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Abstract

In this paper, we propose an adaptation to the area under the curve (AUC) metric1

to measure the adversarial robustness of a model over a particular ε-interval [ε0, ε1]2

(interval of adversarial perturbation strengths) that facilitates comparisons across3

models when they have different initial ε0 performance. This can be used to4

determine how adversarially sensitive a model is to different image distributions;5

and/or to measure how robust a model is comparatively to other models for the same6

distribution. We used this adversarial robustness metric on MNIST, CIFAR-10,7

and a Fusion dataset (CIFAR-10 + MNIST) where trained models performed either8

a digit or object recognition task using a LeNet, ResNet50, or a fully connected9

network (FullyConnectedNet) architecture and found the following: 1) CIFAR-10

10 models are more adversarially sensitive than MNIST models; 2) Pretraining11

with another image distribution sometimes carries over the adversarial sensitivity12

induced from the image distribution – contingent on the pretrained image manifold;13

3) Increasing the complexity of the image manifold increases the adversarial14

sensitivity of a model trained on that image manifold, but also shows that the task15

plays a role on the sensitivity. Collectively, our results imply non-trivial differences16

of the learned representation space of one perceptual system over another given its17

exposure to different image statistics (mainly objects vs digits). Moreover, these18

results hold even when model systems are equalized to have the same level of19

performance, or when exposed to matched image statistics of fusion images but20

with different tasks.21

1 Introduction22

Adversarial images are perturbed visual stimuli that can fool a high performing image classifier with23

carefully chosen noise that is often imperceptible to humans (Szegedy et al., 2013; Goodfellow et al.,24

2014). These images are synthesized using an optimization procedure that maximizes the wrong25

output class of a model observer, while minimizing any noticeable differences in the image for a26

reference observer – usually a human (Lubin, 1997). Understanding why they exist has been studied27

extensively in machine learning as a way to explore gaps in generalization (Gilmer et al., 2018; Yuan28

et al., 2019; Ilyas et al., 2019), computer vision with applications to real-world robustness (Dubey29

et al., 2019; Yin et al., 2019; Richardson & Weiss, 2020), and recently in vision science to understand30

similar and divergent visual representations with humans (Zhou & Firestone, 2019; Feather et al.,31

2019; Golan et al., 2019; Reddy et al., 2020; Dapello et al., 2020).32

Similarly, we are interested in understanding how training on a specific natural image distribution33

plays a role in the adversarial sensitivity of a model, which could lead to the construction of more34

adversarially robust models and a greater understanding of why machines have a divergent visual35

representation than humans. For example, Ilyas et al. (2019) found that adversarial sensitivity (which36
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Figure 1: (A) After using the same hyperparameters and training scheme (SGD) for both models,
MNIST achieves around 99% accuracy, while CIFAR-10 peaks around 80% with ResNet50 (both
without data-augmentation). In cases like these it may be obvious to say that better performing models
will be more adversarially robust – but this is not always the case, in some cases it is the opposite
when fixing the image distribution (Zhang et al., 2019); (B) One solution: example graphs showing
the area under the curve of two models before (top) and after (bottom) accuracy normalization. Here
we show how at ε0, models go from un-matched accuracy to a matched upper-bounded score of 1,
allowing a ‘fair’ computation of area under the curve.

they refer to as adversarial vulnerability) is not necessarily tied to the training scheme, but rather37

is a property of the dataset. Similarly, Ding et al. (2019) finds that semantic-preserving shifts on38

the image distribution could result in drastically different adversarial robustness for adversarially39

trained models. Ultimately, we are interested in the inherent properties of natural image distributions40

and how they contribute to adversarial sensitivity, rather than how to engineer a robust model via41

adversarial training, or the impact of manipulating images on a model’s adversarial sensitivity. At42

a higher level, our goal is to understand what it means for a model observer to inherently be more43

adversarially sensitive to objects vs scenes or objects vs digits, where the latter is addressed in this44

paper. These experiments may also provide insight to how robust visual representations are learned45

in the human visual system.46

2 Defining a Normalized Adversarial Robustness Metric47

Before we begin to make comparisons of how robust or sensitive a model is to adversarial perturba-48

tions, we must define a metric of choice for these comparisons. The adversarial robustness R, should49

be a measure of the rate at which accuracy changes as ε (adversarial perturbation strength) increases50

over a particular ε-interval of interest. The faster the accuracy of a model decreases as ε increases, the51

lower the adversarial robustness is for that model. We propose an adaptation to measure adversarial52

robustness based on the commonly used: area under the curve (AUC). A good measure of how much53

change is occurring in an ε-interval is the AUC of a function that outputs the accuracy given an ε54

for that model. This AUC provides a total measure of model performance for an ε-interval. If the55

accuracy decreases quickly as ε increases, then the AUC will be smaller.56

However, despite how intuitive as the previous notion may sound, we immediately run into a problem:57

Some datasets are more discriminable than others independent of model observers and even if58

equalized with the same chance baseline (e.g. chance for both datasets is 10% if there are 10 equally59

sampled classes; Figure 1 (A)); How do we take this into account when computing the area under60

the curve? It could be possible that under un-equal initial performances, one model seems more61

‘adversarially robust’ over the other by virtue purely of the initial offset in the better performance, but62

is this positive differential the inherent property that drives robustness?63

Figure 1 (B) shows one simple solution to solve the differences in accuracy between two model64

systems is by normalizing them with respect to their accuracy under non-adversarial (ε0 = 0) Fast65

Gradient Sign Method (FGSM) attacks (Goodfellow et al. (2014)). This yields the following formula:66

R =
1

f(ε0)(ε1 − ε0)

∫ ε1

ε0

f(ε)dε (1)
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which can be interpreted as the bounded area under the curve for a given interval of ε-attacks (i.e.67

[ε0, ε1]). Note that we must have f(ε0) > 0 and ε1 > ε0. The term 1
f(ε0)(ε1−ε0) of Eq. 1, normalizes68

the accuracies and puts the area under the curve of the normalized accuracy between [0, 1]. The69

division by f(ε0) normalizes the function because the function now represents the change in accuracy70

with respect to no adversarial perturbations (or whatever ε0 is set as). The accuracy at f(ε0) can71

be considered an ‘oracle’ for the adversarial attacks of the model (i.e. the likely optimal or best72

performance for that ε-interval).73

This metric is only as accurate as the fitted function f(ε), which outputs the accuracy of an adversarial74

attack for a model given an ε. We have two methods to find f(ε): 1) to empirically compute multiple75

values of ε and estimate the normalized area under the curve with the trapezoid method; 2) to find76

the closed form expression of f(◦) as one would do for psychometric functions (Wichmann & Hill,77

2001) and integrate. In this paper we do the former (compute multiple values of ε), although our78

method is extendable to the latter.79

3 Experiments80

Given the nature of our question, and the introduction of a simple normalization metric, the following81

experiments try to provide some answers on the nature of an image distribution and it’s relationship82

to adversiarial robustness via the normalization scheme. All experiments used 3 key networks:83

LeNet, ResNet50, and a fully connected network (FullyConnectedNet) where we explored adversarial84

sensitivity over 20 paired network runs and their learning dynamics. It is important to note that85

all hyperparameters are held constant, the only difference between the models using a certain86

architecture is the datasets they are trained and tested on. All differences that are mentioned are87

statistically significant using a Welch’s t-test with significance level α = 0.05. Detailed Methods can88

be accessed in Appendix A.2.89

3.1 Comparing intrinsic adversarial sensitivity: MNIST vs CIFAR-10 Robustness90

Are CIFAR-10 trained models inherently more adversarially sensitive than MNIST trained models?91

We investigate this question by comparing the adversarial robustness of CIFAR-10 models and the92

MNIST models for the three architectures. Figure 2(A) (top row) shows normalized accuracy graphs93

for the CIFAR-10 trained models and Figure 2(A) (bottom row) shows graphs of normalized accuracy94

for MNIST trained models. We find that for both LeNet and FullyConnectedNet, the MNIST models95

were more adversarially robust than CIFAR-10 models (i.e. less adversarially sensitive), for each96

epoch we examined. The same pattern of results held for ResNet50 models except for the 1st epoch97

where there was no difference between the MNIST and CIFAR-10 models.98

Result 1: For the three network architectures tested (that all vary in approximation power and99

architectural constraints), CIFAR-10 trained models are inherently more adversarially sensitive than100

MNIST models.101

3.2 Impact of Pretraining on Out-Of-Distribution (o.o.d) image datasets102

Does pretraining on CIFAR-10, then training on MNIST result in a more adversarially robust learned103

representation of MNIST? Humans are regarded as being adversarially robust (i.e. R ≈ 1 for some104

ε-interval) and we know that humans learn objects before they learn digits. So can imitating the order105

that humans learn visual recognition tasks increase adversarial robustness or can CIFAR-10 objects106

induce a more adversarially sensitive learned representation?107

We find that for the FullyConnectedNet the MNIST models were more adversarially robust than the108

MNIST pretrained on CIFAR-10 model during early stages of learning, but the pretrained models109

were more robust when examined at 150 and 300 epochs. The MNIST LeNet models were more110

adversarially robust for all stages of learning than the pretrained model. The pretrained ResNet50111

models had no differences in robustness compared to the MNIST ResNet50 models, except for the 1st112

epoch where the pretrained models were more robust. This result is unexpected as this does not occur113

for the other architectures. These results would seem to suggest that architecture plays a role in the114

adversarial sensitivity of the learned representation contingent on the given datasets and potentially115

compositional nature.116
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Figure 2: (A) MNIST-trained networks (across all architectures) show greater adversarial robustness
after accuracy normalization than CIFAR-10 trained networks. Notice too that ResNet50 appears
to be the more adversarially robust network across network architectures (LeNet and FullyCon-
nectedNet) independent of learning dynamics; (B) Perceptual Hysteresis: FullyConnectedNet and
LeNet networks seems to carry over the learned representation and adversarial vulnerability from the
pretrained system. However, only LeNet experiences a clear perceptual hysteresis where pretraining
on CIFAR-10 for MNIST is worse (more adversarially sensitive) than only training on MNIST, yet
pretraining on MNIST for CIFAR-10 is better (more adversarially robust) than only training on
CIFAR-10 (See Appendix A.7).

We found that pretraining on CIFAR-10 and then training on MNIST generally does not lead to117

more adversarially robust models. Conversely, does pretraining on MNIST and then training on118

CIFAR-10 have this same effect? We find that this is not always the case. Pretraining on MNIST119

then training on CIFAR-10 led to marginal improvements in adversarial robustness for LeNet, except120

for the 1st epoch (Figure 2 (B) (top row)). For ResNet50, pretraining resulted in more adversarially121

sensitive models at the start and end of training (1 and 125 epochs), otherwise there was no difference122

compared to not pretraining. The FullyConnectedNet pretrained models were more adversarially123

robust in earlier stages of learning, but were less robust in later stages. Tables of the robustness124

metrics for the CIFAR-10 models pretrained on MNIST (as well as for other experiments) can be125

found in Appendix A.7. This finding also requires further investigation.126

Result 2: Therefore, pretraining on CIFAR-10, then training on MNIST does not generally result in a127

more adversarially robust model than training on MNIST alone using the FullyConnectedNet, LeNet,128

ResNet50 architectures. This is a counter-intuitive result as one would have expected that – like129

humans – seeing objects first may bring positive impacts to learned representations (Janini & Konkle,130

2019) and robustness. On the other hand, pretraining on MNIST, then training on CIFAR-10 only131

aided LeNet; for FullyConnectedNet it helped in earlier stages of learning, while decreased robustness132

later. Generally, however, ResNet50 models were not affected in terms of carried-over robustness133

at any intermediate stages of learning. Investigating the origins of this perceptual hysteresis (Sadr134

& Sinha, 2004) and how it may relate to shape/texture bias (Geirhos et al., 2018; Hermann &135

Kornblith, 2019), spatial frequency sensitivity (Dapello et al., 2020; Deza & Konkle, 2020), or136

common perturbations (Hendrycks & Dietterich, 2019) is a subject of on-going work.137

3.3 Approximate image-statistics matching and re-evaluating robustness138

Our previous results suggested that after taking into account different measures of accuracy normal-139

ization, the MNIST dataset is intrinsically more adversarially robust (i.e. less adversarially sensitive)140

than CIFAR-10. This implies that it is harder to fool a system performing digit recognition, than a141

system performing object detection, likely due to the fact that number digits are highly selective to142

shape, and show less perceptual variance than objects.143

Naturally, the next question that arises is if the image complexity itself is somehow making each144

perceptual system more adversarially sensitive. To test this hypothesis we created a new hybrid145
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Figure 3: A. The experimental setup and motivation of the Fusion Dataset; B. Graphs of the normal-
ized accuracy of the Fusion dataset on the object recognition task (top row) and digit recognition
task (bottom row) using LeNet, ResNet50, and FullyConnectedNet. Generally, models trained on the
digit task were more adversarially robust than those trained on the object task, showing the role that
task plays in the adversarial sensitivity of a model. Additionally, these models were generally more
adversarially sensitive than their MNIST and CIFAR-10 model counterparts.

dataset: a fusion of the MNIST digits α-blended with the CIFAR-10 images. Models were trained to146

perform either digit recognition or object recognition on these fusion images – thus we have fixed the147

image distribution but varied the approximation task (Deza et al., 2020). These images were created148

by scaling the pixels in each CIFAR-10 and MNIST image by 0.5 and adding them together (similar149

to Texture shiftMNIST from Jacobsen et al. (2018), and see Figure 3(A)). For more on this dataset, see150

Appendix A.4. The goal with this new hybrid dataset is to re-run the same set of previous experiments151

and test adversarial robustness for both the digit recognition task and the object recognition task and152

test if image complexity alone is the sole culprit of adversarial sensitivity.153

Result 3: Figure 3 (B) contains the normalized curves of the results for the digit and object recognition154

tasks on the fusion dataset for each of the architectures. The FullyConnectedNet (all epochs),155

ResNet50 and LeNet fusion image models were more adversarially robust on the digit recognition task156

than the object recognition task for all epochs examined excluding the first epoch. This suggests that157

even if the image distribution is equalized at training, the representation learned varies given the task,158

and impacts adversarial sensitivity differently. Additional results of comparing the three architectures159

trained on the Fusion Dataset vs their regular image-distribution trained models (Appendix A.4) show160

that increasing the image complexity (by adding a conflicting image with the hope of increasing161

invariance) in fact decreases adversarial robustness when compared to regularly trained networks – a162

result also observed in Jacobsen et al. (2018).163

4 Discussion164

Our first step in this work verified that the image distribution can impact adversarial sensitivity of165

a model, our next step is to investigate why, and what factors play a role (Jacobsen et al., 2018;166

Ding et al., 2019; Ilyas et al., 2019). It is likely that MNIST trained networks are intrinsically more167

adversarially robust than CIFAR-10 trained networks due to the lower subspace in which they live168

in given their image structure (Hénaff et al., 2014) compared to CIFAR-10. Indeed, we have only169

scratched the surface of this question by comparing two well known candidate datasets over their170

learning dynamics: MNIST and CIFAR-10, and continuing this line of work onto exploring the171

role of the image distribution on adversarial sensitivity for texture or scenes is a promising next172

step. Finally, future experiments should continue to investigate the effect of the learning objective173

on the learned representation induced from the image distribution. We have already seen how the174

task affects the adversarial sensitivity of a model even when image statistics are matched under a175

supervised training paradigm. With the advent of self-supervised (Konkle & Alvarez, 2020) and176

unsupervised (Zhuang et al., 2020) objectives that may be predictive of human visual coding, it may177

be relevant to investigate the changes in adversarial sensitivity for the current (objects, digits) and new178

(texture, scenes) image distributions with our normalized metric for these new learning objectives.179
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A Appendix264

A.1 Normalization Score (Extended)265

Picking ε0 and ε1 is an experimental choice. Choosing ε0 = 0 allows you to measure adversarial266

robustness starting from no perturbations, yet we can also have that ε0 > 0. An example of a good267

choice for ε1 is the result of psychophysical experiments determining for what ε can humans no268

longer recognize the perturbed images, or a reference point up until any one of the models reaches269

it’s chance performance. For too high a choice of ε1, the image can saturate and the performance will270

likely approach chance, e.g. this rebounding effect can be seen in some of the CIFAR-10 curves.271

There are certain assumptions for this normalization scheme to hold. For example, in both of our272

experiments MNIST and CIFAR-10 are equalized to have 10 classes and we assume an independent273

and identically distributed testing distribution such that chance performance for any model observers274

is the same at 10%. One could see how the normalization scheme would give a misleading result if275

one dataset has 2 i.i.d classes that yield 50% chance and another dataset yields 10 i.i.d classes that276

yield 10% chance. Propotion corrects are not comparable and a more principled way of equalizing277

performance – likely using d′ would be needed (Green et al., 1966).278

Overall, this robustness metric can be used to assert whether a model is adversarially robust over a279

particular ε-interval or to measure how adversarially robust a model is comparatively to other models280

over that interval. If for a particular model, R = 1, this implies for all ε in the ε-interval, the model281

classifies the perturbed images correctly. If for a model, R = 0, that means that for all ε in the interval,282

the model classifies the perturbed images incorrectly. Since a model has low adversarial sensitivity if283

and only if it has high adversarial robustness, the metric for adversarial sensitivity S = 1−R.284

A.2 Methods285

A.2.1 Architectures286

Three network architectures were considered: FullyConnectedNet, LeNet (LeCun et al. (1989)), and287

ResNet50 (He et al. (2015)). FullyConnectedNet is a fully connected artificial neural network that has288

1 hidden layer with 7500 hidden units. 7500 hidden units were chosen so the number of parameters289

for the FullyConnectedNet has the same magnitude of parameters as ResNet50. 1 hidden layer was290

chosen so the network is not as hierarchical as a convolutional neural network (See Mhaskar &291

Poggio (2016); Poggio et al. (2017) and recently Neyshabur (2020); Deza et al. (2020)).292

A.2.2 Datasets293

The datasets used were MNIST, CIFAR-10, and a Fusion Dataset. For more on the Fusion dataset,294

see Appendix A.4. To use the exact same architectures with the datasets, MNIST was upscaled to295

32× 32 and converted to 3 channels to match the dimensions of CIFAR-10 (i.e. 32× 32× 3).296

A.2.3 Hyperparameters, Optimization Scheme, and Initialization297

It is important to note that all hyperparameters other than dataset for a model are held constant, the298

only difference between the models for a particular architecture is the datasets they are trained and299

tested on. The loss function used for all models was cross-entropy loss and the optimizer used was300

stochastic gradient descent (SGD) with weight decay of 5× 10−4, momentum of 0.9, and with an301

initial learning rate of 0.01 for the FullyConnectedNet and LeNet models and an initial learning rate302

of 0.1 for the ResNet50 models. The learning rate was divided by 10 at 50% of the training. The303

FullyConnectedNet and LeNet models were trained to 300 epochs and the ResNet50 models were304

trained to 125 epochs. A batch size of 125 was used. See Appendix A.4 for why this batch size was305

used. We chose these hyperparameters and optimization scheme since we found they had best results306

in preliminary experiments.307

For all experiments, each model was trained 20 times with matched initial random weights across308

different datasets. For example for LeNet, 20 different LeNet models all with different initial random309

weights: {w1, w2, ..., w20} were used to train for CIFAR-10 in our first experiment, and these same310

initial random weights were used to train for MNIST. This removed the variance induced by a311

particular initialization (e.g. a lucky/unlucky noise seed) that could bias the comparisons by arriving312
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to a better solution via SGD. This procedure was tractable because our MNIST dataset was resized to313

a 3-channeled version with a new size of 32× 32× 3 instead of 28× 28× 1 (original MNIST).314

A.2.4 Adversarial Attacks315

The method used for generating adversarial images is the Fast Gradient Sign Method (FSGM)316

presented in Goodfellow et al. (2014). FGSM was chosen over Projected Gradient Descent (PGD)317

(Madry et al. (2019)) based on preliminary results as FGSM was sufficient to successfully adversarially318

attack the model (indeed we did not want to perform adversarial training or other data-augmentations319

schemes that may bias our results). FGSM also has a lower computational cost than PGD allowing320

us to run more experiments. Overall, we were interested in creating images that cause the model to321

misclassify in general, rather than misclassifying an image to a particular class.322

The ε-interval used here is [0, 0.3] (i.e. ε0 = 0, ε1 = 0.3). 0.3 was chosen as the upper bound because323

adversarial images at that magnitude are very difficult for many classifiers to classify correctly.324

The models were adversarially attacked at different stages of learning. The trained models were325

adversarially attacked with ε values of 0, 0.0125, 0.025, 0.05, 0.1, 0.15, 0.2, 0.25, and 0.3 to create (ε).326

For the models using LeNet and FullyConnectedNet architectures, they were adversarially attacked327

at 1, 10, 25, 50, 150, and 300 epochs. Models using the ResNet50 architecture were adversarially328

attacked at 1, 10, 25, 50, 100, and 125 epochs.329

A.3 Pretraining (Extended)330

This pretraining procedure was done by using the existing CIFAR-10 or MNIST FullyConnectedNet,331

LeNet, and ResNet50 models as bases and then training/fine-tuning them using the same training332

scheme but with MNIST or CIFAR-10 respectively.333

For the ResNet50, LeNet, and FullyConnectedNet architectures, the models pretrained on CIFAR-334

10 then trained on MNIST were statistically significantly more adversarially robust than models335

pretrained on MNIST then trained on CIFAR-10 for all epochs examined.336

A.4 Fusion Dataset337

Each fusion image can be concisely summarized with the following α-blending procedure as follows:338

F = 0.5M + 0.5C, (2)
where F is a new fusion image, M is an MNIST image modified to 32x32x3 (by upscaling and339

increasing number of color channels), and C is a CIFAR-10 image. Example fusion images can be340

found in Figure 3(A) and Figure 6(C).341

The fusion dataset was created online during training or testing during each mini-batch by formula 2.342

The fusion image training set was constructed using the MNIST and CIFAR-10 training set and the343

fusion image test set was constructed using the MNIST and CIFAR-10 test set. During training, the344

MNIST and CIFAR-10 datasets are shuffled at the start of every epoch. Therefore, it is likely that345

no fusion images are shown to the model more than once. This was done to ensure that the model346

cannot learn any correlation between any CIFAR-10 object and any MNIST digit, as well as, improve347

generalization of the model.348

The batch size was 125 since this is the closest number to a more typical batch size of 128 that349

divides both the number of CIFAR-10 images and MNIST images. This was needed to ensure that350

the batches align properly when creating the fusion images.351

Observation: When examining the first epoch for the fusion trained models, we find that the standard352

deviation is generally high. This is likely due to our choice of avoiding to show the same fusion353

image twice. This does not occur in later stages of training.354

Comparing fusion image models trained on the digit task and MNIST models: for the FullyCon-355

nectedNet and LeNet architecture, the MNIST models were more robust. The same holds for the356

ResNet50 MNIST models except at epoch 1, where there were no difference. CIFAR-10 models357

using the FullyConnectedNet architecture were more adversarially robust than the fusion image358

models trained on the object recognition task for all epochs tested. The same was true for the LeNet359

and ResNet50 architectures except there were no differences between CIFAR-10 models and fusion360

images with object task in adversarial robustness for 1 and 50 epochs.361
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A.5 Un-normalized Adversarial Robustness curves (Raw-Data)362
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Figure 4: (A,B): Redrawn graphs from Figure 2; (C,D): The un-normalized adversarial robustness
trade-off curves for each network (LeNet, ResNet50, FullyConnectedNet) and dataset (MNIST and
CIFAR-10) for the FGSM-based Attack (Goodfellow et al., 2014).
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A.6 Zoomed in Sample Adversarial Stimuli363
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Figure 6: Zoomed in versions of the adversarial patches created after an FGSM-Attack. Shown images
are the perturbed stimuli for the networks at the 300-th,125-th,300-th epoch for LeNet, ResNet50 and
FullyConnectedNet respectively. A) Stimuli from our first experiment; B) Stimuli from our second
experiment; C) Stimuli from our third experiment, notice how color bleeds (stronger for objects)
into both stimuli when trained on the same dataset but are imposed a different task. Interestingly,
the differences in the adversarial noise pattern are more salient across architectures for the Fusion
Dataset.
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A.7 Statistical Testing of Results (Extended)364

Table Legend:365

?: Denotes statistically significantly higher adversarial robustness for MNIST vs CIFAR-10366

•: Denotes statistically significantly higher adversarial robustness for a pretrained MNIST model vs a367

pretrained CIFAR-10 model368

�: Denotes statistically significantly higher adversarial robustness for a pretrained model vs369

non-pretrained model both trained on same dataset370

†: Denotes statistically significantly higher adversarial robustness for Fusion digit task vs Fusion371

object task372

‡: Denotes statistically significantly higher adversarial robustness for MNIST vs Fusion digit task or373

CIFAR-10 vs Fusion object task374

375

Table 1: MNIST LeNet adversarial ro-
bustness

Epoch: Mean Robustness: SD:

1 0.438451? � ‡ 0.020373

10 0.499361? � ‡ 0.023713

25 0.539882? � ‡ 0.025632

50 0.543602? � ‡ 0.019689

150 0.549709? � ‡ 0.013361

300 0.520547? � ‡ 0.010607

Table 2: CIFAR-10 LeNet adversarial
robustness

Epoch: Mean Robustness: SD:

1 0.155815� 0.048486

10 0.053812‡ 0.003744

25 0.050288‡ 0.00447

50 0.063126 0.009296

150 0.102256‡ 0.009832

300 0.097237‡ 0.008319

376

Table 3: Pretrained on CIFAR-10 trained
on MNIST LeNet adversarial robustness

Epoch: Mean Robustness: SD:

1 0.249363• 0.05819

10 0.364303• 0.049268

25 0.420838• 0.039604

50 0.462459• 0.022959

150 0.529665• 0.013517

300 0.503499• 0.013186

Table 4: Pretrained on MNIST trained on
CIFAR-10 LeNet adversarial robustness

Epoch: Mean Robustness: SD:

1 0.102636 0.008461

10 0.059423� 0.005675

25 0.057364� 0.008041

50 0.069428� 0.006776

150 0.113739� 0.007872

300 0.109077� 0.008987

Table 5: Fusion digit task LeNet adver-
sarial robustness

Epoch: Mean Robustness: STD:

1 0.173351 0.008095

10 0.204077† 0.006719

25 0.225057† 0.008112

50 0.238905† 0.0096

150 0.254536† 0.005374

300 0.239281† 0.004036

Table 6: Fusion object task LeNet adver-
sarial robustness

Epoch: Mean Robustness: SD:

1 0.181474 0.1951

10 0.035735 0.007395

25 0.046072 0.005877

50 0.058456 0.006017

150 0.077806 0.005403

300 0.087175 0.00396
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Table 7: MNIST ResNet50 adversarial
robustness

Epoch: Mean Robustness: SD:

1 0.243206 0.064093

10 0.37482?‡ 0.040255

25 0.413437?‡ 0.037413

50 0.405367?‡ 0.03901

100 0.486548?‡ 0.015996

125 0.572381?‡ 0.03999

Table 8: CIFAR-10 ResNet50 adversar-
ial robustness

Epoch: Mean Robustness: SD:

1 0.222479� 0.098118

10 0.072652‡ 0.027665

25 0.06675‡ 0.010177

50 0.062354 0.007254

100 0.075903 ‡ 0.00379

125 0.138936�‡ 0.038124

Table 9: Pretrained on CIFAR-10 trained
on MNIST ResNet50 adversarial robust-
ness

Epoch: Mean Robustness: SD:

1 0.392197•� 0.036562

10 0.422000• 0.023966

25 0.414428• 0.035434

50 0.413840• 0.034093

100 0.491886• 0.012084

125 0.569465• 0.020692

Table 10: Pretrained on MNIST trained
on CIFAR-10 ResNet50 adversarial ro-
bustness

Epoch: Mean Robustness: SD:

1 0.067825 0.008714

10 0.063501 0.0099

25 0.068075 0.012437

50 0.064227 0.010571

100 0.074815 0.004281

125 0.114783 0.03279

Table 11: Fusion digit task ResNet50
adversarial robustness

Epoch: Mean Robustness: SD:

1 0.252273 0.267929

10 0.180888† 0.014562

25 0.190701† 0.022835

50 0.202564† 0.009819

100 0.242128† 0.006506

125 0.296214† 0.018022

Table 12: Fusion object task ResNet50
adversarial robustness

Epoch: Mean Robustness: SD:

1 0.243001 0.10571

10 0.053983 0.014983

25 0.045387 0.008189

50 0.065714 0.017707

100 0.070246 0.00476

125 0.084441 0.007446

13



Table 13: MNIST FullyConnectedNet
adversarial robustness

Epoch: Mean Robustness: SD:

1 0.272342? � ‡ 0.004514

10 0.280533? � ‡ 0.002443

25 0.284781? � ‡ 0.002756

50 0.29422? � ‡ 0.002926

150 0.311588?‡ 0.000868

300 0.312896?‡ 0.00083

Table 14: CIFAR-10 FullyConnectedNet
adversarial robustness

Epoch: Mean Robustness: SD:

1 0.086983‡ 0.003529

10 0.064134‡ 0.002695

25 0.054232‡ 0.00201

50 0.045977�‡ 0.001153

150 0.037929�‡ 0.000255

300 0.034145�‡ 0.000274

Table 15: Pretrained on CIFAR-10
trained on MNIST FullyConnectedNet
adversarial robustness

Epoch: Mean Robustness: SD:

1 0.153764• 0.005824

10 0.194182• 0.00334

25 0.235387• 0.002786

50 0.281417• 0.004191

150 0.320011•� 0.001317

300 0.321303•� 0.001126

Table 16: Pretrained on MNIST trained
on CIFAR-10 FullyConnectedNet adver-
sarial robustness

Epoch: Mean Robustness: SD:

1 0.104627� 0.004495

10 0.069091� 0.002008

25 0.053113 0.002535

50 0.044058 0.001362

150 0.036256 0.00035

300 0.031516 0.000222

Table 17: Fusion digit task FullyCon-
nectedNet adversarial robustness

Epoch: Mean Robustness: SD:

1 0.113213† 0.003298

10 0.129283† 0.001951

25 0.139871† 0.001997

50 0.145459† 0.001856

150 0.15254† 0.000776

300 0.15016† 0.000758

Table 18: Fusion object task FullyCon-
nectedNet adversarial robustness

Epoch: Mean Robustness: SD:

1 0.052986 0.002406

10 0.036917 0.00154

25 0.03305 0.001239

50 0.030376 0.001014

150 0.026116 0.00027

300 0.022955 0.000141
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