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Abstract
Warning: This paper contains content that is001
offensive and may be upsetting.002

Biased or toxic speech can be harmful to var-003
ious demographic groups. Therefore, it is004
not only important for models to detect these005
speech, but to also output explanations of why006
a given text is toxic. Previous literature has007
mostly focused on classifying and detecting008
toxic speech, and existing efforts on explaining009
stereotypes in toxic speech mainly use standard010
text generation approaches, resulting in generic011
and repetitive explanations. Building on these012
prior works, we introduce a novel knowledge-013
informed encoder-decoder framework to utilize014
multiple knowledge sources to generate impli-015
cations of biased text. Experiments show that016
our knowledge informed models outperform017
prior state-of-the-art models significantly, and018
can generate detailed explanations of stereo-019
types in toxic speech compared to baselines,020
both quantitatively and qualitatively.021

1 Introduction022

The toxic speech detection and classification prob-023

lem has seen increasing interest in recent years.024

However, it is not only important for AI agents025

to recognize and classify toxic speech, but to also026

explain why it is toxic. For instance, debiasing027

methods that use information about toxic language028

may benefit from additional information given by029

detailed explanations of toxicity in text (Ma et al.,030

2020). Furthermore, detailed explanations of tox-031

icity may facilitate human interaction with toxic-032

ity detection systems (Rosenfeld and Richardson,033

2019). They can also help humans who work with034

toxicity classifiers use more information about the035

input when making decisions about toxic speech.036

To elucidate, consider the following offensive joke:037

“What type of punch do you use against a kinder-038

gartener? A sandy-hook.". While the literal text is039

not toxic, the implied meaning is offensive, partic-040

ularly to those affected by school shootings. An AI041

agent capable of generating the implied meaning 042

could thus provide additional information to down- 043

stream actors. Note that, we use the term biased 044

and toxic interchangeably in this work. 045

Existing work largely addresses the problem of 046

detecting and classifying toxic speech (Waseem 047

and Hovy, 2016; Founta et al., 2018; Davidson 048

et al., 2017). As mentioned earlier, explanations 049

of toxicity can help with downstream tasks such 050

as debiasing or decision making by humans, thus 051

there has been increasing demand for explainable 052

machine learning classifiers (Ribeiro et al., 2016; 053

Došilović et al., 2018). Recent work around ex- 054

plainable toxicity classification introduced Social 055

Bias Frames (Sap et al., 2020), a formal framework 056

which combines explanations of toxicity along with 057

toxicity classifications along multiple dimensions. 058

However the explanations generated from the cur- 059

rent state-of-the-art methods tend to be generic, 060

without much detail. For instance, explanations 061

may focus on certain toxic components of the input 062

but ignore others, or include irrelevant stereotypes 063

about the minority group affected. 064

To fill this gap, our work proposes to leverage 065

different types of knowledge to provide rich context 066

and background for toxicity explanation. Specif- 067

ically, we introduce a novel framework to utilize 068

three distinct knowledge sources. Prior work (Yu 069

et al., 2020a) divides knowledge broadly into inter- 070

nal and external knowledge, where internal knowl- 071

edge is knowledge embedded in the input text, and 072

external knowledge is derived from sources out- 073

side the input. Building upon these, we leverage 074

expert knowledge that comes from high-quality 075

expert annotations of the input, and explicit knowl- 076

edge from knowledge graphs and bases, as such 077

symbolic knowledge can provide relevant infor- 078

mation to the output text (Yu et al., 2020a; Mou 079

et al., 2016). While knowledge graphs and bases 080

deterministically retrieve and restructure knowl- 081

edge from raw text sources, large pretrained gen- 082
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Figure 1: MixGEN takes 3 types of knowledge sources
and outputs an implied explanation for the input post.

erative models are found to be effective in out-083

putting useful knowledge in a probabilistic manner,084

complementing the expert and explicit knowledge085

(Razniewski et al., 2021). To this end, we also086

include implicit knowledge models which source087

knowledge from large pretrained text generation088

models. We further build a family of mixture mod-089

els, MIXGEN, to synthesize knowledge from all090

three sources, as shown in Figure 1. To sum up,091

our contributions are two-fold: (1) We leverage092

three different sources of knowledge, and further093

combine them using simple yet effective mixture094

models to explain toxic text. (2) We show that our095

models outperform prior state-of-the-art baselines096

and generate more detailed explanations.097

2 Related Work098

Prior work on knowledge enhanced text genera-099

tion (Yu et al., 2020b) can be viewed across two100

different knowledge sources.101

2.1 Internal Knowledge102

Internal knowledge includes knowledge that is103

available within the input. For instance, Latent104

Dirichlet Allocation (LDA) (Blei et al., 2003) can105

learn topics from inputs, which can then be incorpo-106

rated into text generation models (Cao et al., 2015;107

Guo et al., 2019). Keywords may also be extracted108

from input text using techniques like TF-IDF, PMI109

or independent classifiers. In one such work, Song110

et al. (2019) extract emotion oriented keywords us-111

ing an independent emotion classifier to enhance112

dialogue generation. Similarly, Mou et al. (2016)113

use PMI to find relevant keywords for short text114

conversation. Forbes et al. (2020) develop concep-115

tual formalisms that rely on annotations about the116

input to generate text. In this work, we denote the117

use of independent annotations on input to enhance118

text generation as expert knowledge, as such an- 119

notations often come from human experts. 120

2.2 External Knowledge 121

Knowledge graphs and bases are commonly used as 122

a form of external knowledge. Zhang et al. (2019) 123

use knowledge graph embeddings to model con- 124

versation flow, while Guan et al. (2020) use triples 125

extracted from knowledge graphs to enhance story 126

generation. Finally, Lian et al. (2019) develop 127

probabilistic mechanisms to select knowledge from 128

knowledge bases for response generation. Knowl- 129

edge from conventional sources are determinsti- 130

cally created, in that they simply restructure raw 131

text and store them in a knowledge base or graph. 132

We refer to this type of external knowledge as ex- 133

plicit knowledge. On the other hand, there has 134

been increasing interest in the use of large pre- 135

trained generative models as a source of knowl- 136

edge. Heinzerling and Inui (2021) argue that large 137

pretrained models can in fact serve as knowledge 138

bases, while Davison et al. (2019) argue that pre- 139

trained models can accurately assess the validity of 140

knowledge mined from raw text. While pretrained 141

models are also trained on raw texts, similar to 142

knowledge bases and graphs, they draw from this 143

knowledge probabilistically and thus are a distinct 144

approach. We denote this type of external knowl- 145

edge as implicit knowledge. 146

2.3 Toxic Text Understanding 147

Prior work around toxicity understanding mainly 148

focuses on detection (Schmidt and Wiegand, 2017). 149

Early approaches include using n-grams (Waseem 150

and Hovy, 2016; Sood et al., 2012; Perera and Fer- 151

nando, 2021) as well as word clustering (Xiang 152

et al., 2012; Zhong et al., 2016). Recently, knowl- 153

edge enhanced approaches have also been used 154

for toxicity detection. For instance, Dinakar et al. 155

(2012) use ConceptNet to detect anti-LGBT bul- 156

lying. The use of meta-information, such as infor- 157

mation about the user (Dadvar et al., 2012), has 158

proven to be useful, depending on the type of in- 159

formation used. Sap et al. (2020) use Social Bias 160

Frames to produce both toxicity classifications and 161

explanations of toxicity. Similarly, our approach 162

attempts to explain toxicity by leveraging different 163

sources of knowledge to provide more context and 164

grounding for the models to generate explanations. 165

Different from many prior works, we synthesize 166

these diverse knowledge sources in a unified frame- 167

work to utilize the unique contribution from each 168

2



individual knowledge source.169

3 Knowledge Enhanced MIXGEN170

This section presents our selected three different171

types of knowledge— expert knowledge, explicit172

knowledge and implicit knowledge, and our MIX-173

GEN models for toxicity explanation.174

3.1 Expert Knowledge175

Expert knowledge is sourced from annotations of176

the input. For instance, in the Social Bias Frames177

dataset (Sap et al., 2020), such expert knowledge178

include human judgements towards the lewdness,179

offensiveness, intent to offend, and group targeted180

categories. This type of expert knowledge provides181

useful insights and heuristics for the toxicity expla-182

nation task, if they are available.183

We incorporate expert knowledge into the gener-184

ation process using the join embedding technique185

(Pryzant et al., 2020) along with toxicity classifi-186

cation models. The join embedding architecture187

uses attention weights from the toxicity classifiers188

to inform the text generation model about parts189

of the input post relevant to toxicity classification,190

thus providing a heuristic for the related toxicity191

explanation task. Formal details of the architecture192

can be found in Appendix A.1.193

We denote these models with the naming conven-194

tion, “EXPERT [FEATURE]", where “[FEATURE]"195

is the categorical variable we use for the join em-196

bedding. We replace “[FEATURE]" with “ALL"197

when we train on all features.198

3.2 Explicit Knowledge199

Explicit knowledge is sourced from some knowl-200

edge base or graph. Common sources include Con-201

ceptNET, DBpedia, WikiData, etc. (Auer et al.,202

2007; Vrandečić and Krötzsch, 2014). We opt203

to use ConceptNet (Speer et al., 2017), since it204

contains commonsense knowledge (Liu and Singh,205

2004). Commonsense knowledge incorporates ev-206

eryday concepts, especially knowledge regarding207

social groups and situations.208

Following Chang et al. (2020), given a BART209

model and an input, we extract ranked triples re-210

lated to the input post and keep the top k triples per211

post where we vary the k ∈ {3, 5, 10, 15, 20, 25}.212

We experiment with both concatenation and atten-213

tion based methods to incorporate the top k triples,214

but settle on a concatenation based approach due215

to its simplicity and the lack of performance gains216

from the attention based approach. Results and 217

analysis for both the concatenation and attention 218

based approaches are provided in Appendix 12. We 219

denote these models with the naming convention, 220

“EXPLICIT (K)", where K denotes the number of 221

triples used. 222

3.3 Implicit Knowledge 223

Implicit knowledge is obtained from some text gen- 224

erator, such as a large pretrained generative model. 225

Prior work such as Heinzerling and Inui (2021), 226

argue that large pretrained models can in fact serve 227

as knowledge bases. Implicit knowledge grants 228

models a probabilistic view of external raw text 229

sources related to a given scenario or input, since 230

generative models tend to generate based on sta- 231

tistical correlations found in their training corpora 232

(Razniewski et al., 2021). 233

To use implicit knowledge, we first train a BART 234

model to generate the target minority group from 235

the input post. Following Sheng et al. (2019), we 236

use the predicted target minority corresponding 237

to each input post and a set of prompts to induce 238

biased prompt completions from GPT models. We 239

may use multiple prompts per input post, where 240

the number of prompt completions generated is 241

governed by a hyperparameter, k. Then we train an 242

independent BART model to generate these biased 243

prompt completions, given the origin input post. 244

This BART model is then retrained to produce the 245

implied stereotype, given the input post. Again, we 246

provide a formal description in Appendix A.3. 247

We denote these models with “IMPLICIT 248

[GPT|GPT-2] (K)", where “GPT" and “GPT-2" 249

correspond to the model used for prompt comple- 250

tion, while K corresponds to the number of biased 251

prompt completions generated per input post. 252

3.4 MIXGEN Models 253

We introduce a simple and effective approach to 254

combine all three knowledge sources as input for 255

our MIXGEN family of models, and generate 256

the final stereotype by integrating complementary 257

knowledge from these sources. In our design, we 258

take inspiration from Mixture of Experts models 259

(Masoudnia and Ebrahimpour, 2012), which com- 260

bine base expert model outputs into a final output 261

using a gating mechanism. Here, we rely on at- 262

tention mechanisms over the knowledge informed 263

model outputs to serve as the gating mechanism. 264

We build two variants. The first variant is called 265

MIXGEN CONCAT which uses concatenation to 266
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Type Description Pros Cons

Expert Knowledge Expert judgements from an-
notations on the input.

• Easy-to-use.
• High quality and accurate

knowledge.

• Sparse and hard to obtain.
• Difficult to get a lot of diverse

knowledge.

Explicit Knowledge External knowledge sourced
from knowledge bases and
graphs. Restructured, de-
terminstic interpretations of
raw text sources.

• Many knowledge bases and
graphs exist.

• Easy to query due to symbolic
representation.

• Explainable since knowledge
source is known.

• Fixed knowledge, thus limited
retrieval diversity.

• Explicitly constructed, thus
may not be complete.

Implicit Knowledge External knowledge sourced
from large pretrained mod-
els. Probabilistically gener-
ated from raw text sources

• Easy to retrieval.
• Probabilistic, thus increasing

diversity in retrieval.

• Low explainability.
• Low quality, since the knowl-

edge is implicitly learned.

Table 1: Some pros and cons about different types of knowledge used for toxicity explanation.

Figure 2: The MIXGEN model takes in the output of
multiple trained knowledge models, concatenates them
with separator tokens and uses the concatenation as
input to a BART model to output the explanation. We
test with six models, two from each knowledge source.

combine outputs from the knowledge informed267

models, as shown in Figure 2. The second vari-268

ant is called MIXGEN MULTIVIEW which uses269

views to perform self attention over outputs of270

the knowledge informed models (Chen and Yang,271

2020). Since the BART model already uses self272

attention over input tokens, we experiment with273

the MultiView architecture to see whether the addi-274

tional self attention mechanisms of the MultiView275

model causes changes in performance.276

For MIXGEN CONCAT, suppose we have k277

trained models, M1, . . . ,Mk, each trained to278

produce the implied stereotype given the in-279

put post, and each informed by one of the280

aforementioned knowledge types. We con-281

catenate the outputs of each knowledge based 282

model, Mi, to produce a new input string. 283

Thus if each model Mi outputs “s[OUT_I]", we 284

get the following concatenated input string: 285

“s[OUT_1][SEP]s[OUT_2] · · · [SEP]s[OUT_K]". Now, 286

let M be a standard pretrained BART model. We 287

train model M to produce the implied stereotype 288

using “s[OUT_1][SEP]s[OUT_2] · · · [SEP]s[OUT_K]" 289

as input. Note that the knowledge based models, 290

M1, . . . ,Mk are fixed when training M . Model M 291

serves as the final MIXGEN CONCAT model. 292

MIXGEN MULTIVIEW uses the MultiView ar- 293

chitecture proposed by Chen and Yang (2020). In 294

this case, the outputs of M1, . . . ,Mk are treated 295

as separate views. If each model Mi outputs 296

“s[OUT_I]" given the input post, then for each 297

model Mi we configure the corresponding view 298

as the string “v1is[OUT_1][SEP] · · · v2is[OUT_I]v3i · 299

[SEP]s[OUT_K]", where v1i, v2i, and v3i are view 300

tokens. Here, v1i is always the first token in the 301

view string and v2i and v3i surround Mi’s output. 302

We configure k such views (one for each model) 303

and pass each into the BART MultiView model as 304

a set of views corresponding to the original input 305

post. The BART MultiView model is then trained 306

to produce the corresponding output stereotype. 307

For details on the MultiView architecture, please 308

see Chen and Yang (2020). 309

3.5 Training 310

We utilize the BART encoder decoder framework 311

throughout (Lewis et al., 2020). We use batch gra- 312

dient descent when training. For a batch B with 313

padded input sequences Xi of length Ns and corre- 314

sponding padded target sequences Yi of length Nt, 315

along with knowledge Ki from some knowledge 316
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Dataset # Posts Annotations/Post

SBIC Train 35933 3.14
SBIC Dev 4680 3.58
SBIC Test 4705 3.72

Implicit Hate Train 5722 1
Implicit Hate Test 636 1

Table 2: Dataset statistics.

source, we minimize cross entropy loss:317

L =− 1

|B|Nt
·

|B|∑
i=1

Nt∑
j=1

log p(Yij |Yi(1:j−1), Xi,Ki)

(1)318

4 Experimental Setup319

4.1 Dataset320

We conduct our experiments on the SBIC dataset321

(Sap et al., 2020) and the Implicit Hate dataset322

(ElSherief et al., 2021). The SBIC dataset contains323

an input post, toxicity annotations and free text an-324

notations of the implied stereotype. We work with325

the input post and the the implied stereotype. The326

Implicit Hate dataset (ElSherief et al., 2021) con-327

tains free text annotations of the implied stereotype.328

Dataset statistics are provided in Table 2.329

4.2 Baselines330

We compare our models with BART, and state of331

the art baselines from Sap et al. (2020):332

• GPT: Following Sap et al. (2020), we train333

the GPT pretrained model from huggingface334

to generate the toxicity classifications, the Tar-335

get Minority, and the Implied Stereotype as a336

string, when prompted with the input post.337

• GPT-2: We train with the same setting as the338

GPT Baseline, but use the GPT-2 pretrained339

model from huggingface.340

• BART: We train a standard pretrained BART341

model to generate the implied stereotype342

when given the input post.343

4.3 Evaluation Metrics344

We use BLEU (Papineni et al., 2002), ROUGE-L345

(Lin, 2004) and BERTScore (Zhang et al., 2020) to346

evaluate our models and take the maximum score347

for each hypothesis over all of the corresponding348

references. We use BERTScore since it looks for349

semantic similarity, unlike the other two metrics. 350

We do not use human evaluation, since generated 351

stereotypes are minimal in length compared to 352

other text generation tasks. Moreover, we perform 353

manual analyses of the results in Section 5. 354

4.4 Results on SBIC 355

Our results on both dev and test are described in 356

Table 3. Here we focus on dev since both sets of 357

results track similar trends. We observe that the 358

MIXGEN models outperform all other models. Af- 359

ter MIXGEN, the model using Implicit Knowledge 360

sources perform best. These are followed by the 361

model using Explicit Knowledge, in turn followed 362

by model using Expert Knowledge. 363

Both models with explicit and with implicit 364

knowledge outperform expert language models. 365

The models using implicit knowledge tend to per- 366

form best overall (BLEU: from 0.650 to 0.683, 367

ROUGE-L: from 0.624 to 0.659, BERTScore: 368

from 0.759 to 0.800). This is likely because im- 369

plicit knowledge is less structured and hence easier 370

to induce bias from (Petroni et al., 2019). On the 371

other hand, while our source (ConceptNET) for 372

explicit knowledge may be biased (Mehrabi et al., 373

2021), retrieved stereotypes are often mixed with 374

general, unbiased facts. 375

The MIXGEN models outperform every other 376

model. This makes intuitive sense since MIXGEN 377

synthesizes multiple types of knowledge. Unex- 378

pectedly, MIXGEN MULTIVIEW model does not 379

improve performance (the absolute difference is 380

within 0.002 across all scores) over MIXGEN 381

CONCAT. This is likely due to the fact that the 382

MultiView model was intended to capture meta- 383

sequences in text (Chen and Yang, 2020), whereas 384

in our setting the input is not sequential. We also 385

note that the MIXGEN models perform better than 386

the source models, despite their input being sourced 387

from the source models. Thus, despite differing 388

performance, models from different knowledge 389

sources are likely providing some distinct and com- 390

plementary information. 391

4.5 Results on Implicit Hate Speech Corpus 392

Results on the implicit hate corpus (ElSherief et al., 393

2021) are given in Table 4. All models (including 394

baselines) generally perform worse than they do 395

on the SBIC dataset. This is likely because the im- 396

plicit hate corpus contains one reference per post, 397

in contrast to the SBIC dataset (see Table 2). While 398

the Expert knowledge model performs worse than 399
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Model dev test
BLEU ROUGE-L BERTScore BLEU ROUGE-L BERTScore

GPT 0.597 0.579 0.712 0.591 0.574 0.713
GPT-2 0.617 0.601 0.733 0.620 0.605 0.741
BART Base 0.495 0.467 0.624 0.505 0.476 0.638

EXPERT (GROUP) 0.630∗ 0.604∗ 0.765∗ 0.637∗∗ 0.608∗ 0.776∗

EXPLICIT (20) 0.650∗∗ 0.624∗∗ 0.770∗∗ 0.645∗∗ 0.617∗∗ 0.773∗∗

IMPLICIT GPT-2 (15) 0.683∗∗ 0.659∗∗ 0.800∗∗ 0.689∗∗ 0.662∗∗ 0.811∗∗

MIXGEN CONCAT 0.692∗∗ 0.665∗∗ 0.807∗∗ 0.696∗∗ 0.669∗∗ 0.817∗∗

MIXGEN MULTIVIEW 0.691∗∗ 0.664∗∗ 0.806∗∗ 0.694∗∗ 0.666∗∗ 0.816∗∗

Table 3: We report performance of baseline models (first three rows) and our representative models from each
knowledge source. A superscript of * indicates statistically significant (p-value < 0.05) improvements over the GPT
and BART baselines, while a superscript of ** indicates statistically significant improvements over all baselines.
We use Wilcoxon’s signed rank test with a one sided alternative hypothesis to compute p values (Wilcoxon, 1992).

Model BLEU ROUGE-L BERTS.

BART Base 0.460 0.323 0.909

Exp. (Grp) 0.404 0.234 0.894
Expl. (20) 0.463∗ 0.327∗ 0.909
Impl. GPT-2 (15) 0.463∗ 0.331∗ 0.910∗

MIXGEN C 0.467∗ 0.340∗ 0.912∗

MIXGEN MV 0.459 0.325∗ 0.910∗

Table 4: This table shows the performance of our mod-
els on the implicit hate corpus (ElSherief et al., 2021).
BERTS. stands for BERTScore. A superscript of * indi-
cates statistically significant (p value < 0.05) improve-
ments over the BART baseline.

the baseline, the other models perform slightly bet-400

ter. This is likely because the Expert model relies401

on toxicity classifications, which weren’t available402

in the implicit hate corpus. We believe our models403

can be generalized to text generation tasks on other404

datasets, but they likely need multiple reference405

points where the implicit hate corpus only has one.406

5 Error Analysis and Ablation Studies407

We perform analyses and ablation studies on model408

results on the SBIC dataset. We do not perform409

these on the implicit hate dataset, since we have410

too few references per example. Examples of the411

error and challenge types below are given in Table412

5. An additional full set of examples for each error413

and challenge type is given in Appendix 13.414

5.1 Error Analysis415

We categorize the types of errors made by models416

on a small sample of 200 examples from the dev417

set and provide the distributions in Figure 3. We418

provide the error categories below.419

Figure 3: Distribution on the four error types across
knowledge types and baselines.

1. Non-Existent Stereotype: Model gener- 420

ates a stereotype when the reference stereo- 421

type is an empty string. 422

2. Ignores Stereotype: Model does not gener- 423

ate a stereotype when the reference stereotype 424

is a non-empty string. 425

3. Incorrect Target Minority: Model uses 426

the incorrect target minority. 427

4. Incorrect Stereotype: Model uses the cor- 428

rect target minority but generates an incorrect 429

or overly general stereotype. 430

The baseline GPT models tend to make more 431

errors of every type, except that the expert model 432

makes more errors of type 4. The expert model 433

likely focuses on tokens that trigger toxicity clas- 434

sifications, which makes it less likely to focus on 435

other relevant tokens. In the second example of 436
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Figure 4: Distribution of challenges across knowledge
types and baselines. We leave out cases of where models
detect non existent stereotypes from challenge type 2.

Table 5, the token “black" may be triggering the437

Expert Model, causing an error of type 4.438

The knowledge enhanced models rarely fail to439

generate a stereotype (type 2 error). On the other440

hand, they often detect non existent stereotypes441

(type 1 error), but less often than the baselines. In442

the third example of Table 5, “contraceptive" may443

be incorrectly triggering the implicit and explicit444

models, while the expert model is not triggered.445

5.2 Challenges in Stereotype Generation446

We categorize the various challenges faced by our447

text generation models and provide distributions in448

Figure 4 and counts in Appendix 15. We analyze449

the same sample of 200 examples from Section 5.1.450

1. Misunderstands Post: The model funda-451

mentally misunderstands the post and gener-452

ates an irrelevant stereotype as a result.453

2. High Sensitivity: The model is highly454

sensitive to trigger words, which causes it455

to detect non-existent stereotypes or generate456

stereotypes based on the triggers alone.457

3. Localized Generation: The model focuses458

only on parts of the input and generates stereo-459

types based on those parts, rather than on the460

entire input post.461

4. Does not Draw Connections: The model462

clearly considers the entire input post, but463

does not draw connections between the dif-464

ferent parts of the post.465

5. Misunderstands Sarcasm or Irony: The466

model takes a more literal interpretation of467

a sarcastic or ironic post, causing it to out- 468

put text that has the opposite meaning of the 469

reference stereotype. 470

6. Ignores Stereotype: The model does not 471

generate a stereotype despite a non-empty ref- 472

erence stereotype. 473

Interestingly, the MIXGEN model tends to mis- 474

understand sarcasm and irony at a slightly higher 475

rate than the other knowledge model types. In the 476

fourth example of 5, MIXGEN and the Implicit 477

Model take literal interpretations of the input post. 478

The Implicit Model type has difficulty with drawing 479

connections over the input (challenge type 4). An 480

example is given in the 6th row of Table 5, where 481

the model does not draw a connection between the 482

target minority and the stereotypes present. 483

5.3 How MIXGEN Synthesizes Knowledge 484

Table 5 provides examples of MIXGEN synthesiz- 485

ing knowledge across sources. In the third example, 486

MIXGEN produces an empty string even though 487

two of the more reliable sources (explicit and im- 488

plicit knowledge) produce non empty strings. In 489

the fifth example, MIXGEN clearly combines parts 490

of all the knowledge sources, while in the sixth ex- 491

ample MIXGEN produces a more accurate stereo- 492

type than any of the other models. Thus, it seems 493

that MIXGEN does not simply attempt to copy the 494

correct model, but actually possess a deeper under- 495

standing of the knowledge types it synthesizes. 496

5.4 Implicit Knowledge Ablation Study 497

Table 6 contains results of ablations on the Implicit 498

Knowledge models. We vary the amount (k) and 499

source (GPT and GPT-2) of implicit knowledge. 500

The model which sources knowledge using GPT 501

only outperforms the model sourcing knowledge 502

using GPT-2 when k = 3. When k = 15, the latter 503

model sourcing GPT-2 knowledge outperforms the 504

model sourcing knowledge from GPT. It is possible 505

that GPT-2 is less biased than GPT, thus benefiting 506

our model for low k, but that these benefits decrease 507

as k increases. With greater k, both models have a 508

greater chance of exhibiting bias. 509

5.5 MIXGEN CONCAT Ablation Study 510

In Table 7, we look at ablations on the number 511

of knowledge informed models, for the MIXGEN 512

CONCAT model. Let k be the number of knowl- 513

edge informed models. The variant using k = 6 514

7



Input Post Target Stereotype Expert Explicit Implicit MIXGEN

what’s the best part about being
a midget pedophile? your dick
can fit.

can fit inside a per-
son sexually

mentally dis-
abled folks are
incompetent
(3,1)

midgets are
gross (4,2)

midgets
have small
penises (-,-)

midgets
have small
penises (-,-)

what’s the most perfect thing? a
rainbow, because it has no black
on it.

black people are
worth less

black people are
criminals (4,2)

black people
are inferior
(-,-)

black people
are inferior
(-,-)

black people
are inferior
(-,-)

when we finally get the male
contraceptive pill, it should be
red.

“" “" (-,-) women are
promiscuous
(1,2)

women are
promiscu-
ous (1,2)

“" (-,-)

what do a dull blade and a lethar-
gic emo have in common? they
both don’t cut like they used to

mentally ill people
cut themselves

makes light of
child molesta-
tion (3,1)

mentally
disabled folks
aren’t smart
(4,1)

emos don’t
cut (4,5)

physically
disabled
folks are
useless (3,5)

what do you call two anorexic
lesbians with yeast infections:
double quarter pounder with
cheese

lesbians are dirty lesbians can’t
drive (4,2)

anorexics are
gross (4,3)

anorexics
are gross
(4,3)

lesbians are
gross (-,-)

what’s can a white man say that
a black man can’t? “thanks offi-
cer!" and “hey dad!"

black folks are crim-
inals,black fathers
are not present in
childrens lives

black people are
criminals (-,-)

black people
don’t have fa-
thers (-,-)

black people
can’t be
trusted (4,4)

black men
abandon
their kids
(-,-)

Table 5: Examples of generation from MIXGEN. The Error Type and the Challenge Type are given in parenthesis,
“(error type number, challenge type number.)", with a “(-,-)" signifying no error.

Model dev test

GPT 0.712 0.713
GPT-2 0.733 0.741
BART Base 0.624 0.638

IMPLICIT GPT (3) 0.787 0.796
IMPLICIT GPT (15) 0.796 0.807
IMPLICIT GPT-2 (3) 0.783 0.795
IMPLICIT GPT-2 (15) 0.800 0.811

Table 6: BERTScores of baseline models and the im-
plicit knowledge models.

Model dev test

GPT 0.712 0.713
GPT-2 0.733 0.741
BART Base 0.624 0.638

MIXGEN CONCAT (3) 0.803 0.814
MIXGEN CONCAT (6) 0.807 0.817
MIXGEN CONCAT (9) 0.799 0.804

Table 7: BERTScores of baselines and our MIXGEN
CONCAT models. The value in parentheses indicates
the number of knowledge informed models used.

models performs best. Since the models variants515

within each knowledge type only vary by some hy-516

perparameter, information gain probably saturates517

as the number of models increases; however per-518

formance decreases when k = 9. Since we tend to519

include models with lower performance for larger520

k, worse performing models are likely counter pro-521

ductive. 522

6 Conclusion 523

In this paper, we propose a novel framework MIX- 524

GEN to generate the stereotypes present in toxic so- 525

cial media posts, using multiple knowledge sources. 526

We categorized three different sources of knowl- 527

edge and synthesize the sources of knowledge us- 528

ing the MIXGEN models. While the knowledge 529

models perform as well as baselines, models built 530

on different knowledge types vary in strengths and 531

weaknesses. For instance, the expert model suffers 532

from high sensitivity to trigger words, while the 533

implicit models may not draw connections over 534

complex inputs. The MIXGEN models takes this 535

into account and minimizes the number of exam- 536

ples on which it has errors and/or faces challenges. 537

We conclude that mixture and ensemble methods 538

as simple as concatenation can leverage the com- 539

plementary nature of distinct knowledge sources to 540

produce high quality text generations. 541

On the other hand, the MIXGEN model requires 542

significant computational power. One needs to train 543

models across knowledge sources, and then train 544

the MIXGEN model itself. Future work may allevi- 545

ate this burden by considering end to end solutions, 546

or more efficient knowledge retrieval techniques. 547
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Ethical Considerations548

Models such as the one proposed in this paper,549

which output toicity classifications of text or speech550

and reasoning behind such classifications should be551

used with care. Considerations of algorithmic fair-552

ness should be taken into account (Corbett-Davies553

et al., 2017), as well as cultural differences (Oliva554

et al., 2020) and racial biases (Xia et al., 2020)555

which can lead to misclassifications of offensive-556

ness. Care should be taken to avoid political bias557

in training datasets, when training these models558

for deployment purposes (Wich et al., 2020). Fi-559

nally, concerns about censorship should be taken560

seriously (Heins, 2014).561
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A Formal Details for Knowledge 812

Incorporation 813

A.1 Expert Knowledge 814

A.1.1 Incorporating Expert Knowledge using 815

the Join Embedding Technique 816

Given the BERT classifier with m attention heads, 817

an input with length n, and a BART model with 818

hidden dimension d, we pass the input to the BERT 819

classifier to retrieve the attention head outputs of 820

the last layer, namely a1, . . . , am, each in Rn. We 821

also pass the input to the BART model and retrieve 822

the BART encoded input, namely H ∈ Rn×d. Let 823

v1, . . . , vm in Rd be trainable weight vectors. For 824

the j-th row vector, hj of H , we compute an en- 825

riched hidden state h′j as follows: 826

(h′j)
T = hTj +

m∑
i=1

aijvi (2) 827

We then pass the enriched hidden state through the 828

BART decoder to generate the output stereotype. 829

To combine knowledge from multiple variables, we 830

sum the enriched hidden state in Equation (2) over 831

each variable. 832

A.2 Explicit Knowledge 833

A.2.1 Incorporating Explicit Knowledge using 834

Concatenation 835

In this section, we provide formal details on how 836

we incorporate explicit knowledge from Concept- 837

NET using concatenation. In order to retrieve the 838

top k triples (varying k ∈ {3, 5, 10, 15, 20, 25}), 839

we first extract nouns, verbs, and adjectives from 840

the input as our query tokens. We then query Con- 841

ceptNet for triples associated with the query tokens 842

and sort the triples by the product of the query’s 843

IDF weight and the triple’s edge weight. 844

We then translate the triples into English (Robyn 845

Speer, 2019). For example, if the entities “car" 846

and “vehicle" are connected by the edge relation 847

“IsA", the translation would be “Car is a vehi- 848

cle". We concatenate the translations to the input 849

post to form a new input. Formally, let the in- 850

put be “spost" and “s[trp_i]" be the sentence derived 851

from the i-th triple. The modified input is then 852

“spost[SEP]s[trp_1][SEP] · · · [SEP]s[trp_k]". We then 853

pass the modified to the BART model which gener- 854

ates the implied stereotype. 855

The concatenation based approach allows the 856

model to encode the external knowledge into its 857

own embedding space. 858
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A.2.2 Incorporating Explicit Knowledge using859

Attention860

In this section, we provide formal details on how861

we incorporate explicit knowledge from Concept-862

NET using attention and the fusion layer described863

in Chang et al. (2020). This is an alternative method864

we tried in addition to the method described in Sec-865

tion A.2.1.866

We first accumulate the top k triples (varying867

k ∈ {5, 10, 20}) associated with a post, using the868

method described in Appendix A.2.1. We then869

concatenate the numberbatch embeddings (each of870

dimension p) of the two entities in each of the k871

triples vertically to produce vectors in Rp. We then872

horizontally stack the concatenations to produce a873

matrix, HKG ∈ Rk×2p. The encoded input gener-874

ated by the BART model can be represented by the875

matrix HB ∈ Rn×d, where n is the input length876

and d is the hidden size of the BART model. We877

compute knowledge aware attention over the input878

as follows:879

Q = HB ∗W1 + bT1 (3)880

K = HKG ∗W2 + bT2 (4)881

V = HKG ∗W3 + bT3 (5)882

HB
KG = softmax

(QKT

√
d

V
)

(6)883

where W1 ∈ Rd×d,W2,W3 ∈ R2p×d and884

b1, b2, b3 ∈ Rd. The knowledge aware matrix is885

HB
KG ∈ Rn×d. Finally, we concatenate the origi-886

nal encoded input and the knowledge aware matrix,887

HB
KG and perform an affine transformation:888

H ′ = (HB ⊕HB
KG) ∗W4 + bT4 (7)889

where ⊕ denotes column-wise concatenation,890

W4 ∈ R2d×d and b4 ∈ Rd. H ′ ∈ Rn×d is the891

new hidden state, which fuses the old hidden state892

and the new knowledge aware hidden state. H ′ is893

passed into the BART decoder.894

A.3 Implicit Knowledge895

A.3.1 Incorporating Implicit Knowledge896

using GPT897

In this section, we provide formal details on in-898

corporating implicit knowledge using a pretrained899

GPT models.900

Let Mtm be a BART model trained to predict901

the target minority of a given input post. Let the902

target minority string predicted by M[tm] be “s[tm]"903

Prompt

were known for
were described as
were regarded as
were thought of as
were well-known for
were seen as a
have a reputation for
would frequently
worked as
have a job as
have a part-time job as
earned money by
started working as
have various hobbies such as
would regularly engage in
frequently talked about
behaved as though
liked to

Table 8: Prompts for the GPT/GPT-2 biased sentence
generators. The biased sentences are used to train the
BART model, which is then retrained to produce the
output stereotype. The predicted target minority of the
input post is prepended to some of the prompts above,
chosen at random. The GPT models then complete the
prompt.

and let “s[pr]" be a prompt. We provide a list 904

of prompts in Table 8 We then prompt the GPT 905

models with the following string “The s[tm] s[pr]". 906

The GPT models complete the prompt with a gen- 907

erated string, “s[gpt]", so that the final string is 908

“The s[tm] s[pr] s[gpt]". For GPT generations, we 909

choose hyper-parameters based on methods in 910

Patrick von Platen (2020). For each input, we ran- 911

domly select various prompts to generate k sen- 912

tences of the form “The s[tm] s[pr] s[gpt]", varying 913

k ∈ {3, 15}. Note that if there is no predicted 914

target minority, s[tm] is the empty string and no 915

sentence is generated using GPT. In this case, the 916

input is paired with just the empty string. 917

We then pair the input with each of the k gener- 918

ated sentences (or the empty string if there is no 919

predicted target minority) and train a BART model 920

M to predict the generated sentences. Model M 921

is then used as a pretrained model and is retrained 922

to predict the implied stereotype given the same in- 923

put. The retrained BART model is our final implied 924

stereotype generator. 925
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B Implementation Details926

B.1 Implementation Details for BART927

Encoder Decoder Models928

We train our BART models using a learning rate929

of 5e − 6 for 3 epochs with a batch size of 2 or930

4, depending on the size of the input. This ex-931

cludes the BERT classifier models, whose settings932

are given in Appendix B. The BART models have933

406M parameters and all training is done on an934

Nvidia TITAN V GPU, with 12 GB memory, a935

boost clock speed of 1455 MHz, 640 Tensor cores936

and 5120 CUDA cores. Training under this regime937

takes approximately 90 - 120 minutes. We remove938

all URLs, “RT" strings, and “@" mentions from the939

input post. We train these models on just a single940

seed and results are reported on just that seed, as941

we had limited time to train and test our models.942

The baseline GPT-2 and GPT models are trained943

for 5 epochs, as in the original paper by Sap et al.944

(2020). Following the paper, we perform minimal945

preprocessing to the input text before training and946

testing and only remove all URLs. During infer-947

ence, we pass batches of input from the dev and948

test sets to the generate method of the huggingface949

BART model class. We use beam search for gener-950

ation, with a beam width of 10 and a length penalty951

of 5.0.952

B.2 Implementation Details for BERT953

Classifier Models954

We train base BERT models, which have 110M955

parameters. Training takes approximately 30 - 40956

minutes on the GPUs described in B. We train these957

models on just a single seed, as results did not vary958

much as the seed varied and we had limited time959

to train and test our models.

Model LR Batch Size Epochs

Offensiveness 5e-6 32 2
Intent to Offend 5e-7 32 1
Lewdness 5e-6 32 1
Group Targeted 5e-6 32 2

Table 9: Training Settings for BERT Classifier Models.
LR stands for Learning Rate.

960

BERT Classifier Model training settings are961

given in Table 9 and Table 10.962

C Further Ablation Studies 963

In this section, we look at ablation studies con- 964

ducted on the Expert Knowledge models and the 965

Explicit Knowledge models. 966

C.1 Expert Knowledge Ablation Study 967

Recall that we use the last attention layer of a BERT 968

classifier with the join embedding architecture in- 969

troduced in Pryzant et al. (2020) to enhance the hid- 970

den states of the BART model performing stereo- 971

type generation. We perform ablation studies by 972

replacing the classifier over a few different anno- 973

tated categories, namely Offensiveness, Intent to 974

Offend, Lewdness, and Group Targeted. We also 975

train a model that uses all of the classifiers. The 976

results for the ablations are in Table 11. 977

It is important to note the relative performance 978

of the models. The Expert Knowledge model us- 979

ing the Group Targeted BERT classifiers performs 980

better than the other single classifier models, and 981

performs on par with the Expert Knowledge model 982

leveraging all of the classifiers. It’s likely that the 983

tokens used by the BERT model to identify whether 984

a minority group is targeted aligns closely with the 985

portions of the encoded input used to generate the 986

stereotypes. This makes intuitive sense, since the 987

set of posts targeting some minority group likely 988

has some stereotype mentioned in the post and vice 989

versa. The same cannot be said for the other cat- 990

egories. This intuition is further strengthened by 991

the fact that the Expert Knowledge model using all 992

the classifiers does not perform much better than 993

the Expert Knowledge model using just the Group 994

Targeted classifier. Thus the other classifiers may 995

be contributing little additional knowledge to the 996

stereotype generation task. 997

C.2 Explicit Knowledge Ablation Study 998

In this section, we specifically discuss the num- 999

ber of knowledge triples we use when training ex- 1000

plicit knowledge models and note trends in the 1001

BERTScore as k varies. The results are in Table 1002

12. We discuss an additional attention based model 1003

not mentioned in the main paper. The detailed 1004

methodology for this model is given in Appendix 1005

A.2.2. 1006

We note that when concatenated directly to the 1007

input, performance increases as k increases up to a 1008

point and then starts to decrease. We believe that 1009

this occurs because the usefulness of knowledge 1010

initially increases then decreases as k increases. In 1011
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Model dev test
Offensive Intent Lewd Group Offensive Intent Lewd Group

GPT 0.834 0.818 0.608 0.740 0.835 0.818 0.577 0.754
GPT-2 0.832 0.812 0.654 0.754 0.847 0.824 0.670 0.774

BERT 0.863 0.832 0.726 0.810 0.867 0.828 0.708 0.826

Table 10: GPT/GPT-2/BERT Classifier Performance on Dev and Test sets.

Models dev test
BERTScore BERTScore

GPT 0.712 0.713
GPT-2 0.733 0.741
BART Base 0.624 0.638

EXPERT (OFFENSIVE) 0.759 0.767
EXPERT (INTENT) 0.761 0.764
EXPERT (LEWD) 0.757 0.764
EXPERT (GROUP) 0.765 0.776
EXPERT (ALL) 0.765 0.770

Table 11: We report BERTScores of baseline models
(first three rows) and the expert knowledge models. The
Expert Knowledge Models leverage annotations of cat-
egorical variables on the input to enhance stereotype
generation. The All variant leverages all of the categori-
cal variables.

Model dev test

GPT 0.712 0.713
GPT-2 0.733 0.741
BART Base 0.624 0.638

EXPLICIT (INPUT) (3) 0.761 0.768
EXPLICIT (INPUT) (5) 0.748 0.757
EXPLICIT (INPUT) (10) 0.764 0.770
EXPLICIT (INPUT) (15) 0.769 0.772
EXPLICIT (INPUT) (20) 0.770 0.773
EXPLICIT (INPUT) (25) 0.752 0.763

EXPLICIT (ATTN) (5) 0.761 0.768
EXPLICIT (ATTN) (10) 0.759 0.765
EXPLICIT (ATTN) (20) 0.768 0.769

Table 12: We report BERTScores of baseline models
(first three rows) and the explicit knowledge models.

particular, as k increases, many of the latter triples1012

tend to be synonymous with earlier triples or un-1013

related to the original input. We also note that1014

incorporating knowledge as attention tends to pro-1015

duce a better BERTScore, while not performing as1016

well on other metrics. We suspect that this is due1017

to the numerbatch embeddings capturing more se-1018

mantic meaning than the BART embeddings. The1019

numberbatch embeddings draw from a variety of1020

sources, in addition to the graph structure itself and1021

they perform well on benchmarks measuring word1022

similarity.1023

D Analysis 1024

We provide a few examples of stereotype genera- 1025

tion, comparing and contrasting the different model 1026

types in Table 13. 1027

D.1 Error Analysis 1028

Table 14 provides the counts for the Error Analysis. 1029

Clearly, the MIXGEN models minimize the total 1030

number of errors made, although MIXGEN may 1031

not have the minimal number of errors in each 1032

category. 1033

D.2 Challenges in Stereotype Generation 1034

Table 15 provides the counts for the Challenges 1035

faced by each model. Clearly, the MIXGEN mod- 1036

els minimize the total number of challenges face, 1037

although MIXGEN may not have faced the mini- 1038

mal number of challenges within each category. 1039
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Error/Challenge Type Input Post Generated Stereotype Explanation

Error Type 1 (Non-Existent Stereotype) what do you call it when
you fuck an apple? an
inside job

makes light of child
abuse

The post does not refer
or imply anything about
children in any way.

Error Type 2 (Ignores Stereotype) why do bitches hate
so much tho? what’s
wrong with congratulat-
ing and giving people
props sometimes?

“" The post clearly refers
to women in a deroga-
tory manner.

Error Type 3 (Incorrect Target Minority) if harvey and irma are
god’s fidget spinners,
wouldn’t god be autis-
tic?

trivializes harm to vic-
tims

The post refers to autis-
tic folks, but the gen-
erate stereotype doesn’t
capture it.

Error Type 4 (Incorrect Stereotype) why don’t black people
go on cruises? because
they already fell for that
shit once.

black people deserve to
die

The post refers to
African American
history (those arriving
on slave ships), yet the
generated stereotype
does not mention this.

Challenge Type 1 (Misunderstands Post) if the operation to re-
move your tonsils is
called a tonsillectomy,
then what is the name
of the operation for
a female do male sex
change? addadictomy

women are only good
for sex

The generate stereotype
has nothing to do with
the original post.

Challenge Type 2 (High Sensitivity) why do jews have big
noses? to smell the
money.

jews were killed in the
holocaust

The token “jew" triggers
an irrelevant generation.

Challenge Type 3 (Localized Genera-
tion)

how do you know the
asian food is under-
cooked? when it starts
barking.

asians have no food The post focuses on the
first part of the sentence,
but ignores the remain-
der.

Challenge Type 4 (Does not Draw Con-
nections)

enjoy having multicul-
turalism shoved down
your throat, fighting for
israel and having a black
or asian as your new
best friend.

non-whites are inferior The generated stereo-
type understands that
the stereotype is about
non-whites, but does not
connect it to the broader
stereotype of non-white
cultures having a nega-
tive impact.

Challenge Type 5 (Misunderstands Sar-
casm/Irony)

dating rules for women
* don’t be morbidly
obese *

women shouldn’t be
skinny

The generated stereo-
type inverts the sarcasm
of the original post and
thus fails to capture the
stereotype.

Challenge Type 6 (Ignores Stereotype) fight anyone that tells
you there’s nothing
wrong with being fat.
and help your body and
bones and lose weight,
seriously.

“" The input post targets
those who are obese, yet
the model does not gen-
erate a stereotype.

Table 13: Examples of generation from each of the error types described in Sections 5.1 and 5.2

Error Type GPT GPT-2 Expert Explicit Implicit MIXGEN

1 45 46 37 44 30 24
2 8 7 1 0 3 4
3 13 11 11 10 10 8
4 28 37 41 24 27 27
5 106 99 110 122 130 137

Table 14: This table contains the counts for the error analysis. Though it is not quite an error and isn’t mentioned in
the main paper, Error Type 5 accounts for the examples in which the model outputs an accurate stereotype.
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Challenge Type GPT GPT-2 Expert Explicit Implicit MIXGEN

1 8 6 6 4 2 4
2 (Non-existent Stereotypes) 44 46 37 44 30 24
2 (Remainder) 15 9 33 13 18 11
3 8 19 10 7 8 8
4 7 9 2 5 6 5
5 4 5 1 5 3 7
6 8 7 1 0 3 4
7 106 99 110 122 130 137

Table 15: This table contains the counts for the error analysis. Though it is not quite a challenge and isn’t mentioned
in the main paper, Challenge Type 7 accounts for accurate generations by the model. Challenge Type 2 is partitioned
into two sub-categories, one which includes only cases where the model detects non-existent stereotypes and another
which does include such cases.
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