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ABSTRACT

We introduce the One-shot Pruning Technique for Interchangeable Networks
(OPTIN) framework as a tool to increase the efficiency of pre-trained transformer
architectures, across many domains, without requiring re-training. Recent works
have explored improving transformer efficiency, however often incur computation-
ally expensive re-training procedures or depend on architecture-specific character-
istics, thus impeding practical wide-scale adoption across multiple modalities. To
address these shortcomings, the OPTIN framework leverages intermediate feature
distillation, capturing the long-range dependencies of model parameters (coined
trajectory), to produce state-of-the-art results on natural language, image classifica-
tion, transfer learning, and semantic segmentation tasks. Our motivation stems from
the need for a generalizable model compression framework that scales well across
different transformer architectures and applications. Given a FLOP constraint,
the OPTIN framework will compress the network while maintaining competitive
accuracy performance and improved throughput. Particularly, we show a < 2%
accuracy degradation from NLP baselines and a 0.5% improvement from state-
of-the-art methods on image classification at competitive FLOPs reductions. We
further demonstrate the generalization of tasks and architecture with comparative
performance on Mask2Former for semantic segmentation and cnn-style networks.
OPTIN presents one of the first one-shot efficient frameworks for compressing
transformer architectures that generalizes well across multiple class domains, in
particular: natural language and image-related tasks, without re-training. Code is
available at: https://github.com/Skhaki18/optin-transformer-pruning.

1 INTRODUCTION

The inception of transformer architectures (Vaswani et al., 2017) marked the beginning of a new era
in deep learning, since affecting various domains including natural language processing (Kenton &
Toutanova, 2019), and vision-related tasks (Dosovitskiy et al., 2021). The transformers’ straightfor-
ward design has enabled extensive applications to a variety of challenging problems, but it also brings
a major drawback: high computational costs (Yu & Xiang, 2023). The computational resources
required for training and inferencing with a transformer are often quite significant and pose a real
impediment to wide-scale adoption, especially in resource-constrained environments, such as edge
devices (Wang et al., 2020a). Recent works have proposed methods including quantization (Xiao
et al., 2023), pruning (Ma et al., 2023), and knowledge distillation (Hao et al., 2022) to address this
bottleneck, similarly explored in convolutional neural networks (CNN) compression (Li et al., 2017).

Despite much success in compressing CNNS, transformer architectures contain significant differences
in their structure, often causing impediments for methods that work well in the former domain (Kwon
etal., 2022; Yu & Xiang, 2023; Yang et al., 2023). Due to the massive size of Transformer models,
some works have introduced various methods of compression, which can be loosely divided into
one-shot and iterative (Zhang et al., 2022). One-shot methods generally consist of a pruning phase
followed by re-training to recover the lost generalization performance, meanwhile, iterative processes
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can account for the training dynamics in model compression (Zhang et al., 2022). Unfortunately, in
the past, both methods have often been limited to a particular architecture/task or required significant
resources in the pruning and re-training processes. For user models that have already endured the
expensive cost of training, there exists limited options for fast model compression (Kwon et al., 2022)
that can be easily realized on standard hardware for different types of transformer architectures. The
lack of a general approach to transformer pruning across multiple tasks and modalities provides
sufficient motivation for the introduction of a unified framework; hence we introduce one of the first
one-shot model compression techniques that generalize well over multiple tasks and architectures
without incurring the cost of re-training.

In this work, we introduce the One-shot Pruning Technique for Interchangeable Networks (OPTIN)
framework to efficiently compress modern transformers. The novelty is in its generalizability across
domains and tasks, and its ability to produce competitive models without requiring re-training, thus
enabling future application to larger models across many tasks. We apply OPTIN to natural language,
and vision-related tasks, showing competitive performance with SoTA in these cases.

Our primary contribution rests on the ability of our OPTIN framework to produce transformers with
competitive performance at reduced computational loads (FLOPs) across various task domains and
architectures, that can be realized on standard hardware. In particular, we demonstrate superior
performance on a variety of tasks in Language 4.1), Vision (Sec 4.2), and Application tasks (Sec 4.3),
while maintaining competitive compression rates, without incurring the cost of re-training. Finally,
we execute several extensive experiments from framework-specific settings to applications on transfer-
learning and CNN networks to demonstrate OPTIN’s robustness and generalizability over the task
and architecture (Sec 3- 4.3).

2 RELATED WORKS

Due to the diversity of architectures and tasks discussed in our work, the following review of state-of-
the-art methods provides an overview of efficient transformer design followed by recent developments
in both language and vision domains.

Domain Specific Design of Efficient Transformers Transformers have enabled significant progress
in the field of NLP (Vaswani et al., 2017; Kenton & Toutanova, 2019) and Computer Vision (Dosovit-
skiy et al., 2021; Liu et al., 2021a). Efficiency improvements in transformers have stemmed from
a variety of approaches including exploring hybrid architectures (Liu et al., 2021a), quantization
techniques (Kim et al., 2021), knowledge distillation (Hao et al., 2022), and model pruning (Pan et al.,
2021). Recently, TorchPruning (Fang et al., 2023) explored the application of multi-domain pruning
by creating an inter-architecture dependency map, while UPop (Shi et al., 2023) introduced a unified
pruning method for combined vision-language models. However, these methods have limitations,
including architecture-specific dependencies and expensive re-training policies generally impeding
wider-scale industry use (Fang et al., 2023). In contrast, our approach leverages intermediate feature
distillation to compress pre-trained transformers in one shot across both language and vision-related
tasks. Notably, our method operates effectively without re-training and scales well over a variety of
complex architectures and task domains.

Compressing Language Transformers Several structured pruning methods have been introduced to
compress models in the language domain. Attention Head pruning (Michel et al., 2019) explored the
dynamics of attention heads across a transformer architecture to determine their individual impact on
performance. Block-wise pruning (Lagunas et al., 2021) was motivated by removing block structures
from weights under the movement pruning (Sanh et al., 2020) paradigm. DynaBERT (Hou et al.,
2020) used distillation to transfer knowledge from a width-adaptive network onto a depth-adaptive
smaller network. CoFi (Xia et al., 2022) explored the joint pruning between coarse and fine-grained
modules in the transformer architecture. A recent work, namely Post-Training-Framework (PTF)
(Kwon et al., 2022), was introduced to prune BERT in one-shot for NLP tasks, however, it leverages
domain-related tricks to boost performance with a particular architecture and application. However,
these methods have limitations, including dependence on architecture (Kwon et al., 2022; Lagunas
et al., 2021; Hou et al., 2020) and expensive re-training procedures (Lagunas et al., 2021; Sanh
et al., 2020; Hou et al., 2020; Xia et al., 2022). Focusing on the challenge of developing efficient
transformers, we overcome these shortcomings by introducing a one-shot framework that produces
competitive results at significant FLOPs reductions across several application domains.



Compressing Vision Transformers There have been several approaches to compressing vision
transformers by focussing on different compute-intensive modules. S*ViTE (Chen et al., 2021)
explored structured sparsity by modifying first-order importance approximations enabling the dynamic
sizing of attention heads in the ViT. SAViT (Chuanyang et al., 2022) developed a collaborative
pruning scheme that analyzes component interaction to learn individual pruning ratios. Another
stream of research introduced token reduction methods to accelerate both the training and inferencing
throughput by gradually removing tokens from propagating forward in a Transformer (Kong et al.,
2022; Fayyaz et al., 2022). EViT (Liang et al., 2022) builds on a Top-K approach by creating a fused
token at each reduction stage to minimize the information lost from pruning. DynamicViT (Rao
et al., 2021) introduced a lightweight prediction module to derive the importance scores of each patch
per input. ToMe (Bolya et al., 2023) was introduced as one of the first one-shot methods in token
reduction and leveraged bipartite matching to merge a fixed number of tokens at each transformer
block regardless of input patches. TPS (Wei et al., 2023) furthered token reduction and merging, by
identifying a pruned subset and squeezing the informative regions into a reserved subset of kept tokens.
However, these methods still have limitations that prevent their widescale use including architecture
specific design (Song et al., 2022; Chuanyang et al., 2022; Bolya et al., 2023) and expensive re-
training policies (Chen et al., 2021; Chuanyang et al., 2022; Liang et al., 2022; Rao et al., 2021; Wei
et al., 2023). In contrast, the OPTIN Framework leverages a one-shot approach to compress vision
transformers across classification and semantic segmentation achieving competitive performance
amongst state-of-the-art. The granularity and number of prunable components in the domain of
vision transformers widely differ across state-of-the-art methods (Song et al., 2022). Similarly, the
OPTIN Framework increases the base prunable components by allowing for the incorporation of
token reduction methods through generating an optimal reduction policy as discussed in Sec. 4.2.

3 MEASURING TRAJECTORY

We aim to compress pre-trained transformer models by removing prunable parameters with minimal
importance scores as determined by our salience metric without re-training. By analyzing the effects
of parameter removal on deeper layers in the network, our trajectory metric is able to better select
important parameters by leveraging long-term inter-layer dependencies in the model.

Problem Statement. Given a model f (with N layers) expressed by its collection of weights
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where, the optimal selection of weights [0, 61, - - - 6y;] meets the cost requirement C' while retaining
the minimum drop in validation performance on the dataset X .

Approach In general, for each transformer block we define the prunable weights as the collection
of attention heads and fully connected neurons, individually denoted by 6; ; where the parameter is
located in layer ¢ at an arbitrary index j. The exact prunable components for each task are described
in Appendix A.8. We progressively mask each prunable parameter, and compute the importance
score by executing a forward pass that originates from layer ¢ and propagates forward to the logit
prediction. In particular we express the masking of weight j in layer ¢ as M ASK; ® 60; where
M ASK is the instance of m with a single zero at location j, as used in Algorithm 1. This masked
forward pass yields subsequent layer-wise activations and output logits, which are both used in
computing the trajectory of parameter, ; ;. We denote the cumulative importance of parameter, §; ;,
as Z; ;. Referring to the optimization problem in Eq. 1, we use our importance metric as a proxy for
determining which parameters will least affect the validation error, L., on the testing dataset, X .
Upon computing all importance scores Z; ;, we employ an expedited mask-search policy, from (Kwon
et al., 2022), which computes the optimal configuration in a faster polynomial-time by sequentially
adding parameters in descending importance. Further details on the search method are discussed in
Appendix A.1. We introduce the OPTIN Framework algorithm in Algorithm | and Diagram in Fig. 1.



Algorithm 1 OPTIN Framework for Model Compression

1: Inputs: FLOPs Constraint (C), Importance Scores (Z « []), model, batch

2: ([Fo, - Fn],logits) < model(batch) > Pre-Compute Forward Pass
3: for 6; in [0y, 01, - - - 6,,] do > layer: ¢
4: for j € range(d) do > weight: j
5: model[:].weight < 6; x MASK; > Apply Mask to Weight (4,7)
6: ([Fbs- - - Fyl s logits') < model(batch) > Compute Masked Forward Pass
7: L <—ZiV:i+1 EMD(FZI,FZ)Jr)\EKD > Apply Eq.2 and 3
8: end for

9: end for
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Figure 1: Illustrates the computation of the OPTIN Frameworks trajectory metric on weight §; ;. By
applying a mask to weight ¢; ; in Layer; and executing a forward pass, the OPTIN framework can
measure the effect on future layer embeddings (trajectory), as an indicator of weight importance.
L p is the manifold distillation loss computed between layer embeddings at each transformer block,
while Lk p is the KL-Divergence computed between the original logits and those due to the masked
weight. The combination losses are further detailed in the Weight Importance heading under Sec. 3

Parameter Importance Prior to assigning an importance score to each parameter, we define what
it means to be “important”. While many prior works have coined the importance of parameters by
analyzing their intrinsic structure and error dynamics (Kurtic et al., 2022), these are not necessarily the
most intuitive. For instance, magnitude-based metrics (Li et al., 2017) capture the intrinsic dominant
property of individual weight structures, however, fail to capture their interactions with the data,
meanwhile, activation methods (Lin et al., 2023) can capture in-place reconstruction errors, however,
they may obscure the global impact on deeper layers in the model. Motivated by capturing the
long-term effects of weights, we frame the problem as identifying which weights are more important
based on how much they affect subsequent layer embeddings, hence we coin the measure trajectory.

Effect on Trajectory To compute the trajectory of a weight, 6; ; we follow a 2-step procedure. Firstly,
we measure layer-wise activation errors prior to the LayerNorm operator at each block subsequent to
the layer of interest. We conducted an ablative study in 1a showing the effect of using pre-layer norm
embeddings. We first define the feature output of layer i as F; € RE*T*D where B is the batch
size, T is the token length and D is the embedding dimension. We similarly express the feature output
of the masked network using the prime’ symbol. Inspired by distillations works (Sajedi et al., 2023a;
Peng et al., 2019), we compute the layer-wise error by adopting fine-grained manifold distillation
(Hao et al., 2022). A reshaping operator (-) € RBT*P leverages patch and batch level information,
defining the relational map and associated metric as:

M(F;) = O(E)(F;)T Larp(F, Fy) = [[M(F]) — M(Fy)|[% )

However, unlike previous works, we do not use this loss to guide training or distillation, rather, we
express it as an in-place metric to help understand parameter importance throughout the network.

If the masked weight is at position j in layer ¢, the computed error is accumulated over both the
dimension D and at each layer [ in the range [¢ + 1, N]. The choice of error aggregation was explored
in Tab. 1c and clearly demonstrated the benefit of the sum operator. Additionally, we explored the



Dataset Emb. Acc. Dataset  Temp. Acc. Dataset ~ Aggregate Acc.

MNLI L-Norm  81.92 MNLI 1 82.01 MNLI sum 81.90
MNLI FFN 81.90 MNLI 2 82.11 MNLI mean 80.75
MNLI IM-Dense 81.83 MNLI 4 81.90
MNLI 8 82.14
ImageNet L-Norm 71.27 ImageNet 1 70.54 ImageNet sum 71.25
ImageNet FFN 71.25 ImageNet 2 70.77 ImageNet mean 71.15
ImageNet IM-Dense 70.90 ImageNet 4 71.25
ImageNet 8 71.00
(a) Embedding Choice. The (b) Temperature Choice. The (c) Layer Error Aggregation.
dense output layer best informs choice of 7' = 4 best captures the The cumulative error over the
weight performance when com- effect on the logits by removing layer’s manifold distribution best
pared layer-wise. weights. captures weight importance.
Dataset Lyp Lkbp Ae Acc. Dataset Type! Acc.
MNLI v - - 81.71 MNLI 2] 78.89
MNLI - v - 80.91 MNLI [t +1] 80.07
Language MNLI v v 10 81.74 MNLI [i, N] 81.65
MNL I v v 1 81.86  MNLI [i+1,N] 81.90
MNLI v v 0.1 81.90
MNLI v v 0.01 82.12
ImageNet v - - 70.34 ImageNet 7] 68.91
ImageNet - v - 63.85 ImageNet  [i+ 1] 69.55
Vision LMageNet v v 10 70.82 ImageNet [i, N] 70.04
ImageNet v/ v 1 70.85 ImageNet [i4+1,N] 71.25
ImageNet VvV v 0.1 70.99
ImageNet v v 0.01 71.25
(d) Component Analysis Combining both L;p and LK D cap- (e) Layer Trajectory Depth. Ac-
tures the best information (see Eq. 3). Based on the value of A, we cumulating Ly/p over deeper lay-
can see L7 p should have a stronger weight in parameter selection. ers performs best. T indicates which
Further details on the hyperparameter choice are in Appendix A.2. layer(s) to measure L p, relative to

current layer ¢ and final layer V.

Table 1: Ablative Experiments on Trajectory using BERT 5 45 (Kenton & Toutanova, 2019) on
the GLUE benchmark MNLI dataset (Wang et al., 2019), and DeiT-Ti (Touvron et al., 2021) on the
ImageNet-1K dataset (Deng et al., 2009) to explore the effect parameters on model performance.
We measure one-shot post-pruning accuracies over various configurations on both the language and
vision datasets. In particular (a) explores locations to extract features for distillation loss: L-Norm
(After Layer Normalization), FFN (After Dense output layer), IM-Dense(After Dense Embedding
Layer). (b) examines the effect of temperature in the KL-Divergence Formulation, (c) explores the
effect of summing or averaging over the layer distillation error, (d) explores the effect of metrics
Lyrp and L p as well as their balancing paramter A, (e) explores which layer to accumulate the
distillation error in relation current layer . Compression rates remain consistent with Tab. 7 and Tab 3.
The baseline performance of BERT g 45 on MNLI is 84.53 %, meanwhile DeiT-Ti on ImageNet-1K
is 72.20% %. Our default settings are marked in green .

effect of modifying which layers were relevant to the trajectory — see Tab. le — overall it was evident
that using subsequent layers yielded the best result, correctly aligning with the original motivation.

Effect on Logits Next we compute the effects on the logit prediction as shown in Fig. 1 with Lk p.
Several works have shown the effects of using logit predictions to guide the training process with
distillation (Hao et al., 2022; Zhao et al., 2022) or correlation (Sajedi et al., 2024; 2023b). However,
in this work, we use the L p loss (defined in (Hinton et al., 2015)) as an in-place metric to quantify
the importance of a particular weight. We ablate the temperature value in Tab. 1b. Thus, if masking a
particular weight produces a larger £ i p, we would hypothesize that it is a more important weight.

We can formalize the importance of a particular weight j at layer ¢ with iterator z as:

N
Li; = Z Lyip(FL,F.) + Mkp 3)
z=1+1



where Z; ; is defined for a particular weight in a particular layer, A controls the contribution effect of
KD, and £L;p compares the pruned and original resulting embeddings in deeper layers. We ablate
the effect of different A values as well as the contribution of each loss individually in Tab. 1d. Further,
we show that applying a greater importance on £ p results in better parameter selection. Further
details on the contribution hyperparameter are expressed in Appendix A.2. We also provide the
algorithm for applying OPTIN on a generic model instance in Algorithm 1.

4 EXPERIMENTAL DESIGN

In this section, we demonstrate the effectiveness of the OPTIN Framework, at improving model
performance and throughput given strict FLOP reduction ratios. We introduce implementation and
evaluation details to ensure reproducibility and benchmark our method with state of art in natural
language and image classification to illustrate the potential of our one-shot framework. We further
investigate the applications in transfer learning, alternate architectures, and downstream tasks to show
the generalizability of our method across tasks and architectures.

Experimental Setup We implement our method using transformers from the HuggingFace Library
(Wolf et al., 2020) and infrastructure from PyTorch (Paszke et al., 2019). The majority of our
experiments explore using the OPTIN Framework to improve off-the-shelf models without re-
training. The exceptions include select experiments in the Applications Section, see Sec. 4.3. The
OPTIN Framework computes parameter importance on the basis of training data in a gradient-free
forward pass. The amount (batch) of data used to compute the scores is ablated in Appendix A.6.
Finally, details on the prunable components under each setting are described in Appendix A.8.

Datasets & Networks The OPTIN Framework is tested against a variety of network architectures
and datasets to ensure generalizability over both the task and model domains. For Natural Language
Processing, OPTIN is evaluated on the GLUE Benchmark (Wang et al., 2019) using the BERTp 455
(Kenton & Toutanova, 2019) architecture. For Image Classification, both ImageNet1-K (Deng et al.,
2009) and CIFAR10 (Krizhevsky et al., 2009) were used with the DeiT-Ti/S/B (Touvron et al., 2021),
ViT-B (Dosovitskiy et al., 2021), and a VGGNet (Simonyan & Zisserman, 2014) architecture to
demonstrate the OPTIN Framework’s robustness on model type/size, image datasets, and transfer
learning. For Semantic Segmentation, the Cityscapes Dataset (Cordts et al., 2016) was used with
the Mask2Former (Cheng et al., 2022) with a Swin-Ti backbone (Liu et al., 2021a) to show how the
OPTIN Framework could be used to maintain competitive performance and throughput at constrained
FLOPs. Further details on dataset selection are in Appendix A.3

Evaluation Metrics With the goal of model compression, we evaluate models based on their accuracy
(or mloU for segmentation) given a FLOP reduction. Details regarding the metric choice for the
corresponding task can be found in Appendix A.4. In select cases, we include either a measurement of
throughput speed (images/data per second) or latency expressed as a ratio of the improved inferencing
speed to that of the baseline. All time measurements are captured over 300 iterations on an Nvidia
RTX 2080 using a 100-iteration warmup.

4.1 LANGUAGE EXPERIMENTS

Performance on NLP Benchmarks In Tab. 7 we investigate the OPTIN Framework for compressing
language models on the GLUE dataset using BE RTp 4sr. Measuring performance and throughput
speeds, we show a relatively low average decline in baseline accuracy (< 2%) at a 40% FLOPS
compression rate. Similarly, we benchmark our performance with a leading one-shot SOTA method:
Post-Training-Pruning-Framework (PTF)(Kwon et al., 2022) at the same compression rate and show
superior performance. In particular, we compare with the mask search results from PTF, as subsequent
phases in their method could be stacked on other post-training pruning methods (refer to Appendix
A.7 for exetended comparisons). We demonstrate robustness over various compression ratios in Fig.
2 where we benchmark OPTIN against pipelines that incorporate re-training, including CoFi (Xia
et al., 2022), DynaBert(Hou et al., 2020), SLIP (Lin et al., 2020b), EBERT(Liu et al., 2021b), BMP
(Lagunas et al., 2021) and FLOP (Wang et al., 2020b). Despite the added re-training phase in other
methods, the OPTIN Framework is able to retain competitive test performance over a variety of
compression ratios thus establishing a compelling argument for retraining-free pipelines.

4.2  VISION EXPERIMENTS

Extending to Image Classification Transitioning the OPTIN Framework from the language domain
to the vision domain, we were required to increase the number of prunable components. Comparable



Method MNLI QQP QNLI SST STS-B MRPC

BERTpAsE 84.53 91.00 91.41 93.57 88.90 86.27
PTF' 81.21 89.99 88.38 92.13 87.10 83.14
OPTIN* 81.90 90.06 88.49 92.24 87.25 85.13

Table 2: Natural Language Benchmarks. Comparing OPTIN performance on the GLUE (Wang
et al., 2019) benchmark (refer to A.7 for additional results). The relative FLOP constraint is set to
60% for a fair comparison.
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Figure 2: Natural Language FLOPs vs Accuracy. We directly benchmark the OPTIN Framework
against leading state-of-the-art methods in natural language model compression. Due to the numerous
different baselines reported in each work, we plot the relative performance drops for each method.
On the right, we compare the performance gap with latency showing that with an average drop of
< 1.75% we can achieve a 1.25x speedup in throughput purely from static model size reduction.

works have used a larger number of components including the pruning of Q-K-V layers in each
attention head, tokens & patches, and final embeddings in each transformer block (Zhu et al., 2021;
Wei et al., 2023; Pan et al., 2021). Thus the state of the art in the field of transformer pruning widely
differs in the granularity and consistency of the pruned components. With a priority on reducing real-
world inference time, we extend OPTIN to include a variant of token reduction; a similar adaptation
was made in CP-ViT (Song et al., 2022). In particular, we derive a modified trajectory formulation
to rank tokens between each transformer block as described in Appendix A.9. By incorporating
the trajectory metric for layerwise-token ranking, the OPTIN framework can deduce the optimal
number of tokens to preserve between each transformer block, and can thus create an informative
token reduction schedule that can be leveraged by any token reduction method. In particular, we
were inspired by a recent work, ToMe (Bolya et al., 2023) which features an efficient token merging
technique based on bipartite matching that removes tokens between transformer blocks either at a
constant or linearly decreasing schedule. We incorporate ToMe as a method of merging tokens based
on the optimal number of reduced tokens per layer determined by the OPTIN framework search.
Since our framework produces the reduction schedule, we can leverage the benefit of batching as the
number of tokens per image will be constant, and the methods of merging or reducing can be selected
by any user — we ablate the bipartite matching scheme with a random pruning scheme in Appendix
A.6 and show similar improvements when using the OPTIN Framework.

Image Classification Results In Tab. 3 we benchmark our proposed re-training free method on
the ImageNet-1K dataset with the baseline, and SOTA results to show competitive performance at
given FLOPs reductions. We offer two configurations: 3 (base) denotes the base OPTIN Framework
without the additional prunable components (directly shifted from the language domain), 7 (expanded)
denotes the incorporation of token reduction into our search space. Compared with methods that
perform re-training, the OPTIN Framework produces competitive performance, particularly with a
0.5%improvement at a 5% lower FLOPs with respect to SAViT(Chuanyang et al., 2022). Comparing
with methods that have removed re-training, we note that VTP (Zhu et al., 2021) still includes
additional sparsity-regularization training, POWER (Goyal et al., 2020) still includes the auxiliary
network training with soft-extract, and HVT (Pan et al., 2021) still reduces FLOPs via re-training the
architecture with a pooling method. However our method is considered a fundamentally one-shot
design and despite lacking these additional pruning artifacts & components, is still able to outperform
the current SoTA, with the best result on DeiT-Small outperforming CP-ViT(Song et al., 2022) by
0.4% at a ~ 10% higher FLOPs reduction. To further benchmark our performance in perspective of
a wider FLOPs spectrum and more model compression methods, we introduce Fig 3 which includes:
X-Pruner (Yu & Xiang, 2023), WDPruning (Yu et al., 2022a), S2VITE/SSP(Chen et al., 2021), SCOP
(Tang et al., 2020), HVT (Pan et al., 2021), SAViT(Chuanyang et al., 2022), VTP (Zhu et al., 2021),
PoWER(Goyal et al., 2020), CP-ViT(Song et al., 2022) and UVC (Yu et al., 2022b). Despite our lack
of re-training, the OPTIN framework produces competitive results over various flop ratios.
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OPTIN framework runs without re-training producing NIESs Over varlous FLOP constraints with-
both the 5 and 7 configurations. out re-training.

Method  FLOPs(G) +AAcc(%)

ImageNet-1K Transfer—C-10 iT- _
Model - Method (-1 5pe (65 o7y [ FLOPS@) Ace@)] Towte TR
DeiT-S Baseline 4.6 79.8 4.6 97.13 OPTIN, ()| 11.45 4 0.71
OPTIN, | 3.52'27% 79,01 |2.30°"% 96.60  DeiT-B 17.6 -
vir.p Baseline 17.47 75.40 17.47 98.01 Dyn-ViT' 11.81 $L17
OPTIN, | 13.33'27% 72,98 | 8.77""% 9782  Top-K' 11.81 10.94
- EViT' 11.81 10.86
Table 4: Transfer Learning on CIFAR Dataset. Bench- 1\ .t 11.81 10.80
marking the performance of OPTIN on the CIFAR-10  ppgit 11.51 1071
Datasets. Models were pre-trained on ImageNet-1K, pruned OPTIN, o, 1175 10.52

through the OPTIN Framework 7 configuration, and trans- )

ferred learned at a more aggressive pruning rate onto the 1able 5: Token Reduction Bench-

CIFAR-10 (C-10) Dataset. marking OPTIN, () configuration.
&1 detailed in the main text.

For completeness, we chose to introduce a third configuration 7.y which only applies OPTIN to
creating token reduction schedule, while leveraging ToMe for merging. Under this constraint, we
evaluate our method with state-of-the-art token reduction methods: including DynamicViT (Dyn-ViT)
(Rao et al., 2021), Top-K (Haurum et al., 2023), EViT (Liang et al., 2022) and TPS (Wei et al.,
2023) in Tab 5 and show superior performance under our framework without re-training. T methods
follow setup & produced results in (Haurum et al., 2023), we convert a token percentage to FLOPs
reduction to benchmark our method.771 estimated from (Wei et al., 2023). We further complement
this with a more detailed comparison against the schedules using constant and linearly decreasing
reduction schedules in ToMe over a wide variety of FLOP constraints in Appendix A.6. Ultimately
this provides a compelling case for OPTIN’s ability to effectively determine average token importance
in transformer architectures.

Transfer-Learning for Image Classification To demonstrate the transferability of our compressed
models, we obtain the pruned networks from ImageNet-1K and apply transfer learning to the CIFAR-
10 dataset. We choose to include DeiT-S and ViT-B for model size diversity. Benchmarking against
baseline models, in Tab 4 we show significant recovery of performance when transferring learning
onto CIFAR-10 at extensive FLOPs reduction ratios. Although we show re-training is not necessary
when it comes to pruning on a specific dataset & task, we evidently show that the method works well
under the transfer learning paradigm for different downstream purposes.

4.3 APPLICATIONS
We further explore downstream tasks and architectures that can similarly benefit from the OPTIN
Framework. Particularly, high-resolution (HR) semantic segmentation is a compute-intensive task,



and we explore how OPTIN maintains competitive performance and increases throughput speeds in
Tab 4a and Fig 4b. Finally, we explore brief experiments on CNN pruning to show generalizability
beyond standard transformer modules.

Method FLOPs(M)  Top-1(%) Epochs

Baseline 313.73 93.96 -

Lt 206.00 93.40 -
HRank 131.17 93.73 200-300
CFDP 131.17 94.10 200-300
OPTIN 131.17 94.10 100-150

Figure 4: Pruning on CNN. Benchmarking
the performance of OPTIN on the CIFAR-
10(Krizhevsky et al., 2009) dataset using VGG-
16-BN. OPTIN outperforms previous model com-
pression techniques.

Method FLOPs| Params| mloU(%) Latency({)
Baseline - - 78.81 -
OPTINg 242%  46.6% 74.57 13%

(a) Mask2Former (Swin-Ti): Semantic Segmentation. (b) High-Resolution Segmentation (a) Baseline
Benchmarking OPTINg on the CityScapes (Cordts et al.,  Mask2Former; (b) OPTIN Framework at a FLOPs
2016) FLOPs, Params., and Latency reduction is mea- reduction of ~ 25%. The minimal observable
sured relative to the SWIN encoder. discrepancy is encircled in white rectangles.
Figure 5: Evaluated OPTINg on HR (1024x2048) Segmentation ((a) Quantitative; (b) Qualitative).

Exploring Semantic Segmentaion To demonstrate the OPTIN framework’s generalizability to
complex architectures and downstream tasks, we apply model compression to the Mask2Former
Architecture with the Swin-Tiny backbone on the Cityscapes dataset. We specify the selected prunable
components in Appendix A.8. In Tab. 4a we show impressive performance despite roughly a 24%
reduction in FLOPs and 47% reduction in parameters of the endocer. Qualitatively we can see a strong
resemblance between the original and compressed network, with a small discrepancy in predictions
towards the bottom right of the frame in an already difficult-to-segment region (as evidenced by the
unclear segmentation in the original prediction) and on the traffic sign towards the top left in Fig. 4b.

Exploring CNN Architectures To demonstrate the potential applications of OPTIN onto CNN
architectures, we extend our trajectory measure as described in Appendix A.10. In Tab. 4a we
compare the model compressed through the OPTIN Framework with the baseline on the VGG-16-BN
architecture, a heuristic approach (£') (Li et al., 2017) and two leading state-of-ther-art: HRank
(Lin et al., 2020a) and CFDP(Khaki & Luo, 2023). Following previous works (Lin et al., 2020a),
fine-tuning has been shown to be required post-compression. However as evident in Tab 4a, following
the same training procedures as HRank, we were able to outperform all methods at a much faster
convergence speed given comparable FLOPs reductions.

5 CONCLUSION

In this work, we introduced OPTIN as a one-shot technique to enable efficient compression of
modern pre-trained transformer architectures without re-training. OPTIN exploits the trajectory of
prunable components in the transformer architecture to enable a smarter criterion for parameter
selection. In this work, we’ve explored several domains including natural language processing,
image classification, transfer learning and semantic segmentation tasks. We additionally show how
our method can work in concert with existing token reduction modules to produce even stronger
competitive results in the image domain. We further expanded our method to show robustness on
prior CNN-style architectures opening future avenues of research into fused architectures. In all cases,
we’ve shown robustness against compression rates and competitive performance including against
methods that perform re-training. We complement our performance improvements with synonymous
improvements in throughput speed enabling the practical use of our framework. In the future, we plan
to explore more complex architectures and tasks in addition to expanding the number of prunable
components to further the cause in an efficient design of transformer models.



6 REPRODUCIBILITY STATEMENT

The attached supplemental code contains a framework with the algorithms and metrics behind our
main results. All of our adapted £ formulations are described in the main paper: Sec 3 or Appendix
A.9, A.10, and are implemented in the supplemental code. By our innate one-shot structure, there are
no training augmentations applied as we don’t re-train. The exception is for transfer learning and
re-training on the CNN architectures. For these, we adopt the standard augmentations from HRank
(Lin et al., 2020a). Our datasets and evaluation metrics are described in Appendix A.3, A.4.
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A APPENDIX

The appendix is structured to provide details that matches elicitation from the main text. Experiments
and discussions included in the appendix serve as supplemental information to provide a greater
context to claims and experiments stated in the main text.

A.1 DIiscUSSING THE OPTIN ALGORITHIM

Algorithm 1 demonstrates the base structure for computing and assigning importance to each of our
printable parameters. Once our importance scores were computed we directly leveraged the mask
search algorithm from PTF (Kwon et al., 2022) as it searches to maximize scores in the partitioned
search space. Their policy partitions the search space by incrementally adding attention heads in
order of importance, and at each step, adding the maximum number of rank-ordered neurons that will
satisfy the cost constraint C([6(, 61, - - - 6,,]) < C. By computing the cumulative importance at each
step, we easily deduce that the step with the maximum cumulative importance must be optimal, as
any other configuration would yield a cumulative score less than or equal to that of the best.

A.2 DETAILS ON HYPERPARAMTER A

In Tab 1d, we use the A sweep to express relative magnitude differences between Ly;p and Lx p.
Based on the reported results, we can conclude that a larger importance should be weighed on the
distillation loss, in particular, we expect that |log,o(Larp)] ~ {10,100} * [log,o(Lxp)] (i-e. the
order of magnitude of £, p should be 10-100 times larger than that of Ly p)

A.3 DETAILS ON DATASET CHOICE

In this work, we evaluated the strength of the OPTIN framework on natural language processing
benchmarks, image classification and semantic segmentation. Across this wide variety of domains, we
used different datasets for the various tasks following from previous works to bolster the performance
of our method.

GLUE Benchmarks The General Language Understanding Evaluation (GLUE) benchmark (Wang
et al., 2019) contains a variety of NLP-related tasks of which we included: Similarity and Paraphrase
Tasks (MRPC STS-B, QQP) and Inference Tasks (MNLI, QNLI). The dataset distribution widely
vary per task. From the included selection, STS-B is a regression task, MNLI has three classes, and
the remaining tasks include two classes.

ImageNet 1K Benchmarks The ImageNet-1K dataset (Deng et al., 2009) is a widely used benchmark
for image classification, as cited in several works (Zhu et al., 2021; Goyal et al., 2020; Pan et al.,
2021). It contains 1.2 million training images and 50K validation images across the 1000 classes. Due
to its difficulty, stemming from the number of classes and images, it presents a perfect benchmarking
medium for our one-shot pruning approach.

CIFAR 10 The CIFAR-10(Krizhevsky et al., 2009) datasets are a common benchmark across both
convolutional neural network pruning (Khaki & Luo, 2023; Lin et al., 2020a) CIFAR10 contains S0K
training and 10K validation images spread over 10 classes. Due to the prominent use of this dataset
in benchmarking tasks, we decided to benchmark our method for fair comparison with SOTA.

Cityscapes The Cityscapes dataset (Cordts et al., 2016) is heavily used for semantic segmentation
tasks, and in particular, contains high-resolution images of (1024x2048), with roughly 3K training and
500 validation images. In this paper, our goal was to demonstrate the effects of pruning a downstream
network under the OPTIN framework, and due to the high resolution of Cityscapes data, we were
able to demonstrate improvements in throughput speed for our pruned segmentation model.

A.4 DETAILS ON EVALUATION METRIC CHOICE

The two main metrics reported in this work are FLOP(s) and Accuracy (or equivalently mIOU in
the case of segmentation). Given the target domain of this paper, these metrics best express the
tradeoff between high accuracy and computational complexity, and further how the OPTIN framework
is better able to make this distinction. The selected metrics have further been reported in similar
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previous works (Kwon et al., 2022; Bolya et al., 2023; Wei et al., 2023). Finally, we also report im/s
throughput to better illustrate the real-world implications of the OPTIN Framework, especially in
resource or time-constrained environments.

A.5 AVERAGE TIME ANALYSIS

Task Dataset Model Avg. Pruning Time (Hours)
Natural Language GLUE Benchmark BERT 0.4
Image Classification ImageNet-1K DeiT Tiny 0.3
Image Classification ImageNet-1K DeiT Small 0.3
Semantic Segmentation Cityscapes Mask2Former(Swin-Ti) 0.5

A.6 ABLATIVE EXPERIMENTS

—— OPTIN —4— Constant(r) —#— Decrease (2r)

ImageNet-1K DeiT-S Off-The-Shelf
Token Merging (Only) Reduction Schedules vs Relative Acc.

Dataset  Batch Size  Acc. .
MNLI 16 82.12 .
MNLI 32 81.90 .
MNLT 64 81.73
MNLI 128 82.20 i
ImageNet 16 70.53 -
ImageNet 32 71.25 -5
ImageNet 64 71.01 .
ImageNet 128 70.82
(a) Effect of Batch Size. The compu- (b) Ablating the Token Reduction Schedule. On ImageNet-1K
tation of Z appears to be more robust for DeiT-S, our OPTIN, (o) Framework produced a more optimal
to changes in the batch-size. reduction scheme as opposed to the default in ToMe (Bolya et al.,
2023)
Token Merging Alg. Scheduler  +AAce(%) FLOPs(G)
Baseline (N/A) - - 17.6
Random Prune default 1 8.47 11.81
Random Prune OPTIN,(o0) 1711 11.75
bipartite merge default 1 0.80 11.81
bipartite merge OPTIN:(o0) 1 0.52 11.75

(c) Ablating the Token Merging Algorithm. On ImageNet-1K for DeiT-B, the bipartite matching default
configuration from ToMe was used. However based on the results, it is evident that OPTIN improves the
performance of arbitrary token pruning methods as well. Configuration Ablated: OPTIN ()

Table 6: Additional Experiments Here we evaluate three components: (a) the ablative effect of
batch size in computing the distillation loss, (b) a comparison of the optimal reduction schedule from
OPTIN, (o) compared to the constant and decreasing schedules from ToMe. (c) the effect of different
patch reduction/merging techniques using the OPTIN Framework. Our default settings are marked in
green .
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A.7 ADDITIONAL LANGUAGE EXPERIMENTS

Method MNLI QQP QNLI SST STS-B MRPC
BERTsAsE 84.53 91.00 91.41 93.57 88.90 86.27
PTF 81.21 89.99 88.38 92.13 87.10 83.14
OPTIN _, ., 82.12 90.08 88.54 92.36 87.19 85.21
PTF'" 82.51 90.35 90.06 92.49 88.00 85.27
OPTIN* 82.74 90.43 90.35 92.73 88.21 85.68

Table 7: Natural Language Benchmarks. Augments the main table 7 with two additional exper-
iments. OPTINiFO‘01 runs the OPTIN algorithm with A\, = 0.01 to display the best results we

achieved using our standard framework. Further, OPTIN* compares with PTF'T which includes
the mask tuning/scaling from PTF (Kwon et al., 2022) to discover a non-binary mask that helps to
reduce in-place reconstruction errors. Latency is estimated at B = 32 and ranges between 1.35-1.38
x improvement.? results are averaged over 5 different seeds.

Task Attention Heads Hidden Neurons Patches&Tokens Output Channels
Natural Language v v - -
Processing
Image Classification (CNN) - - - v
Image Classification (TF) v v v -
Semantic Segmentation - v - -

Table 8: Identifying the prunable weights that OPTIN uses to accelerate the model for various
downstream tasks

A.8 EXTENDING OPTIN TO VARIOUS DOWNSTREAM TASKS

When moving from the language domain to other applications, competitive methods leverage ad-
ditional pruning components in order to spread the compression over a larger search space. In
response, we too apply this with OPTIN. Tab 8 identifies the search space used in OPTIN for various
downstream tasks.

A.9 ADAPTING THE TRAJECTORY FORMULATION TO TOKENPATCH INFORMATIVENESS

As detailed in Sec 4.2, the OPTIN framework allows users to select the best token reduction technique
for their task to create an expanded prunable search space. The OPTIN framework adapts to image
datasets by further producing an optimal reduction schedule for tokens that can be leveraged by any
reduction or merging technique. In the main paper, we use ToMe with bipartite matching, however,
we ablate the metric choice and merging strategy in Appendix A.6.

In order to obtain the optimal token reduction, we apply the trajectory estimation to patches in the
vison-transformer models, by simply modifying the reshaping operator and the dimension upon
which we compute the importance. We adopt the inter-sample representation (Hao et al., 2022) and
since we are determining patch-level importance, it follows that we should compare our base and
pruned embeddings along said dimension. We note that the use of the term patches in the context of
vision-transformers would be represented by the same dimension as the token sequence length in the
language domain. We redefine the manifold distillation loss according to the index j which ranges up
to the number of patches for the co-responding model. We begin by redefining the manifold structure
relational map based on index j where F; | ; 1 € RP*1*D ag:

MFi3.) = (Fiegi) (Fiega)”
In particular, we modify the £ inter-image patch distillation loss from (Hao et al., 2022) by replacing

the student input with that of the masked patch, and the teacher input with the precomuted embeddings
from the network. For two given feature embeddings from layer ¢ for a base and pruned model, the
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sample manifold reconstruction error would present as:
1 X
Lyp(F;, Fi) = T Z IM(E, (j.0) = MF )l F
§=0

This error is accumulated with standard KL Divergence resulting in a similar Equation 3.

After determining the importance score for each patch, we can derive the average number of patches
required per layer for maximum information throughput by simple rank elimination given an FLOPs
constraint. After executing the mask search with attention heads and neurons, we alleviate the
remaining FLOP reduction required by removing tokens in order of ascending importance (i.e remove
the lowest importance first). This ultimately produces the number of tokens per layer which can be
extracted as a token reduction schedule that can be leveraged on run-time with the ToMe bipartite
matching scheme. We have further shown that the OPTIN Framework reduction scheme is much
more informed than the standard constant or decreasing schemes commonly used — See Appendix
A.6.

A.10 ADAPTING THE TRAJECTORY FORMULATION TO OUTPUT CHANNELS
To adapt the trajectory estimation to output channels in CNN-style networks, we reduce the relation
to a simple mean-square error computed between the feature embeddings along the length of the

model. In particular, we average the embeddings along the batch dimension and compute the sum of
the mean squared error between the base and pruned model along each layer deeper in the network:

B B
Lyp(F,, F) = %Z ||ZFZI - ZFM%

Once again, we are able to plug this into Equation 3 with standard KL Divergence to determine
overall channel importance.
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