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Abstract— Three-dimensional (3D) reconstruction of wiry
structures from vision suffers from thin geometry, lack of
texture, and severe self-occlusions. We propose an online
framework for reconstructing wiry structures whose skeletons
are mainly straight as commonly found in man-made real-
world objects in three dimensions (3D) from monocular image
sequences. For an efficient and informative representation
useful to address the harsh geometric nature of wiry objects
(e.g., severe self-occlusion), we adopt a representation based on
straight edges constructed from points. Specifically, we employ
a robust maximum a posteriori (MAP) inference to construct
sparse 3D points and subsequently use these sparse points
to generate edge candidates whose beliefs are updated in a
Bayesian manner. Then we take the set of 3D edges with beliefs
greater than a threshold and apply a post-processing step to
reject false edges. Experimental validation demonstrates the
superior performance of our proposed framework in recon-
structing 3D edges of wiry structures compared to existing
state-of-the-art algorithms. We also demonstrate a manipulation
task using the reconstruction that showcases the potential of the
method to be easily used for subsequent robotic tasks.

I. INTRODUCTION

Three-dimensional reconstruction is still challenging for
wiry structures due to their thin geometry, lack of texture,
and severe self-occlusion. Even commodity depth cameras
cannot capture their geometry, as illustrated in Fig. 1.

An image-based approach is a promising solution, which
can be categorized mainly into four classes with respect to
the way each represents the 3D scene. First of all, point-
based methods include most structure-from-motion (SfM)
methods [1], [2], whose reconstructions are usually too
sparse to represent low-textured wiry scenes. Although dense
reconstruction methods (e.g., multi-view stereo (MVS) [3],
[4]) can be exploited to produce a dense point cloud, they
require intensive amount of computation and memory due
to the little information points can accommodate. Second,
lines can be exploited to render the scene in a compact
yet informative manner. But works using lines [5]–[7] are
not well-suited in cases of our interest (i.e., wiry structures)
because the severe self-occlusion fragments line segments
and damages the reconstruction. Third, curves can be used
to depict more general scenes [8]–[11]. Nevertheless, these
studies need segmentation [8], [9], and the computation is
expensive because curves can only be handled with a set of
points sampled on them. Lastly, deep learning-based methods
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Fig. 1. Snapshots of (a) a point cloud captured with RealSense D435i
and (b) an image of IKEA Kungsfors dish drainer. The spokes are clearly
visible in the image but they are not captured in the point cloud.

can perceive 3D scenes from multi-view 2D images using
neural networks [12]–[14], where the networks themselves
are the implicit representations. However, such implicit rep-
resentations pose a challenge in that we need an additional
interpretation to use this for manipulation.

In this work, we propose a novel online strategy for
reconstructing 3D edges of wiry structures from monocular
image sequences. For an efficient and informative represen-
tation well-suited to address the challenges arising from such
structures (e.g., severe self-occlusion), we adopt a repre-
sentation based on straight edges constructed from points.
More specifically, we employ a robust maximum a posteriori
(MAP) inference to construct sparse 3D points and use these
points to generate 3D edge candidates whose beliefs of being
real physical 3D edges are updated in a Bayesian fashion.
Then we take the set of edges with beliefs greater than a
threshold and a post-processing is applied to filter out false
edges. The proposed algorithm is experimentally validated
on online reconstruction of real-world wiry objects, which
demonstrates the superior performance of our framework in
reconstructing 3D edges of wiry structures compared to state-
of-the-art methods. This reconstruction can be efficiently
utilized for a variety of robotic manipulation tasks, as demon-
strated in a tableware manipulation.

II. METHODS

The overall architecture of our method is illustrated in
Fig. 2. Our method is composed of two components: 1)
sparse 3D point generation; and 2) edge inference. The first
component generates sparse 3D points and the second one
constructs edges from them.

A. Sparse 3D Point Generation

Using the feature correspondences obtained from the
tracking, we formulate a maximum a posteriori (MAP)
inference as a joint optimization to generate 3D points from
the feature points and to correct the camera poses. Since
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Fig. 2. Overall architecture of our proposed 3D edge reconstruction
framework of wiry structures.

self-occlusion creates many fake feature points, we utilize an
expectation-maximization (EM) algorithm [15] for the MAP
inference as a means of robust estimation. This is done by
introducing a latent variable in the MAP formulation as

Θ = argmax
Θ

p(Θ|x) = argmax
Θ

∑
Z

p(Z,Θ|x),

where Θ = [X,T ], X = {Xi ∈ R3} is the set of 3D points,
T = {Tt ∈ SE(3)} is the set of camera poses, t is a time
step, x = {xit ∈ R2} is the set of feature points (xit is the
feature point at t corresponding to Xi), and Z = {Zit ∈
{0, 1}} is the set of latent variables (Zit indicates whether
xit is a good feature to be included in the optimization).

B. Edge Inference

From the generated 3D points, we infer connecting edges
using multiple images of different views since the appearance
of connectivity from a single image can be misleading. We
take current feature points and generate edge candidates by
connecting them. The belief of each candidate is a condi-
tional probability of being a real edge given observations
and is updated via the Bayesian inference as

p(e|I0:t′) =
p(e|I0:t′pre

)p(It′ |e)
p(It′ |I0:t′pre

)

where e ∈ {0, 1} is the indicator of being an edge, It′ is
an image observation at t′, t′pre is the previous time step,
It1:t2 is the image observations from t1 to t2, p(e|I0:t′pre)
is the previous belief, p(It′ |e) is the likelihood of the
observation at t′, and p(It|I0:t′pre

) is the normalizer (=∑
e p(e|I0:t′pre

)p(It′ |e)).
The likelihood of an edge candidate is evaluated by

defining a metric that represents how much the segments
in the neighborhood of the candidate suggest that it is a
real edge (e.g., large when the segments are long and nearly
parallel to the candidate). We would like to note that although
this method of using line segments to evaluate the likeli-
hood works in general settings, we can use any likelihood
evaluation module that reasonably predicts the likelihood
(e.g., neural networks working directly on images). At the
end of the reconstruction process, we take the set of edges
with beliefs greater than a threshold and a post-processing
is applied to filter out false edges.

Fig. 3. The experiment setup. A camera (RealSense D435i) is mounted on a
gripper (Franka Hand) attached to the end effector of the robotic manipulator
(Franka Emika Panda). The target objects are put on the table.

III. EXPERIMENTAL RESULTS

The experiment setup is shown in Fig. 3. The evaluations
presented in this section are all done on a desktop with an
AMD Ryzen 5 3600 6-core 3.59 [GHz] CPU, a 16 [GB]
RAM, and an NVIDIA GeForce GTX 1660 GPU.

A. Comparative Evaluation

The proposed algorithm is evaluated in comparison with
COLMAP [4], Line3D++ [5], EdgeGraph3D [10], and NeuS
[13]. All algorithms are fed the same images and camera pose
estimates from the robot measurements. Note that COLMAP
uses a GPU while the other methods use a CPU only.

We present evaluation results on wiry objects and the re-
sults are depicted in Fig. 4. The reconstructions of COLMAP
and Line3D++ have many outliers, with many of the lines
of Line3D++ segmented into pieces, and EdgeGraph3D and
NeuS suffer to depict the geometry in many cases. In
contrast, the reconstruction using our framework provides
models that mostly represent the object geometries with few
outliers. The shortfalls of other algorithms can be attributed
to several reasons: 1) thin geometry hinders the depth es-
timation of the structures; 2) line segments are fragmented
into small pieces so that few meaningful reconstructions are
made from them; 3) the detected line segments and curves
are derived from the boundaries that change as the view
changes, making the problem quite ill-posed; 4) a small
number of images with a relatively small range of viewpoints
are used; and 5) inaccurate camera poses without refinement
deteriorate the reconstruction.

The number of parameters (i.e., 3#points for COLMAP
and EdgeGraph3D, 6#lines for ours and Line3D++, and
#SDF network parameters for NeuS) and the total execution
times are presented in Tab. I. As can be seen in the table,
the proposed framework reconstructs compact quantities of
geometric primitives that articulate the object geometry and
works online with a fast enough post-processing. We argue
that running the reconstruction online is beneficial in that
we can lower computation and memory requirements and
access the reconstructed model anytime during the scanning,
bringing an opportunity for active sensing.



TABLE I
THE NUMBER OF PARAMETERS AND TOTAL EXECUTION TIME (UNIT: [s]) FOR RECONSTRUCTION. THE EXECUTION TIME x ∗ y + z IN OURS MEANS

THAT THE ALGORITHM IS RUN AT 1/x[Hz] FOR y FRAMES AND THE POST-PROCESSING TAKES z [s].

Ours COLMAP Line3D++ EdgeGraph3D NeuS
# parm. exec. time # parm. exec. time # parm. exec. time # parm. exec. time # parm. exec. time

Tetrahedron 102 0.20 ∗ 30 + 0.00 93216 878.64 54 0.14 1074 3.38 529076 132604.12
Hexagonal prism 348 0.20 ∗ 30 + 0.00 133572 846.36 54 0.17 2382 4.31 529076 135092.11

Dodecahedron 576 0.20 ∗ 30 + 0.00 252753 898.80 384 0.51 9675 111.15 529076 135488.47
2× 2× 2 cube 6600 0.25 ∗ 30 + 0.11 149826 867.96 324 0.38 4593 8.57 529076 136295.52

Wire Basket 5010 0.33 ∗ 50 + 0.03 300843 1411.98 732 0.87 19419 77.31 529076 137613.54
Dish Drainer 16284 0.33 ∗ 50 + 0.53 1694385 1358.70 3756 15.05 68016 307.90 529076 136386.25

TABLE II
SHAPE ESTIMATION ERROR (RMSE OF SAMPLED POINT CLOUD) OF

EACH CASE (UNIT: [mm]). COLMAP, LINE3D++, AND EDGEGRAPH3D
ARE ABBREVIATED AS CLMP, L3D+, AND EG3D RESPECTIVELY.

Ours CLMP L3D+ EG3D NeuS
Tetrahedron 1.45 4.04 1.97 7.63 -

Hexagonal prism 2.31 3.61 4.69 9.18 5.18
Dodecahedron 2.77 3.73 4.34 7.91 6.91
2× 2× 2 cube 2.93 4.53 5.62 6.41 6.51

Fig. 4. Reconstruction results on wiry objects. The leftmost column
contains the plots of the reconstruction using the proposed framework.
The following columns contain the results using COLMAP [4], Line3D++
[5], EdgeGraph3D [10], NeuS [13], respectively. The points of COLMAP
are colored using the image colors and the results of NeuS are rendered
images given certain viewpoints. Rotating views are available at: https:
//youtu.be/s1J9GVYt7Fs

Fig. 5. Snapshots of a robotic tableware manipulation task. Two dishes
are successfully placed in a row in the designated slots of the drainer.

We also evaluate the accuracy of the reconstruction by
computing the distances after alignment between the points
sampled from the reconstruction and the points sampled from
the ground truth. Our framework achieves the smallest root
mean square error (RMSE) values in all cases as presented in
Tab. II, which implies that we obtain more accurate models
with few outliers.

B. Manipulation Demonstration

We demonstrate how our framework can enhance percep-
tion for robotic manipulation tasks (e.g., [16]). A tableware
manipulation task is performed, where a robot scans a dish
drainer and places two dishes in their respective target slots
on the wiry dish rack. For the demonstration, the robot is
installed with a gripper and an FT sensor (ATI Gamma)
for admittance control. We exploit the motion planner used
in [17] to place dishes, and the experiment snapshots are
presented in Fig. 5. This can only be possible with our
framework which accurately estimates the configuration of
the wire spokes of the rack and, consequently, the target slot
for each dish.

IV. CONCLUSION
We propose an online 3D edge reconstruction framework

that recovers scenes with wiry structures from monocular
image sequences, which can be directly utilized in robotic
tasks. For a compact and informative representation well-
suited to wiry structures, we employ a robust MAP inference
to construct sparse 3D points and use these points to generate
edges whose beliefs are updated in a Bayesian way. The
proposed framework is validated in experiments on the online
reconstruction of wiry objects using a camera mounted on a
robotic manipulator. The results demonstrate that our frame-
work offers a more efficient and complete reconstruction
compared to state-of-the-art approaches, and that it can be
easily utilized for robotic manipulation.

https://youtu.be/s1J9GVYt7Fs
https://youtu.be/s1J9GVYt7Fs


REFERENCES

[1] C. Wu, “Towards linear-time incremental structure from motion,” in
International Conference on 3D Vision (3DV), 2013, pp. 127–134.

[2] J. L. Schönberger and J.-M. Frahm, “Structure-from-motion revisited,”
in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2016, pp. 4104–4113.

[3] Y. Furukawa, B. Curless, S. M. Seitz, and R. Szeliski, “Towards
internet-scale multi-view stereo,” in IEEE Computer Society Confer-
ence on Computer Vision and Pattern Recognition, 2010, pp. 1434–
1441.

[4] J. L. Schönberger, E. Zheng, J.-M. Frahm, and M. Pollefeys, “Pixel-
wise view selection for unstructured multi-view stereo,” in European
Conference on Computer Vision, 2016, pp. 501–518.

[5] M. Hofer, M. Maurer, and H. Bischof, “Efficient 3D scene abstraction
using line segments,” Computer Vision and Image Understanding, vol.
157, pp. 167–178, 2017.

[6] D. Wei, Y. Wan, Y. Zhang, X. Liu, B. Zhang, and X. Wang, “ELSR:
Efficient line segment reconstruction with planes and points guidance,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2022, pp. 15 807–15 815.

[7] M. Hofer, A. Wendel, and H. Bischof, “Incremental line-based 3d
reconstruction using geometric constraints.” in BMVC, 2013.

[8] L. Liu, D. Ceylan, C. Lin, W. Wang, and N. J. Mitra, “Image-based
reconstruction of wire art,” ACM Transactions on Graphics (TOG),
vol. 36, no. 4, pp. 1–11, 2017.

[9] P. Wang, L. Liu, N. Chen, H.-K. Chu, C. Theobalt, and W. Wang,
“Vid2Curve: simultaneous camera motion estimation and thin structure
reconstruction from an RGB video,” ACM Transactions on Graphics
(TOG), vol. 39, no. 4, pp. 132–1, 2020.

[10] A. Bignoli, A. Romanoni, M. Matteucci, and P. di Milano, “Multi-
view stereo 3D edge reconstruction,” in IEEE Winter Conference on
Applications of Computer Vision (WACV), 2018, pp. 867–875.

[11] S. Li, Y. Yao, T. Fang, and L. Quan, “Reconstructing thin structures
of manifold surfaces by integrating spatial curves,” in Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition,
2018, pp. 2887–2896.

[12] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoor-
thi, and R. Ng, “NeRF: Representing scenes as neural radiance fields
for view synthesis,” in European Conference on Computer Vision,
2020.

[13] P. Wang, L. Liu, Y. Liu, C. Theobalt, T. Komura, and W. Wang, “NeuS:
Learning neural implicit surfaces by volume rendering for multi-view
reconstruction,” Advances in Neural Information Processing Systems,
vol. 34, pp. 27 171–27 183, 2021.

[14] L. Yen-Chen, P. Florence, J. T. Barron, T.-Y. Lin, A. Rodriguez, and
P. Isola, “Nerf-supervision: Learning dense object descriptors from
neural radiance fields,” arXiv preprint arXiv:2203.01913, 2022.

[15] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood
from incomplete data via the em algorithm,” Journal of the Royal
Statistical Society: Series B (Methodol.), vol. 39, no. 1, pp. 1–22,
1977.

[16] Z. Liu, W. Liu, Y. Qin, F. Xiang, M. Gou, S. Xin, M. A. Roa, B. Calli,
H. Su, Y. Sun, and P. Tan, “OCRTOC: A cloud-based competition and
benchmark for robotic grasping and manipulation,” IEEE Robotics and
Automation Letters, vol. 7, no. 1, pp. 486–493, 2021.

[17] J. Lee, M. Lee, and D. J. Lee, “Uncertain pose estimation during con-
tact tasks using differentiable contact features,” in Robotics: Science
and Systems, 2023.


	INTRODUCTION
	METHODS
	Sparse 3D Point Generation
	Edge Inference

	EXPERIMENTAL RESULTS
	Comparative Evaluation
	Manipulation Demonstration

	CONCLUSION
	References

