Under review as a conference paper at ICLR 2023

RISC-V MICROARCHITECTURE EXPLORATION VIA
REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Microarchitecture determines a processor’s detailed structure, affecting the pro-
cessor’s performance, power, and area (PPA). Deciding on a microarchitecture to
achieve a good balance between the PPA values is a non-trivial problem. Previous
arts mainly require expert knowledge. The solution becomes inefficient as nowa-
days processors become increasingly complicated. Machine learning has solved
problems automatically with high-quality results via reduced access to domain
knowledge. In this paper, we formulate the problem as a Markov decision pro-
cess and propose an end-to-end solution framework via reinforcement learning.
Firstly, a dynamically-weighted reward design is proposed to accommodate the
optimization of multiple negatively-correlated objectives. Secondly, local heuris-
tic search is adopted in the action design with prior knowledge of microarchitec-
tures. Thirdly, lightweight calibrated PPA models are incorporated to accelerate
the learning process. Experimenting with electronic design automation (EDA)
tools on famous RISC-V processors demonstrate that our methodology can learn
from experience and outperform human implementations and previous arts’ solu-
tions in PPA and overall running time.

1 INTRODUCTION

The processor design cycle consists of numerous complicated steps, requiring high cost and work-
force input to meet the strict time-to-market product delivery deadline. Engineers participate in the
design loop to optimize the processor’s performance, power, and area (PPA) iteratively, as shown
in Figure[I] Microarchitecture is a processor’s detailed structure, and exploring a microarchitecture
is one step in the design cycle. A microarchitecture consists of different components, e.g., branch
predictor, caches, efc. The target is finding a good microarchitecture, achieving higher performance,
lower power, and smaller areas.

However, manually selecting such microarchitecture based on expert knowledge from the design
space is non-trivial. On the one hand, the design space is extremely large, i.e., its size can be more
than ten or twenty orders of magnitude in industrial design. (Chen et al.| (2020); Grayson et al.| (2020).
On the other hand, evaluating a candidate’s performance, power, and area with electronic design
automation (EDA) tools is time-consuming, e.g., several hours on 80-core Xeon high-performance
computers with 1 TB memory for an academic in-order processor design /Asanovic et al.|(2016).

Previous solutions require domain knowledge to study the trade-offs of each component carefully.
Nevertheless, the aspiration to automate the solution process with less access to experts has never
been stopped.

In this paper, we formulate the problem as a Markov decision process (MDP) and present a novel
end-to-end solution framework based on reinforcement learning (RL). Specifically, we focus on the
processors implementing RISC-VB due to its significant attention from academia and industry these
years. We hold an insight: components contribute differently to the PPA values, and learning from
historical experience, the agent can determine the microarchitecture via local heuristic search. It is
worth noting that PPA is multiple negatively-correlated objectives. Higher performance microar-
chitecture is often accompanied by more power dissipation and a larger area. The reason lies that

'RISC-V: an instruction set architecture maintained by RISC-V foundation: https://riscv.org/

https://riscv.org/

Under review as a conference paper at ICLR 2023

Mlcroarchneclure
Exploratlon via RL

Microarchitecture
Design

Satisfy PPA Design Target? Design Loop
N

Y
Processor Fabrication, Physical Verification
Packaging & Testing & Signoff

System Specification H Architecture chlgn

Figure 1: The processor design cycle. Engineers spare much effort to optimize a given microarchi-
tecture with complicated steps. Determine a better microarchitecture can reduce the non-recurring
engineering cost Magarshack & Paulin|(2003). We solve microarchitecture exploration via RL.

more hardware resources are allocated to components, improving the processor performance while
sacrificing power dissipation and area. Hence, we customize the RL to solve the problem.

The main contributions can be summarized as follows:

1) A unified reward design transfers the multiple objectives to a dynamic-weighted signal. The
idea is to handle exploring microarchitectures with different PPA design preferences in the de-facto
processor design cycle.

2) To accelerate the learning process, we design a lightweight environment, i.e., composed of cal-
ibrated PPA models instead of heavyweight EDA tools. The calibrated PPA models accelerate the
learning process by more than 110x compared to EDA tools.

3) A local heuristic search is incorporated in the episode based on prior knowledge of microarchi-
tectures. It improves the agent to explore promising microarchitectures efficiently and effectively.

4) The solution targets processors implementing RISC-V. Experiments show that our explored mi-
croarchitectures of the famous RISC-V in-order processor Rocket |Asanovic et al. (2016) and dif-
ferent scales of RISC-V out-of-order processors SonicBOOM |Asanovic et al.| (2015); (Celio| (2017);
Zhao et al.[(2020) outperform previous methodologies and human implementations.

2 RELATED WORK

RISC-V & RISC-V Implementations. Unlike commercial and expensive instruction set archi-
tecture (ISA), e.g., ARM, x86, efc., RISC-V, pursues for free, open-source. Academia and industry
have done many pioneering works for RISC-V, i.e., providing open-source RISC-V processor imple-
mentations. Rocket|/Asanovic et al.| (2016)), is a six-stage pipeline in-order processor. SonicBOOM
Zhao et al.| (2020), based on BOOM |Asanovic et al.| (2015); |Celio (2017) is a ten-stage pipeline
out-of-order design. The industry has also released several designs, e.g., Xuantie-910 [Chen et al.
(2020) aims at high-performance application scenarios.

Microarchitecture Design Space Exploration. Microarchitecture can be parameterized as com-
binations of discrete integers. Each integer represents the allocated hardware resources for corre-
sponding components, e.g., number of queue entries, stack size, buffer size, etc.

In industry, processor designers determine the combination from expert knowledge || However,
personal bias may lead to sub-optimal results is a concern. The academia proposes white-box or
black-box solutions to automate the solution.

Intel Skylake microarchitecture determination requires many experts’ efforts: |https://en.
wikichip.org/wiki/intel/microarchitectures/skylake_ (server)

https://en.wikichip.org/wiki/intel/microarchitectures/skylake_(server)
https://en.wikichip.org/wiki/intel/microarchitectures/skylake_(server)

Under review as a conference paper at ICLR 2023

The white-box methods try to build analytical models to evaluate the relations between components’
resources and PPA values. The exploration is conducted by sweeping the design space with analyti-
cal models [Kathail et al.| (2002); Brooks et al.| (2003); Karkhanis & Smith|(2004; 2007). Given the
difficulty of constructing analytical models, black-box methods emerge. Several learning techniques
are applied to solve the problem, e.g., via artificial neural networks [Ipek et al. (2006), regression
methods |Lee & Brooks| (2007) for POWER CPU Moudgill et al.| (1999), RankBoost learning |(Chen
et al.| (2014), AdaBoost learning |L1 et al.| (2016), Bayesian optimization [Bai et al.| (2021)), efc. Re-
garding solution quality, black-box methods usually achieve more promising results than white-box
methods. However, current black-box methods are still limited to improving the final results further.

Microarchitecture Simulation & Modeling. Accurate microarchitectures’ PPA values are obtained
from EDA tools, but the runtime cost is exceptionally high, restricting an efficient exploration.

The difficulty advances the development of many software processor simulation infrastructures
Austin et al.| (2002); |Yourst (2007); Brooks et al.| (2003)); [Patel et al.| (2011); |Carlson et al.| (2011);
Binkert et al.| (2011)); \Sanchez & Kozyrakis|(2013), and some power or area modeling tools |Brooks
et al.[(2000); Muralimanohar et al.|(2009); [Li1 et al.| (2009); [Li, Sheng and Chen, Ke and Ahn, Jung
Ho and Brockman, Jay B and Jouppi, Norman P| (2011); Lee & Jha|(2011). They can give rough
PPA estimations without EDA tools, i.e., achieve a trade-off between accuracy and runtime cost.

GEMS Binkert et al.| (2011) is the state-of-the-art simulator in academia, generating performance
values by mimicking the executing behaviors of processors, i.e., using events statistics (buffer reads
and writers, cache accesses, efc.) to characterize. McPAT [Li et al.| (2009) is the state-of-the-art
power and area modeling tool, which can hierarchically calculate power and area values based on
microarchitectures and events statistics.

3 METHODOLOGY

3.1 PROBLEM FORMULATION.

We use embedding to denote a microarchitecture for a specified processor, raising an abstraction to
characterize it.

Definition 1 (Microarchitecture Embedding) Microarchitecture embedding is a combination of
candidate values of each component. It is denoted as a feature vector s.

We formulate the problem as a design space exploration with Definition]

Problem 1 (Microarchitecture Design Space Exploration) Microarchitecture design space ex-
ploration is to solve a multi-objective optimization problem

Qé%{g[Perf(s), —Power(s), —Area(s)], (D

where D is an n-dimensional microarchitecture design space, Perf, Power, and Area denote perfor-
mance, power, and area of a microarchitecture embedding s.

The solution to the problem is an iterative trial and optimization process.

We pose the problem settings as a Markov deci-
sion process (MDP), i.e., the exploration is analo-
gous to searching for a strategy in go. A microar-
chitecture embedding is a checkerboard, with a
modification of components as a decision and bet-
ter results according to Equation (I)) as the win-
ning criterion.

Figure 2 shows an overview of the RL framework
and key elements of the MDP. The state space .S
State

N . . . Lightweight
comprises microarchitecture embeddings, as an E;%irgi,iim
example listed in Table The action space A
consists of determinations of hardware resources Figure 2: Overview of our RL framework

Under review as a conference paper at ICLR 2023

for a component. The state transition is determin-

istic. The reward R is the vector of PPA values. The framework constitutes two stages, i.e., the
learning and exploration stages. In the learning stage, the initial state and PPA preference vector are
the input to the agent. The agent adjusts hardware resources until no PPA improvements are achieved
within a pre-specified early-stopping criterion in each episode. Through learning from episodes, the
agent explores microarchitectures corresponding to the PPA preference vector. The initial state is
carefully chosen, e.g., a human implementation, efc., and the preference vector is resampled at the
beginning of each episode. In the exploration stage, the preference vector is specified by users and
set to be fixed in the entire stage, and the agent tries to explore the target design.

3.2 DYNAMIC-WEIGHTED REWARD.

Since a single agent cannot handle multiple objectives, a weighted-sum formula is often applied in
the reward design He et al.| (2020); Mirhoseini et al.| (2021)). Such a technique is limited since an
agent needs to be retrained if the coefficients controlling the trade-off between different objectives
are changed. In the de-facto processor design cycle, multiple PPA preferences exist, e.g., a higher
performance candidate or a design emphasizing power or area efficiency more. Consequently, our
reward unifies different PPA preferences in dynamic-weighted singal design.

R = (a, B, 7)T : CONCAT(Tperfv T'powers Tarea))

where «, 3, and «y are weights controlling the PPA trade-off, and 7perf, Tpowers and Tareq are PPA
values, respectively. The single agent should handle the changing coefficients «, 5, and ~ without
learning from scratch. It motivates us to embed the PPA preference space into the framework.

3.3 EMBED PREFERENCE SPACE TO RL.

The PPA preference space ® contains coef-

. . . 1
ficients «, [, and -y combinations, and we

Power
term them preference vectors. Each prefer- i
ence vector ¢ adheres to the simplex constraints, x/% Qu=masz{) Qs a1, o)k
ie, Vi, ¢; > 0, Y, ¢; = 1. Since the PPA Qs.w|o))/i 700502 6y) Qummar{Qls.a2.6,), Qs 02.62)
v correlated. the Pareto coverace set | /.27 |

are negatively correlated, the Pareto coverage set
(PCS) exists, i.e., a group of microarchitectures
belonging to this set cannot improve PPA simul-

.;Q (s,a2)
] Q=maz{Qy,Qo}

0 Perf.

taneously. Through linearization, as shown in
Equation (2), the optimal solution to the prob-
lem becomes the convex coverage set (CCS)|Roi-

Figure 3: An example details the optimization
procedure. Green and red colors are leveraged to
distinguish different state-action vectors.

jers et al. (2015); Roijers & Whiteson|(2017) The
convex coverage set is the subset of the PCS that achieves maximal reward with a given ¢, as shown
in Equation (3)).

CCS(I) = {n* | ¢ V™ (s0) > ¢ V™ (s80), Vo € ®,3In* V' € 11}, 3)

where V™ (sg) = E.[r | s = s¢] is the expectation of vector rewards received from the initial state
so, and II is the policy set. Equation (3) indicates that the optimal policy 7* & II can recover the
CCS given ¢.

Inspired by the idea of MORL [Yang et al|(2019), our RL applies the extended Bellman equality, as
shown in Equation (@),
¢ Qs d',¢),

max
a’cA, Ip’cd

“4)

where 7 is a discount factor. Q*(s’,a’, ¢') = CONCAT (7pert, T'power; T'arca) 18 @ state-action vector
conditioned on a given state s’, an action a/, and a preference vector ¢’. The transition probability
s’ ~ P(- | s,a) is deterministic. Since the preference space ® is an uncountable set, we sample
multiple ¢’ and obtain the maximal Q*(s’,a’, ¢") from them.

Q*(Sv a, ¢) = 7‘(8, a) + ’VES/NP('\S,(L) agg

Figure [3| details the optimization procedure. Each time we sample different ¢, holding an insight
that the agent can learn to generate other policies according to variable preferences. As shown in
Figure 3] assume the agent explores the performance-power space. The better solution set should be
far from the origin coordinate. At state s, the agent is faced with two actions, i.e., a; and as. Under

Under review as a conference paper at ICLR 2023

Microarchitecture Embedding s Preference Vector ¢ o

L Lt L
5
mn

- o

M1 M2 M3 M4
1072

= oo

Power (W)

M1 M2 M3 M4
mmm dhrystone EE@median Cmt-vvadd
= multiply BB towers B vvadd

M4 3.6

M3 3.46

M2 3.12

ML 365 20
0 1 2 3 4
Policy Area (mm?)

(a) (b)

Figure 4: (a) Overview of our actor and critic network. (b) PPA values of six widely-used bench-
marks on four SonicBOOM microarchitectures, and the visualization of embeddings distances.

two different preference vectors, ¢, and ¢,, four state-action vectors exist along the direction of ¢,
and ¢,. Only the state-action vector having the greatest utility is selected according to Equation (E[)

We use the advantage actor-critic (A2C) Mnih et al.| (2016) to implement the optimization strategy.
The gradients of the actor 8, is listed in Equation (E[),

V0o =Erer> Vo, logma, (ar | 5:)¢ A(se,ar, @) + a Ve, H(m(s1:04)), (5)
t=0

where A(s;,a, @) = Q(st,ar, d') — V(sy, @) is the advantage function incurring relatively low
possible variance, 7 is a trajectory following the policy m, and 8, denotes parameters of the actor.
The entropy of the policy 7 is incorporated in optimizing the actor (H (7(s;; 8,)). It can prevent the
agent from always selecting the currently found best action. A coefficient a controls the strength of
entropy regularization. For the critic, the loss function is shown in Equation (6), where L2 normal-
ization between two state-action vectors is applied.

Lc = ﬁ‘d)T(Q* - Q(Sa a, ¢/7 00))@ + (1 - 6>|Q* - Q(Sa a, ¢,7 00)‘%; (6)
In Equation , B is a coefficient to balance these two terms, 6. denotes parameters of the critic,
and Q* is obtained from Equation (). The first term in Equation (6)) enforces optimizing the critic
network w.r.t. the maximal reward shown in Equation (Z). The n-step TD errors [Peng & Williams
(1994) is leveraged. However, the policy gradients w.r.z. Equation (3) require many transition sam-
ples to give a relatively accurate approximation for a steady and stable improvement. The difficulty

is handled by using the generalized advantage estimator (GAE) Schulman et al.| (2016):

N
Ty = Z()\W)N_H(Ttﬂc + YWVir14k(86, @) = Vigw(si, @), (7
n=0

In Equation (7), X is a coefficient controlling the strength of the exponential-weighted average.

3.4 ACTOR-CRITIC ARCHITECTURE & LOCAL HEURISTIC SEARCH

Both actor and critic networks should capture the given preference vector, so we construct their
architectures following the philosophy in|Abels et al.| (2019). The intuition is that by creating in-
puts of preference vectors for the actor and critic, the actor can generate appropriate actions. The
critic can evaluate new state with a known preference vector. It promotes us to concatenate the
microarchitecture embedding and the preference vector, as shown in Figure fa]

In the state transition, we find that a small but critical change can bring a big difference to mi-
croarchitectures. Figure 4B illustrates the observation. We use an example microarchitecture of
SonicBOOM |Zhao et al.| (2020), denoted as M1, and its variants with a slight modification. M2

Under review as a conference paper at ICLR 2023

changes the branch predictor [Seznec & Michaud| (2006), M3 reduces the decode width, and M4
decreases branch speculation tags. t-SNE |Van der Maaten & Hinton| (2008) is utilized to visualize
the embedding distances to M1, also shown in Figure 4bl Notwithstanding that M2 and M3 have the
same distance to M1, they incur obviously different PPA values gaps to M1. M3 has 8.54% lower
performance (IPC), 3.00% less power, and 5.09% smaller area than M1. While M2 has 13.09%,
23.75%, and 14.48% lower PPA values than M1, respectively, demonstrating a more substantial
difference from M1. It is also observed that the distance of microarchitecture embedding between
M1 and M2 is closer than that between M1 and M4. However, compared with M2, M4’s PPA val-
ues are even closer to M1, i.e., M1 outperforms IPC by 0.36%, dissipating 3.67% more power and
1.39% larger area than M4. Therefore, we argue that different components contribute differently to
the PPA values, and improvements can be achieved by a small change correctly, ignoring insignif-
icant decisions. For instance, reducing branch tags on M1 only can bring more profits for better
power efficiency while maintaining overall performance (M4). Applying Gshare McFarling| (1993)
for M1 and neglecting others can promote more power and area efficiency (M2). Thus, we adopt a
local heuristic search, i.e., in each decision process, the agent only changes hardware resources for
a single component, leaving others unchanged.

3.5 ACCELERATE LEARNING VIA LIGHTWEIGHT PPA MODELS

EDA tools consume much runtime cost to generate a label for one transition, so we rely on GEM5
and McPAT software simulation and modeling tools. Although GEMS5 Binkert et al.| (2011) and
MCcPAT [Li et al.| (2009) can give us first-hand estimations of PPA values, they are not accurate.
To mitigate the limitation, we calibrate GEM5 and McPAT with machine learning techniques via
supervised learning, as shown in Equation ()

L= |f(3aevp) - ygt'%a (8)
where s, e, and p are microarchitecture embedding, simulation event statistics, and other PPA-
related features (e.g., leakage and sub-threshold power, efc.). f is a nonlinear function, and /g is the
golden label obtained from EDA tools. The event statistics are acquired from software simulations.
We hold the intuition that by calibrating the simulation and modeling tools against golden values
generated by EDA tools, we can leverage the calibrated models to predict PPA values for unseen
microarchitectures with acceptable accuracy. Hence, we replace the heavyweight EDA tools with
lightweight PPA models and software simulation and modeling tools for the RL environment.

Compared to the high runtime cost with EDA tools, our lightweight PPA models can achieve
100x ~ 110x speed up in microarchitecture evaluations.

4 EXPERIMENTS

We evaluate the proposed solution framework with representative in-order and out-of-order RISC-V
designs, i.e., Rocket|Asanovi€ et al. (2016) and different scales of SonicBOOM |Zhao et al.| (2020).
We illustrate that one agent can explore microarchitectures with different PPA preferences of Son-
icBOOM (small, medium, large, mega, and giga size). The scales are different due to the pipeline
width chosen for various applications (power saving or high-performance scenarios). All experi-
ments are conducted on Quad Intel(R) Xeon(R) CPU E7-4820 V3 with a 1 TB main memory. The
explored microarchitectures are evaluated with EDA tools to report the final PPA metric values.
Specifically, the performance, power, and area values are obtained from Cadence Genus 18.12-
e012_1, Synopsys VCS M-2017.03, and Synopsys PrimeTime PX R-2020.09-SP1, under an ad-
vanced 7-nm technology |Clark et al.|(2016)). The evaluation procedure with EDA tools is detailed in

Figure([§]
4.1 EXPERIMENTS SETTINGS

The components indexes of the microarchitecture design space for Rocket and SonicBOOM has
been listed in Table [T] and Table 2] respectively. More details are shown in Table [5] Table [¢] and
Table|/| We compare our method with previous state-of-the-arts, i.e., Bayesian optimization-based
method Bai et al.| (2021)), and prior arts, including Adaboost RT-based learning methodology |Li
et al.|(2016), ranking-boost-based learning strategy [Chen et al.|(2014), and human implementations
AsanoviC et al.|(2016); Zhao et al.| (2020). The actor and critic stack multi-perceptrons and leaky

Under review as a conference paper at ICLR 2023

Table 1: Components Index of Rocket

Component
BTB I-Cache FPU | MUL/DIV | VM D-Cache
Rocket | 1,2,3,4,5] 1,2,3,4,5,6 | 1,2 1,2,3 1,2 1,2,3,4,5,6,7,8,9

" The values are indexes but not hardware resources; please refer to Tableo check the design
space of detailed hardware resources.

Design

Table 2: Components Index of SonicBOOM

Design Component
BP IFU maxBrCount ROB PRF ISU LSU D-Cache
Small SonicBOOM * | 1,2,3 1,2,9,10 1,2,3 1,2,3 1,6,8,8,9,10,13 1,6,13, 14 1,2,7 1,3,9
Medium SonicBOOM | 1,2, 3 2,3,10 3,4,5,6 4,5,6,7 2,5,10,11 2,7,8,15 2,3,4,6 1,3,9
Large SonicBOOM 1,2,3 | 2,3,4,6,11 5,6,8 7,9, 11 3,511, 12 3,9,10, 12,15, 17 3,5,6,8 2,4,6,10
Mega SonicBOOM 1,2,3 | 4,6,12,14 7,8,9 10, 8, 14, 15 3,5,4,12 4,11, 18 4,5,8,9 4,6,8
Giga SonicBOOM 1,2,3 | 4,57,13 7.8,9 10, 14, 15,17 3,5,4,12 512,19 4,5,8,9,10 4,6,8
" The values are indexes but not hardware resources; please refer to Table@and Tablemto check the design space of detailed hardware resources.
* Different scales of SonicBOOM choose unique decode width and fetch buffer size.
Area — mm? Performance — IPC Power — W Area — mm?
12 1 0.94
o7 0.84 o . 0.92
S 0.82 0.85 10 0o
f & 6 08 8 08 9 0.88
z 078 6 8 0.86
0.76 4 075 74 0.84
1 2 3 4 5 R R S S

Calibration data size

(b)

Figure 5: (a) The accuracy of lightweight PPA Models on SonicBOOM. The blue line is GT =
Pred that helps visualize the error. (b) The Kendall 7 and MAPE curves vs. calibration data size on
SonicBOOM.

Table 3: Accuracy of Lightweight PPA Models

Performance Power Area
MAPE Kendall7 | MAPE Kendall7 | MAPE Kendall 7
Rocket 0.4376% 0.8639 3.9017% 0.9155 1.5268% 0.9483
SonicBOOM | 4.319% 0.8534 3.932% 0.9015 3.730% 0.9214

Design

ReLU Maas et al.| (2013). The coefficient o in Equation is set as 1 for most designs, 8 in Equa-
tion (6 is set as 0.5, A in Equation (7)) is set as 0.95 and the discount factor + in Equation (7) is set as
0.99. Adam optimizer is used, and the initial learning rate is 0.001. Although most baselines are not
targeted to RISC-V implementations, their methods are proven transferable. We implement these
baselines manually according to the papers. The median, vvadd, multiply, and tower benchmarks
from official RISC-V benchmark suites% are selected in the experiments.

4.2 ACCURACY OF LIGHTWEIGHT PPA MODELS

The accurate performance, power, and area values for different microarchitectures are required to
calibrate lightweight PPA models. We built up more than 1000 microarchitectures of Rocket and dif-
ferent scales of SonicBOOM. We leverage GEMS V21.1.0.1 Lowe-Power et al.| (2020) and McPAT
V1.3[Li et al.| (2009). The simulation is conducted with “system call” emulation.

Figure [5a] illustrates the correlation between the ground truths and predictions of lightweight PPA
models for different SonicBOOM microarchitectures. Three models have good correlations with
actual PPA values. A question arises of how many samples are enough to be utilized to calibrate and
guarantee the accuracy of lightweight PPA models for unseen microarchitectures. We obtain the final
lightweight PPA models until we find that Kendall T and mean absolute percentage error (MAPE)
tested under unseen microarchitecture embeddings cannot improve further. Figure[5b]lists Kendall 7
and MAPE curves w.r.t. different calibration data size for SonicBOOM. We observe that by utilizing
approximately 800 microarchitectures of SonicBOOM, lightweight PPA models become harder to be

30fficial RISC-V Benchmark Suites: https://github.com/riscv-software-src/
riscv-tests

Kendall 7

https://github.com/riscv-software-src/riscv-tests
https://github.com/riscv-software-src/riscv-tests

Under review as a conference paper at ICLR 2023

Rocket Medium SonicBOOM
14.00 3.50 ¢
B e— [—— Max. IPC
r_‘ —— Mean IPC
2 z e —— Median IPC
Z£10.00 k= y Min. IPC
< <
= = —— Mean Power
< < | —— Max. Power
& & 2.00 _c'_‘ —— Median Power
bS] T k‘, —— Min. Power
Tj Tj - —— Mean Area
@ 5.00 & —— Max. Area
1.00 —— Median Area
—— Min. Area
2.00
0 20 40 60 80 100 0 100 200 300 400
Time Time
Figure 6: Scaled PPA values curve in the RL training stage.
Table 4: Comparison with Human Efforts and Prior Arts
. Performance Power Area Perf / Power Perf / Area Perf x Perf) / (Power x Area
Design Method IPC W mm? VL - Ratio V. - Ratio (V. — Ratio ke
Human Efforts|Asanovic et al. 08011 0.0026 0.9082 | 304.0123 - 0.8821 - 268.1664 - -
ArchRanker|Chen et al. 20 0.6290 0.0021 05745 | 303.1361 1 0.29% | 1.0948 1 24.11% | 331.8743 123.76% 19371
Rocket Lietal.| 08213 0.0024 0.7408 | 346.9028 114.11% | 1.1086 1 25.68% | 384.5878 143.41% 31855
0.8215 0.0026 0.5978 | 310.8760 12.26% | 13742 155.79% | 427.1965 159.30% 8010
08241 0.0020 0.6397 | 407.4559 134.03% | 1.2882 146.04% | 524.8692 195.73% 12105
07661 0.0212 1.5048 | 36.1382 - 0.5091 - = =
0.8060 0.0229 1.6672 | 35.1593 | 2.71% | 04835 | 5.04% 17.62% 11690
Small SonicBOOM 0.6404 0.0216 1.6634 | 20.7179 | 17.77% | 0.3850 | 24.38% 137.82% 42751
07714 00214 15147 | 36.0875 1 0.14% | 0.5092 10.02% 10.12% 10756
0.7687 0.0208 14865 | 369571 1227% | 05171 1157% 1387% 13616
11003 0.0267 1.9332 | 41.2103 - 0.5692 - 23.4554 - -
©014] 1.075 0.0248 1.8534 | 43.4176 1536% | 0.5798 1 1.87% | 25.1731 117.32% 11305
Medium SonicBOOM Lietal [(2016] 1.0947 0.0276 2.0470 | 39.6647 13.75% | 0.5348 1 6.04% | 21.2129 19.56% 42929
Bai et al. [(2021] 10693 0.0244 1.8251 | 438223 16.34% | 0.5859 12.93% | 25.6734 19.46% 10756
10873 0.0244 18032 | 445615 18.13% | 0.6030 15.94% | 26.8693 114.56% 10955
13128 0.0457 3.2055 | 28.7263 - 0.4095 - 11.7643 - -
12325 0.0413 2.9608 | 29.8600 13.95% | 0.4163 1 1.64% | 12.4295 15.65% 11305
Large SonicBOOM 12800 0.0420 2.9928 | 304235 15.91% | 0.4269 14.25% | 12.9802 110.41% 40782
13144 0.0425 3.0603 | 30.9266 17.66% | 0.4295 14.87% | 13.2830 112.90% 11426
13198 0.0412 3.0334 | 320724 11165% | 04351 1624% | 139542 118.61% 18729
1.6315 0.0592 4.8059 | 27.6090 - 0.3401 - 9.3806 - -
©014] 16109 0.0583 4.7580 | 27.6436 10.13% | 0.3386 10.45% | 9.3594 10.32% 20590
Mega SonicBOOM Lietal [(2016] 1.6464 0.0575 4.8015 | 28.6208 13.66% | 0.3429 10.82% | 9.8139 14.52% 42929
BOOM-Explorer|Bai et al. (2021 16533 0.0564 4.7291 | 203139 16.18% | 0.3496 12.80% | 10.2481 19.14% 11426
1.6408 0.0537 4.3759 | 30.5684 110.72% | 0.3750 110.25% | 11.4617 122.07% 10556
16446 0.0715 5.0691 | 23.0016 - 0.3244 - 7.4626 - -
L6140 0.0700 4.9570 | 23.0742 10.32% | 0.3256 10.36% | 7.5132 10.68% 11690
Giga SonicBOOM 15802 0.0666 4.7926 | 23.8801 13.82% | 0.3316 12.21% | 7.9186 16.11% 43624
16623 0.0753 5.0859 | 22.0758 | 4.03% | 0.3268 10.74% | 7.2154 13.31% 11426
Our Method 16673 0.0697 4.8883 | 23.9207 14.00% | 03411 1513% | 8.1587 19.33% 12667

improved. It suggests that lightweight PPA models can predict PPA values with acceptable accuracy
after calibrating with limited sample size. Table[3|demonstrates the accuracy of the lightweight PPA
models used by RL. Specifically, we use XGBoost [Chen & Guestrin| (2016), and more details are
demonstrated in Table

4.3 RL TRAINING

Figure |6 shows the scaled PPA values curves in the RL training stage. The average performance
(IPC) increase as the training continues, and the average power and area rewards decrease, consistent
with Equation (I). Agents for Medium SonicBOOM are trained with more episodes due to the
larger design space than Rocket. The curves flatten gradually begin at the 80-th and the 160-th
round (A round includes variable episodes controlled by the early-stopping criterion) on two designs,
respectively, denoting the convergence of the training.

4.4 COMPARISON W. HUMAN EFFORTS & PRIOR ARTS

We compare the RL solution to various baselines with three metrics, i.e., Perf/Power, Perf/Area, and
(Perf x Perf) /(Power x Area) for fairness. Different pre-defined preference vectors are used in the
exploration stage of our framework. [0.125,0.5,0.375] is utilized for small scales of SonicBOOM
(Small and Medium) to pursue high power and area efficiency while maintaining the performance
baseline, i.e., 0.76 in IPC for Small SonicBOOM. [0.6,0.2,0.2] is applied to large scales of Son-
icBOOM (Mega and Giga) to emphasize higher performance. [1/3,1/3,1/3] is employed to focus
on PPA balance for Large SonicBOOM. The reason is that modern multi-core systems integrate dif-

Under review as a conference paper at ICLR 2023

Rocket Large SonicBOOM
mm Human Efforts 1 2.5
= ArchExplorer ﬁ Q 2
1 AdaBoost = _ =
B BOOM-Explorer 05 15
= LA ¥ L ki
0 | il Il il
< 0002 S o
= g 0.06
% 0.004 %
2 5 oosf
0.006 0.1%
> & & > & > & X & & > . &y & > e > X x Q >
FFE S TS FFS F&H &S &
s & T & S & & I &

Figure 7: Analysis w. more benchmarks on Rocket and Large SonicBOOM.

ferent scales of processors, i.e., small cores purse high power and area efficiency. In contrast, large
cores require high performance and have soft constraints on power and area overhead.

Table [shows results compared with human efforts and baselines. The running time (RT) for ex-
ploration w.rt. each design, including the RL solution, is also reported in Table] The constrained
optimization follows the settings in (Chen et al.| (2014). Random sampling is chosen for [Bai et al.
(2021) in Rocket. According to Tableld] the explored Rocket and different scales of SonicBOOM by
RL are better than prior works, and human efforts, except that the Rocket searched by ICCAD’21 |Bai
et al.|(2021) possess higher area efficiency. In most cases, higher performance with a better balance
on power and area is achieved, e.g., Giga SonicBOOM found by RL outperforms human imple-
mentations by 1.38% while reducing power dissipation and area overhead by 2.52% and 3.57%.
For small SonicBOOM, the solution given by RL meets the expectation, i.e., maintains minimum
performance requirements while increasing power and area efficiency as much as possible.

4.5 ANALYSIS W. MORE BENCHMARKS

We analyze explored microarchitectures with more benchmarks to study how RL solutions outper-
form other methods and human implementations. Rocket and Large SonicBOOM are chosen in this
section for the analysis.

Figure [/|shows performance (IPC) and power values of Rocket, and Large SonicBOOM with more
official RISC-V benchmark suites. Cross all benchmarks, the Rocket found by RL increases 0.83%
performance, and reduces 31.92% power dissipation than other solutions. Although Rocket given
by ISCA’14 [Chen et al. (2014) reduces 32.12% power dissipation compared with human efforts,
it sacrifices a 23.79% drop in performance. It is worth noting that the RL solution utilizes a two-
way set-associative [-cache, four-way set-associative D-cache, and an unroll pipelined multiplier,
etc. Prior arts and human efforts use a larger return address stack, larger I-cache size, etc., which
bring limited performance improvement while increasing power and area considerably. The Large
SonicBOOM given by RL achieves comparable performance while reducing 9.98% more power
than human efforts. The solution assigns 1.5x more fetch buffers, 1.3 more fetch target queues,
LDQ, STQ, efc., and decreases 50% branch tags, 33% FP registers, and INT issue queue entries,
etc. to maintain low power dissipation. The mt-vvadd and mt-matmul are multi-threaded bench-
marks containing intensive calculations. RL solutioni assign more front-end resources with appro-
priate back-end resources to help fetch more instructions in parallel. Hence, the RL solution gains
1.07% and 2.93% performance improvement while reducing 10.45% and 10.31% power dissipation
on these two benchmarks. We can observe that the RL solutions balance PPA values and retain the
performance requirement across all benchmarks by smartly assigning hardware resources.

5 CONCLUSION

An RL solution is proposed to explore better RISC-V microarchitectures in this work. With an
insight that a tiny change can make a big difference step by step for the task, the RL solution
outperforms previous arts and human efforts. By incorporating the PPA preference space into RL,
the framework can be more practical for industry application. Experiments have verified the method
on RISC-V in-order core and different scales of an out-of-order core.

Under review as a conference paper at ICLR 2023

REFERENCES

Axel Abels, Diederik Roijers, Tom Lenaerts, Ann Nowé, and Denis Steckelmacher. Dynamic
weights in multi-objective deep reinforcement learning. In International Conference on Machine
Learning (ICML), pp. 11-20. PMLR, 2019.

Alon Amid, David Biancolin, Abraham Gonzalez, Daniel Grubb, Sagar Karandikar, Harrison Liew,
Albert Magyar, Howard Mao, Albert Ou, Nathan Pemberton, Paul Rigge, Colin Schmidt, John
Wright, Jerry Zhao, Yakun Sophia Shao, Krste Asanovi¢, and Borivoje Nikoli¢. Chipyard: Inte-
grated Design, Simulation, and Implementation Framework for Custom SoCs. IEEE/ACM Inter-
national Symposium on Microarchitecture (MICRO), 40(4):10-21, 2020.

Krste Asanovic, David A Patterson, and Christopher Celio. The berkeley out-of-order machine
(boom): An industry-competitive, synthesizable, parameterized risc-v processor. Technical re-
port, University of California at Berkeley Berkeley United States, 2015.

Krste Asanovié, Rimas Avizienis, Jonathan Bachrach, et al. The Rocket Chip Generator. Technical
report, University of California, Berkeley, 2016.

T. Austin, E. Larson, and D. Ernst. SimpleScalar: an Infrastructure for Computer System Modeling.
Computer, 35(2):59-67, 2002.

Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, Andrew Waterman, Rimas AviZienis,
John Wawrzynek, and Krste Asanovi¢. Chisel: constructing hardware in a scala embedded lan-
guage. In DAC Design Automation Conference 2012, pp. 1212-1221. IEEE, 2012.

Chen Bai, Qi Sun, Jianwang Zhai, Yuzhe Ma, Bei Yu, and MD Wong. BOOM-Explorer: RISC-V
BOOM Microarchitecture Design Space Exploration Framework. In IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), pp. 1-9, 2021.

Nathan Binkert, Bradford Beckmann, Gabriel Black, et al. The Gem5 Simulator. SIGARCH Comput.
Archit. News, 39(2):1-7, 2011.

David Brooks, Vivek Tiwari, and Margaret Martonosi. Wattch: A framework for architectural-level
power analysis and optimizations. ACM SIGARCH Computer Architecture News, 28(2):83-94,
2000.

David Brooks, Pradip Bose, Viji Srinivasan, Michael K Gschwind, Philip G Emma, and Michael G
Rosenfield. New Methodology for Early-stage, Microarchitecture-level Power-performance Anal-
ysis of Microprocessors. IBM Journal of Research and Development, 47(5.6):653—-670, 2003.

Trevor E Carlson, Wim Heirman, and Lieven Eeckhout. Sniper: Exploring the level of abstraction for
scalable and accurate parallel multi-core simulation. In ACM/IEEE Supercomputing Conference
(SC), pp. 1-12, 2011.

Christopher Patrick Celio. A Highly Productive Implementation of an Out-of-Order Processor Gen-
erator. eScholarship, University of California, 2017.

Chen Chen, Xiaoyan Xiang, et al. Xuantie-910: A commercial multi-core 12-stage pipeline out-
of-order 64-bit high performance risc-v processor with vector extension: Industrial product. In
IEEE/ACM International Symposium on Computer Architecture (ISCA), pp. 52-64, 2020.

Tianqi Chen and Carlos Guestrin. XGBoost: A Scalable Tree Boosting System. In ACM Interna-
tional Conference on Knowledge Discovery and Data Mining (KDD), pp. 785-794, 2016.

Tianshi Chen, Qi Guo, Ke Tang, Olivier Temam, Zhiwei Xu, Zhi-Hua Zhou, and Yunji Chen.
Archranker: A ranking approach to design space exploration. In IEEE/ACM International Sym-
posium on Computer Architecture (ISCA), pp. 1-12, 2014.

Lawrence T Clark, Vinay Vashishtha, Lucian Shifren, Aditya Gujja, Saurabh Sinha, Brian Cline,
Chandarasekaran Ramamurthy, and Greg Yeric. ASAP7: A 7-nm FinFET Predictive Process
Design Kit. Microelectronics Journal, 53:105-115, 2016.

10

Under review as a conference paper at ICLR 2023

Brian Grayson, Jeff Rupley, Gerald Zuraski Zuraski, Eric Quinnell, Daniel A Jiménez, Tarun Nakra,
Paul Kitchin, Ryan Hensley, Edward Brekelbaum, Vikas Sinha, et al. Evolution of the Samsung
Exynos CPU Microarchitecture. In IEEE/ACM International Symposium on Computer Architec-
ture (ISCA), pp. 40-51. IEEE, 2020.

Zhuolun He, Yuzhe Ma, Lu Zhang, Peiyu Liao, Ngai Wong, Bei Yu, and Martin DF Wong. Learn to
floorplan through acquisition of effective local search heuristics. In 2020 IEEE 38th International
Conference on Computer Design (ICCD), pp. 324-331. 1IEEE, 2020.

Engin Ipek, Sally A. McKee, Rich Caruana, Bronis R. de Supinski, and Martin Schulz. Efficiently
Exploring Architectural Design Spaces via Predictive Modeling. In ACM International Confer-
ence on Architectural Support for Programming Languages and Operating Systems (ASPLOS),
pp. 195-206, 2006.

Tejas S Karkhanis and James E Smith. A First-order Superscalar Processor Model. In IEEE/ACM
International Symposium on Computer Architecture (ISCA), pp. 338-349. IEEE, 2004.

Tejas S Karkhanis and James E Smith. Automated design of application specific superscalar proces-
sors: an analytical approach. In IEEE/ACM International Symposium on Computer Architecture
(ISCA), pp. 402-411, 2007.

Vinod Kathail, Shail Aditya, Robert Schreiber, B Ramakrishna Rau, Darren C Cronquist, and
Mukund Sivaraman. PICO: Automatically Designing Custom Computers. [EEE Transactions
on Computers, 35(9):39-47, 2002.

Benjamin C Lee and David M Brooks. Illustrative Design Space Studies with Microarchitectural Re-
gression Models. In IEEE International Symposium on High Performance Computer Architecture
(HPCA), pp. 340-351. IEEE, 2007.

Chun-Yi Lee and Niraj K Jha. CACTI-FinFET: An Integrated Delay and Power Modeling Frame-
work for FinFET-based Caches Under Process Variations. In ACM/IEEE Design Automation
Conference (DAC), pp. 866-871. IEEE, 2011.

Dandan Li, Shuzhen Yao, Yu-Hang Liu, Senzhang Wang, and Xian-He Sun. Efficient design space
exploration via statistical sampling and AdaBoost learning. In ACM/IEEE Design Automation
Conference (DAC), pp. 1-6, 2016.

Sheng Li, Jung Ho Ahn, Richard D. Strong, Jay B. Brockman, Dean M. Tullsen, and Norman P.
Jouppi. MCcPAT: An integrated power, area, and timing modeling framework for multicore and
manycore architectures. In IEEE/ACM International Symposium on Microarchitecture (MICRO),
pp. 469480, 2009.

Li, Sheng and Chen, Ke and Ahn, Jung Ho and Brockman, Jay B and Jouppi, Norman P. CACTI-
P: Architecture-level Modeling for SRAM-based Structures with Advanced Leakage Reduction
Techniques. In IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pp.
694-701. IEEE, 2011.

Jason Lowe-Power, Abdul Mutaal Ahmad, Ayaz Akram, Mohammad Alian, Rico Amslinger, Matteo
Andreozzi, Adria Armejach, Nils Asmussen, Brad Beckmann, Srikant Bharadwaj, et al. The
GEMS Simulator: Version 20.0+. arXiv preprint arXiv:2007.03152, 2020.

Andrew L Maas, Awni Y Hannun, Andrew Y Ng, et al. Rectifier Nonlinearities Improve Neural Net-
work Acoustic Models. In International Conference on Machine Learning (ICML), volume 30,
pp. 3. Citeseer, 2013.

Philippe Magarshack and Pierre G Paulin. System-on-chip Beyond the Nanometer Wall. In
ACM/IEEE Design Automation Conference (DAC), pp. 419-424. IEEE, 2003.

Scott McFarling. Combining Branch Predictors. Technical report, The Western Research Labora-
tory, 1993.

Azalia Mirhoseini, Anna Goldie, Mustafa Yazgan, Joe Wenjie Jiang, Ebrahim Songhori, Shen Wang,
Young-Joon Lee, Eric Johnson, Omkar Pathak, Azade Nazi, et al. A Graph Placement Methodol-
ogy for Fast Chip Design. Nature, 594(7862):207-212, 2021.

11

Under review as a conference paper at ICLR 2023

Volodymyr Mnih, Adria Puigdomenech Badia, et al. Asynchronous Methods for Deep Reinforce-
ment Learning. In International Conference on Machine Learning (ICML), volume 48, pp. 1928—
1937, 2016.

M. Moudgill, P. Bose, and J.H. Moreno. Validation of Turandot, a Fast Processor Model for Mi-
croarchitecture Exploration. In International Performance Computing and Communications Con-
ference (IPCCC), pp. 451457, 1999.

Naveen Muralimanohar, Rajeev Balasubramonian, and Norman P Jouppi. CACTI 6.0: A tool to
model large caches. HP laboratories, 27:28, 2009.

Avadh Patel, Furat Afram, and Kanad Ghose. Marss-x86: A gemu-based micro-architectural and
systems simulator for x86 multicore processors. In Ist International Qemu Users’ Forum, pp.
29-30. Citeseer, 2011.

Jing Peng and Ronald J Williams. Incremental Multi-step Q-learning. In Machine Learning Pro-
ceedings 1994, pp. 226-232. Elsevier, 1994.

Diederik M Roijers and Shimon Whiteson. Multi-objective Decision Making. Synthesis Lectures
on Artificial Intelligence and Machine Learning, 11(1):1-129, 2017.

Diederik Marijn Roijers, Shimon Whiteson, and Frans A Oliechoek. Computing Convex Coverage
Sets for Faster Multi-objective Coordination. Journal of Artificial Intelligence Research, 52:399—
443, 2015.

Daniel Sanchez and Christos Kozyrakis. ZSim: Fast and Accurate Microarchitectural Simulation of
Thousand-core Systems. ACM SIGARCH Computer architecture news, 41(3):475-486, 2013.

John Schulman, Philipp Moritz, Sergey Levine, Michael 1. Jordan, and Pieter Abbeel. High-
Dimensional Continuous Control Using Generalized Advantage Estimation. In Yoshua Bengio
and Yann LeCun (eds.), International Conference on Learning Representations (ICLR), 2016.

André Seznec and Pierre Michaud. A case for (partially) TAgged GEometric history length branch
prediction. The Journal of Instruction-Level Parallelism, 8:23, 2006.

Laurens Van der Maaten and Geoffrey Hinton. Visualizing Data Using t-SNE. Journal of Machine
Learning Research (JMLR), 9(11), 2008.

Runzhe Yang, Xingyuan Sun, and Karthik Narasimhan. A Generalized Algorithm for Multi-
Objective Reinforcement Learning and Policy Adaptation. In Annual Conference on Neural In-
formation Processing Systems (NIPS), 2019.

Matt T Yourst. PTLsim: A Cycle Accurate Full System x86-64 Microarchitectural Simulator. pp.
23-34. IEEE, 2007.

Jerry Zhao, Ben Korpan, Abraham Gonzalez, and Krste Asanovic. SonicBOOM: The 3rd Generation
Berkeley Out-of-order Machine. In Workshop on Computer Architecture Research with RISC-V
(CARRV), 2020.

12

Under review as a conference paper at ICLR 2023

Table 5: Components of Rocket

Index | VM FPU ! MUL/DIV 2 BTB? I-Cache D-Cache
ndex minFLen fLen | mulUnroll mulEarlyOut divEarlyOut | nRAS nEntries BHT | nWays nTLBEntries | nSets nWays nTLBEntries nMSHRs
1 false 0 0 8 true true 0 0 0 4 32 64 4 32 1
true 32 32 1 false false 6 28 512 1 4 64 1 4 0
3 16 32 8 false false 3 14 256 2 4 32 1 4 0
4 32 64 4 true true 12 56 1024 2 16 64 2 4 0
5 16 64 4 false false 8 32 512 2 32 64 2 16 0
6 3 14 512 1 16 64 2 32 1
7 12 56 2048 4 16 64 1 16 0
8 20 80 2048 2 8 64 4 32 2
9 1 8 64 1 4 2
10 4 8 32 4 32 2
11 4 32 64 2 16 2
12 64 2 16 2
13 64 2 16 4
14 64 4 16 4
15 64 4 16 8
! Floating-point process unit.
2 Multipliers and dividers.
3 Branch target buffer stores predicted target branch addresses.
Table 6: Components of SonicBOOM 1
— . §) ’ LSU'! D-Cache RF?
Index | Fetch Width | Branch Predictor | Decode Width | maxBrCount IDQ STQ | nWays nMSHRs nTLBWays | PhyINT PhyFP
1 4 TAGEL 1 6 8 8 4 2 8 52 48
2 8 Gshare 2 8 16 16 8 2 8 80 64
3 BiModal 3 10 24 24 4 4 16 100 96
4 4 12 32 32 8 4 16 128 128
5 5 14 40 40 4 8 32 96 64
6 16 20 20 8 8 32 40 40
7 18 6 6 4 16 48 64 60
8 20 30 30 8 16 48 50 46
9 22 34 34 4 4 8 48 44
10 42 42 8 4 8 72 68
11 90 86
12 132 132
13 46 42
! Load store unit.
2 PhyINT and PhyFP are shorted for the number of integer and floating-point physical registers, respectively.
Table 7: Components of SonicBOOM 11
Index | Instruction Fetch Unit ! ROB ? Instruction Issue Unit 3
Fetch Buffer ~ FTQ MEM.IW MEM.QE MEM.DW INTIW INT.QE INT.DW FPIW FPQE FPDW
1 8 16 30 1 8 1 1 8 1 1 8 1
2 16 32 32 1 12 2 2 20 2 1 16 2
3 24 32 36 1 16 3 3 32 3 1 24 3
4 32 40 52 2 24 4 4 40 4 2 32 4
5 40 32 64 2 24 5 5 40 5 2 32 5
6 30 30 80 1 10 1 1 14 1 1 12 1
7 45 40 84 1 10 2 2 14 2 1 12 2
8 4 8 92 1 14 2 2 26 2 1 20 2
9 6 14 96 1 14 3 3 26 3 1 20 3
10 14 30 100 1 20 3 3 36 3 1 28 3
11 30 38 105 2 20 4 4 36 4 2 28 4
12 36 42 110 2 20 5 5 36 5 2 28 5
13 35 40 118 1 4 1 1 4 1 1 4 1
14 32 36 120 1 6 1 1 6 1 1 6 1
15 128 1 12 2 2 28 2 1 20 2
16 130 1 12 3 3 28 3 1 20 3
17 135 1 14 3 3 30 3 1 22 3
18 2 26 4 4 42 4 2 34 4
19 2 26 5 5 42 5 2 34 5

! Fetch Buffer and FTQ represents fetch buffer entries and fetch target queue entries, respectively.
2 Reorder buffer entries.
3 DW, IW, and QE are shorted for dispatch width, issue width, and queue entries.

APPENDIX

MICROARCHITECTURE DESIGN SPACE

Table[T]and Table[2]only list the indexes to corresponding structures of components. We append the
detailed structures of each component in this section.

As shown in Table [5] Table [and Table[7] the detailed hardware resources for one component are
indexed by an integer listed in Table [I|and Table 2] We include different components into the de-
sign space. For example, different branch predictors are deserved to be explored for various PPA
design preferences in SonicBOOM. TAGE [Seznec & Michaud| (2006) prefers high-performance
computing scenarios while Gshare McFarling| (1993)) is more power-efficient and BiModal is more

13

Under review as a conference paper at ICLR 2023

area-efficient. If the BP of SonicBOOM is 1, then the microarchitecture selects TAGE as the branch
predictor. The number of physical registers and resources of the instruction issue unit is important
for a processor, so various candidates are included in the design space. We manually group the com-
ponents and prune the design space from invalid or inappropriate combinations, e.g., a small fetch
buffer is unlikely to accompany with a large FTQ, a large associative D-Cache does not come with
a few translation-lookaside buffers (TLB) entries, etc. Some combinations that failed to generate
a circuit that can work well are also removed. According to the design space, more than 1 x 10°
microarchitectures exist for Rocket/Asanovic et al.[(2016). Since an out-of-order processor is more
complicated than an in-order design, SonicBOOM [Zhao et al.| (2020) has more than 1 x 10 mi-
croarchitectures in the design space.

THE VERY-LARGE-SCALE-INTEGRATION (VLSI) FLow

The very-large-scale integration (VLSI) flow is leveraged to evaluate accurate PPA values of each
microarchitecture with various EDA tools, as shown in Figure [Il We use Chipyard [Amid et al.
(2020) to generate different Rocket and SonicBOOM microarchitectures. The generated design are
compiled from Chisel [Bachrach et al.|(2012) to register-transfer-level (RTL) circuit descriptions.

Chisel Source Testbench Verilog Simulation driven
Codes Modules libraries
.scala
.h, .cc, v .a, .50

FIRRTL
r

Barstools

Tool

PDK

]
]
[s
]

i

Inputs

.mems.conf

MacroCompiler

| Hammer | Benchmarks

Synopsys
VCS

simv

[] :
ASAP7 . i ~~ .bin (ELF)

: v, .sdc, .sperf vpd2ved
SRAM | .ved —>| GTKWave
Library

:

¢ .db

: Synopsys saif

. PrimeTime PX

Asdb

Figure 8: Overview of the VLSI flow.

Figure [§] illustrates the VLSI flow. Firstly, the RTL designs are synthesized with Cadence Genus
18.12-e012_1. We get the area report after mapping the processor circuit to ASAP7 [Clark et al.
(2016) standard cells. Secondly, we utilize Synopsys VCS M-2017.03 to generate cycle-accurate
simulators (“simv” in Figure 8)for the circuit. Different benchmarks are used to evaluate the perfor-
mance of the simulator. The performance is obtained in this step. Thirdly, Synopsys PrimeTime PX
R-2020.09-SP1 is leveraged to get the power report after we finish the simulation in the second step.
It costs more than 12 hours to get the PPA values for a single Giga SonicBOOM via the VLSI flow
with our high-performance computers. The PPA values are estimated with 1 GHz.

PPA CALIBRATION

In the calibration stage, the accurate PPA values are obtained following the procedure described in
Figure@ In SonicBOOM, with different scales, we use more than a thousand microarchitectures. To
get lightweight PPA models, we try various machine learning methods to calibrate against accurate
PPA values according to Equation (8). Table [§]lists the calibration results with different methods,
and the method is evaluated with ten-fold cross-validation. XGBoost Regression |Chen & Guestrin

14

Under review as a conference paper at ICLR 2023

Table 8: Calibration Results w. Different Methods

Method Performance Power Area
MAPE Kendall 7 MAPE Kendall 7 MAPE Kendall 7

Support Vector Regression | 10.3413% 0.6835 | 30.4165% 0.3614 | 30.1698% 0.7638
LASSO 8.7754% 0.7117 20.6828% 0.4233 4.6288% 0.9088
ElasticNet 8.7156% 0.7121 20.2292% 0.4408 6.0250% 0.8681
KNN Regression 7.4181% 0.7573 16.3281% 0.5531 8.2859% 0.7834
Gaussian Process Regression | 6.9500% 0.8046 9.1173% 0.8042 7.6623% 0.8218
Ridge Regression 6.9011% 0.8051 9.1407% 0.8029 4.5526% 0.9094
Linear Regression 6.8322% 0.8053 8.9513% 0.8070 4.5643% 0.9093
Decision Tree Regression 5.4856% 0.8071 7.6297% 0.8052 6.2462% 0.8552
AdaBoost Regression 7.6717% 0.8306 10.5262% 0.8110 7.1186% 0.8527
Random Forest 4.4335% 0.8507 4.8803% 0.8738 4.5679% 0.9006
XGBoost Regression 4.3197 % 0.8534 3.9327 % 0.9015 3.7300 % 0.9214

(2016) achieves the best calibration results in both MAPE and Kendall 7 among all methods. There-
fore, we adopt XGBoost as the lightweight PPA models.

15

	Introduction
	Related Work
	Methodology
	Problem Formulation.
	Dynamic-weighted Reward.
	Embed Preference Space to RL.
	Actor-Critic Architecture & Local Heuristic Search
	Accelerate Learning via Lightweight PPA Models

	Experiments
	Experiments Settings
	Accuracy of Lightweight PPA Models
	RL training
	Comparison w. Human Efforts & Prior Arts
	Analysis w. More Benchmarks

	Conclusion

