic cor-
pora can serve as reliable proxies for evaluating
model performance rankings, even if they do not
fully reflect real-world complexity.

Sensory Term Extraction As shown in Ta-
ble 3, performance is slightly higher with
DSMannotations, likely due to lower lexical diver-
sity and more homogeneous positive terms. In
contrast, DEX—with its greater term variety— pro-
vides results closer to the Odeuropa dataset (see Ap-
pendix C). Despite differences in absolute scores,
model rankings remain stable, confirming that arti-
ficial datasets can be reliable substitutes for com-
paring models in olfactory term extraction.

5.3 Data Augmentation with Synthetic
Examples

In the following, we conduct the experiments re-
lated to the protocol introduced in Section 4.3, to
measure the impact of data augmentation on the
utility of classifiers. The results are presented only
for the SENSE-LM model in Section 5.3.2 and Sec-
tion 5.3.3, and the other models are provided in
Appendix E as the conclusions are similar.

5.3.1 Data Augmentation with A Constant
Real-World Data Sample

Following the method described in Section 4.3.1,
we first assess the impact of adding synthetic ex-
amples from Ds to a constant base of n; = 100
real sentences from D;. For both tasks, the per-
formances are evaluated in terms of F1-score as
a function of the amount of synthetic data added,
using for ground truth either human labels DEXor
automatic annotation DM,

Binary Sentence Classification. Figure 2a
shows the performances obtained on the binary
sentence classification task. Models trained
with DEXoutperform DEMin low-resource settings
(ng € [20;150]) for all models, with statistically
significant differences according to the Student Fis-
cher’s t-test (Student, 1908) applied to the F1-Score
distribution by folds for each annotation, showing
p-values inferior to 0.05. However, at higher vol-



Table 2 Comparative evaluation of the binary sentence classification task performed by considered models.

‘ Odeuropa Dataset (D) ‘ Olfactory Synthetic Dataset (Dgx) ‘ Olfactory Synthetic Dataset (D'Z“MJ
Method \ Precision Recall F1-Score \ Precision Recall F1-Score \ Precision Recall F1-Score
BERT 91.51+1.12  90.12+0.61 90.80+0.85 | 99.10+0.90  98.93+0.80  99.01 £0.85 98.00+£0.35 97.81+0.28  97.90 +£0.30
Logistic Regression | 82.25+ 1.51 7233+1.22 7697+136 | 91.00+130 90.52+1.70 90.76+1.49 | 91.40+2.10 91.09+220 91.24+2.78
SENSE-LM 94.09+0.81 9226+0.72 93.16+0.76 | 99.80+0.45 99.66+0.39 99.73+0.42 | 99.40+0.65 99.23+0.61 99.31+0.63

Table 3 Comparative evaluation of the sensory terms extraction task by considered models.

‘ Odeuropa Dataset (D7) ‘ Olfactory Synthetic Dataset (Dgx) ‘ Olfactory Synthetic Dataset (DIZ“M)
Method \ Precision Recall F1-Score \ Precision Recall F1-Score \ Precision Recall F1-Score
BERT 80.01+£222 6632+1.13  7252+1.68 | 86.19+0.92 75.60+1.47 80.74+0.52 | 8545+0.84 79.01+1.10 82.06+0.76
SENSE-LM | 82.01+1.81 73.62+1.56 77.58+1.65 | 86.65+0.52 78.54+0.76 82.37+0.63 | 8553+0.62 81.73+0.77 83.59+0.15

umes (ng = 1750), models trained on D%Mcatch
up and occasionally surpass DEX. This highlights
that annotation quality provided by experts is more
impactful at a small data scale.

Sensory Term Extraction. Figure 2b shows
that models trained on D5Xoutperform those with
D5Mfor small synthetic additions, with significant
gaps for ng € [50,200]. Beyond, models with
D5Mgather and sometimes surpass D5X (although
non-significantly). These results support the ad-
vantage of using human labeling (D5X) in low-
resource settings and the efficiency of automatic
labeling (D5M) at a larger scale. In both cases,
F1-score degrades for ng > 100 (over 50% syn-
thetic data), aligning with prior work on model
collapse (Seddik et al., 2024; Kazdan et al., 2024).

5.3.2 Data Augmentation with a Variable Size
Real-World Data Sample

In Section 5.3.1, we showed that adding synthetic
examples to a fixed base of 100 real Odeuropa
samples improves model utility up to a threshold.
Building on findings that D5Xbenefits from less
data while D5¥Mimproves with more, we now test
whether synthetic data augments real data across
varying initial sizes. Starting with Dy only (/N =
n1), we progressively add synthetic examples until
N = 2 X n; to assess how augmentation scales.
For both binary classification and sensory term
extraction, we follow the protocol in Section 4.3.2.

Binary Sentence Classification Figures 3a
and 3b show SENSE-LM’s F1-Score for varying
initial real-dataset sizes n; and two ground truths
—human annotation (DEX, left) and automatic anno-
tation (DM, right)—plotted against the percentage
of synthetic data supplementing the original real
data (0% means training only on real data, 100%
means equal amounts of generated and real data).
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Figure 2: Fl-score of models evolution with ny = 100
examples from Odeuropa and progressive augmentation
of ny synthetic examples.

For n; > 500, adding synthetic data does not im-
prove performance. However, for smaller sizes
(n1 € [50;200]), both D5Mand DEXbenefit, with
stronger gains for D5X. This likely comes from
DEXs finer capture of implicit sensory cues at the
sentence level, as discussed in Section 3.3.

Sensory Terms Extraction The results for sen-
sory terms extraction in Figures 3c and 3d show
that models trained with D5Myield higher and more
consistent gains, especially for n; > 200, with sta-
tistically significant gaps over D5X. As detailed
in Table 4 for n; = 400 with SENSE-LM, DiM-
trained models achieve higher F1-scores by improv-



Table 4 Precision and Recall (% =+ std) for DEXand
D5Mon Binary Sentence Classification (SENSE-
LM, N=400) with data augmentation. D5Xvalues
match Figure 3c, D5Mvalues match Figure 3d.

Table 5 Precision and Recall (% = std) for DEXand
D5Mon Sensory Terms Extraction (SENSE-LM,
N=400) with data augmentation. Values for
DE5Xmatch with Figure 4c, D5Mmatch Figure 4d.

Gen. Data DX DM
Added (%) Prec. Rec. Prec. Rec.

Gen. Data DEX DM
Ratio (%) Prec. Rec. Prec. Rec.

0 72.95 + 3.17 64.72 £2.91(72.95 + 3.17 64.72 £2.91
20 72.63 £ 2.37 66.76 £ 2.28|73.29 £ 2.83 63.97 £ 3.24
40 71.67 £0.75 68.72 £ 3.04|76.04 + 2.81 62.02 £ 2.12
60 72.44 +1.36 67.63 £ 1.87|75.54 £ 2.34 64.37 £4.12
80 71.49 +1.83 67.13 £ 1.37|75.75 £ 4.13 61.73 £ 2.03
100 69.11 + 4.68 68.66 £ 2.66|77.08 £ 3.33 61.59 £ 4.53

0 74.64£2.06 60.49+0.85|74.64£2.06 60.49+0.85
20 73.82+1.73 64.98+2.67|72.89£0.43 65.731+0.39
40 67.884+2.41 71.1242.42|76.67+2.12 60.08+0.72
60 63.33£1.95 71.684+1.34|77.784+2.05 58.61+2.51
80 57.9242.45 75.38+1.72|75.804+1.64 59.45+1.09
100 45.08£2.30 77.68+1.64|76.874+0.87 56.92+1.41

ing precision at a slight recall cost as generated
examples increase. This reflects D5M’s pattern-
guided annotation focusing on explicit, restricted
vocabulary, limiting predicted terms. Conversely,
DE5Ximproves recall through richer, more diverse
annotations but reduces precision due to more false
positives. Overall, DsMoffers the best precision-
recall trade-off and highest F1-score.

5.3.3 Data Augmentation with a Variable
Ratio of Synthetic Data

In Section 5.3.2, we saw that gradually adding
generated data to a fixed real train set generally
improves prediction quality. However, prior ex-
periments did not fully assess how varying the
synthetic-to-real data ratio affects performance.
Therefore, following Section 4.3.3, we keep the
train size constant while varying this ratio.

Binary Sentence Classification. For different
dataset sizes IV, Figures 4a and 4b show F1-Score
results as a function of the ratio of generated data
in the training set (0% = all real data; 100% = all
synthetic). Performance generally degrades as syn-
thetic data dominates, except for small /N, where
performance is already low. This drop is sharper
for larger N. With DEX, performance stays higher
at low synthetic ratios, especially for N = 100
or 200. Across all sizes, models collapse beyond
60% synthetic data, approaching random classifi-
cation (F1 =~ 0.5). As the structure of Dy diverges
from D; in vocabulary and complexity, introduc-
ing excessive synthetic data degrades performance,
highlighting the need to retain at least 40% real
data to prevent model collapse.

Sensory Term Extraction. As shown in Fig-
ures 4c¢ and 4d, performance remains stable when
generated data stays below 40%. Beyond this,
DE5Xcauses sharp F1 drops—up to 12 points for
N = 400 while D5Mdegrades from a ratio of 20%,

but only by 2-3 points. Table 5 details precision
and recall at N = 400: with DEX, Recall improves
but Precision drops; D5Mshows the reverse. These
trends support our hypotheses in Section 5.3.2:
though DEMoften yields better F1, each annotation
shows advantages depending on the objective.

6 Conclusions and Perspectives

We explored using synthetic data from LLMs to
support olfactory information extraction, a domain
challenged by subjective sensory experiences. We
introduced the synthetic dataset Do, generated with
GPT-40, and compared it to the real Odeuropa cor-
pus (D1). Our analysis covered lexical and se-
mantic similarity, classification and extraction per-
formance, and data augmentation with GPT-based
(D%M) and expert-curated (D}QEX) annotations.

Despite lexical differences, D; and D> align in
sensorimotor and semantic space. Models behaved
similarly across datasets in F1-score and ranking.

Synthetic data improved performance, espe-
cially in low-resource settings. D5M-trained mod-
els sometimes outperformed D5Xusing consistent
pattern-based labeling, boosting precision by reduc-
ing false positives. DEX’s human annotations cap-
ture finer nuances and broader vocabulary, improv-
ing recall. This trade-off suggests LLM-based an-
notations are convenient for precision tasks, while
human annotations offer advantages for recall-
oriented applications.

Future work includes enhancing data realism via
prompt diversification and seed-based generation,
and evaluating impacts of realism and subjectivity
on performance. We may explore applications to
other subjective tasks, beyond sensoriality.
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Figure 3: Fl-score evolution of SENSE-LM on binary sentence classification (top row) and sensory terms extraction
(bottom row), across various initial dataset sizes n; and progressive augmentation with synthetic data.
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(bottom row), for various dataset sizes N and varying real-to-generated data ratios.



7 Limitations

While our study highlights the potential of LLM-
generated data for olfactory information extraction,
some aspects warrant further exploration and re-
finement in future work.

Annotation Quality and Agreement. Our com-
parison of human (D% ) and model-based (D% )
annotations shows moderate inter-annotator agree-
ment (Cohen’s x ~ 0.5), particularly at the token
level. This reflects the inherently subjective and
nuanced nature of olfactory language, which poses
challenges for both human and machine annota-
tion. Notably, D% y contributes valuable lexical
diversity that enriches model learning, though it
may also introduce variability that slightly affects
classification precision. Additionally, since D and
D% y were annotated by different experts, some
divergence in their interpretation of sensoriality is
natural. Addressing these cross-annotator differ-
ences in future work—for instance, via consensus-
building or multi-annotator validation—could fur-
ther enhance the robustness of human-annotated
Sensory corpora.

Domain Specificity. Our experiments center on
olfactory content, a domain with particularly rich
and complex linguistic characteristics. While our
results suggest that synthetic olfactory data can
effectively support classification tasks, further re-
search is needed to determine how well these
findings generalize to other sensory modalities.
Each sensoriality (e.g., auditory, gustatory) brings
its own cultural, lexical, and perceptual dimen-
sions (Geldard, 1953), and extending this frame-
work to new modalities would be a valuable direc-
tion. Encouragingly, the shared features between
olfactory and gustatory language suggest that some
transferability may be possible.

LLM Prompt Sensitivity. The success of syn-
thetic data generation depends in part on prompt
design. While our prompts were adapted from
prior work and proved effective for our tasks, small
changes in phrasing can result in substantial vari-
ations in the generated data. This highlights the
importance of developing more standardized, re-
producible prompting methodologies. Exploring
prompt engineering techniques such as few-shot
prompting or style-conditioning based on real cor-
pora—e.g., using examples from the Odeuropa
dataset—could further align generated data with

domain-specific characteristics and make data aug-
mentation with synthetic examples more efficient.

Prompt: Using the following examples,
generate 200 new sentences incorporat-
ing olfactory references. Maintain a simi-
lar tone, vocabulary, and structure, while
ensuring all sentences contain references
to scent or smell. Avoid repetition or re-
producing real-world examples.

Example source: “Honey is gathered
with much art from great variety of trees
and flowers; and joy is a honey, a fra-
grancy made from above with much pick-
ing, choosing, and composing.”

LLMs Openness and Transparency In addi-
tion to proprietary models such as GPT-4, recent
open-source LL.Ms like Qwen (Yang et al., 2025),
LLaMA (Touvron et al., 2023), and Mistral (Jiang
et al., 2023) have shown strong capabilities in gen-
eration and controllability. These models offer
promising alternatives for institutions with data pro-
priety or cost constraints and may support broader
reproducibility in future synthetic data pipelines.
Evaluating their behavior under controlled prompt-
ing conditions remains a valuable direction for fu-
ture work.

Overall, while some challenges re-
main—particularly in annotation consistency and
generalization beyond the olfactory domain—our
findings underscore the promise of synthetic text
data in low-resource settings. We believe this
work contributes to expanding sensory NLP with
LLM-driven resources, and we are optimistic about
the scalability and adaptability of these methods in
future applications.

Ethical Considerations

There is no risk of non-compliance with current leg-
islation, such as GDPR or copyright law, since the
generated data contains no sensitive information
and is in the public domain. The real-world datasets
used, notably Odeuropa, are public and open, made
available by original authors for reuse. Composed
of data from public-domain historical texts, this
reuse complies with public-law standards.

However, Odeuropa data (historical) and LLM-
generated data (contextualized in the contemporary
world) may carry different biases, such as cultural



diversity and contextual nuances, which must be
considered.

At the same time, since our study relies on syn-
thetic data generated by GPT-4o, it is important
to note that this data may contain factual inaccu-
racies, as GPT-4o0 does not incorporate any robust
fact-checking mechanisms during text generation.
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A Dataset Generation Prompts

We provide the prompts used for the generation
and automatic annotation of the Dy dataset in Ta-
ble 6. The P1 prompted is used to generate positive
examples, and conversely, P2 is used to generate
negative examples. Considering the limitations of
the GPT-40 web application, we ask the model to
generate the dataset by batch of 100 examples, that
we compile into a CSV file along with their class
at a sentence level (positive / negative).

Then, the prompt P3 is used on positive exam-
ples to extract positive terms of D5Mannotation.

B General Experimental Settings

In the following experiments, all texts are prepro-
cessed ahead of the model input. The text nor-
malization involves spellchecking, removal of stop
words and punctuation, lowercasing, and lemmati-
zation. After normalization, tokenization is per-
formed by splitting the text into tokens using
whitespace as the delimiter.

In the classification experiments provided from
Section 5.2 to Section 5.3.3, the SENSE-LM model
uses BERT with MacBERTh pretrained parame-
ters (Arevalo and Fonteyn) as a backbone, consid-
ering the same number of training parameters than
the base BERT model (110M parameters). It is
trained using the AdamW optimizer (Loshchilov
and Hutter, 2017) with a learning rate of 2 x 107>
and € = 1 x 1078 for 30 epochs. BERT follows
the same setup. For logistic regression, sensorimo-
tor representations of sentences are extracted from
the text following the method proposed by Boscher
et al. (2024), and used to fit a logistic regression
model with up to 1000 training iterations.

All experiments are conducted using an NVIDIA
RTX A5000 Laptop GPU when relevant, and ran-
dom seeds used for folds are fixed to 42 to ensure
reproducibility.

C Lexical Dissimilarity between
real-world and generated data

The lexical dissimilarity between D; and Ds’s an-
notations is observed in Table 7 to Table 9, which
show the frequency ranks of overlapping olfactory
terms across distinct corpora. For example, while
terms like smell, scent, and aroma are common
in both corpora, their ranks vary considerably be-
tween real-world and synthetic corpora, pointing
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to a stylistic shift in expression across corpora.

Tables 7 and 8 show the top 20 overlapping olfac-
tory terms between D; and each annotation of the
generated corpus. The LM annotation (D5M) has a
more compact and repeated vocabulary (318 unique
olfactory terms), with terms like scent and aroma
ranking significantly higher than in D1, indicating
possible over-representation. The expert annota-
tion (DIZEX), on the other hand, maintains greater
lexical diversity (902 unique olfactory terms) and
alignment with D;’s vocabulary and rank order.

We statistically validate these observations us-
ing the Wilcoxon signed-rank test to compare
the rankings presented respectively in Tables 7
and 8 (Wilcoxon, 1992):

* Between D; and D5M, the p-value obtained is
2.58 x 1075, which is much lower than the sig-
nificance level o = 0.05. This result provides
strong evidence to reject the null hypothesis
and supports the claim positive terms labelled
by a LLM in D5Mdiffer from terms labels by
humans in D;.

* In contrast, the comparison between D; and
DEXyields a p-value of 0.175, suggesting no
significant difference in the distribution of an-
notated terms.

Table 9 directly compares positive labelled terms
between DM and DEX, confirming that while
they share a core vocabulary, the LM-annotation
DIMcenters on explicit and non-ambiguously ol-
factory vocabulary, with a restricted range of
unique terms (318) compared to D5M, which
counts 912 unique olfactory terms. In proportion,
obvious terms such as scent, smell or aroma, are
more representative in D5M, showing higher rela-
tive frequencies.

D Additional Results on Corpus
Comparison

This appendix provides extended results for the
experiment conducted in Section 5.1. We provide
corpus comparisons not only for all terms of D;
and D>, but also a comparison of positive terms
in Dy, and respectively positive terms in D§Xand
DM,

We show the obtained histograms in Figure 5.
Whatever the terms considered, all terms or only
positive terms and for these last last the way they



Table 6 Prompts Used for Generating Synthetic Sentences

Type Prompt Description

P1 (Positive) “Could you generate 100 sentences of 10 words each, containing references to olfactory
experiences, and avoid repeating the same sentence structures? You may include different
kinds of descriptions: what produces the olfactory experience or the quality of smell, for
different types of scents (people, objects, or environment).”

P2 (Negative) “Could you generate 100 sentences with 10 words for each, making sure they absolutely
do not make any reference to any olfactory experience, and avoid repeating the same
sentence structures?”

P3 (Positive Terms Annota- | “Extract words from the following sentences that evoke smells, explicitly or implicitly
tion) (e.g., describing smell quality or source). For example, from ‘Musk pots generally
moist exhales disagreeable predominant ammoniacal smell... extract ‘disagreeable,
predominant, ammoniacal, musk, smell.’”

Table 7 Top 20 olfactory terms from the model labelled generated corpus (D5M) that most frequently
appear in the original corpus (D; ). Columns show the term, its relative frequency in D; and D5M(as
percentages of total tokens), and its frequency rank within each corpus.

Rank in D, Rank in DM
#  Term % Freq. Dy % Freq. D%M (over 777 terms)  (over 318 tel?ms)
1 scent 2.16 9.95 4 1
2 smell 9.80 8.58 1 2
3 aroma 0.04 448 634 3
4 odor 6.69 3.92 2 4
5  sweet 0.69 2.55 17 5
6  perfume 3.19 1.68 3 7
7  smoke 0.17 1.49 82 9
8  fragrance 0.17 1.49 83 8
9  floral 0.22 1.31 77 11
10 pungent 0.43 1.06 29 12
11  fresh 0.26 0.93 50 13
12 lavender 0.22 0.87 72 14
13 whiff 0.09 0.81 175 16
14 garlic 0.30 0.75 42 20
15 onion 0.13 0.75 119 19
16 vanilla 0.04 0.75 626 17
17 acrid 0.22 0.68 71 22
18 oil 0.91 0.68 14 23
19 cinnamon 0.09 0.62 235 29
20 rise 0.26 0.56 58 31
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Table 8 Top 20 olfactory terms from the human-labeled generated corpus (DEX) that most frequently
appear in the original corpus (D;). Columns show the term, its relative frequency in Dy and D5X (as
percentages of total tokens), and its frequency rank within each corpus.

Rank in D4 Rank in DEX
#  Term % Freq. D1 % Freq. Dy (over 777 terms)  (over 902 ter2ms)
1 smell 9.80 4.05 1 1
2 scent 2.16 3.38 4 2
3 aroma 0.04 3.22 634 3
4 faint 0.30 1.80 41 5
5 sweet 0.69 1.47 17 7
6  warm 0.04 1.25 720 10
7  air 0.35 1.22 36 11
8  fresh 0.26 0.91 50 12
9 rise 0.26 0.86 58 15
10 odor 6.69 0.80 2 17
11  rich 0.04 0.78 325 20
12 fragrance 0.17 0.75 83 21
13 floral 0.22 0.72 77 23
14 perfume 3.19 0.67 3 26
15 burn 0.09 0.64 194 28
16 acrid 0.22 0.61 71 29
17 pungent 0.43 0.61 29 30
18 damp 0.04 0.53 761 33
19 leave 0.43 0.44 30 38
20 old 0.04 0.44 430 39
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Table 9 Top 20 olfactory terms from the model-labelled generated corpus (D5M) that most frequently
appear in the human-labelled generated corpus (D5X). Columns show the term, its relative frequency in
DE5Xand D5M (as percentages of total tokens), and its frequency rank within each corpus.

Rank in DEX Rank in DM
#  Term % Freq. Dy™ % Freq. Dy (over 902 ter2ms) (over 318 te?ms)
1 scent 3.38 9.95 2 1
2 smell 4.05 8.58 1 2
3 aroma 3.22 4.48 3 3
4  odor 0.80 3.92 17 4
5  sweet 1.47 2.55 7 5
6  sharp 1.61 1.99 6 6
7  perfume 0.67 1.68 26 7
8  fragrance 0.75 1.49 21 8
9  smoke 0.25 1.49 66 9
10 earthy 1.36 1.37 8 10
11 floral 0.72 1.31 23 11
12 pungent 0.61 1.06 30 12
13 fresh 0.91 0.93 12 13
14 lavender 0.22 0.87 74 14
15 musty 0.30 0.87 52 15
16 whiff 0.08 0.81 215 16
17  vanilla 0.22 0.75 76 17
18 spicy 0.78 0.75 19 18
19 onion 0.08 0.75 251 19
20 garlic 0.14 0.75 118 20
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have been labeled ( automatically or by human), we
obtain low token overlap (left column), indicating a
highly dissimilar vocabulary. Semantic similarity is
moderate (middle), and sensory similarity is higher
(right), especially for D5X(on bottom), showing
alignment in olfactory semantics despite varying
vocabulary.

E Additional Results on Data
Augmentation Across Models

In the main paper, we only reported results for
the SENSE-LM model due to space constraints.
This appendix provides the full results for all mod-
els (SENSE-LM, BERT, and Logistic Regression)
across the data augmentation settings introduced in
Sections 4.3.2 and 4.3.3.

E.1 Data Augmentation with Varying
Real-Data Sizes

This appendix expands on the results presented
in the main paper for SENSE-LM by analyzing
how synthetic data impacts model performance
across different quantities of real-world training
data. Specifically, we fix the number of real ex-
amples IV and progressively introduce additional
synthetic examples. We report results on both the
binary sentence classification and sensory term ex-
traction tasks.

Binary Sentence Classification We eval-
uate model performance at real-data sizes
ny € {50,100, 200, 500, 1000, 1750}, tracking F1
scores as increasing amounts of synthetic data are
added. Figure 6 presents results across models
and annotation types. The X-axis represents the
percentage of synthetic data relative to real data,
while the Y-axis reports F1 score. Each curve
corresponds to a different value of n;.

For SENSE-LM, we observe consistent perfor-
mance improvements when synthetic data is added,
especially for D5Xat low and moderate values of
n1. Gains diminish as real-data availability in-
creases, with performance largely plateauing be-
yond n; = 500. BERT shows more modest and
variable improvements. Augmentation is more ef-
fective for DEXthan DM, with the clearest gains
observed in the n; = 100 to n; = 200 range. For
logistic regression, D5Maugmentation offers more
reliable benefits than DEXat small dataset sizes.
However, these gains reduce as more real examples
are introduced.
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Overall, synthetic data augmentation is most
beneficial under low-resource conditions. As the
amount of real data increases, the marginal utility
of synthetic examples declines.

Sensory Terms Extraction We apply the same
evaluation protocol to the sensory term ex-
traction task, using real dataset sizes n; €
{50, 100, 200, 300, 400}. Results are shown in Fig-
ure 7.

For SENSE-LM, adding synthetic data leads to
consistent improvements across both D5Xand D5M.
Notably, D5Mannotations outperform D5X, partic-
ularly at larger values of ;. BERT shows more sta-
ble gains with D5M, especially at medium and large
dataset sizes. Improvements with D5Xare less con-
sistent, and in some cases, augmentation has lim-
ited effect. We also observe a trade-off in precision
and recall between annotation types. D%Mtends
to improve precision, whereas DEXprimarily en-
hances recall. Detailed metrics are presented in
Table 4.

E.2 Data Augmentation with Variable Real vs.
Generated Ratio

We now examine how model performance is af-
fected when real examples are progressively re-
placed with synthetic ones, keeping the total dataset
size fixed.

Binary Sentence Classification Figure 8 shows
the F1 scores across different ratios of synthetic to
real data, for several values of real dataset size V.
Each subplot presents results for a specific model
and annotation type.

Across all settings, performance begins to de-
grade once the proportion of synthetic data exceeds
roughly 80%. This trend is consistent across mod-
els and annotation types. When using only syn-
thetic data (i.e., 100% generated), model perfor-
mance approaches the level of a random classifier.

At smaller real-data sizes, D5Xtends to yield bet-
ter results than DSM, particularly when synthetic
data is limited. However, as N increases, this ad-
vantage diminishes and the gap between annotation
types narrows.

Sensory Terms Extraction Figure 9 reports re-
sults for the sensory term extraction task under
varying real-to-generated data ratios. Precision and
recall dynamics for each annotation strategy are
presented in Table 5.



As synthetic data increases, DEXannotations
tend to improve recall but reduce precision. Con-
versely, D5Mannotations improve precision while
sacrificing recall. In most settings, D5Machieves
more balanced F1 scores, indicating more favorable
precision-recall trade-offs overall.
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Figure 5: Comparison of sentence similarity distributions between positive sentences of generated (D3) and original
(D7) corpora, using three metrics—token overlap, cosine similarity based on BERT Embeddings, and cosine
similarity based on sensorimotor embeddings —under three conditions: (a) full-text comparison (D; vs. D>), (b)

sensory terms only for D1 v.s. D5M, and (c) for Dy vs D5X.



F1 Score vs Training Dataset Augmentation

0 F1 Score vs Training Dataset Augmentation

0.8 - Amm———t== ¢ I S 0.8 - mm— + =¥ —
g 0.6/ Initial Dataset Size g 0.6 'nitial Dataset Size 4___‘/‘—/_‘
S —e— n; =50 o —e— n; =50
2 —=— ny =100 : —=— np =100
L . ny =200 To04 ny = 200

—— n; =500 —— n; =500
027 —— n, =1000 0291 —— p; = 1000
—— n = 1750 —— ny = 1750 "
0.0 L+— " " " - : 0.0 —— y " " ? T
0 20 40 60 80 100 0 20 40 60 80 100
Generated examples added Generated examples added
(% of Initial Dataset Size) (% of Initial Dataset Size)
EX LM
(a) SENSE-LM on D5 (b) SENSE-LM on D5
10 F1 Score vs Training Dataset Augmentation 10 F1 Score vs Training Dataset Augmentation
0.81 ;.,M_. 0.8 2z
—_— o — =
£ 061 £ 0.6
O Initial Dataset Size O Initial Dataset Size
0 —e— n1 =50 (%] —e— n; =50
o 0.44 —#— np =100 o 0.44 —#— ny =100
—&— n; =200 —h— n; =200
0.21 —#— m =500 0.21 —— n1 =500
~%— n; = 1000 ~¥— n; = 1000
\ —»— np; = 1750 —»— np = 1750
0.0 T y y T T T 0.0 T y T T T T
0 20 40 60 80 100 0 20 40 60 80 100
Generated examples added Generated examples added
(% of Initial Dataset Size) (% of Initial Dataset Size)
(c) BERT on D5¥ (d) BERT on D5M
10 F1 Score vs Training Dataset Augmentation 10 F1 Score vs Training Dataset Augmentation
0.8 0.8
o o é ® L * =1
2 o6 == —— —————— ————— 1 g 06/
S Initial Dataset Size 4 #— 4 o ./.—'_’.m
2] —e— n; =50 ﬂ 0 —e— n; =50
: 041 —w n, =100 E 0.41 / —m— ny =100
—#— Ny = 200 —&— n; =200
| == n1=500 i —— n; =500
0.2 —%— n; = 1000 02 —%— n1 = 1000
—»— n; = 1750 —»— np = 1750
0.0 T T T T T T 0.0 T T T T T T
0 20 40 60 80 100 0 20 40 60 80 100

Generated examples added
(% of Real Dataset Size)

Generated examples added
(% of Initial Dataset Size)

(e) Logistic Regression on DEX (f) Logistic Regression on DM

Figure 6: F1-Score evolution on binary sentence classification as synthetic data is added, for various initial dataset
sizes n.

19



0.80

0.754

0.65 1

0.60

0.80
0.75

0.70

2 0.65

S

2 0.601

T 0.551
0.501
0.45

0.40

F1 Score vs Training Dataset Augmentation

F1 Score
o
~
o

Initial Dataset Size
—e— n; =50
—=— ny =100
—— ny =200
—— ny =300
—¥— n; = 400
V‘
0 20 40 60 80 100

Generated examples added
(% of Initial Dataset Size)

(a) SENSE-LM on D5X
F1 Score vs Training Dataset Augmentation

| Initial Dataset Size
—e— n; =50
—=— np =100
—— =200 o e
—— =300 ¥———F%—3F %
—v— ny =400
0 20 40 60 80 100

Generated examples added
(% of Initial Dataset Size)

(c) BERT on D5*

F1 Score

F1 Score

0.80

0.754

0.70

0.65

0.60

0.80
0.75
0.70
0.65
0.60
0.55
0.50
0.45
0.40

F1 Score vs Training Dataset Augmentation

Initial Dataset Size

—e— n; =50

—=— np =100

—a— n; = 200

—— n; = 300

| —¥— n; = 400

W
0 20 40 60 80 100

Generated examples added
(% of Initial Dataset Size)

(b) SENSE-LM on DM
F1 Score vs Training Dataset Augmentation

Initial Dataset Size

1 —e— n; =50
1 ~m— n; =100
1 —4— np =200
—— ny =300
1 —— n; = 400
0 20 40 60 80 100

Generated examples added
(% of Initial Dataset Size)

(d) BERT on D5M
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Figure 8: F1-Score evolution on binary sentence classification as the ratio of synthetic data varies, with a constant

training dataset size V.
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Figure 9: F1-Score evolution on sensory terms extraction as the ratio of synthetic data varies, with a constant
training dataset size V.

22



