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Abstract

Expectations of machine learning (ML) are high for discovering new patterns1

in high-throughput biological data, but most such practices are accustomed to2

relying on existing knowledge conditions to design experiments. There is a gap to3

investigate the power and limitation of ML in revealing complex patterns from data4

without the guide of existing knowledge. In this study, we conducted systematic5

experiments on such ab initio knowledge discovery with ML methods on single-cell6

RNA-sequencing data of early embryonic development. Results showed that a7

strategy combining unsupervised and supervised ML can reveal major cell lineages8

with minimum involvement of prior knowledge or manual intervention, and the ab9

initio mining enabled a new discovery of human early embryonic cell differentiation.10

The study illustrated the feasibility, significance, and limitation of ab initio ML11

knowledge discovery on complex biological problems.12

1 Introduction13

Machine learning (ML) is powerful in many pattern recognition tasks such as computer vision,14

natural language processing, as well as biological data analysis [1-4]. Machines can learn what15

scientist have already known with knowledge-derived labels and proper training settings. But it is16

still unclear whether ML methods can discover unknown patterns underlying the data that challenge17

human experts to analyze. A typical task is to identify unknown structures intrinsic in massive18

high-dimensional data and to infer underlying principles without the guide of existing knowledge.19

Instead of typical artificial intelligence scenarios, we expect ML methods to discover new knowledge20

that human experts cannot find.21

Single-cell genomics is playing important roles in current biological studies. High-throughput single-22

cell RNA-sequencing (scRNA-seq) generates huge amount of high-dimensional data of cells, pushing23

to the boundary of existing biological knowledge. The reliance on existing knowledge may bury24

the value of the new technology in revealing new knowledge that could not be seen with previous25

technologies. Efforts are needed on systematically exploring the power and limitation of ML methods26

to discover biological knowledge from data in an ab initio manner with restricted or controlled27

involvement of existing knowledge and judgement by human experts.28

In this study, we conducted experiments for ab initio knowledge discovery using basic ML methods29

with controlled involvement of human knowledge [5]. We selected a widely-used scRNA-seq30

dataset of early embryonic cell development [6]. We ignored all existing knowledge of embryonic31

development except the basic assumption that cells of a later day are developed from the earlier32

day in some unknown lineages, and experimented on the discovery of such lineages from the data33

using the combination of classical unsupervised and supervised ML methods. Results showed that34

a full ML-derived understanding on the developmental process can be well aligned to the latest35

knowledge, except for a new discovery that can be a renovation to existing knowledge. We also36
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observed the limitation of proposed method in discovering more complicated relations on zebrafish37

dataset [7]. These experiments highlighted the power and limitation of using current ML methods and38

scRNA-seq data to discover complicated biological knowledge ab initio, and showed the feasibility39

and significance of controlling the involvement of existing knowledge and subjective adjustment in40

mining new biological data.41

2 Method42

2.1 Data43

The main dataset we worked on was the human early embryo development data [6] with single-cell44

gene expression data of 1,529 cells. Cells were captured during embryonic day-3 to day-7 (referred as45

E3, E4, ..., E7). We also worked on a zebrafish dataset [7] contains 36,749 embryonic cells collected46

at 7 time points during the development, i.e., 4, 6, 8, 10, 14, 18 and 24 hours post fertilization47

(referred as 4 hpf, 6 hpf, . . . , 24 hpf). Detailed data pre-processing steps are described in Appendix.48

None of these steps is specific to any known biological knowledge or to the question to be studied.49

2.2 Task and Strategy50

The task of this ab initio knowledge discovery experiment is to identify the possible lineage relations51

among cells of each day (or hour) in the early embryonic development data.52

We designed a strategy integrating clustering and classification (Figure 1). Taking the human dataset53

as example, if cells of the same day are of different lineages, there must be distinct clusters in cells of54

that day; and if the clusters of different days belong to the same lineage, we can classify the lineage55

in one day using the model trained by the lineage in another day. We thus decomposed the task to the56

following sub-tasks: (1) Choosing one day as the candidate reference day for other days; (2) Building57

a candidate developmental process by finding relations among cells of different days based on the58

reference day; and (3) Assessing the plausibility of the candidate developmental process. The basic59

ML methods we used were k-means and SVM, other methods can also be applied (Appendix). As no60

prior knowledge available to decide a proper reference day, we took each day as the reference and got61

multiple candidate versions. We developed a method to infer the most plausible one by evaluating the62

self-consistency of each candidate process, illustrated as follows.63

2.3 Evaluate Self-Consistency of Candidate Development Processes64

We first calculate the level of concordance clustering and classification results on the same day using65

the adjusted random index (ARI):66

concord(i|r) = ARI(Si, C(i|r)) (1)

In the case of human dataset, Si, i = 3, , 7 are the clustering results in each day, C(i|r), i =67

3, . . . , 7, i 6= r are the classification of day-i cells using day-r clusters as reference. The score is 1.068

when two results are identical, while it is 0 where classification result is similar to random assignment.69

Then we measure the reliability of the clustering results of day-i, we define the reliability score of70

day-i as the average of concord scores of all other days using day-i as reference:71

reliab(i) = average
j=3,...,7

j 6=i

concord(j|i) (2)

A poor concordance of day-i based on day-r may be due to either the clustering result of day-r is not72

suitable as a reference for day-i, or the clustering result of day-i itself is bad. To take both factors73

into consideration, we further defined an adjusted reliability score (ARS) by weighting the concord74

score with the reliab score of each target day. In this way, we can judge the plausibility of candidate75

processes without using biological knowledge.76

ARS(r) =
∑

i=3,...,7
i6=r

(reliab(i) · concord(i|r)) (3)
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Figure 1: The strategy of ab initio knowledge discovery with ML. (A) Workflow. (B) Illustration of
exhaustive search.
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Figure 2: ML-derived developmental process using day-5 as reference (marked with *).

3 Experimental Results77

3.1 ML-Derived Candidate Developmental Process78

We first experimented the proposed strategy on the human embryonic development data. With no79

biological knowledge available, we conducted an exhaustive search on cluster numbers for each day80

as a potential reference (Figure 1B). For each day, we experimented with cluster numbers k being81

set from 2 to 10, respectively, and use the obtained clusters as reference to classify cells of other82

days. For each setting, we calculated the ARS for the particular reference day and cluster number.83

In this way, we enumerated the best possible candidate developmental processes using each day as84

a reference and each choice of cluster numbers within the given range (Table A1). Results showed85

that the developmental process derived using the 3 clusters of day-5 as reference gives the highest86

ARS (0.4674) among all enumerations. Figure 2 provides a PCA visualization of this ML-derived87

developmental process:88

One lineage A5 on day 3. A minor new lineage B5 appears on day 4. It becomes larger on day 5,89

and another new lineage appears C5 on day 5. The lineage A5 disappears on day 6 and thereafter90

and B5 and C5 lineages continue thereafter.91

3.2 Verification of ab initio Discovery with Known Biological Knowledge92

We compared the ML-derived developmental process with existing biological knowledge and an-93

notated the ML-derived lineages with biological lineages. According to the current understanding,94

from E3 to E7, human zygotes differentiate into 3 major embryonic cell types named pre-lineage,95
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trophectoderm (TE) and inner cell mass (ICM) lineages [6,8]. Cells of the pre-lineage are those that96

haven’t started differentiation. TE lineage segregates first and then primitive endoderm (PE) and97

epiblast (EPI) cells come from the intermediate lineage of ICM [6,9]. Cells of different lineages play98

different roles in the embryogenesis. Cells in E3 and E4 belong to pre-lineage according to the current99

understanding. TE and ICM cells appear in E5 but there are still pre-lineage cells remaining in E5.100

ICM further segregates into EPI and PE in E5. In E6 and E7, all pre-lineage cells have differentiated101

into cells of either TE or ICM (EPI and PE) lineages.102

Comparing this existing biological knowledge with the ML-derived developmental story in our103

discovery, it is straightforward to infer that cluster A5 corresponds to the pre-lineage as it is the104

sole cell type in E3. To further identify TE and ICM, we took the clustering result of cells in day-5105

with k=4 and compared it with the clusters of k=3 (Figure A1). We observed that cluster C5 further106

split into two sub-clusters. Based on the existing knowledge that the ICM lineage is composed of107

two subtypes PE and EPI, we marked cluster B5 as TE and C5 as ICM. The ML-derived ab initio108

knowledge discovery on this particular dataset has been fully verified and annotated.109

A minor disagreement between the ML-derived developmental process with the known biological110

lineages is that cells in E4 should be all of the pre-lineage according to the existing knowledge, but111

the ML-derived knowledge identified 10 “outlier” cells (out of the 190 cells) of E4 that are already112

differentiated. We drew the distribution of E5 cells in PCA plane and mapped all E4 cells to this113

plane. We observed that these 10 cells are more likely to be TE (Figure A2). Detailed experiment114

procedure is described in Appendix. Results indicate that a minor proportion of E4 cells grow faster115

and differentiate to cells with TE properties before E5, which updates existing knowledge.116

3.3 Limitation in Revealing More Complex Patterns117

We conducted the same series of experiments on the zebrafish embryonic development dataset [7].118

Exhaustive search identified the time point of 10 hpf of 5 clusters as the most plausible reference.119

Figure A3 and A4 in Appendix show the PCA and tSNE plots of cells in each time point colored with120

the predicted classes. Referring to the paper published this dataset [7], we found that the ML-derived121

developmental process only covers a draft outline of the true biological knowledge lineages with122

many details missed. Compared with E3 to E7 for human embryonic cells, the zebrafish cells sampled123

from 4hpf to 24hpf covers a longer period of embryonic development and is much more complex.124

There is no single time point in which the cells can represent all lineages that have appeared in125

this developmental period, which is beyond the scenario our method is designed for. Although the126

ML-derived developmental process from this zebrafish dataset makes basic sense as a coarse outline,127

it reveals the limitation of the proposed method when the assumptions underlying the method cannot128

be met. Detailed analysis on zebrafish dataset is available in Appendix.129

4 Discussion130

There are many different scenarios with the need for mining underlying patterns from massive131

complex data. Successful applications of ML in many fields may give people an illusion that ML has132

already been shown powerful for knowledge discovery, but actually most of the successes are the133

joint products of ML and human knowledge. Involvement of knowledge can be in many forms like134

known marker genes, models or labeled training data [10]. Efforts for using only ML methods to135

discover knowledge from data are still rare not only in biology but also in many other fields. Bridging136

the gap towards ab initio knowledge discovery with ML is crucial to build better understanding of AI137

for science.138

In a recent work in physics, scientists explored a neural network method for the ab initio discovery of139

the basic physical understanding that Earth orbits the Sun based on observations on movements of140

the Sun and Mars appearing from Earth [11] commented as an “AI Copernicus” [12]. Our experiment141

shows an example of the ab initio discovery of knowledge on early embryonic development from142

data using basic ML methods. The method is still in its infancy if expected to work on more143

complicated biological processes, but its success sheds lights on the future possibilities of developing144

more advanced ML methods for ab initio scientific discovery from data in fields that lack existing145

knowledge and challenge manual interpretation. Such advancement will not only empower the146

discovery of new knowledge in biology and other fields of science, but also move machine intelligence147

to the higher level of automatic knowledge learning and discovery.148
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1 Supplemental Experiment Procedures176

1.1 Data Pre-processing Descriptions177

As scRNA-seq data are sparse, noisy, and of very high dimensionality, original cell representation178

using all genes cannot highlight biological differences among cells. In this study, we selected highly179

variable genes that present significant differences in expression levels among cells, so that expression180

patterns get enhanced.181

For the human embryonic development dataset, we followed the procedures and the model in original182

paper [1,2] to select highly variable genes. Assuming the expression of a gene follows negative183

binomial distribution, the relationship between square of variance (cv2) and mean (m) is:184

cv2 =
1

m
+

1

r
(1)

where r is the over-dispersion parameter following a negative binomial distribution. We filtered out185

reference data [1,3] with cv2 less than 3 and fitted the model to the remaining reference data.186

Then we used the reference model as the threshold to select genes with larger variances (Figure A5).187

We obtained 490 and 954 highly variable genes for human dataset, which were used as features to188

study the cells.189

For the zebrafish embryonic development dataset, we selected highly variable genes with the widely-190

used pipeline Seurat v3.1 [4]. We used the “FindVariableFeatures” function with “vst” selection191
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method, which identifies genes with the highest standardized variance. We merged cells from all time192

points together and identify top 500 variable genes for the dataset.193

1.2 Experiments with other clustering and classification methods194

Besides k-means clustering and SVM classification methods as the basic unsupervised and supervised195

ML methods in the ab initio knowledge discovery strategy, we also used Seurat clustering, Gaussian196

mixture model (GMM) and logistic regression as the alternative clustering and classification methods,197

respectively. Using GMM to replace k-means and logistic regression to replace SVM produced the198

same results as we got with k-means and SVM. We drew the PCA plots of ML-derived developmental199

process on human embryonic data (Figure A6 and A7).200

1.3 Experiment on E4 Cells of Human Dataset201

The ML-derived understanding on the developmental process indicates that a minor proportion of202

cells in E4 already differentiated to TE cells (cluster B5). We drew the distribution of E5 cells in203

the plane of the first 2 principle components of E5, and map all E4 cells to this plane. We can see204

that while most E4 cells map to the region of pre-lineage cells (cluster A5), 10 E4 cells map to the205

area of TE cells (cluster B5) in E5. This confirmed the existence of TE cells in E4. We also mapped206

all E3 cells to this plane, which all mapped to the pre-lineage region (cluster A5) (Figure A2). It is207

interesting to see that most E3 cells tend to map to the far end of the pre-lineage cluster, while the E4208

cells are scatted in an almost linear manner in the cluster with the 10 cells extending to the area of TE209

cells. Considering the observations from the scree plots that the distinction between clusters in the210

data are not sharp, we speculated that the gene expression patterns of pre-lineage cells with those of211

the TE cells are of a continuum rather than a clear switch. A minor proportion of E4 cells grow faster212

and differentiate to cells with TE properties before E5.213

1.4 Analysis of Experiment Results on Zebrafish Dataset214

The ab initio discovery of the developmental process from this dataset only covers a draft outline of the215

true biological knowledge lineages with many details missed (Figure A3 and A4). We compared the216

nature of the human, mouse and zebrafish datasets we experimented in this study to understand why217

the proposed method works well on the first two datasets but has limited success on the zebrafish data.218

Looking into the basic knowledge on vertebrate development [5-8], we realized that the sampling time219

points in the human data of 3-7 dpc (days post coitum) are approximately from Cargenie State 2 to 5,220

long before the development of the first somite. The mouse data of 5.25 to 6.5 dpc are approximately221

from Cargenie Stage 5 to 6, still before the first somite occurs. The zebrafish data from 4 to 24 hpf,222

however, actually span approximately from Cargenie Stage 7 to 12. During this period, the zebrafish223

goes through blastula (2.25 - 5.25 hpf), gastrula (5.25 - 10.33 hpf), segmentation stages (10.33 - 24224

hpf) and entering pharyngula stage [9]. In the end of 24 hpf, the zebrafish embryo already has more225

than 26 somites. From these facts, we can conceive that the zebrafish development data are beyond226

the scenario the proposed method was designed for. The clustering of cells in the zebrafish data are227

decided not only by the developmental lineages, but also by many other developmental factors such228

as somites and locations.229
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2 Supplemental Figures230

BA

Figure A1: Comparison of clustering results on E5 cells with k=3 and k=4. (A) PCA plot of the
3 clusters. (B) PCA plot of the 4 clusters. The cluster C5 when k=3 is further separated into two
sub-clusters C5 and D5 when k=4.
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Figure A2: PCA plot of day-5 cells with day-3 and day-4 cells mapped onto it. We can see that all E3
cells map to the pre-lineage region of E5 cells, and most E3 cells are in the far end of this cluster.
Most E4 cells map to the pre-lineage region along a linear shape, with 10 cells extended into the TE
region.

Figure A3: PCA plots of the ML-derived developmental process of zebrafish dataset. We used
hour-10 cells of 5 clusters as reference for other hours. * means this time point is used as reference.
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Figure A4: tSNE plots of the ML-derived developmental process of zebrafish dataset. We used
hour-10 cells of 5 clusters as reference for other hours. * means this time point is used as reference.

Figure A5: Selection of highly variable genes in human datasets. The horizontal axis is the average of
normalized read count (m). The vertical axis is the squared coefficient of variation (cv2). Each brown
point represents one gene observed in the sequencing experiments. Blue points are the reference data.
We chose the reference data with cv2 larger than 3 and fitted negative binomial model, shown in red
curve. We selected genes above the red curve as the highly variable genes.

Figure A6: PCA plots for the ML-derived developmental process using GMM clustering and SVM
classification on the human embryonic data.
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Figure A7: PCA plots for the ML-derived developmental process using k-means clustering and
logistic regression classification on the human embryonic data.

3 Supplemental Tables231

Table A1: Adjusted reliability scores (ARSs) of each enumerated candidate developmental process

Reference ARS Reference ARS Reference ARS

day3-clu2 0 day4-clu8 0.1367 day6-clu5 0.1426

day3-clu3 -0.0002 day4-clu9 0.2079 day6-clu6 0.2565

day3-clu4 -0.0003 day4-clu10 0.2045 day6-clu7 0.1824

day3-clu5 -0.0003 day5-clu2 0.4220 day6-clu8 0.1848

day3-clu6 -0.0013 day5-clu3 0.4674 day6-clu9 0.1812

day3-clu7 -0.0002 day5-clu4 0.1936 day6-clu10 0.1655

day3-clu8 -0.0004 day5-clu5 0.2130 day7-clu2 0.2434

day3-clu9 -0.0004 day5-clu6 0.1703 day7-clu3 0.1706

day3-clu10 -0.0003 day5-clu7 0.2463 day7-clu4 0.2497

day4-clu2 0.0011 day5-clu8 0.2408 day7-clu5 0.2199

day4-clu3 0.0166 day5-clu9 0.2124 day7-clu6 0.2552

day4-clu4 0.0256 day5-clu10 0.2317 day7-clu7 0.1693

day4-clu5 0.1123 day6-clu2 0.4099 day7-clu8 0.2074

day4-clu6 0.0479 day6-clu3 0.2362 day7-clu9 0.2031

day4-clu7 0.0610 day6-clu4 0.1543 day7-clu10 0.1816

day3-clu2 means using Day-3 cells of 2 clusters as the reference for other days
for building the candidate developmental process.
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