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Abstract
We consider the problem of improving upon a
black-box policy which operates on a different
observation space than the learner. Such prob-
lems occur when augmenting an existing hand-
engineered system with a new machine learning
model or in a shared autonomy / human-AI com-
plementarity context. We prove that following
the naive policy gradient can lead to a decrease
in performance because of incorrect grounding in
a different observation space. We then consider
three settings: a white-box setting in which we,
at train time, have access to both sets of observa-
tions at, a grey-box setting in which we see learner
observations and behavior policy action probabili-
ties, and a black-box setting in which we only see
learner observations and behavior policy actions.
We derive methods for correctly estimating a pol-
icy gradient in each of these settings via an ap-
plication of the backdoor adjustment, importance
sampling, and the proxy correction, respectively.

1. Introduction
Classical results tell us that in a Partially Observed Markov
Decision Process (POMDP), finding high-value policies
that map observations to actions is computationally hard
(Papadimitriou & Tsitsiklis, 1987). Furthermore, a naive
application of MDP techniques (e.g. value-iteration, policy-
iteration, or 𝑄-learning) empirically leads to unstable and of-
ten decaying performance over iterations (Singh et al., 1994;
Littman, 1994). However, folk wisdom suggests that if one
computes (or approximates well) 𝑄𝜋(𝑜, 𝑎) – the long-term
expected return of an observation-action pair – and then
makes “small adjustments" to the policy to select higher
value actions for a given observation, the policy can be re-
liably improved. Such small changes can then be repeated
to achieve a notion of local optima. This folk wisdom finds
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precision for stochastic mixtures of policies (Jaakkola et al.,
1994; Kakade & Langford, 2002; Daumé et al., 2009), pa-
rameterized stochastic policies (Baxter & Bartlett, 2001;
Williams, 1992), and when searching over a set of determin-
istic policies (Bagnell et al., 2003).

An oft-underemphasized requirement for the above policy
improvement theorems to hold is that the proposed change
to the policy uses the same observation space as the policy
it is improving over. In practice, this often doesn’t hold,
as ML practitioners may be attempting to improve a policy
that comes from an existing, effectively black-box system
to them, or even to provide action recommendations to
expert humans who operate with a fundamentally different
observation space.

For example, consider a medical assistance system to help
doctors at a walk-in clinic. In response to observing in-
flamed tonsils, a doctor might prescribe an antibiotic. The
automated system, which operates purely based on nu-
merical information, does not have access to this feature
but does observe that patients always get better after be-
ing prescribed amoxicillin. It would then over-estimate
𝑄doctor(𝑜, amoxicillin), leading to it suggesting unnecessary
prescriptions of a strong medication that could have unfor-
tunate side-effects for patients with issues other than strep
throat. More generally, naively computing 𝑄𝜋(𝑜, 𝑎) where
𝜋 uses a different observation space than 𝑜 can lead to es-
timates of cumulative reward that will not match what the
learner would actually receive at test time.

In this work, we study the perhaps initially surprising fail-
ure of these policy improvement algorithms. We identify
their fundamental issue: when observations spaces differ,
𝑄𝜋(𝑜, 𝑎) becomes causally confounded, rendering the stan-
dard Monte-Carlo estimate inconsistent. We then study
three regimes – first where a richer observation space is
available when we train a policy, but not when we execute
that policy ; second, a more difficult setting where at both
train and test we have access only to a history of an obser-
vation space more limited than the initial policy we wish to
improve over. We also consider a setting in between these
two in which we are given an action probability by the be-
havior policy, rather than just a sample from the policy. Our
technical tools leverage recent advances in proxy variable
correction techniques (Miao et al., 2018; Tchetgen et al.,
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2020) and approximate back-door corrections (Pearl, 2009;
Xu & Gretton, 2022) to provide correct policy gradients in
confounded settings.

More explicitly, our work makes the following four contri-
butions.

1. We formalize the problem of improving upon a pol-
icy with a different observation space. We prove that
correct estimation of 𝑄𝜋(𝑜, 𝑎) values is sufficient for policy
improvement. We then give a family of examples under
which the standard, Monte-Carlo estimate for 𝑄𝜋(𝑜, 𝑎) will
not lead to policy improvement.

2. We consider the “white-box" □ setting when both sets
of observations are available at training time. We show
how we can use Pearl’s backdoor adjustment (Pearl, 2009) to
de-confound our 𝑄-value estimates. We derive a procedure
efficiently approximating the backdoor adjustment using the
output of a simple classifier.

3. We consider the “black-box" ■ setting in which the
learner never observes the features the baseline policy
used to make decisions. Under some assumptions, we
show how we can use the proxy correction (Miao et al.,
2018; Tchetgen et al., 2020; Bennett & Kallus, 2021) to
correct estimate 𝑄-values in the learner’s observation space.
We derive two algorithms for doing so, one of a generative-
modeling flavor and one of a game-theoretic flavor.

4. We consider the “grey-box" ▨ setting in which we
don’t observe the features the baseline policy used to
make decisions but we are given the probability of the ob-
served decision. We derive a simple importance-sampling
based procedure to correct the naive 𝑄-value estimates.

We now turn our attention to formalizing the problem we
consider.

2. Formalism
Consider a POMDP (Kaelbling et al., 1998) with two dif-
ferent observation spaces, 1 and 2. We can represent our
setup via the following structural causal model (SCM).

𝑠𝑡

𝑜2𝑡

𝑜1𝑡
𝑎𝑡 𝑄𝑡

Figure 1. The causal model we consider in this paper. The green
arrow denotes the dependence in the training data, the orange arrow
denotes the dependence of the policy we’re learning.

Let

𝐽 (𝜋𝜃) = 𝔼𝜉∼𝜋𝜃

[ 𝑇
∑

𝑡
𝑟(𝑠𝑡, 𝑎𝑡)

]

(1)

denote the performance of a policy. We assume we see data
generated by some behavior policy 𝜋𝑏 ∶ 1 → Δ() that
consists of tuples of (𝑜2𝑡 , 𝑎𝑡, 𝑄𝑡) and would like to find a di-
rection in policy-space that improves 𝐽 (𝜋𝑏). More formally,
we’re looking for a policy 𝜋 ∶ 2 → Δ() such that

𝐽 ((1 − 𝜖)𝜋𝑏 + (𝜖)𝜋) ≥ 𝐽 (𝜋𝑏) (2)

for small enough 𝜖.

2.1. Policy Improvement in POMDPs

The first complexity we have to deal with is that our policies
depend on observations rather than states. Following an
argument similar to that of Jaakkola et al. (1994), we prove
the following theorem.

Theorem 2.1. Define 𝜋𝜖 = (1 − 𝜖)𝜋𝑏 + (𝜖)𝜋, where 𝜋𝑏
operates on 2 and 𝜋 operates on 1. Then, we have that

𝐽 (𝜋𝜖) − 𝐽 (𝜋𝑏) =

𝜖𝑇𝔼𝑜∼𝜌𝜋𝜖
[𝔼𝑎∼𝜋(𝑎|𝑜)[𝔼𝑠∼𝜌𝜋𝑏 (𝑠|𝑜)

[𝐴𝜋𝑏 (𝑠, 𝑎)]]] + 𝑂(𝜖2𝑇 2).
(3)

Define

𝐴𝜋𝑏 (𝑜, 𝑎) = 𝔼𝑠∼𝜌𝜋𝑏 (𝑠|𝑜)
[𝐴𝜋𝑏 (𝑠, 𝑎) − 𝑉 𝜋𝑏 (𝑠)], (4)

and 𝑄𝜋𝑏 (𝑜, 𝑎), 𝑉 𝜋𝑏 (𝑜) analogously. The above result tells
us that as long as we are able to estimate 𝑄𝜋𝑏 (𝑜, 𝑎) values
correctly, putting more probability mass on actions with
positive advantages with a step of size 𝜖 < 𝑂( 1𝑇 ) is sufficient
to guarantee improvement.

For comparison, consider the (vanilla) policy gradient for
MDPs.

∇𝜃𝐽 (𝜋𝜃) = 𝔼𝜉∼𝜋𝜃

[ 𝑇
∑

𝑡
∇𝜃 log(𝜋𝜃(𝑎|𝑠))𝑄𝜋𝜃 (𝑠, 𝑎)

]

. (5)

One usually subtracts a baseline to reduce variance. 1 The
optimal control variate is the value function (Sutton & Barto,
2018), which gives us the following expression

∇𝜃𝐽 (𝜋𝜃) = 𝔼𝜉∼𝜋𝜃

[ 𝑇
∑

𝑡
∇𝜃 log(𝜋𝜃(𝑎|𝑠))𝐴𝜋𝜃 (𝑠, 𝑎)

]

. (6)

1One usually pre-conditions with the Fisher information matrix
to follow the natural policy gradient (Kakade, 2001), but we ignore
those details for simplicity.
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Similar to our above result, the theory of policy gradients
(Kakade & Langford, 2002; Agarwal et al., 2020) tells us
that mixing in a small enough portion of the greedily optimal
policy is sufficient to guarantee improvement. Thus, the
main difference comes in the definition of the advantage
function: for MDPs, advantages depend on states while for
our setup, advantages depend on the observation space of
the policy we’re mixing in. We therefore turn our attention
to estimating 𝑄-values / advantages.

2.2. An Example of why the Naive 𝑄-value Estimate
Fails

We illustrate the issue with the naive 𝑄-value estimator with
a simple, one-step example.

Problem 2.2 (Cancer Treatment). Consider the following
one-step (contextual bandit) problem. A doctor observes
whether a patient has cancer (1 = {cancer, !cancer}) and
decides whether to instruct them to begin chemotherapy.
The rewards are as follows:

𝑄(cancer, chemo) = 1, 𝑄(!cancer, chemo) = 0, (7)
𝑄(cancer, !chemo) = 0, 𝑄(!cancer, !chemo) = 0.5

We assume 𝛼 fraction of the population has cancer. The
doctor makes a mistake (i.e. picking the action with the
lower 𝑄 value) with probability 𝜖. We want to learn a policy
that, without any observations, improves upon the doctor
(2 = ∅).

To solve this problem, we compute both 𝑄(∅, chemo) and
𝑄(∅, !chemo) by averaging the rewards received when a
patient was / wasn’t given chemotherapy, regardless of their
underlying cancer status. More formally,

�̂�(∅, 𝑎) = 𝔼𝜋𝑏 [𝑄(𝑆, 𝑎)] (8)

We pick the action with the higher 𝑄 value always (i.e.
𝜋(∅) = max𝑎𝑄(∅, 𝑎)). We visualize the region of (𝛼, 𝜖) in
which we pick !chemo in yellow in the below figure. Given
access to the base rate of cancer (𝛼), we can also compute
the ground-truth 𝑄 values, which tell us when giving no
patients chemotherapy would be preferable to giving all
of them chemotherapy. Intuitively, this is true when few
patients have cancer. We visualize this in teal in the figure.

Mixing in any amount of the greedy optimal policy is harm-
ful when �̂� and 𝑄 rank the two actions in the opposite order,
which correspond to the red dots in the above figure. In-
tuitively, the cluster of red dots in the bottom left of the
figure corresponds to the learner under-estimating the value
of chemotherapy when few people need it and doctors rarely
spuriously prescribe it.

If such a problem can happen even in a single-step problem,
it can clearly happen with multiple steps of interaction. We

0.2 0.4 0.6 0.8
p(cancer) = α

0.2
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Greedy Switch Correct

Q̂(chemo) > Q̂(!chemo)

Q(chemo) < Q(!chemo)

Figure 2. We see that when the base rate of cancer is low and the
doctor makes few mistakes, we under-estimate the value of chemo
and would end up providing poor care to people. This is indicated
in the figure by the red dots.

therefore turn our attention to using techniques from causal
inference to de-bias our 𝑄-value estimates.

2.3. White Box □: Estimating 𝑄-values when both
Observations are Available

We first consider the relatively simple setting when both sets
of observations are provided to the learner in the behavioral
data. Formally, we want to compute

𝑄(𝑜2𝑡 , 𝑎) = 𝔼[
𝑇
∑

𝜏=𝑡
𝑟(𝑠𝜏 , 𝑎𝜏 )|𝑑𝑜(𝑎𝑡), 𝑜2𝑡 ]. (9)

Using 𝑄𝑡 as a shorthand for the sum of rewards over the
horizon, we can apply the rules of do-calculus (equivalently,
the backdoor adjustment formula (Pearl, 2009)) to compute
the above causal effect.

𝔼[𝑄𝑡|𝑑𝑜(𝑎𝑡), 𝑜2𝑡 ] =
∑

𝑜1𝑡

𝑃 (𝑜1𝑡 |𝑑𝑜(𝑎𝑡), 𝑜
2
𝑡 )𝔼[𝑄𝑡|𝑑𝑜(𝑎𝑡), 𝑜1𝑡 , 𝑜

2
𝑡 ]

=
∑

𝑜1𝑡

𝑃 (𝑜1𝑡 |𝑑𝑜(𝑎𝑡), 𝑜
2
𝑡 )𝔼[𝑄𝑡|𝑎𝑡, 𝑜

1
𝑡 , 𝑜

2
𝑡 ]

=
∑

𝑜1𝑡

𝑃 (𝑜1𝑡 |𝑜
2
𝑡 )𝔼[𝑄𝑡|𝑎𝑡, 𝑜

1
𝑡 , 𝑜

2
𝑡 ],

where the second equality follows from (𝑄𝑡 ⟂⟂ 𝑎|𝑜1𝑡 , 𝑜
2
𝑡 )𝑎𝑡

and Rule 2 and the third equality follows from (𝑜1𝑡 ⟂⟂
𝑎|𝑜2𝑡 )𝑎𝑡 and Rule 3. Lastly, simple algebra tells us that

𝔼[𝑄𝑡|𝑑𝑜(𝑎𝑡), 𝑜2𝑡 ] = 𝔼𝑜1𝑡

[

𝑃 (𝑜1𝑡 , 𝑜
2
𝑡 )

𝑃 (𝑜1𝑡 )𝑃 (𝑜
2
𝑡 )
𝔼[𝑄𝑡|𝑎𝑡, 𝑜

1
𝑡 , 𝑜

2
𝑡 ]

]

= 𝔼𝑜1𝑡

[

𝑟(𝑜1𝑡 , 𝑜
2
𝑡 )𝔼[𝑄𝑡|𝑎𝑡, 𝑜

1
𝑡 , 𝑜

2
𝑡 ]
]

, (10)

where we use 𝑟(𝑜1𝑡 , 𝑜
2
𝑡 ) to denote the density ratio between

the joint and the product of marginals.
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The above expression gives us the following procedure for
policy improvement.

1. Estimate 𝔼[𝑄𝑡|𝑎𝑡, 𝑜1𝑡 , 𝑜
2
𝑡 ] via regression.

2. Fit a density ratio estimate for 𝑟(𝑜1𝑡 , 𝑜
2
𝑡 ).

3. Fit 𝑄(𝑜2𝑡 , 𝑎𝑡) via a secondary regression with targets
determined via the previous two components.

4. Compute the greedily optimal policy and plug into
your favorite policy improvement method to control
the step size.

We can perform the seconds step via classification be-
tween paired and unpaired samples of 𝑜1𝑡 , 𝑜

2
𝑡 (Hyvarinen

& Morioka, 2016).

2.4. Grey Box ▨: Estimating 𝑄-values with Learner
Observations and Behavior Policy Action
Probabilities

Even if we don’t have access to both sets of observations,
if we are given access to the full distribution of possible
action probabilities from the behavior policy (e.g. 𝑝(𝑎𝑡|𝑜1𝑡 )),
we can use an importance sampling technique to correct the
naive 𝑄-value estimate. Let us build up intuition for why
this is the case.

Pretend for a second that we were able to intervene and
set 𝑎𝑡 based on the outcome of a random coin flip (e.g. a
randomized control trial). Then, we’d clearly be computing
the desired conditional average treatment effect (CATE). We
now argue that access to behavior policy action probabilities
is sufficient to simulate such an unbiased coin flip. Recall
that

𝔼[𝑄𝑡|𝑑𝑜(𝑎𝑡), 𝑜2𝑡 ] =
∑

𝑜1𝑡

𝑃 (𝑜1𝑡 |𝑜
2
𝑡 )𝔼[𝑄𝑡|𝑎𝑡, 𝑜

1
𝑡 , 𝑜

2
𝑡 ] (11)

and

𝔼[𝑄𝑡|𝑎𝑡, 𝑜
2
𝑡 ] =

∑

𝑜1𝑡

𝑃 (𝑜1𝑡 , 𝑎𝑡|𝑜
2
𝑡 )𝔼[𝑄𝑡|𝑎𝑡, 𝑜

1
𝑡 , 𝑜

2
𝑡 ]. (12)

Importantly, this second quantity can be calculated sim-
ply by averaging the observed cumulative returns after an
action-observation pair. The critical step is to realize that
importance weights

𝑃 (𝑜1𝑡 |𝑜
2
𝑡 )

𝑃 (𝑜1𝑡 , 𝑎𝑡|𝑜
2
𝑡 )

=
𝑃 (𝑜1𝑡 , 𝑜

2
𝑡 )

𝑃 (𝑜1𝑡 , 𝑎𝑡, 𝑜
2
𝑡 )

= 1
𝑃 (𝑎𝑡|𝑜1𝑡 , 𝑜

2
𝑡 )

= 1
𝑃 (𝑎𝑡|𝑜1𝑡 )

,

where the last equality comes from the fact that 𝑎𝑡 ⟂⟂ 𝑜2𝑡 |𝑜
1
𝑡 .

Thus, simply by re-weighting the observed returns by the
inverse of the observed action probabilities, we are able

to estimate the causal effect, all without ever seeing the
behavior policy’s observation. Putting it all together, our
proposed estimator for the grey-box setting is

𝔼[𝑄𝑡|𝑑𝑜(𝑎𝑡), 𝑜2𝑡 ] = 𝔼

[

𝑄𝑡

𝑃 (𝑎𝑡|𝑜1𝑡 )
|

|

|

𝑜𝑡2, 𝑎𝑡

]

. (13)

We would then plug in these 𝑄 values estimates into a
policy improvement method like CPI (Kakade & Langford,
2002) to ensure we don’t take too large of a step towards
the greedily optimal policy.

2.5. Black Box ■: Estimating 𝑄-values with only
Learner Observations

We first describe the general technique we use before spe-
cializing to our case of POMDPs. The argument we present
below is a slight generalization of that in Xu et al. (2021).

2.5.1. THE PROXY CORRECTION

We are attempting to determine causal effect 𝔼[𝑌 |𝑑𝑜(𝑎), 𝑥].
Unfortunately, 𝑌 , 𝐴,𝑋 all have a common parent: unob-
served confounder 𝑈 . However, we have access to two
“proxies", 𝑊 ,𝑍, for the unobserved 𝑈 that we can use
to estimate the effect. Formally, we require the following
independence conditions (Miao et al., 2018):

C1: 𝑊 ⟂⟂ (𝐴,𝑍)|𝑈,𝑋 (14)

C2: 𝑌 ⟂⟂ 𝑍|𝐴,𝑈,𝑋 (15)

An example of a graph that satisfies these conditions is
drawn in Figure 3, left. Consider the following set of condi-
tional moment restrictions (CMR) on 𝑔:

𝔼[𝑌 |𝑎, 𝑧, 𝑥] = 𝔼[𝑔(𝑎, 𝑥,𝑊 )|𝑎, 𝑧, 𝑥],∀(𝑎, 𝑧, 𝑥) ∈ (××).
(16)

We prove the following theorem.

Theorem 2.3. Define

ℎ(𝑎, 𝑥) = 𝔼𝑊 |𝑥[𝑔(𝑎, 𝑥,𝑊 )]. (17)

If 𝑔 satisfies Equation 16, then 𝔼[𝑌 |𝑑𝑜(𝑎), 𝑥] = ℎ(𝑎, 𝑥).

Swamy et al. (2022) provide two methods for learning a 𝑔
that satisfies the CMR in one of two ways. The first is via
game-solving:

min
𝑔

max
𝑓

𝔼[𝑓 (𝐴,𝑋,𝑍)(𝑌−𝑔(𝐴,𝑋,𝑊 ))−0.5𝑓 2(𝐴,𝑋,𝑍)].

The second is via generative modeling. First, we learn a
model of 𝑃 (𝑊 |𝑎, 𝑧, 𝑥). Then, we minimize the following
MSE

min
𝑔

𝔼𝐴,𝑍,𝑋[(𝔼[𝑌 |𝑎, 𝑧, 𝑥] − 𝔼[𝑔(𝑎, 𝑥,𝑊 )|𝑎, 𝑧, 𝑥])2]. (18)
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𝑍 𝑈 𝑊

𝑋

𝐴 𝑌

𝑎𝑡−1 𝑜1𝑡 , 𝑠𝑡 𝑎𝑡+1

𝑜2𝑡

𝑎𝑡 𝑄𝑡

𝑜2𝑡−1 𝑠𝑡−1, 𝑠𝑡 𝑜2𝑡

𝑎𝑡 𝑄𝑡

Figure 3. Causal models that satisfy the independence assumptions required to apply the proxy correction.

Importantly, by drawing separate samples of 𝑊 for both
evaluations of 𝑔 inside the square, we avoid the so-called
“double-sample" problem that can lead to inconsistent esti-
mates of a causal effect (Baird, 1995).

A third family of techniques, described by Xu et al. (2021),
alternates between solving two regression problems, each
of which corresponds to one of the stages of the above
generative modeling approach. More formally, we assume
that we can write 𝑔 and the conditional feature mean as

𝑔(𝑎, 𝑥,𝑤) = 𝑢𝑇 (Ψ𝐴(2)(𝑎)⊗Ψ𝑋(2)(𝑥)⊗Ψ𝑊 (𝑤))

𝔼𝑊 |𝑎,𝑧,𝑥[Ψ𝑊 (𝑤)] = 𝑉 (Ψ𝐴(1)(𝑎)⊗Ψ𝑍 (𝑧)⊗Ψ𝑋(1)(𝑥)),

where all Ψ are learned neural networks and 𝑢 and 𝑉 are
a vector and matrix with closed-form expressions, respec-
tively. Observe that because we take a tensor product ⊗
between the output of neural network features which can
be arbitrarily high dimensional, the above separation into
functions of each random variable is without meaningful
restriction on functions representable. We then alternate
between minimizing two loss functions over subsets of the
parameters. We refer interested readers to Xu et al. (2021)’s
excellent paper for more details.

2.5.2. APPLYING THE PROXY CORRECTION TO
POMDPS

Due to space concerns, we only write out the full form of
the game-solving variant.

Approach 1. Consider the SCM in Figure 3, center.

Observe that we satisfy the requisite independence assump-
tions:

C1: 𝑎𝑡−1 ⟂⟂ (𝑎𝑡, 𝑎𝑡+1)|𝑠𝑡, 𝑜2𝑡 , 𝑜
1
𝑡 (19)

C2: 𝑄𝑡 ⟂⟂ 𝑎𝑡−1|𝑎𝑡, 𝑠𝑡, 𝑜
2
𝑡 , 𝑜

1
𝑡 (20)

Putting it all together, we suggest the following method for
policy improvement

1. Solve game

min
𝑔

max
𝑓

𝔼[𝑓 (𝑎𝑡, 𝑜2𝑡 , 𝑎𝑡−1)(𝑄𝑡 − 𝑔(𝑎𝑡, 𝑜2𝑡 , 𝑎𝑡+1))

−0.5𝑓 2(𝑎𝑡, 𝑜2𝑡 , 𝑎𝑡−1)]

2. Fit generative model of 𝑃 (𝑎𝑡+1|𝑜𝑡).

3. Fit a model of 𝑄𝜋𝑏 (𝑜2𝑡 , 𝑎𝑡) = 𝔼𝑎𝑡+1|𝑜𝑡 [𝑔(𝑎𝑡, 𝑜𝑡, 𝑎𝑡+1)] via
regression.

4. Compute the greedily optimal policy and plug into a
policy improvement method to control the step size.

Note that the generative model we have to fit in the second
step is just a policy.

Approach 2. An alternative approach which would allow us
to estimate the same quantity would be to use the past and
current observations as proxies (Bennett & Kallus, 2021).
We visualize this approach graphically in Figure 3, right.

Note that because we directly use the observation as one of
the proxies, we don’t need to perform a secondary averaging.
We can solve the following game to recover 𝑄𝑡:

min
𝑔

max
𝑓

𝔼[𝑓 (𝑎𝑡, 𝑜𝑡−1)(𝑄𝑡 − 𝑔(𝑎𝑡, 𝑜𝑡)) − 0.5𝑓 2(𝑎𝑡, 𝑜𝑡−1)]

After solving for 𝑔, we can directly plug it into an advantage
estimation procedure (Schulman et al., 2018), allowing us
to compute causally correct policy gradients.
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A. Proofs
A.1. Proof of Theorem 2.1

Proof. Via the performance difference lemma (Kakade & Langford, 2002),

𝐽 (𝜋𝜖) − 𝐽 (𝜋𝑏) = 𝑇𝔼𝑎,𝑜∼𝜌𝜋𝜖
[𝔼𝑠∼𝜌𝜖(𝑠|𝑜)[𝐴

𝜋𝑏 (𝑠, 𝑎)]]. (21)

Fix 𝑜 ∈ 2. Consider

𝔼𝑎∼𝜌𝜋𝜖 (𝑜)
[𝔼𝑠∼𝜌𝜖(𝑠|𝑜)[𝐴

𝜋𝑏 (𝑠, 𝑎)]] =
∑

𝑎∈
(𝜋𝑏(𝑎|𝑜) + Δ(𝑎|𝑜))

∑

𝑠∈
(𝜌𝜋𝑏 (𝑠|𝑜) + Δ(𝑠|𝑜))(𝑄𝜋𝑏 (𝑠, 𝑎) − 𝑉 𝜋𝑏 (𝑠))

=
∑

𝑎∈
Δ(𝑎|𝑜)

∑

𝑠∈
(𝜌𝜋𝑏 (𝑠|𝑜) + Δ(𝑠|𝑜))(𝑄𝜋𝑏 (𝑠, 𝑎) − 𝑉 𝜋𝑏 (𝑠))

= 𝜖
∑

𝑎∈
𝜋(𝑎|𝑜)

∑

𝑠∈
(𝜌𝜋𝑏 (𝑠|𝑜) + Δ(𝑠|𝑜))(𝑄𝜋𝑏 (𝑠, 𝑎) − 𝑉 𝜋𝑏 (𝑠))

= 𝜖
∑

𝑎∈
𝜋(𝑎|𝑜)

∑

𝑠∈
(𝜌𝜋𝑏 (𝑠|𝑜))(𝑄

𝜋𝑏 (𝑠, 𝑎) − 𝑉 𝜋𝑏 (𝑠)) + 𝑂(𝜖2𝑇 2).

The last line comes from the fact that
𝑑𝑇𝑉 (𝜌𝜋𝑏 (𝑠|𝑜), 𝜌𝜋𝜖 (𝑠|𝑜)) ≤ 𝜖𝑇 , (22)

as proved in Agarwal et al. (2019).

Taking the average over observations tells us that

𝐽 (𝜋𝜖) − 𝐽 (𝜋𝑏) = 𝜖𝑇𝔼𝑜∼𝜌𝜋𝜖
[𝔼𝑎∼𝜋(𝑎|𝑜)[𝔼𝑠∼𝜌𝜋𝑏 (𝑠|𝑜)

[𝐴𝜋𝑏 (𝑠, 𝑎)]]] + 𝑂(𝜖2𝑇 2). (23)

A.2. Proof of Theorem 2.3

Proof. Via backdoor adjustment (Pearl, 2009),

𝔼[𝑔(𝑎, 𝑥,𝑊 )|𝑎, 𝑧, 𝑥] = 𝔼𝑈 |𝑎,𝑧,𝑥[𝔼[𝑔(𝑎, 𝑥,𝑊 )|𝑎, 𝑧, 𝑥, 𝑢]] = 𝔼𝑈 |𝑎,𝑧,𝑥[𝔼[𝑔(𝑎, 𝑥,𝑊 )|𝑥, 𝑢]], (24)

where the second equality comes from assumption C1. Next, we note that

𝔼[𝑌 |𝑎, 𝑧, 𝑥] = 𝔼𝑈 |𝑎,𝑧,𝑥[𝔼[𝑌 |𝑎, 𝑧, 𝑥, 𝑢]] = 𝔼𝑈 |𝑎,𝑧,𝑥[𝔼[𝑌 |𝑎, 𝑥, 𝑢]], (25)

where the second equality comes from assumption C2. Now, if we satisfy the CMR uniformly, we know that

𝔼𝑈 |𝑎,𝑧,𝑥[𝔼[𝑔(𝑎, 𝑥,𝑊 )|𝑥, 𝑢] − 𝔼[𝑌 |𝑎, 𝑥, 𝑢]] = 0. (26)

If we assume "completeness" of our confounder (Miao et al., 2018; Tchetgen et al., 2020), this implies that the above
condition implies the following pointwise guarantee:

𝔼[𝑔(𝑎, 𝑥,𝑊 )|𝑥, 𝑢] = 𝔼[𝑌 |𝑎, 𝑥, 𝑢]. (27)

This guarantee allows us to plug the LHS into the backdoor adjustment formula for the causal effect. More formally,

𝔼[𝑌 |𝑑𝑜(𝑎), 𝑥] = 𝔼𝑈 |𝑥[𝔼[𝑌 |𝑎, 𝑢, 𝑥]] = 𝔼𝑈 |𝑥[𝔼[𝑔(𝑎, 𝑥,𝑊 )|𝑥, 𝑢]] = 𝔼𝑊 |𝑥[𝔼[𝑔(𝑎, 𝑥,𝑊 )], (28)

where the first equality comes from the backdoor adjustment formula and the last from the law of iterated expectation.


