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Abstract

We study the Human Activity Recognition (HAR) task, which predicts user
daily activity based on time series data from wearable sensors. Recently, re-
searchers use end-to-end Artificial Neural Networks (ANNs) to extract the fea-
tures and perform classification in HAR. However, ANNs pose a huge compu-
tation burden on wearable devices and lack temporal feature extraction. In this
work, we leverage Spiking Neural Networks (SNNs)—an architecture inspired
by biological neurons—to HAR tasks. SNNs allow spatio-temporal extraction
of features and enjoy low-power computation with binary spikes. We conduct
extensive experiments on three HAR datasets with SNNs, demonstrating that
SNNs are on par with ANNs in terms of accuracy while reducing up to 94%
energy consumption. The code is publicly available in https://github.com/
Intelligent-Computing-Lab-Yale/SNN_HAR

1 Introduction

With the rapid development of smart devices such as phones and fitness trackers, sensing user
activities or behavioral insights becomes more important for healthcare purposes. In this case, Human
Activity Recognition (HAR) [1, 2, 3] seeks to predict the user activities using the smart devices’
sensors such as accelerometer, gyroscope, electroencephalogram (EEG) sensor, etc. The objective of
HAR includes sports injury detection, well-being management, medical diagnosis, smart building
solutions [4] and elderly care [5].

Traditionally, researchers use hand-crafted features and simple classifiers for HAR tasks. Yet this
type of method requires expert knowledge to get high-quality features. More recently, deep learning
has been introduced to use end-to-end feature extraction, as well as classification [6]. They use
convolutional layers in the Artificial Neural Networks (ANNs) [7, 8, 9] and optimize the model with
gradient descent. However, ANNs use full precision (i.e. 32-bit floating-point operations) computation
and incur low sparsity, bringing huge computation complexity and energy consumption to wearable
devices. In addition, ANNs use ReLU neurons that do not consider correlation in time. This choice
may be sub-optimal, especially for time series data since it simply adapts the ANN regime from the
image domain.

To overcome the above limitations, we utilize Spiking Neural Networks (SNNs) [10, 11, 12, 13,
14, 15, 16, 17, 18, 19, 20] combined with convolutional layers for dealing with time series data in
HAR. The HAR can be benefited from SNNs in two aspects: (1) SNNs take advantage of binary
spikes (either 0 or 1) and thus enjoy multiplication-free and highly sparse computation that lowers
energy consumption on time-series data; (2) SNNs can inherently model the temporal dynamics in
time series data. The spiking neurons from SNNs maintain a variable called the membrane potential
through time. As long as the membrane potential exceeds a pre-defined threshold, the neuron will fire
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Figure 1: The schematic view of artificial neurons and spiking neurons. Artificial neuron takes full precision
input and rectifies it if it is less than 0 and passes it otherwise; spiking neuron considers the correlation between
times, and fires a spike only if the membrane potential is higher than a threshold.

a spike in the current time step. We verify our SNNs on three popular HAR datasets (UCI-HAR [3],
UniMB SHAR [21], HHAR [22]) and compare them with ANNs baselines. Our SNNs can deliver
the same or even higher accuracy than ANNs while reducing up to 94% energy consumption.

The rest of this paper is organized as follows: Sec. 2 describes the problem statement and our approach
to spatio-temporal SNN. Sec. 3 provides the experimental results and visualization on three HAR
datasets. Finally, we give our conclusion remark in Sec. 4.

2 Method

2.1 Notation and Problem Statement

In this paper, vectors/matrices are denoted with bold italic/capital letters (e.g. x and W represents
the input vector and weight matrix). Constants are denoted by small upright letters.

Concretely, we denote the wearable-based sensor dataset with {xi}Ni=1, and each sample xi ∈ RT×D

is collected when the wearer is doing certain activity yi, e.g. running, sitting, lying, standing, etc.
Here, data samples are streaming and have T time steps in total. D is the dimension of the sensor’s
output. As an example, the accelerometer records the acceleration in the (x, y, z)-axis, thus D = 3
for the accelerometer data. We are interested in designing an end-to-end model f(·) and optimizing it
to predict the accurate activity label y.

2.2 Spiking Neurons

We adopt the well-known Leaky-Integrate-and-Fire (LIF) neurons model for spiking neurons [23],
which constantly receive inputs and outputs spikes through time. Formally, the LIF neuron maintains
the membrane potential v through time, and suppose at t-th time step (1 ≤ t ≤ T ), the membrane
potential receives the pre-synaptic input charge c(t), given by

v(t+1),pre = τv(t) + c(t),where c(t) = Ws(t). (1)

Here, τ is a constant between [0, 1] representing the decay factor of the membrane potential as time
flows, which controls the correlation between time steps. τ = 0 stands for 0 correlation and LIF
degenerates to binary activation [24] without temporal dynamics, while τ = 1 stands for maximum
correlation and [25, 26] proves that LIF will become ReLU neuron when T is sufficiently large.
c(t+1) is the product between weights W and the spike s(t+1) from last layer. After receiving the
input charge, the LIF neuron will fire a spike if the pre-synaptic membrane potential exceeds some
threshold, given by

s(t+1) =

{
1 if v(t+1),pre > Vth

0 otherwise
, (2)

where Vth is the firing threshold. Note that the spike s(t+1) will propagate to the next layer, here we
omit the layer index for simplicity.

If the LIF neurons fire the spike, the membrane potential will be reset. This can be done by either
soft-reset or hard-reset, denoted by{

v(t+1) = v(t+1),pre · (1− s(t+1)) # Hard-Reset
v(t+1) = v(t+1),pre − s(t+1) · Vth # Soft-Reset

, (3)
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where hard-reset sets v(t+1) to 0, while soft-reset subtracts v(t+1) by Vth. We choose LIF neurons
because the s(t+1) is binary and dependent on input in previous time steps. In our experiments, we
will conduct ablation studies on the decay factor, the firing threshold, and the reset mechanism. In
Fig. 1, we provide an overview difference between ANN and SNN neurons.

2.3 Integrating Spiking Neurons into Network

We integrate spiking neurons into deep neural networks by replacing their non-linear activation
with LIF. Specifically, since the time series data naturally has a time dimension, we also integrate
the pre-synaptic potential charge along this time dimension. For instance, suppose a ∈ Rn×c×T

is a pre-activation tensor, where n, c, T represent the batch size, channel number, and total time
steps, respectively, we set the charge in each time step for LIF as the pre-activation in corresponding
time step, i.e. c(t) = a:,:,t. Then, we stack the output spikes along the time dimension again, i.e.
S = stack({s(t)}Tt=1), for calculating the pre-activation in next layer.

2.4 Optimization

Although LIF neurons manage to model the temporal features and produce binary spikes, the firing
function (Eq. (2)) is discrete and thus produces zero gradients almost everywhere, prohibiting gradient-
based optimization. Particularly, the gradient of loss (denoted by L) w.r.t. weights can be computed
using the chain rule:

∂L

∂W
=

T∑
t=1

∂L

∂s(t)
∂s(t)

∂v(t),pre

(
∂v(t),pre

∂c(t)
∂c(t)

∂W
+

t−1∑
t′=1

∂v(t),pre

∂v(t)

∂v(t)

∂v(t′),pre

∂v(t′),pre

∂c(t′)
∂c(t

′)

∂W

)
. (4)

Here, all other terms can be differentiated except ∂s(t)

∂v(t),pre which brings zero-but-all gradients. To
circumvent this problem, we use the surrogate gradient method [27]. In detail, we use the triangle
surrogate gradient, given by

∂s(t)

∂v(t),pre = max

(
0, 1−

∣∣∣∣v(t),pre

Vth
− 1

∣∣∣∣) . (5)

As a result, the SNNs can be optimized with stochastic gradient descent algorithms.

3 Experiments

In this section, we verify the effectiveness and efficiency of our SNNs on three popular HAR
benchmarks. We first briefly provide the implementation details of our experiments and then compare
our method with ANNs’ baselines. Finally, we conduct ablation studies to validate our design choices.

3.1 Implementation Details

We implement our SNNs and existing ANNs with the PyTorch framework [28]. For all our experi-
ments, we use Adam optimizer [29]. All models are trained for 60 epochs, with batch size 128. The
only flexible hyper-parameter is the learning rate, which is selected from {1e− 4, 3e− 4, 1e− 3}
with the best validation accuracy. We use Cosine Annealing Decay for the learning rate schedule. For
all three HAR datasets, we split them to 64% as the training set, 16% as the validation set, and 20%
as the test set. We report test accuracy when the model reaches the best validation accuracy. Note
that these datasets only have one label for each input sample, therefore top-1 accuracy is the same as
the F-1 score. The dataset descriptions are shown below:

UCI-HAR [3] contains 10.3k instances collected from 30 subjects. It involves 6 different activities
including walking, walking upstairs, walking downstairs, sitting, standing, and lying. The sensors are
the 3-axis accelerometer and 3-axis gyroscope (both are 50Hz) from Samsung Galaxy SII.

UniMB SHAR [21] contains 11.7k instances collected from 30 subjects. It involves 17 different
activities including 9 kinds of daily living activities and 6 kinds of fall activities. The sensor is the
3-axis accelerometer (maximum 50Hz) from Samsung Galaxy Nexus I9250.
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Table 1: Accuracy comparison between different networks on three HAR datasets (DCL=DeepConvLSTM).

Model CNN DCL LSTM Transformer SpikeCNN SpikeDCL

UCI-HAR [3] 96.29±0.12 97.87±0.32 82.41±4.04 96.02±0.27 96.40±0.15 98.86±0.28
SHAR [21] 92.38±0.51 90.78±1.05 83.87±0.96 83.19±0.74 94.04±0.34 92.08±0.77
HHAR [22] 96.19±0.14 97.15±0.17 95.59±0.20 95.82±0.16 96.20±0.09 97.52±0.10
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(b) SHAR

Figure 2: Hardware performance comparison between ANN and SNN. The ANN’s energy consumption is
normalized to 1.

HHAR [22] contains 57k instances collected from 9 subjects. It involves 6 daily activities including
biking, sitting, standing, walking, stair up, and stair down. The sensors are accelerometers from 8
smartphones and 4 smart watches (sampling rate from 50Hz to 200Hz).

3.2 Comparison with ANNs

Task Performance. For ANN baselines, we select CNN [30], DeepConvLSTM [31], LSTM [32],
and Transformer [33] architectures. For our SNNs, we integrate them into CNN and DeepConvLSTM.
The architecture specifications can be found in our code. Each result is averaged from 5 runs (random
seeds from 1000 to 1004) and includes a standard deviation value. We summarize the results in
Table 1, from which we find the SNNs have higher accuracy than the ANNs. For example, on the
UniMB SHAR dataset, SpikeCNN has a 1.7% average accuracy improvement over its artificial CNN
counterpart. Even more remarkably, the SpikeDeepConvLSTM (SpikeDCL) on the UCI-HAR dataset
reaches 98.86% accuracy, which is 1% higher than DCL. Considering the accuracy is approaching
100%, the 1% improvement would be very significant. For UCI-HAR and HHAR datasets, we find
SpikeCNN has similar accuracy to CNN, instead, the SpikeDeepConvLSTM consistently outperforms
DeepConvLSTM, indicating that SNNs can be more coherent with the LSTM layer. Regarding the
standard deviation of accuracy, we find that SNNs are usually more stable than ANNs, except for
only one case, SpikeCNN on UCI-HAR.

Hardware Performance. Here, we compare two metrics, namely the activation sparsity and the
energy consumption. Higher sparsity can avoid more computations with weights in hardware that
supports sparse computation. We measure the sparsity either in ReLU (ANNs) or in LIF (SNNs) and
visualize them in Fig. 2 left side. The ReLU in ANN usually has around 50% sparsity, an intuitive
result since the mean of activation is usually around 0. LIF neurons, however, exhibit a higher sparsity,
approximately 80%, probably due to the threshold for firing being larger than 0. As a result, the SNN
has a higher potential to save more operations in inference.

The second metric in hardware performance is energy consumption. We estimate the energy con-
sumption by evaluating the proposed SNN model together with our ReLU-based ANN baseline
through the energy simulator proposed in [34]. Particularly, we estimate the energy reduction ratio on
the hardware accelerator [34]. The results are shown in Fig. 2 right side. It can be seen that SNNs
consume up to 94% less energy than ANNs, which could largely promote the battery life in smart
devices. In summary, SNNs bring higher task performance due to the LIF neurons, and also energy
efficiency due to the binary representation with high sparsity.

3.3 Ablation Studies

In this section, we conduct ablation studies with respect to the (hyper)-parameters in the LIF neurons,
including decay factor, threshold, and reset mechanism. We test SpikeDCL and SpikeCNN on
UCI-HAR and SHAR datasets.
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Table 2: Ablation study on the decay factor τ .

Dataset Model Decay Factor τ

0.0 0.25 0.5 0.75 1.0

UCI-HAR [3] SpikeCNN 95.48 95.63 95.78 96.40 95.92
SpikeDCL 94.36 96.50 97.57 98.86 96.60

SHAR [21] SpikeCNN 93.54 94.04 93.48 93.85 74.68
SpikeDCL 89.53 92.08 90.93 90.10 60.55

Table 3: Ablation study on the firing threshold Vth and the reset mechanism.

Dataset Model Firing Threshold Vth Reset
0.25 0.5 0.75 1.0 Hard Soft

UCI-HAR [3] SpikeCNN 95.71 96.40 96.18 96.11 96.09 96.40
SpikeDCL 98.27 98.86 97.60 96.81 98.53 98.73

SHAR [21] SpikeCNN 93.91 94.04 93.89 93.87 92.75 94.04
SpikeDCL 91.42 92.08 91.72 91.53 91.13 92.08

Decay Factor. We select 5 fixed decay factors from {0.0, 0.25, 0.5, 0.75, 1.0}. Note that as discussed
before τ = 0 indicates no correlation between two consecutive time steps, therefore SNN becomes
equivalent to Binary Activation Networks (BAN), while τ = 1 indicates full correlation. We provide
all results in Table 2. We can find that τ has a huge impact on the final test accuracy. For the
UCI-HAR dataset with SpikeDCL, the accuracy of τ = 0 is 94.36% while the accuracy of τ = 0.75
is 98.86%. Additionally, if we compare other 0 < τ < 1 cases with τ = 0, we find that τ = 0 always
produces a large deficiency. This indicates that considering the temporal correlation with τ > 0 is
necessary for the time series tasks. Moreover, for the SHAR dataset, the τ = 1 only has 60.55%
accuracy while the τ = 0.25 case achieves 91.72% accuracy.

Firing Threshold. We next study the effect of the firing threshold. Generally, the firing threshold
is related to the easiness of firing a spike. We set the threshold in {0.25, 0.5, 0.75, 1.0} and run the
same experiments with the former ablation. Here, through Table 3 we observe that the firing threshold
has a unified pattern. SNN reaches its highest performance when the firing threshold is set to 0.5.
This result is not surprising since 0.5 is in the mid of 0 and 1, and thus has the lowest error for the
firing function (see Eq. (2)). Meanwhile, we find the difference in accuracy brought by the firing
threshold is lower than the decay factor. For instance, the largest gap when changing the threshold
for SpikeDCL on the SHAR dataset is 0.65%, while this gap can be 32% when changing the decay
factor. Therefore, the SNN is more sensitive to the decay factor rather than the threshold.

Reset Mechanism. Finally, we verify the reset mechanism for SNNs, namely soft-reset and hard-reset.
The results are sorted in the Table 3 as well. For all cases, the soft-reset mechanism is better than
the hard-reset. We think the reason behind this is that the hard reset will directly set the membrane
potential to 0, therefore cutting off the correlation between two time steps. Instead, the soft reset
keeps some information on membrane potential after firing.

4 Conclusion

In this paper, we have introduced Spiking Neural Networks (SNNs) for HAR tasks, which, to our best
knowledge, is the first of its kind study. Compared to the original Artificial Neural Networks (ANNs),
SNNs utilize their LIF neurons to generate spikes through time, bringing energy efficiency as well as
temporally correlated non-linearity. Our results show that SNNs achieve competitive accuracy while
reducing energy significantly.
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