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Abstract001

Extracting sensory information from text, par-002
ticularly olfactory references, is challenging003
due to limited annotated datasets and the im-004
plicit, subjective nature of sensory experi-005
ences. This study investigates whether GPT-006
4o-generated data can complement or replace007
human annotations. We evaluate human- and008
LLM-labeled corpora on two tasks: coarse-009
grained detection of olfactory content and fine-010
grained sensory term extraction. Despite lex-011
ical variation, generated texts align well with012
real data in semantic and sensorimotor embed-013
ding spaces. Models trained on synthetic data014
perform strongly, especially in low-resource015
settings. Human annotations offer better recall016
by capturing implicit and diverse aspects of017
sensoriality, while GPT-4o annotations show018
higher precision through clearer pattern align-019
ment. Data augmentation experiments confirm020
the utility of synthetic data, though trade-offs021
remain between label consistency and lexical022
diversity. These findings support using syn-023
thetic data to enhance sensory information min-024
ing when annotated data is limited.025

1 Introduction026

Despite the key role of sensory experiences in hu-027

man communication, computational methods for028

detecting and interpreting olfactory—and more029

broadly sensory—references in text remain limited,030

mainly due to the lack of high-quality annotated031

datasets. Annotating olfactory references is chal-032

lenging because they can be implicit, metaphorical,033

and culturally dependent. Unlike concrete cate-034

gories like named entities, smell-related references035

are context-dependent and subjective, requiring hu-036

man judgment to disambiguate.037

We explore synthetic data generated by large lan-038

guage models (LLMs), specifically GPT-4o (Ope-039

nAI, 2023), to address these challenges. We investi-040

gate whether generated data can substitute or com-041

plement real-world datasets in sensory information 042

mining. Focusing on olfaction, we introduce the 043

Olfactory Synthetic Dataset (referred to as D2 in 044

this paper), a novel resource designed to mirror the 045

real-world Odeuropa Corpus (D1) (Menini et al., 046

2022)1. We release the full dataset2, including GPT- 047

4o and expert-annotated versions, as a contribution 048

to the research community. The dataset generation 049

and annotation process, and source code for experi- 050

ments are fully documented for reproducibility. 051

We evaluate synthetic data utility across three 052

axes: (1) Corpus-level similarity, assessing lex- 053

ical and semantic alignment between D1 and D2 054

to gauge how closely generated texts match real 055

sensory language; (2) Model performance, com- 056

paring sentence classification and sensory term ex- 057

traction on both datasets to test if models trained on 058

synthetic data perform comparably; and (3) Data 059

augmentation, measuring the effect of adding syn- 060

thetic examples to samples of real-world datasets. 061

Our study shows synthetic data can effectively 062

support sensory information extraction, offering a 063

scalable alternative for domains with limited anno- 064

tations, notably for other sensory modalities like 065

sound and taste. Unlike prior work, we compare 066

models trained on LLM-labeled synthetic data with 067

those trained on human-labeled data to assess trade- 068

offs in sensory domain labeling methods. 069

The remainder of this paper is organized as fol- 070

lows: Section 2 reviews related work; Section 3 071

details dataset generation and both human and au- 072

tomatic labeling protocols; Section 4 describes 073

the dataset comparison methodology; Section 5 074

presents our experimental results; Section 6 draws 075

conclusions, and Section 7 discusses limitations 076

and future directions. Additional information pro- 077

vided is in the appendix. 078

1https://github.com/Odeuropa/benchmarks_and_corpora
2https://anonymous.4open.science/r/ijcnlp_2025-DC51
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2 Related Work079

Recent advances in large language models (LLMs)080

have increased interest in data creation, annotation,081

and augmentation across NLP tasks. One grow-082

ing line of research explores LLMs as synthetic083

data generators to reduce reliance on costly man-084

ual annotations, especially in specialized domains085

involving complex or subjective phenomena such086

as sensory information extraction.087

Synthetic Data Generation with LLMs in NLP088

Several studies evaluate the potential and limits089

of LLM-driven synthetic data generation. Long090

et al. (2024) survey the expanding use of LLMs for091

NLP benchmark creation. Li et al. (2023) analyze092

synthetic data’s impact on text classification, show-093

ing benefits in low-resource settings but limited094

semantic depth and contextual realism. Almeida095

and Matos (2024) explore zero-shot data genera-096

tion for information retrieval, highlighting prompt097

design’s importance.098

Methodological gaps raise reproducibility con-099

cerns, including inconsistent evaluation protocols100

and limited expert involvement (Nafis et al., 2025;101

Chim et al., 2025). Overuse of synthetic examples102

may cause model collapse; Shumailov et al. (2024)103

and Seddik et al. (2024) identify thresholds where104

performance drops, implying stricter control over105

synthetic-to-real data ratios.106

The trade-off between synthetic and human-107

labeled data is discussed by Møller et al. (2024),108

showing classifiers trained on human data generally109

outperform those using LLM-generated examples,110

except for rare classes where synthetic augmenta-111

tion helps. Zero-shot LLMs underperform small112

human-trained models, underscoring expert anno-113

tation’s value.114

These issues are especially relevant for sensory115

information extraction, where LLMs exhibit lexical116

bias and struggle with subjective nuance, limiting117

their effectiveness as substitutes for human annota-118

tors (Mohta et al., 2023).119

Sensory Information Mining Contextual lan-120

guage models have been applied to detect sen-121

sory references in text. Menini et al. (2022) used122

MacBERTh (Arevalo and Fonteyn) to detect ol-123

factory information in historical texts. Rule-based124

systems like Massri et al. (2022) offer interpretabil-125

ity but lack adaptability.126

Khalid and Srinivasan (2022) used BERT with 127

Lancaster Sensorimotor Norms (Lynott et al., 2020) 128

to predict sensory modalities as bag-of-words. Ken- 129

nington (2021) integrated sensorimotor features 130

into ELECTRA (Clark et al., 2020), while Boscher 131

et al. (2024) combined contextual embeddings with 132

sensorimotor representations using lexical heuris- 133

tics (Mpouli et al., 2020), word embeddings, and 134

multilingual dictionaries (Sagot and Fišer, 2012). 135

Despite promising results, these methods strug- 136

gle with subjective content without expert over- 137

sight (Zhao et al., 2023). 138

Real-World vs. Synthetic Data in Sensory Do- 139

mains Boscher et al. (2024) compared a real- 140

world olfactory corpus, Odeuropa (Menini et al., 141

2022) with a GPT-4o-generated auditory dataset, 142

but did not analyze real vs. synthetic data for 143

the same modality. Their auditory dataset (1,000 144

balanced sentences) was a proof-of-concept, not 145

benchmarked against annotated corpora. 146

This reveals a broader gap: the lack of validated 147

real-world sensory datasets and rigorous compar- 148

isons between synthetic and real data within the 149

same modality. Current pipelines often over-rely 150

on LLMs, have limited expert validation, and suffer 151

from cultural or subjective generation biases. 152

Positioning of the Present Work This paper ad- 153

dresses these issues by evaluating LLM-generated 154

olfactory datasets against real-world annotated 155

corpora. Unlike prior work focused on modal- 156

ity comparison or raw generation, we perform a 157

fine-grained analysis of lexical coverage, semantic 158

variability, and trained model performance. Our 159

pipeline includes expert intervention during gen- 160

eration and annotation and ensures reproducibility 161

by providing prompts, annotation guidelines, and 162

the full dataset with both human and model-based 163

annotations for comparison. 164

3 Dataset Generation 165

We aim to generate a synthetic dataset D2, compa- 166

rable to the real-world dataset D1—the Odeuropa 167

Text Dataset—to evaluate whether it can support 168

sensory information extraction tasks. D1 consists 169

of 2,176 sentences, with 602 (28%) labeled as olfac- 170

tory by experts, featuring over 5,500 odor-related 171

terms such as aroma, scent, or sweet. 172

This section details the synthetic generation pro- 173

tocol of D2 via the GPT-4o (OpenAI, 2023) web 174
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interface, prompting strategies, annotation proce-175

dures, and evaluation of model-human agreement176

at both sentence and token levels.177

3.1 Generation Protocol and Prompt Design178

We adapted prompting strategies from Boscher et al.179

(2024), initially designed for auditory data. We180

design two distinct prompts intended to generate181

syntactically and semantically diverse positive (P1)182

and negative (P2) sentences. The dataset generation183

prompts are provided in Appendix A in Table 6.184

A total of 500 positive (olfactory) and 1,700 neg-185

ative (non-olfactory) sentences were generated to186

match the class ratio of the original corpus D1. Ex-187

amples of synthetic positive and negative sentences188

are given in Table 1, with sensory terms in bold for189

positive sentences.190

Table 1 Positive vs. Negative Sentences Examples

Positive Negative

“The aroma of fresh-
baked bread lingered
warmly.”

“A fearless diver plumbed
unexplored reefs below.”

3.2 Annotation Protocol191

Each generated sentence undergoes a two-levels192

annotation, consistent with D1: (1) sentence-level193

classification (positive/negative) and (2) token-194

level annotation for sensory terms in positive ex-195

amples. We compare two annotation methods:196

Automatic Annotation with GPT-4o (DLM
2 ) : In197

the first scenario, all annotations are performed au-198

tomatically by the same model used for data gen-199

eration, without any human correction. Sentences200

generated using prompt P2 are labeled as negative,201

while those generated with prompt P1 are labeled202

as positive. Then, positive sentences are passed to203

the LLM, which is queried using prompt P3 (see Ta-204

ble 6 in Appendix Appendix A) to extract olfactory205

terms.206

Human Expert Annotation (DEX
2 ): In parallel,207

we conduct a human-guided annotation process led208

by a domain expert. Annotation is carried out by209

a research engineer specialized in digital human-210

ities. Each sentence is first labeled as potentially211

positive or negative based on expert judgment. Pos-212

itive sentences are then manually annotated at a213

token level to identify terms conveying olfactory214

information, whether explicitly or implicitly. In am-215

biguous cases, only tokens that are clearly olfactory216

in context are retained. Each sentence is ultimately 217

classified as positive if it contains at least one such 218

token, and as negative otherwise. 219

3.3 Human vs. Model Annotation Agreement 220

While GPT-4o provides scalable generation and 221

initial annotation, manual expert validation may 222

be necessary to ensure quality for nuanced sen- 223

sory datasets like D2. To assess annotation relia- 224

bility, we evaluate the agreement between DEX
2 and 225

DLM
2 for both sentence- and token-level labeling. 226

Sentence Classification: Among 1,700 negative 227

sentences produced by GPT-4o, 596 (35%) were 228

reclassified as positive by the expert. These typ- 229

ically contained implicit olfactory cues—such as 230

references to nature or animals—highlighting GPT- 231

4o’s reliance on explicit keyword detection. For 232

example, sentences like “Puppy chased butterflies 233

beside flowering backyard fence” and “Blue jays 234

perched on cedar branches in spring” were labeled 235

as negative by GPT-4o but judged as positive by 236

the expert due to their olfactory context, especially 237

inferred from tokens in bold. 238

Moreover, we obtain a Cohen’s Kappa coeffi- 239

cient (Cohen, 1960) κ equal to 0.52 for binary sen- 240

tence classification of DEX
2 v.s. DLM

2 , confirming a 241

moderate agreement between the two annotation 242

methods (Landis and Koch, 1977). This suggests 243

that while there is a fair level of consistency be- 244

tween the automatic and expert annotations, some 245

divergences remain, particularly for sentences with 246

implicit or context-dependent olfactory cues, which 247

are more challenging for the LLM to detect. 248

Token-Level Annotation: We compared token- 249

level labels across both annotations. The result- 250

ing score of κ = 0.503 confirms only moderate 251

alignment between human- and model-based an- 252

notations, consistent with findings at the sentence 253

level and justifying an analysis of both strategies. 254

Appendix C discusses the sensory vocabulary di- 255

vergences between both annotations. 256

In Section 5, we discuss how the annotation 257

method affects D2’s similarity to D1 and the im- 258

pact on model performance when augmenting data 259

with synthetic examples. 260

4 Methodology 261

After generating the synthetic dataset D2, it is com- 262

pared to the real-world dataset D1 to: (1) assess lin- 263

guistic and semantic similarity; (2) evaluate model 264
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performance when trained on each; and (3) deter-265

mine D2’s utility for augmentation or substitution.266

4.1 Corpus Comparison267

To quantify lexical and semantic similarity between268

D1 and D2, we adopt the corpus comparative met-269

rics suggested by Møller et al. (2024):270

Token Overlap: We measure similarity by comput-271

ing the Jaccard similarity between each sentence272

s2 ∈ D2 and its most similar sentence s1 ∈ D1,273

based on the overlap of their token sets.274

Semantic Similarity: Cosine similarity between275

the sentence embeddings of s1 and s2 is computed276

using (1) SentenceBERT (Reimers and Gurevych,277

2019) and (2) 11-dimensional sensorimotor sen-278

tence embeddings proposed by (Boscher et al.,279

2024; Lynott et al., 2020). For both embedding280

models and for each sentence s2, the highest sim-281

ilarity score with any s1 ∈ D1 is retained, and282

distributions are visualized via density plots.283

4.2 Corpus Classification284

We compare classification performances obtained285

either on D1 or D2, through two sensory informa-286

tion extraction tasks:287

Task 1 — Binary Sentence Classification: Clas-288

sify sentences to determine whether they con-289

tain olfactory references or not using three mod-290

els: SENSE-LM (Boscher et al., 2024), vanilla291

BERT (Devlin et al., 2019), and Logistic Regres-292

sion over sentence sensorimotor features as defined293

by (Lynott et al., 2020).294

Task 2 — Sensory Term Extraction: Identify295

sensory expressions (e.g., “coffee,” “tobacco”)296

from positively labeled sentences with two con-297

sidered models, BERT and SENSE-LM.298

Evaluating model performance on D1 vs. D2299

assesses whether they yield comparable scores and300

similar model rankings. For both tasks, macro-301

averaged Precision, Recall, and F1-score are com-302

puted and averaged over 10 cross-validation folds,303

with standard deviations reported.304

4.3 Data Augmentation with Synthetic305

Examples306

To assess the impact of synthetic data on model307

performance, we augment the real-world dataset308

D1 with examples from D2, evaluating both clas-309

sification tasks from Section 4.2. The training set310

is defined as Dtrain = Dn1
1 ∪Dn2

2 , and the test set 311

as Dtest = Dn3
1 , with n3 = 0.2 × |D1|. The total 312

training size is N = n1 + n2, and the values of n1 313

and n2 vary by scenario. Results are reported as 314

the average over 10 folds with standard deviation. 315

4.3.1 Data Augmentation with Constant 316

Real-World Data Sample 317

In this setup, the number of real examples n1 318

is fixed and synthetic samples are progressively 319

added, increasing the number of artificial examples 320

n2. In our experiments n1 is set to 100, while n2 321

reaches 1750 in Task 1, and 400 in Task 2. This 322

setup allows to examine how models benefit from 323

increasing synthetic input in low-data regimes. 324

4.3.2 Data Augmentation a Variable Size 325

Real-World Data Sample 326

We consider an initial training dataset composed 327

only of n1 examples from D1, and we gradually 328

add synthetic examples from D2 by augmenting a 329

coefficient p ∈ {0, 10, . . . , 100}, s.t. n2 = p
100 × 330

n1 with n1 ∈ {50, 100, 200, 500, 1000, 1750} 331

for binary sentence classification , and n1 ∈ 332

{50, 100, 200, 300, 400} for sensory terms extrac- 333

tion. This setup tests how model performance 334

evolves as the addition of synthetic data supple- 335

ments real data under several initial dataset sizes. 336

4.3.3 Data Augmentation with Variable Ratio 337

of Synthetic Data 338

In this scenario, we fix the training set size N 339

to several values (50–1750 for binary sentence 340

classification, 50–400 for sensory term extrac- 341

tion) and vary the proportion of synthetic data 342

p ∈ {0, 10, . . . , 100}, such that n2 = p
100 × N 343

and n1 = N − n2. This setup evaluates how much 344

synthetic data can replace real data without sig- 345

nificantly affecting classifier performance, and to 346

what extent scores remain stable or degrade as the 347

synthetic ratio increases. 348

5 Evaluation 349

This section evaluates how synthetic corpora D2 350

compare with the real-world corpus D1 across 351

the three axes defined in Section 4: (1) similar- 352

ity between corpora, (2) model ranking consistency 353

across datasets, and (3) efficacy of synthetic data 354

in substituting real-world data. Text pre-processing 355

pipelines and experimental hyper-parameters are 356

reported in Appendix B. 357
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Figure 1: Comparison of sentence similarity distribu-
tions between positive sentences of generated (D2) and
original (D1) corpora, using three metrics—token over-
lap, cosine similarity based on BERT embeddings, and
cosine similarity based on sensorimotor embeddings.

5.1 Corpus Comparison358

Figure 1 presents the similarity between D1 and D2359

across all terms using the metrics from Section 4.1:360

token overlap (left), Sentence-BERT semantic sim-361

ilarity (middle), and sensorimotor similarity (right)362

(Boscher et al., 2024). The X-axis shows the best363

token overlap or cosine similarity for each gen-364

erated sentence annotation compared to D1; the365

Y-axis shows sentence density per metric bin.366

Token overlap (left panel) is low, indicating dis-367

similar vocabulary. Semantic similarity (middle) is368

moderate, while sensory similarity (right) is higher,369

typically between 0.8 and 1. Despite lexical differ-370

ences, due to a contextual and historical domain371

shift between both datasets (historical texts in D1372

and contemporary data in D2), generated sentences373

exhibit shared semantic and sensorimotor features374

with real-world data, supporting the use of syn-375

thetic corpora for classification tasks. Extended376

results in Appendix D show stronger alignment377

when limited to positive terms.378

Regarding sensory vocabulary, DLM
2 uses a re-379

stricted range of positive terms (318), often repeat-380

ing generic words like scent, aroma, and perfume.381

In contrast, DEX
2 is more lexically diverse (902382

unique positive terms) and aligns more closely with383

D1 annotations. Extended statistical analyses and384

tests in Appendix C show that the distribution and385

ranking of positive terms in DEX
2 do not signifi-386

cantly differ from D1, unlike DLM
2 .387

5.2 Corpus Classification388

We compare classification model performance on389

D1 and D2 for two tasks: binary sentence classifi-390

cation and sensory term extraction (see Section 4.2).391

Our goal is to assess if models perform consistently392

across datasets and if their ranking remains stable393

between real and synthetic data.394

Binary Sentence Classification Table 2 shows 395

the performance of SENSE-LM, BERT, and lo- 396

gistic regression evaluated using 1) D1 (left), 2) 397

D2 with human annotations DEX
2 (center), and 3) 398

automatic annotations DLM
2 (right). While models 399

perform better on synthetic data—regardless of an- 400

notation source—model rankings remain consistent 401

across datasets. This suggests that synthetic cor- 402

pora can serve as reliable proxies for evaluating 403

model performance rankings, even if they do not 404

fully reflect real-world complexity. 405

Sensory Term Extraction As shown in Ta- 406

ble 3, performance is slightly higher with 407

DLM
2 annotations, likely due to lower lexical diver- 408

sity and more homogeneous positive terms. In 409

contrast, DEX
2 —with its greater term variety— pro- 410

vides results closer to the Odeuropa dataset (see Ap- 411

pendix C). Despite differences in absolute scores, 412

model rankings remain stable, confirming that arti- 413

ficial datasets can be reliable substitutes for com- 414

paring models in olfactory term extraction. 415

5.3 Data Augmentation with Synthetic 416

Examples 417

In the following, we conduct the experiments re- 418

lated to the protocol introduced in Section 4.3, to 419

measure the impact of data augmentation on the 420

utility of classifiers. The results are presented only 421

for the SENSE-LM model in Section 5.3.2 and Sec- 422

tion 5.3.3, and the other models are provided in 423

Appendix E as the conclusions are similar. 424

5.3.1 Data Augmentation with A Constant 425

Real-World Data Sample 426

Following the method described in Section 4.3.1, 427

we first assess the impact of adding synthetic ex- 428

amples from D2 to a constant base of n1 = 100 429

real sentences from D1. For both tasks, the per- 430

formances are evaluated in terms of F1-score as 431

a function of the amount of synthetic data added, 432

using for ground truth either human labels DEX
2 or 433

automatic annotation DLM
2 . 434

Binary Sentence Classification. Figure 2a 435

shows the performances obtained on the binary 436

sentence classification task. Models trained 437

with DEX
2 outperform DLM

2 in low-resource settings 438

(n2 ∈ [20; 150]) for all models, with statistically 439

significant differences according to the Student Fis- 440

cher’s t-test (Student, 1908) applied to the F1-Score 441

distribution by folds for each annotation, showing 442

p-values inferior to 0.05. However, at higher vol- 443
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Table 2 Comparative evaluation of the binary sentence classification task performed by considered models.
Odeuropa Dataset (D1) Olfactory Synthetic Dataset (DEX

2 ) Olfactory Synthetic Dataset (DLM
2 )

Method Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score

BERT 91.51 ± 1.12 90.12 ± 0.61 90.80 ± 0.85 99.10 ± 0.90 98.93 ± 0.80 99.01 ± 0.85 98.00 ± 0.35 97.81 ± 0.28 97.90 ± 0.30
Logistic Regression 82.25 ± 1.51 72.33 ± 1.22 76.97 ± 1.36 91.00 ± 1.30 90.52 ± 1.70 90.76 ± 1.49 91.40 ± 2.10 91.09 ± 2.20 91.24 ± 2.78

SENSE-LM 94.09 ± 0.81 92.26 ± 0.72 93.16 ± 0.76 99.80 ± 0.45 99.66 ± 0.39 99.73 ± 0.42 99.40 ± 0.65 99.23 ± 0.61 99.31 ± 0.63

Table 3 Comparative evaluation of the sensory terms extraction task by considered models.
Odeuropa Dataset (D1) Olfactory Synthetic Dataset (DEX

2 ) Olfactory Synthetic Dataset (DLM
2 )

Method Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score

BERT 80.01 ± 2.22 66.32 ± 1.13 72.52 ± 1.68 86.19 ± 0.92 75.60 ± 1.47 80.74 ± 0.52 85.45 ± 0.84 79.01 ± 1.10 82.06 ± 0.76
SENSE-LM 82.01 ± 1.81 73.62 ± 1.56 77.58 ± 1.65 86.65 ± 0.52 78.54 ± 0.76 82.37 ± 0.63 85.53 ± 0.62 81.73 ± 0.77 83.59 ± 0.15

umes (n2 = 1750), models trained on DLM
2 catch444

up and occasionally surpass DEX
2 . This highlights445

that annotation quality provided by experts is more446

impactful at a small data scale.447

Sensory Term Extraction. Figure 2b shows448

that models trained on DEX
2 outperform those with449

DLM
2 for small synthetic additions, with significant450

gaps for n2 ∈ [50, 200]. Beyond, models with451

DLM
2 gather and sometimes surpass DEX

2 (although452

non-significantly). These results support the ad-453

vantage of using human labeling (DEX
2 ) in low-454

resource settings and the efficiency of automatic455

labeling (DLM
2 ) at a larger scale. In both cases,456

F1-score degrades for n2 ≥ 100 (over 50% syn-457

thetic data), aligning with prior work on model458

collapse (Seddik et al., 2024; Kazdan et al., 2024).459

5.3.2 Data Augmentation with a Variable Size460

Real-World Data Sample461

In Section 5.3.1, we showed that adding synthetic462

examples to a fixed base of 100 real Odeuropa463

samples improves model utility up to a threshold.464

Building on findings that DEX
2 benefits from less465

data while DLM
2 improves with more, we now test466

whether synthetic data augments real data across467

varying initial sizes. Starting with D1 only (N =468

n1), we progressively add synthetic examples until469

N = 2 × n1 to assess how augmentation scales.470

For both binary classification and sensory term471

extraction, we follow the protocol in Section 4.3.2.472

Binary Sentence Classification Figures 3a473

and 3b show SENSE-LM’s F1-Score for varying474

initial real-dataset sizes n1 and two ground truths475

–human annotation (DEX
2 , left) and automatic anno-476

tation (DLM
2 , right)–plotted against the percentage477

of synthetic data supplementing the original real478

data (0% means training only on real data, 100%479

means equal amounts of generated and real data).480
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(a) Binary sentence classification.
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(b) Sensory terms extraction.

Figure 2: F1-score of models evolution with n1 = 100
examples from Odeuropa and progressive augmentation
of n2 synthetic examples.

For n1 ≥ 500, adding synthetic data does not im- 481

prove performance. However, for smaller sizes 482

(n1 ∈ [50; 200]), both DLM
2 and DEX

2 benefit, with 483

stronger gains for DEX
2 . This likely comes from 484

DEX
2 ’s finer capture of implicit sensory cues at the 485

sentence level, as discussed in Section 3.3. 486

Sensory Terms Extraction The results for sen- 487

sory terms extraction in Figures 3c and 3d show 488

that models trained with DLM
2 yield higher and more 489

consistent gains, especially for n1 ≥ 200, with sta- 490

tistically significant gaps over DEX
2 . As detailed 491

in Table 4 for n1 = 400 with SENSE-LM, DLM
2 - 492

trained models achieve higher F1-scores by improv- 493
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Table 4 Precision and Recall (% ± std) for DEX
2 and

DLM
2 on Binary Sentence Classification (SENSE-

LM, N=400) with data augmentation. DEX
2 values

match Figure 3c, DLM
2 values match Figure 3d.

Gen. Data DEX
2 DLM

2

Added (%) Prec. Rec. Prec. Rec.

0 72.95 ± 3.17 64.72 ± 2.91 72.95 ± 3.17 64.72 ± 2.91

20 72.63 ± 2.37 66.76 ± 2.28 73.29 ± 2.83 63.97 ± 3.24

40 71.67 ± 0.75 68.72 ± 3.04 76.04 ± 2.81 62.02 ± 2.12

60 72.44 ± 1.36 67.63 ± 1.87 75.54 ± 2.34 64.37 ± 4.12

80 71.49 ± 1.83 67.13 ± 1.37 75.75 ± 4.13 61.73 ± 2.03

100 69.11 ± 4.68 68.66 ± 2.66 77.08 ± 3.33 61.59 ± 4.53

ing precision at a slight recall cost as generated494

examples increase. This reflects DLM
2 ’s pattern-495

guided annotation focusing on explicit, restricted496

vocabulary, limiting predicted terms. Conversely,497

DEX
2 improves recall through richer, more diverse498

annotations but reduces precision due to more false499

positives. Overall, DLM
2 offers the best precision-500

recall trade-off and highest F1-score.501

5.3.3 Data Augmentation with a Variable502

Ratio of Synthetic Data503

In Section 5.3.2, we saw that gradually adding504

generated data to a fixed real train set generally505

improves prediction quality. However, prior ex-506

periments did not fully assess how varying the507

synthetic-to-real data ratio affects performance.508

Therefore, following Section 4.3.3, we keep the509

train size constant while varying this ratio.510

Binary Sentence Classification. For different511

dataset sizes N , Figures 4a and 4b show F1-Score512

results as a function of the ratio of generated data513

in the training set (0% = all real data; 100% = all514

synthetic). Performance generally degrades as syn-515

thetic data dominates, except for small N , where516

performance is already low. This drop is sharper517

for larger N . With DEX
2 , performance stays higher518

at low synthetic ratios, especially for N = 100519

or 200. Across all sizes, models collapse beyond520

60% synthetic data, approaching random classifi-521

cation (F1 ≈ 0.5). As the structure of D2 diverges522

from D1 in vocabulary and complexity, introduc-523

ing excessive synthetic data degrades performance,524

highlighting the need to retain at least 40% real525

data to prevent model collapse.526

Sensory Term Extraction. As shown in Fig-527

ures 4c and 4d, performance remains stable when528

generated data stays below 40%. Beyond this,529

DEX
2 causes sharp F1 drops—up to 12 points for530

N = 400 while DLM
2 degrades from a ratio of 20%,531

Table 5 Precision and Recall (% ± std) for DEX
2 and

DLM
2 on Sensory Terms Extraction (SENSE-LM,

N=400) with data augmentation. Values for
DEX

2 match with Figure 4c, DLM
2 match Figure 4d.

Gen. Data DEX
2 DLM

2

Ratio (%) Prec. Rec. Prec. Rec.

0 74.64±2.06 60.49±0.85 74.64±2.06 60.49±0.85

20 73.82±1.73 64.98±2.67 72.89±0.43 65.73±0.39

40 67.88±2.41 71.12±2.42 76.67±2.12 60.08±0.72

60 63.33±1.95 71.68±1.34 77.78±2.05 58.61±2.51

80 57.92±2.45 75.38±1.72 75.80±1.64 59.45±1.09

100 45.08±2.30 77.68±1.64 76.87±0.87 56.92±1.41

but only by 2–3 points. Table 5 details precision 532

and recall at N = 400: with DEX
2 , Recall improves 533

but Precision drops; DLM
2 shows the reverse. These 534

trends support our hypotheses in Section 5.3.2: 535

though DLM
2 often yields better F1, each annotation 536

shows advantages depending on the objective. 537

6 Conclusions and Perspectives 538

We explored using synthetic data from LLMs to 539

support olfactory information extraction, a domain 540

challenged by subjective sensory experiences. We 541

introduced the synthetic dataset D2, generated with 542

GPT-4o, and compared it to the real Odeuropa cor- 543

pus (D1). Our analysis covered lexical and se- 544

mantic similarity, classification and extraction per- 545

formance, and data augmentation with GPT-based 546

(DLM
2 ) and expert-curated (DEX

2 ) annotations. 547

Despite lexical differences, D1 and D2 align in 548

sensorimotor and semantic space. Models behaved 549

similarly across datasets in F1-score and ranking. 550

Synthetic data improved performance, espe- 551

cially in low-resource settings. DLM
2 -trained mod- 552

els sometimes outperformed DEX
2 using consistent 553

pattern-based labeling, boosting precision by reduc- 554

ing false positives. DEX
2 ’s human annotations cap- 555

ture finer nuances and broader vocabulary, improv- 556

ing recall. This trade-off suggests LLM-based an- 557

notations are convenient for precision tasks, while 558

human annotations offer advantages for recall- 559

oriented applications. 560

Future work includes enhancing data realism via 561

prompt diversification and seed-based generation, 562

and evaluating impacts of realism and subjectivity 563

on performance. We may explore applications to 564

other subjective tasks, beyond sensoriality. 565
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Figure 3: F1-score evolution of SENSE-LM on binary sentence classification (top row) and sensory terms extraction
(bottom row), across various initial dataset sizes n1 and progressive augmentation with synthetic data.
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7 Limitations566

While our study highlights the potential of LLM-567

generated data for olfactory information extraction,568

some aspects warrant further exploration and re-569

finement in future work.570

Annotation Quality and Agreement. Our com-571

parison of human (D2
EX ) and model-based (D2

LM )572

annotations shows moderate inter-annotator agree-573

ment (Cohen’s κ ≈ 0.5), particularly at the token574

level. This reflects the inherently subjective and575

nuanced nature of olfactory language, which poses576

challenges for both human and machine annota-577

tion. Notably, D2
EX contributes valuable lexical578

diversity that enriches model learning, though it579

may also introduce variability that slightly affects580

classification precision. Additionally, since D1 and581

D2
EX were annotated by different experts, some582

divergence in their interpretation of sensoriality is583

natural. Addressing these cross-annotator differ-584

ences in future work—for instance, via consensus-585

building or multi-annotator validation—could fur-586

ther enhance the robustness of human-annotated587

sensory corpora.588

Domain Specificity. Our experiments center on589

olfactory content, a domain with particularly rich590

and complex linguistic characteristics. While our591

results suggest that synthetic olfactory data can592

effectively support classification tasks, further re-593

search is needed to determine how well these594

findings generalize to other sensory modalities.595

Each sensoriality (e.g., auditory, gustatory) brings596

its own cultural, lexical, and perceptual dimen-597

sions (Geldard, 1953), and extending this frame-598

work to new modalities would be a valuable direc-599

tion. Encouragingly, the shared features between600

olfactory and gustatory language suggest that some601

transferability may be possible.602

LLM Prompt Sensitivity. The success of syn-603

thetic data generation depends in part on prompt604

design. While our prompts were adapted from605

prior work and proved effective for our tasks, small606

changes in phrasing can result in substantial vari-607

ations in the generated data. This highlights the608

importance of developing more standardized, re-609

producible prompting methodologies. Exploring610

prompt engineering techniques such as few-shot611

prompting or style-conditioning based on real cor-612

pora—e.g., using examples from the Odeuropa613

dataset—could further align generated data with614

domain-specific characteristics and make data aug- 615

mentation with synthetic examples more efficient. 616

Prompt: Using the following examples, 617

generate 200 new sentences incorporat- 618

ing olfactory references. Maintain a simi- 619

lar tone, vocabulary, and structure, while 620

ensuring all sentences contain references 621

to scent or smell. Avoid repetition or re- 622

producing real-world examples. 623

Example source: “Honey is gathered 624

with much art from great variety of trees 625

and flowers; and joy is a honey, a fra- 626

grancy made from above with much pick- 627

ing, choosing, and composing.” 628

LLMs Openness and Transparency In addi- 629

tion to proprietary models such as GPT-4, recent 630

open-source LLMs like Qwen (Yang et al., 2025), 631

LLaMA (Touvron et al., 2023), and Mistral (Jiang 632

et al., 2023) have shown strong capabilities in gen- 633

eration and controllability. These models offer 634

promising alternatives for institutions with data pro- 635

priety or cost constraints and may support broader 636

reproducibility in future synthetic data pipelines. 637

Evaluating their behavior under controlled prompt- 638

ing conditions remains a valuable direction for fu- 639

ture work. 640

Overall, while some challenges re- 641

main—particularly in annotation consistency and 642

generalization beyond the olfactory domain—our 643

findings underscore the promise of synthetic text 644

data in low-resource settings. We believe this 645

work contributes to expanding sensory NLP with 646

LLM-driven resources, and we are optimistic about 647

the scalability and adaptability of these methods in 648

future applications. 649

Ethical Considerations 650

There is no risk of non-compliance with current leg- 651

islation, such as GDPR or copyright law, since the 652

generated data contains no sensitive information 653

and is in the public domain. The real-world datasets 654

used, notably Odeuropa, are public and open, made 655

available by original authors for reuse. Composed 656

of data from public-domain historical texts, this 657

reuse complies with public-law standards. 658

However, Odeuropa data (historical) and LLM- 659

generated data (contextualized in the contemporary 660

world) may carry different biases, such as cultural 661
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diversity and contextual nuances, which must be662

considered.663

At the same time, since our study relies on syn-664

thetic data generated by GPT-4o, it is important665

to note that this data may contain factual inaccu-666

racies, as GPT-4o does not incorporate any robust667

fact-checking mechanisms during text generation.668
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A Dataset Generation Prompts831

We provide the prompts used for the generation832

and automatic annotation of the D2 dataset in Ta-833

ble 6. The P1 prompted is used to generate positive834

examples, and conversely, P2 is used to generate835

negative examples. Considering the limitations of836

the GPT-4o web application, we ask the model to837

generate the dataset by batch of 100 examples, that838

we compile into a CSV file along with their class839

at a sentence level (positive / negative).840

Then, the prompt P3 is used on positive exam-841

ples to extract positive terms of DLM
2 annotation.842

B General Experimental Settings843

In the following experiments, all texts are prepro-844

cessed ahead of the model input. The text nor-845

malization involves spellchecking, removal of stop846

words and punctuation, lowercasing, and lemmati-847

zation. After normalization, tokenization is per-848

formed by splitting the text into tokens using849

whitespace as the delimiter.850

In the classification experiments provided from851

Section 5.2 to Section 5.3.3, the SENSE-LM model852

uses BERT with MacBERTh pretrained parame-853

ters (Arevalo and Fonteyn) as a backbone, consid-854

ering the same number of training parameters than855

the base BERT model (110M parameters). It is856

trained using the AdamW optimizer (Loshchilov857

and Hutter, 2017) with a learning rate of 2× 10−5858

and ϵ = 1 × 10−8 for 30 epochs. BERT follows859

the same setup. For logistic regression, sensorimo-860

tor representations of sentences are extracted from861

the text following the method proposed by Boscher862

et al. (2024), and used to fit a logistic regression863

model with up to 1000 training iterations.864

All experiments are conducted using an NVIDIA865

RTX A5000 Laptop GPU when relevant, and ran-866

dom seeds used for folds are fixed to 42 to ensure867

reproducibility.868

C Lexical Dissimilarity between869

real-world and generated data870

The lexical dissimilarity between D1 and D2’s an-871

notations is observed in Table 7 to Table 9, which872

show the frequency ranks of overlapping olfactory873

terms across distinct corpora. For example, while874

terms like smell, scent, and aroma are common875

in both corpora, their ranks vary considerably be-876

tween real-world and synthetic corpora, pointing877

to a stylistic shift in expression across corpora. 878

Tables 7 and 8 show the top 20 overlapping olfac- 879

tory terms between D1 and each annotation of the 880

generated corpus. The LM annotation (DLM
2 ) has a 881

more compact and repeated vocabulary (318 unique 882

olfactory terms), with terms like scent and aroma 883

ranking significantly higher than in D1, indicating 884

possible over-representation. The expert annota- 885

tion (DEX
2 ), on the other hand, maintains greater 886

lexical diversity (902 unique olfactory terms) and 887

alignment with D1’s vocabulary and rank order. 888

We statistically validate these observations us- 889

ing the Wilcoxon signed-rank test to compare 890

the rankings presented respectively in Tables 7 891

and 8 (Wilcoxon, 1992): 892

• Between D1 and DLM
2 , the p-value obtained is 893

2.58×10−6, which is much lower than the sig- 894

nificance level α = 0.05. This result provides 895

strong evidence to reject the null hypothesis 896

and supports the claim positive terms labelled 897

by a LLM in DLM
2 differ from terms labels by 898

humans in D1. 899

• In contrast, the comparison between D1 and 900

DEX
2 yields a p-value of 0.175, suggesting no 901

significant difference in the distribution of an- 902

notated terms. 903

Table 9 directly compares positive labelled terms 904

between DLM
2 and DEX

2 , confirming that while 905

they share a core vocabulary, the LM-annotation 906

DLM
2 centers on explicit and non-ambiguously ol- 907

factory vocabulary, with a restricted range of 908

unique terms (318) compared to DLM
2 , which 909

counts 912 unique olfactory terms. In proportion, 910

obvious terms such as scent, smell or aroma, are 911

more representative in DLM
2 , showing higher rela- 912

tive frequencies. 913

D Additional Results on Corpus 914

Comparison 915

This appendix provides extended results for the 916

experiment conducted in Section 5.1. We provide 917

corpus comparisons not only for all terms of D1 918

and D2, but also a comparison of positive terms 919

in D1, and respectively positive terms in DEX
2 and 920

DLM
2 . 921

We show the obtained histograms in Figure 5. 922

Whatever the terms considered, all terms or only 923

positive terms and for these last last the way they 924
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Table 6 Prompts Used for Generating Synthetic Sentences

Type Prompt Description

P1 (Positive) “Could you generate 100 sentences of 10 words each, containing references to olfactory
experiences, and avoid repeating the same sentence structures? You may include different
kinds of descriptions: what produces the olfactory experience or the quality of smell, for
different types of scents (people, objects, or environment).”

P2 (Negative) “Could you generate 100 sentences with 10 words for each, making sure they absolutely
do not make any reference to any olfactory experience, and avoid repeating the same
sentence structures?”

P3 (Positive Terms Annota-
tion)

“Extract words from the following sentences that evoke smells, explicitly or implicitly
(e.g., describing smell quality or source). For example, from ‘Musk pots generally
moist exhales disagreeable predominant ammoniacal smell...’ extract ‘disagreeable,
predominant, ammoniacal, musk, smell.’”

Table 7 Top 20 olfactory terms from the model labelled generated corpus (DLM
2 ) that most frequently

appear in the original corpus (D1 ). Columns show the term, its relative frequency in D1 and DLM
2 (as

percentages of total tokens), and its frequency rank within each corpus.

# Term % Freq. D1 % Freq. DLM
2

Rank in D1

(over 777 terms)
Rank in DLM

2

(over 318 terms)

1 scent 2.16 9.95 4 1
2 smell 9.80 8.58 1 2
3 aroma 0.04 4.48 634 3
4 odor 6.69 3.92 2 4
5 sweet 0.69 2.55 17 5
6 perfume 3.19 1.68 3 7
7 smoke 0.17 1.49 82 9
8 fragrance 0.17 1.49 83 8
9 floral 0.22 1.31 77 11
10 pungent 0.43 1.06 29 12
11 fresh 0.26 0.93 50 13
12 lavender 0.22 0.87 72 14
13 whiff 0.09 0.81 175 16
14 garlic 0.30 0.75 42 20
15 onion 0.13 0.75 119 19
16 vanilla 0.04 0.75 626 17
17 acrid 0.22 0.68 71 22
18 oil 0.91 0.68 14 23
19 cinnamon 0.09 0.62 235 29
20 rise 0.26 0.56 58 31
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Table 8 Top 20 olfactory terms from the human-labeled generated corpus (DEX
2 ) that most frequently

appear in the original corpus (D1). Columns show the term, its relative frequency in D1 and DEX
2 (as

percentages of total tokens), and its frequency rank within each corpus.

# Term % Freq. D1 % Freq. DEX
2

Rank in D1

(over 777 terms)
Rank in DEX

2

(over 902 terms)

1 smell 9.80 4.05 1 1
2 scent 2.16 3.38 4 2
3 aroma 0.04 3.22 634 3
4 faint 0.30 1.80 41 5
5 sweet 0.69 1.47 17 7
6 warm 0.04 1.25 720 10
7 air 0.35 1.22 36 11
8 fresh 0.26 0.91 50 12
9 rise 0.26 0.86 58 15
10 odor 6.69 0.80 2 17
11 rich 0.04 0.78 325 20
12 fragrance 0.17 0.75 83 21
13 floral 0.22 0.72 77 23
14 perfume 3.19 0.67 3 26
15 burn 0.09 0.64 194 28
16 acrid 0.22 0.61 71 29
17 pungent 0.43 0.61 29 30
18 damp 0.04 0.53 761 33
19 leave 0.43 0.44 30 38
20 old 0.04 0.44 430 39
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Table 9 Top 20 olfactory terms from the model-labelled generated corpus (DLM
2 ) that most frequently

appear in the human-labelled generated corpus (DEX
2 ). Columns show the term, its relative frequency in

DEX
2 and DLM

2 (as percentages of total tokens), and its frequency rank within each corpus.

# Term % Freq. DEX
2 % Freq. DLM

2
Rank in DEX

2

(over 902 terms)
Rank in DLM

2

(over 318 terms)

1 scent 3.38 9.95 2 1
2 smell 4.05 8.58 1 2
3 aroma 3.22 4.48 3 3
4 odor 0.80 3.92 17 4
5 sweet 1.47 2.55 7 5
6 sharp 1.61 1.99 6 6
7 perfume 0.67 1.68 26 7
8 fragrance 0.75 1.49 21 8
9 smoke 0.25 1.49 66 9
10 earthy 1.36 1.37 8 10
11 floral 0.72 1.31 23 11
12 pungent 0.61 1.06 30 12
13 fresh 0.91 0.93 12 13
14 lavender 0.22 0.87 74 14
15 musty 0.30 0.87 52 15
16 whiff 0.08 0.81 215 16
17 vanilla 0.22 0.75 76 17
18 spicy 0.78 0.75 19 18
19 onion 0.08 0.75 251 19
20 garlic 0.14 0.75 118 20
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have been labeled ( automatically or by human), we925

obtain low token overlap (left column), indicating a926

highly dissimilar vocabulary. Semantic similarity is927

moderate (middle), and sensory similarity is higher928

(right), especially for DEX
2 (on bottom), showing929

alignment in olfactory semantics despite varying930

vocabulary.931

E Additional Results on Data932

Augmentation Across Models933

In the main paper, we only reported results for934

the SENSE-LM model due to space constraints.935

This appendix provides the full results for all mod-936

els (SENSE-LM, BERT, and Logistic Regression)937

across the data augmentation settings introduced in938

Sections 4.3.2 and 4.3.3.939

E.1 Data Augmentation with Varying940

Real-Data Sizes941

This appendix expands on the results presented942

in the main paper for SENSE-LM by analyzing943

how synthetic data impacts model performance944

across different quantities of real-world training945

data. Specifically, we fix the number of real ex-946

amples N and progressively introduce additional947

synthetic examples. We report results on both the948

binary sentence classification and sensory term ex-949

traction tasks.950

Binary Sentence Classification We eval-951

uate model performance at real-data sizes952

n1 ∈ {50, 100, 200, 500, 1000, 1750}, tracking F1953

scores as increasing amounts of synthetic data are954

added. Figure 6 presents results across models955

and annotation types. The X-axis represents the956

percentage of synthetic data relative to real data,957

while the Y-axis reports F1 score. Each curve958

corresponds to a different value of n1.959

For SENSE-LM, we observe consistent perfor-960

mance improvements when synthetic data is added,961

especially for DEX
2 at low and moderate values of962

n1. Gains diminish as real-data availability in-963

creases, with performance largely plateauing be-964

yond n1 = 500. BERT shows more modest and965

variable improvements. Augmentation is more ef-966

fective for DEX
2 than DLM

2 , with the clearest gains967

observed in the n1 = 100 to n1 = 200 range. For968

logistic regression, DLM
2 augmentation offers more969

reliable benefits than DEX
2 at small dataset sizes.970

However, these gains reduce as more real examples971

are introduced.972

Overall, synthetic data augmentation is most 973

beneficial under low-resource conditions. As the 974

amount of real data increases, the marginal utility 975

of synthetic examples declines. 976

Sensory Terms Extraction We apply the same 977

evaluation protocol to the sensory term ex- 978

traction task, using real dataset sizes n1 ∈ 979

{50, 100, 200, 300, 400}. Results are shown in Fig- 980

ure 7. 981

For SENSE-LM, adding synthetic data leads to 982

consistent improvements across both DEX
2 and DLM

2 . 983

Notably, DLM
2 annotations outperform DEX

2 , partic- 984

ularly at larger values of n1. BERT shows more sta- 985

ble gains with DLM
2 , especially at medium and large 986

dataset sizes. Improvements with DEX
2 are less con- 987

sistent, and in some cases, augmentation has lim- 988

ited effect. We also observe a trade-off in precision 989

and recall between annotation types. DLM
2 tends 990

to improve precision, whereas DEX
2 primarily en- 991

hances recall. Detailed metrics are presented in 992

Table 4. 993

E.2 Data Augmentation with Variable Real vs. 994

Generated Ratio 995

We now examine how model performance is af- 996

fected when real examples are progressively re- 997

placed with synthetic ones, keeping the total dataset 998

size fixed. 999

Binary Sentence Classification Figure 8 shows 1000

the F1 scores across different ratios of synthetic to 1001

real data, for several values of real dataset size N . 1002

Each subplot presents results for a specific model 1003

and annotation type. 1004

Across all settings, performance begins to de- 1005

grade once the proportion of synthetic data exceeds 1006

roughly 80%. This trend is consistent across mod- 1007

els and annotation types. When using only syn- 1008

thetic data (i.e., 100% generated), model perfor- 1009

mance approaches the level of a random classifier. 1010

At smaller real-data sizes, DEX
2 tends to yield bet- 1011

ter results than DLM
2 , particularly when synthetic 1012

data is limited. However, as N increases, this ad- 1013

vantage diminishes and the gap between annotation 1014

types narrows. 1015

Sensory Terms Extraction Figure 9 reports re- 1016

sults for the sensory term extraction task under 1017

varying real-to-generated data ratios. Precision and 1018

recall dynamics for each annotation strategy are 1019

presented in Table 5. 1020
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As synthetic data increases, DEX
2 annotations1021

tend to improve recall but reduce precision. Con-1022

versely, DLM
2 annotations improve precision while1023

sacrificing recall. In most settings, DLM
2 achieves1024

more balanced F1 scores, indicating more favorable1025

precision-recall trade-offs overall.1026

17



0.00 0.05 0.10 0.15 0.20 0.25
Token Overlap (Jaccard Similarity)

0

20

40

60

80

100

120

140

160

De
ns

ity

0.0 0.2 0.4 0.6 0.8
Cosine Similarity  

 (BERT Embeddings)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

De
ns

ity

0.0 0.2 0.4 0.6 0.8 1.0
Cosine Similarity  

 (Sensorimotor Embeddings)

0

2

4

6

8

10

De
ns

ity

(a) D1 vs D2 (All terms)

0.0 0.2 0.4 0.6 0.8 1.0
Token Overlap (Jaccard Similarity)

0

10

20

30

40

De
ns

ity

0.0 0.2 0.4 0.6 0.8 1.0
Cosine Similarity  

 (BERT Embeddings)

0.0

0.5

1.0

1.5

2.0

2.5

De
ns

ity

0.0 0.2 0.4 0.6 0.8 1.0
Cosine Similarity  

 (Sensorimotor Embeddings)

0

1

2

3

4

De
ns

ity

(b) D1 vs DLM
2 (Positive terms)

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
Token Overlap (Jaccard Similarity)

0

20

40

60

80

100

120

De
ns

ity

0.0 0.2 0.4 0.6 0.8
Cosine Similarity  

 (BERT Embeddings)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

De
ns

ity

0.0 0.2 0.4 0.6 0.8 1.0
Cosine Similarity  

 (Sensorimotor Embeddings)

0

1

2

3

4

5

6

De
ns

ity

(c) D1 vs DEX
2 (Positive terms)

Figure 5: Comparison of sentence similarity distributions between positive sentences of generated (D2) and original
(D1) corpora, using three metrics—token overlap, cosine similarity based on BERT Embeddings, and cosine
similarity based on sensorimotor embeddings —under three conditions: (a) full-text comparison (D1 vs. D2), (b)
sensory terms only for D1 v.s. DLM

2 , and (c) for D1 vs DEX
2 .
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(c) BERT on DEX
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(e) Logistic Regression on DEX
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Figure 6: F1-Score evolution on binary sentence classification as synthetic data is added, for various initial dataset
sizes n1.
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Figure 7: F1-Score evolution on sensory terms extraction as synthetic data is added, for various real dataset sizes.

20



0 20 40 60 80 100
Ratio of Generated data (%)

0.0

0.2

0.4

0.6

0.8

1.0

F1
 S

co
re

F1 Score vs Generated Data Ratio

Dataset Size
N = 50
N = 100
N = 200
N = 500
N = 1000
N = 1750

(a) SENSE-LM on DEX
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(e) Logistic Regression on DEX
2
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Figure 8: F1-Score evolution on binary sentence classification as the ratio of synthetic data varies, with a constant
training dataset size N .
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(a) SENSE-LM on DEX
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(b) SENSE-LM on DLM
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(c) BERT on DEX
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Figure 9: F1-Score evolution on sensory terms extraction as the ratio of synthetic data varies, with a constant
training dataset size N .
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