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ABSTRACT

Out-of-distribution (OOD) detection is the problem of identifying inputs which are
unrelated to the in-distribution task. The OOD detection performance when the
in-distribution (ID) is ImageNet-1K is commonly being tested on a small range
of test OOD datasets. We find that most of the currently used test OOD datasets
have severe issues, in some cases more than 50% of the dataset contains objects
belonging to one of the ID classes. These erroneous samples heavily distort the
evaluation of OOD detectors. As a solution, we introduce with NINCO a novel
test OOD dataset, each sample checked to be ID free, which with its fine-grained
range of OOD classes allows for a detailed analysis of an OOD detector’s strengths
and failure modes, particularly when paired with a number of synthetic “OOD
unit-tests”. We provide detailed evaluations across a large set of architectures and
OOD detection methods on NINCO and the unit-tests, revealing new insights about
model weaknesses and the effects of pretraining on OOD detection performance.
We provide code and data here.

1 INTRODUCTION

While deep learning based models have shown impressive performance on many real world tasks, they
often exhibit unforeseen behaviour when confronted with unknown situations like receiving an input
that is not related to the task it has been trained on. Such samples are regarded as out-of-distribution
(OOD) and deep neural network classifiers are known to make very confident predictions that those
belong to one of the in-distribution (ID) classes (Hendrycks & Gimpel, 2017; Hein et al., 2019).
This unwanted behaviour is a serious obstacle when applying classifiers in real world applications.
The purpose of OOD detectors is to reject OOD inputs, which depending on the application can mean
requesting human intervention, steering towards a safe state, or simply abstaining from making a
prediction, while at the same time letting ID inputs pass through.

Current OOD detection evaluations in image classification rely on the assumption that there is no
ID class present in an OOD test image, not even in the background. We follow this definition and
consider an input to be out-of-distribution (OOD) if it does not contain any of the in-distribution
classes. However, we show that this assumption is not fulfilled for most of the current test OOD
datasets for ImageNet-1K (IN-1K) of Russakovsky et al. (2015). We demonstrate that occurrences of
objects from ID classes in these test OOD datasets are often correctly recognized by state-of-the-art
OOD detectors, but as an unwarranted consequence held against them as mistakes in OOD detection
evaluations (false “false positive”). Even in cases where current models struggle to identify ID
content, e.g. if ID objects are partially occluded or in the background, OOD datasets containing
ID objects are not future proof: when evaluating on them, one would not realize if a future model
correctly predicts the class of a visible ID object.

The erroneous occurrences of ID objects in existing OOD datasets can be characterized into two
failure modes, which we illustrate in Figure 1 and define as follows. Categorical ID contaminations
show objects from ID classes which already are classes in a base dataset from which the test OOD
dataset has been built. Their label coincides with an ID class or semantically designates a subset of
an ID class, e.g. the class hayfield from the PLACES datset and the IN-1k class hay. Incidental ID
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Figure 1: Contamination of OOD test sets with ID samples (ImageNet). Blue: ImageNet-1K class
found in the image. (Brown): Label of the image in the original source dataset. Top: Samples from
classes of the OOD dataset that by class meaning categorically overlap with ImageNet-1K classes.
Bottom: Labels alone do not reveal that the images are ID, but incidental ID objects can be found.

contaminations on the other hand occur in images which are supposed to belong to an OOD category
but which contain an ID object. The object can be in the background or an aspect of the specific
instance of the shown main object, e.g. the IN-1k class plane in an image of the OOD category sky.
We show that ID contaminations strongly impact the conclusions which can be drawn from evaluating
OOD detection methods by (1) systematically underestimating the true OOD detection performance
and (2) unrightfully punishing stronger OOD detectors.

Probing the true performance of OOD detectors for IN-1K requires a range of OOD classes that are
challenging, diverse, and most importantly actually OOD. Compiling a test OOD dataset is indeed a
challenging task, as the 1000 classes of IN-1K cover a fair portion of the images found in general
image datasets. In this paper we introduce the NINCO (No ImageNet Class Objects) dataset which
contains 5 879 images that we individually checked not to contain any ID object from the classes in
IN-1K. These images are ordered into 64 OOD classes, which facilitates a specific analysis of the
failure modes of an OOD detector. Additionally, we provide a dataset of “OOD unit-tests”, synthetic
images which do not resemble real world photos, but are designed to test specific weaknesses that
might have impact in real-world applications (e.g. due to a camera failure). We find that surprisingly
many OOD detectors struggle to detect these supposedly easy unit-tests, in particular methods that
work well on natural test data.

We provide a detailed OOD detection evaluation on NINCO for a range of eleven OOD detection
methods across a large number of architectures and training schemes. Surprisingly, it turns out to be
difficult for many OOD detectors to improve consistently over the baseline of Maximum Softmax
Probability (MSP). While we confirm the observation that pretraining on larger datasets generally
helps OOD detectors and particularly methods using pre-logit feature-information directly, we find
that the type of pretraining has a strong impact.

2 PREVALENCE OF ID SAMPLES IN POPULAR OOD DATASETS

In Appendix B we give an overview of the datasets that have been used to evaluate OOD detection
performance for IN-1K as ID. In the following we use blue for the name of an ImageNet class and
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Table 1: Percentage of ID samples, p = ID
ID+OOD , in commonly used test OOD datasets found by

visual inspection of 400 random samples per dataset. Unclear samples are ignored (which are at most
6.7% (for PLACES) of the 400 samples). An overview over the datasets is given in Appendix B.

Dataset % ID Dataset % ID Dataset % ID Dataset % ID
PLACES 59.5 SPECIES 57.0 IMAGENET-O 20.2 SSB-EASY 53.4
INAT. PLANTS 2.5 TEXTURES 25.6 OPENIM.-O 4.9 SSB-HARD 41.6
COOD 38.2 TEXTURES43 20.0 360OPENSET 26.9 IN-1K-OOD 32.1

brown for the category name in the source dataset used for the generation of the test OOD dataset.
Concerningly, several test OOD datasets for IN-1K that are in use by the community contain a
substantial fraction of samples that show ID objects. Figure 1 shows some typical appearances of ID
data in supposedly OOD datasets. The categorical ID failure mode illustrated in the top part is the
inclusion of samples from explicitly ID classes of the source dataset from which the OOD dataset has
been built. For instance, the class hayfield from the PLACES-dataset overlaps with the IN-1K class
hay. However, also in principally innocuous classes (bottom part), many incidental ID samples can
still be found. Here, the occurring failure modes are numerous: some ID objects happen to be in the
background, some are a prominent part of the depicted scene, and some happen to realize both the
original class and the ID class. For instance, the class table knife contains samples which also show a
plate, and the class striped from the TEXTURES-dataset often shows the stripes of a zebra.

In order to quantify the severity of ID objects in test OOD datasets, we manually check for ID objects
in 400 random samples from each of the most commonly used datasets. For fair treatment, unclear
and ambiguous samples, which we would exclude from NINCO introduced below, are ignored in this
survey. The results in Table 1 show that for many of these common OOD detection benchmarks, a
substantial fraction of samples is actually ID: For both the PLACES and SPECIES datasets, it is more
than 50%. Only INATURALIST OOD PLANTS (2.5% of samples ID) and OPENIMAGE- (4.9% ID)
contain comparably few ID images.

2.1 EFFECT OF ID CONTAMINATION ON OOD EVALUATION
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Figure 2: Left: A Vision Transformer confidently classifies ID objects in samples from popular
OOD datasets (source label in parentheses) as the correct IN-1K class, but is marked down with
false positives in OOD detection evaluation when using MSP (Max Softmax Prob.) as criterion. The
weaker ResNet-50, in contrast, doesn’t recognize the ID objects and hence the MSP is low enough
to reject all images wrongly as OOD. This illustrates how a better model (ViT in our case) can be
unjustly punished when the test OOD dataset contains ID objects. For both models, the 95%TPR
threshold is at a MSP of 38%. Right: OOD-detection before and after removing samples with
ID-objects: We show FPR (lower is better) of two OOD detectors (MSP and Mahalanobis distance)
for a ViT, evaluated on cleaned and full subsets of four popular OOD datasets.

In Figure 2 (left), we show how OOD detection evaluation with incidental ID samples can unrightfully
punish strong OOD-detectors: A better model can correctly recognize ID objects with high confidence
even if they are in the background of the image, leading to a false “false positive” in the evaluation,
while a weaker model not recognizing the ID object and providing a low-confidence prediction is
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Figure 3: Difficult OOD classes in NINCO: Examples of images from some of NINCO’s most
difficult (see Table 7) OOD classes (first row) and from the ImageNet-1K class (second row) which
the OOD class is most frequently confused for.

“rewarded” with a false “true negative”. For example, the strong VisionTransformer (ViT) (Dosovitskiy
et al., 2021) identifies the pole besides an otherwise empty desert road, and thus has high confidence
on the image where the weaker ResNet-50 does not recognize any ID class with high confidence.
Similarly, in the second example, the ViT is punished with a false “false positive” for recognizing
(above the detection threshold) the oranges in the background while ignoring the unknown flying fox
(truly OOD), whereas the ResNet-50 even does predict a wrong ID class, namely squirrel monkey,
but does so with low confidence (below the detection threshold), and is thus rewarded with a false
“true negative”.

We quantify the effect of ID contaminations on evaluation results in customary OOD datasets in
Figure 2 (right) for the MSP baseline and the Mahalanobis OOD detection method (Lee et al.,
2018). For the test OOD datasets which showed a large portion of ID samples in Table 1, we report
the FPR at 95% TPR obtained with a ViT when evaluating on the original 400 samples and our
cleaned subsample of it not containing any more ID objects (detailed results for a range of models
and methods can be found in Appendix K). We find that ID contaminations strongly impact the
conclusions which can be drawn from evaluating OOD detection methods on those datasets. Most
clearly, both methods perform substantially better after removing the images with ID objects from
the OOD datasets, in some cases reducing the FPR by more than 50%. This is unsurprising: If a
significant fraction of the dataset is actually ID, this fraction should not be detected as OOD by a
well-performing method. Hence, evaluating OOD detection performance with partially ID data leads
to a systematic overestimation of the true FPR of the OOD detection method and disadvantages better
models as they are more likely to detect ID objects as discussed above. Additionally, we observe
that the differences between OOD detectors become more pronounced. In Figure 2 (right) it can be
seen that for each dataset, the FPR for the Mahalanobis OOD detector decreases more than for the
MSP-baseline. The effect is particularly strong for SPECIES (25.6% gain of MSP vs. 33.2% gain of
Mahalanobis) and PLACES (19.6% gain vs. 26.3% gain), which are two of the datasets we found
to contain most ID samples. We further emphasize that due to the presence of large fractions of
ID samples in most common benchmarks, even a perfect detector’s measured performance would
saturate significantly above 0% FPR. For example with Species, we find that for a strong current
detector already more than 85% of the ’false positives’ contain ID objects.

3 A NEW OOD TEST SET FOR IMAGENET-1K

As discussed in Section 1, an OOD input for IN-1K is an image that does not contain an object
from one (or several) of the 1 000 IN-1K classes. These ImageNet classes are based on individual
WordNet (Fellbaum, 1998) synsets, each consisting of one or more keywords that are synonymous in
some context. During the ImageNet creation process (Deng et al., 2009), images were first collected
from the web by using variations of each keyword of a respective class and then verified by humans
to fit its synset’s definition.

Sourcing OOD test samples for ImageNet-1K from ImageNet-21K (or its subsets) based on class-
labels has been leading to highly contaminated datasets (5 of the datasets in Table 1 are sourced
from ImageNet-21K and all contain between 20% and 53% ID samples and significant categorical
contamination). This is partly due to the class-structure of those datasets: Both ImageNet-1K and
ImageNet-21K contain leaf and internal nodes of the WordNet-tree as classes. While the internal
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Figure 4: Cumulative distribution of the % of NINCO-classes for which an FPR at least as low as
a given x-value is achieved. The area over this curve corresponds to the mean FPR. The further
in the top left corner, the better. The best methods access pre-logit features (Left): Different
OOD detection methods with a ViT-B pretrained on IN-21k (mean FPR in parentheses, pre-logit
feature-accessing methods are solid, others dashed). Not all pretraining helps (Right): RMaha
applied to ViT-B with different training variants (MCM for CLIP zero-shot is dashed). Only the top
model does not fail OOD unit-tests.

nodes of ImageNet-1K are not ancestors to other Imagenet-1K classes, ImageNet-21K internal
nodes can be ancestors to ImageNet-1K nodes, and vice versa. Moreover, there are ambigous class-
definitions in WordNet, like e.g. police dog, which is not parent or child of another dog class, but
mostly shows a german shepherd, or an alley cat showing one of the many cat classes without being
parent or child to other cat classes. Besides, there is significant incidental contamination even for
nominally disjoint classes. Since the automation of filtering for challenging OOD data would require
a strong detector that already solves the problems that the dataset is meant to pose, we conclude that
it is impossible to construct a clean and challenging OOD dataset without manually checking the
OOD samples for ID contamination.

In reality, many ImageNet samples fit one but not necessarily all keywords of their class label. This
means that to make sure that OOD detectors are treated fairly1, OOD test samples cannot fall into the
definition of any keyword of any IN-1K class. For example, photos of the Sumatran orangutan cannot
be considered OOD, since they could be included in the IN-1K class (orangutan, orang, orangutang,
Pongo pygmaeus), even though Pongo pygmaeus only refers to the Bornean orangutan. To determine
what counts as an ID object, we follow the WordNet glosses2 as well as dictionary definitions of
keywords and source dataset class labels. For difficult cases, we consult additional sources like
Wikipedia. For example, the species northern elephant seal does not fall into the ID class sea lion,
among other biological criteria distinguished by the fact that the former do not have ears while the
latter do. An image of an OOD dataset can furthermore not incidentally contain ID objects, to avoid
cases as in Figure 1 (bottom) and Figure 2.

3.1 NINCO DATASET CONSTRUCTION

For each OOD class of our new NINCO dataset, we start by choosing a base class which consists of
all samples from a named class of an existing or newly scraped dataset. The majority of the NINCO
base classes are sourced from SPECIES (Hendrycks et al., 2022), which provides images scraped from
iNaturalist. For each base class, we carefully decide, based on WordNet glosses, iNaturalist taxonomy
details and Wikipedia, whether it can be included according to the non-permissive interpretation
described at the beginning of Section 3. The choice of base classes is not random, since there is no
way to randomly sample from the set of concepts that might occur at test time. Rather, we aim for a
variety of classes that are challenging, diverse and, most importantly, not actually being categorically
ID to begin with. Then for each base class, we individually inspect each image for ID objects. To
help remembering the 1000 ID classes, we display the 5 top ID classes of a ViT’s prediction on each
image. If an ID object is at least partially visible, the corresponding sample is removed. In cases
where it is ambiguous whether we see an ID object in the image, the sample is not included in the
cleaned dataset. As the iNaturalist data (including the SPECIES dataset) has been curated by experts
and can be considered very reliable, we generally trust in the main object belonging to the species it

1For fair treatment of previous OOD datasets, such unclear samples that don’t fit all keywords were ignored
in Table 1.

2One can look up synsets with glosses here.
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Figure 5: IN-21K pretraining boosts OOD detectors accessing pre-logit features on NINCO:
Mean FPR vs. accuracy for MSP and each model’s best detector (which except for the noisy-student
model always accesses the pre-logit features). OOD detection strongly improves when using models
pretrained on IN-21K. Additional CLIP-pretraining or on JFT can yield higher accuracy, but OOD
detection need not be better than with IN-21K pretraining.

is labelled as. For data from other base classes, we consider ourselves competent to verify whether
the label is correct. In addition to samples showing ID objects, we also remove images where no
object from the OOD class is visible, e.g. we exclude pictures of animal traces or remains which
frequently appear in iNaturalist. While for most existing datasets, the cleaning has been outsourced to
external services like Amazon Mechanical Turk or student labellers. By researching all OOD classes
and visually inspecting all their samples ourselves, we as authors of NINCO were able to do more
in-depth research for each ambiguous case and obtain more coherent decisions, which we are positive
leads to a higher quality dataset. Such high data quality is crucial for in-depth evaluations (Vasudevan
et al., 2022; Shankar et al., 2021), as only being completely in-distribution free allows understanding
a detector’s individual mistakes.

The NINCO (No ImageNet Class Objects) dataset consists of 64 OOD classes with a total of 5 879
samples. The base classes which we cleaned to obtain NINCO were sourced from SPECIES (35
classes) (Hendrycks et al., 2022), PLACES (3 classes) (Zhou et al., 2017), which both are discussed in
Appendix B, as well as from the FOOD-101 dataset (7 classes) (Bossard et al., 2014), CALTECH-101
(4 classes) (Li et al., 2022), MYNURSINGHOME (4 classes) (Ismail et al., 2020), ImageNet-21k
(1 class) and newly scraped from iNaturalist.org (2 classes) or other websites like Flickr (8
classes). Details for all NINCO OOD classes are given in Appendix G. We show samples from all
NINCO classes in Figures 9, 10 and 11 in Appendix I. In addition to NINCO, we also provide the
2715 OOD images obtained from cleaning 400 samples of eleven test OOD datasets as discussed
in Section 2.1. In order to notice ID contaminations potentially biasing the drawn conclusions, we
recommend to also evaluate on these cleaned versions when evaluating on those original benchmarks.

3.2 OOD UNIT-TESTS

Following common practice (e.g. Hendrycks et al. (2022)), we argue that evaluating an OOD detector
on a range of simple, synthetic classes besides the variably challenging natural image classes of an
OOD dataset can give additional insights about its OOD detection weaknesses. Example images and
reproducibility details for all 17 pre-existing and newly proposed OOD unit-tests are included in
Appendices H and I. Since these OOD unit-tests do not represent a diverse distribution of photos,
but different modes of simple, synthetically generated image inputs which any good OOD detector
should be expected to detect, we don’t include them in summary metrics or distribution plots. Instead,
we suggest to count an OOD unit test as failed if a method has an FPR above a user-defined threshold,
which we suggest setting at 10%, and to report the number of failed OOD unit-tests (which should
be 0 for a strong OOD detector) alongside the aggregate results on a test OOD dataset like NINCO.
For each OOD unit-test, we provide a set of 400 samples in typical ImageNet format, by mirroring
the sizes and file formats of random ImageNet samples. While some OOD unit-tests may appear
redundant at first sight, we find that they provide important information as some detectors e.g. mostly
pass the monochrome test but completely fail on black, which reveals a specific weakness that is very
realistic to be encountered in practice.
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4 OVERVIEW OF EVALUATION RESULTS FOR OOD DETECTORS

In Appendix A, we conduct an in-depth analysis of the evaluation results for eleven state-of-the-art
OOD-detection methods (described in Appendix D) combined with a wide range of models (described
in Appendix C). We summarize the main take-aways here.

• For most models, like for the ViT in Figure 4 (left), methods that leverage the features of the
model’s penultimate layer directly out-perform methods purely based on quantities derived from
the logits.

• Many otherwise strong OOD detectors struggle to distinguish supposedly easy OOD unit-tests
from ID-data. Concerningly, many detectors are even fooled by completely black, grey or white
images, which are for many systems likely to be recorded in practice.

• Mahalanobis distance (Lee et al., 2018) on ViT features is the single best detector in terms of mean
FPR and also passes all unit-tests, while Relative Mahalanobis distance (Ren et al., 2021) and
Cosine-based methods show the most consistently good results across models.

• Results on the cleaned subsets of eleven previous benchmark vary, but overall lead to similar
conclusions as NINCO.

• Whether and how a model was pretrained (before fine-tuning on IN-1K) has a strong effect
on OOD detection performance: models using ’traditional’ pretraining on IN-21K have a large
advantage (even compared to higher accuracy models pre-trained on CLIP), as can be observed in
Figures 4 (right) and 5.

• We notice no substantially different benefit of IN-21K pre-training for detecting OOD classes that
overlap with with IN-21K classes.

• Inspecting the behaviour on individual OOD classes, which the NINCO dataset facilitates, helps
understanding the specific weaknesses and strengths of a considered OOD detector.

5 CONCLUSIONS

We introduce with NINCO a novel, ID-contamination-free and challenging OOD test-dataset for IN-
1K with fine-grained class-resolution. We find that many OOD detectors work better than previously
thought, when their recorded number of undetected OOD inputs is not inflated by ID contaminations.
However, most detection methods cannot reliably be applied with arbitrary classifier models, as even
OOD unit-tests are failed by many combinations. We are hopeful for NINCO and the cleaned test
OOD subsets to facilitate the more precise development of reliable OOD detectors which do not try
to avoid presumed failures which are actually correct decisions.
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A EVALUATION RESULTS FOR OOD DETECTORS

We evaluate a range of IN-1K models obtained from the public timm-library (Wightman, 2019)
and state-of-the-art OOD-detection methods on NINCO. We focus on transformer architectures and
convolutional networks, both with and without pretraining. While most pretrained models were
initially trained on IN-21K, we also include an EfficientNet trained via noisy student (Xie et al.,
2019) on the JFT-300M dataset, and four ViTs with CLIP-pretraining (Radford et al., 2021) and
subsequent fine-tuning, as well as a zero-shot CLIP model. A detailed description of all models
can be found in Appendix C. We investigate the following commonly used OOD detection methods,
which can be grouped into two categories: Max-Softmax (MSP) (Hendrycks & Gimpel, 2017),
Max-Logit (Hendrycks et al., 2022), Energy (Liu et al., 2020) and KL-Matching (Hendrycks et al.,
2022) derive an OOD-score exclusively from logit outputs, whereas Mahalanobis distance (Maha)
(Lee et al., 2018), Virtual Logit Matching (ViM) (Wang et al., 2022a), ReAct (Sun et al., 2021),
Relative Mahalanobis distance (RMaha) (Ren et al., 2021), and K-Nearest-Neighbours (KNN) (Sun
et al., 2022) also leverage information from the features of the DNN’s penultimate (pre-logit) layer
directly. For the zero-shot evaluation of CLIP, we use Maximum-Concept-Matching (MCM) (Ming
et al., 2022) and Cosine-similarity (Cos) (Galil et al., 2023) to class-specific text-embeddings. Noting
that OOD detection based on softmax of a cosine similarity to a specific feature vector has been
proposed in different variants (Tack et al. (2020), Techapanurak et al. (2020) and MCM), we find
that using it with classifier class means produces reasonable OOD detection results, marked below as
relative cosine class similarity (RCos). We call methods which directly access the pre-logit feature
layer feature-based and provide an overview over all methods in Appendix D.1.

A.1 RESULTS ON NINCO

Comparison of OOD detection Methods. In Figure 4 (left), we illustrate the performance of a
single ViT when combined with a range of OOD-methods. Overall, most feature-based methods, like
Maha, RMaha and ViM, outperform the MSP-baseline by a clear margin. Notably, MaxLogit and
Energy, which do not access the pre-logit features directly, are also able to strongly improve over
MSP, while KL-Matching performs roughly on par, and KNN much worse. We observe that while
Maha, RMaha and ViM improve over MSP in all FPR ranges, this is different for e.g. MaxLogit:
For large FPR, it is similar to MSP, indicating that the method brings no advantage over MSP for
hard test classes, and its improved mean performance is mainly due to lower FPR for the easier OOD
classes. When regarding the mean FPR values of all method-model-combinations shown in Table 3
in Appendix A.3, we observe that while Maha in combination with a (pretrained) ViT is the single
best OOD-detector, this method often performs worse when combined with other models. RMaha,
however, yields good results with all models, and is together with (Relative) Cosine the only method
which can fairly consistently improve over the MSP baseline in terms of mean FPR. For most models,
it is either the best-performing method, or close to the best-performing method, which is somewhat
surprising, given its relatively poor performance on the unit-tests. We further note that for all models
except the noisy-student model, the best-performing method always is always feature-based, and
that in contrast to e.g. KNN, Energy and ReAct, even the adapted methods based on feature space
cosine similarity Cos and MCM/RCos fairly consistently improve over the MSP-baseline. Each
OOD dataset representing a different out-distribution that can be relevant for certain applications,
we find that results vary on the cleaned subsets of eleven previous benchmarks which we evaluate in
Appendix K, while the overall conclusions on the methods and models resemble those on NINCO.

Pretraining matters. In Figure 5, we plot the mean FPR on NINCO over the accuracy for all
investigated models for both the MSP-baseline (left) and the best-performing OOD detector per
model (right). For MSP, the mean FPR decreases roughly linearly with accuracy. Since most
pretrained models (blue) have higher accuracy, they typically also show better OOD-detection
performance, but also between models of similar accuracy, the pretrained ones achieve better mean
FPR. For the best-performing OOD detector, improvements can be observed for models both with and
without pretraining. Notably, the linear relation between FPR and accuracy disappears, and all purely
1K models (green) perform roughly on one level. In comparison, the gains for the majority of models
pretrained on IN-21K (blue) are significantly larger. In particular ViT, ConvNext and BiT benefit
strongly from leveraging their respective best method, which as discussed above is feature-based.
In other words, pretraining helps in two ways: First, it leads to higher ID-performance (accuracy),
which benefits methods like the MSP-baseline. Second, it creates better feature-embeddings for
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Figure 6: FPR of a pretrained ViT-B and pretrained ConvNext-B for all classes of NINCO.

this task, which lead to improvements beyond the accuracy-MSP correlation. This is most clearly
visible for the pretrained BiT-m, which has comparably low accuracy (82%) and hence no outstanding
MSP-performance, but outperforms all 1k-models by a significant margin with features leveraging
ViM. However, as we observe in Figure 4 (right), the benefit of pre-training depends strongly on
the specific data and training method: With RMaha, the ViT with ’traditional’ IN-21K pretraining
from (Steiner et al., 2022) clearly outperforms models with the distillation-based training of DeiT3
(Touvron et al., 2022), CLIP-pretraining or even CLIP with interjected IN-12K training, which
barely improve over ViT without pretraining. The zero-shot methods for CLIP, despite having
shown promising results in (Galil et al., 2023) and (Ming et al., 2022) and performing well on
the unit tests, are not competitive to IN-1k classifiers on NINCO. Regarding all methods, the five
models trained with different pre-training strategies (EfficentNet-b7 with noisy student and four ViTs
with CLIP-pretraining (Radford et al., 2021) and subsequent fine-tuning) show some of the highest
accuracies in our survey, yet, their OOD-detection performance is surprisingly poor. Overall, we
see strong indication hat the precise type of pretraining has a large impact on whether it produces
a feature space that is beneficial for feature based methods. In Appendix L we investigate whether
IN-21K-pretraining particularly benefits detection of OOD classes that overlap with IN-21K classes,
but we notice no substantially different changes between the model with and without pretraining.

Analysis of failure cases. In Figure 6 we plot the individual FPR for each OOD class of NINCO for
the combination ViT+Maha, the overall best OOD detector in terms of mean FPR, and contrast it
with ConvNext+Maha, which also shows good mean FPR. Performance varies widely between OOD
classes, with both models severely struggling for some classes. Where the ViT shows large FPR,
the ConvNext rarely performs better, while it also fails to detect certain classes like the long-tailed
silverfish where the ViT does well. We illustrate samples from hard classes in Figure 3. Both models
struggle to detect the Galápagos fur seal (98% FPR for the ViT), often confused with the IN-1K class
sea lion, and cat-faced spider (confused with barn spider, 91% FPR). From a human perspective,
those classes are arguably hard to detect. We note, however, that it is possible to tell them apart, as a
ViT IN-21K-classifier e.g. identifies the Galápagos fur seal as a fur seal (IN-21K class) in 92% of
samples and misclassifies only 6% of them as a sea lion. The networks however also fail for classes
more obvious to humans: donut (84% FPR ViT, confused with bagel), spaghetti bolognese (69%
FPR, carbonara) and chicken quesadilla (73% FPR, burrito) also confuse both models.

Table 2: Some detectors fail OOD unit-tests: FPR for a ViT and a ConvNext (with and without
pretraining) on selected unit-tests. FPR larger than 10% count as failed an are thus marked red.
Especially for methods relying on feature representations (like ViM and Maha) the OOD unit-tests
reveal difficulties.

method bla whi gre hor SmN Rad mon

V
iT

21
k MSP 0.0 0.0 0.0 0.2 0.5 0.0 0.0

ViM 0.0 100.0 46.0 0.0 0.0 0.0 0.5
Maha 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Cos 0.0 0.0 0.0 0.0 0.0 0.0 0.0

C
nv

1k

MSP 0.0 0.0 0.0 60.5 0.8 0.0 0.0
ViM 100.0 100.0 100.0 98.0 24.5 100.0 100.0
Maha 100.0 100.0 100.0 87.5 27.5 100.0 100.0
Cos 0.0 0.0 0.0 27.5 0.0 0.0 0.0

C
nv

21
k MSP 0.0 0.0 0.0 13.5 2.2 0.0 0.0

ViM 100.0 100.0 100.0 0.0 0.0 41.2 0.5
Maha 100.0 100.0 100.0 0.0 0.0 42.5 2.8
Cos 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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A.2 RESULTS ON THE OOD UNIT-TESTS

Auditing OOD detectors on the OOD unit-tests, we find that surprisingly many combinations of
models and OOD detection methods struggle to distinguish supposedly easy inputs from ID-data.
While results for all models and methods can be found in Appendix J, we provide some illustrative
unit-test results in Table 2 for a ViT pretrained on IN-21k and a ConvNext both with and without
IN-21K pretraining. In general, most methods fail fewer unit tests when applied to pretrained
models, however there are still many severely flawed combinations, often involving methods that
would otherwise shine based on their detection of natural OOD data discussed above: especially the
feature-based methods ViM, Maha and RMaha reveal weaknesses, each failing multiple unit-tests on
at least 21 of 26 models. Many tested OOD detectors are vulnerable to black, white and grey, which
is concerning as encountering inputs of this kind could occur in many real-world applications due
to camera malfunction or occlusion. Here those feature methods only provide trustworthy results
in combination with ViTs pretrained on IN-21k, the BiT-models and a pretrained EfficientNet-V2.
Methods like Cos (7/26 models fail multiple tests) and MCM/RCos (7/26), originally designed for
cosine-trained features as in CLIP, achieve remarkably strong OOD-detection performance on the
unit-tests across a broad range of models, both with and without CLIP-pretraining. While taking note
of these general trends, each OOD detector’s robustness to the OOD unit-tests should be examined
individually.

A.3 DETAILED RESULTS ON NINCO

A detailed overview over the results on the NINCO benchmark is presented in Table 3, where we
show the mean FPR for all models and methods across the dataset’s OOD classes. Tables 4-6 show
AUROC, AUPR-S and AUPR-E with the same conclusions. The best method per model is marked
bold, and the difference to the MSP-baseline is shown in green where a model outperforms the
MSP-baseline and in red if it performs worse than MSP. It is clearly visible that there is no one-fits-all
method. Instead, different models synergize with different methods. Overall, the two ViT models
pretrained only on IN-21K in combination with Mahalanobis distance outperform other models and
methods by a clear margin. This is in line with the observations of previous works (Koner et al., 2021;
Fort et al., 2021; Galil et al., 2023), which also found the ViTs to perform exceptionally well. In
terms of MSP, the ViTs are not better than e.g. the ConvNext, indicating that their improved OOD
detection capabilities stem from a favourably structured feature-space. It is further interesting to
see that for models without pretraining, out of all methods only Relative Mahalanobis consistently
improves over the MSP-baseline. Apart from KL-Matching and KNN, most methods improve fairly
consistently over the MSP-baseline for pretrained models and the CLIP-methods Cosine and RCos
perform comparably well, yielding their best results with models pretrained both on CLIP and IN-12k.
Since CLIP models are trained with cosine-similarity, it is likely that the structure of the feature space
after finetuning remains favorable to cosine-based methods, while it might harm the performance of
other feature-based methods like Mahanobis compared to models pretrained only on IN-21k.

It has been remarked (Hendrycks et al., 2022) that the advantage of models pretrained with IN-21K in
the OOD detection task CIFAR-10 vs. CIFAR-100 (Krizhevsky & Hinton, 2009) might partially be
explained by the CIFAR-100 classes not truly being unseen at train time, as they have a large overlap
with IN-21K classes. We checked each NINCO class for overlap with the 21 843 classes of IN-21K
with the help of a ViT classifier for IN-21K, see Table 9. This allows us to test whether the pretrained
models have a larger advantage over purely IN-1K-trained models when trying to detect those classes
with overlap compared to the classes without overlap. In Appendix L notice no substantially different
changes between the models with and without pretraining. We remark, however, that even for several
models without pretraining, the subselections of classes show quite different results.

In Figure 7 we contrast the results on NINCO with the results from previously used datasets. We
show all methods for a pretrained ViT-B-384 and all models for the MSP-baseline. In both cases
we observe several ranking changes: For the ViT, the best-performing method changes from ViM to
Mahalanobis, and Relative Mahalanobis improves from sixth to second place. For the MSP-baseline,
the clip-pretrained ViTs were the strongest OOD detectors on the previously used datasets, but are
outperformend by the ConvNext-B on NINCO.
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Table 3: Mean FPR on our NINCO dataset. Lower is better. The difference to MSP is shown in
red if a method performs worse, and in green if it improves. Bold values mark the best-performing
method per model.

pre acc. model MSP MaxL Ener KL-M Maha RMaha ViM E+R KNN Cos MCM/RCos

21k

86.0 ViT-B-384 51.9 37.8 −14 36.9 −15 50.3 −2 27.5 −24 31.2 −21 32.6 −19 38.5 −13 62.7 +11 46.0 −6 45.0 −7
84.5 ViT-B-224 58.0 46.5 −12 46.1 −12 57.2 −1 31.9 −26 36.8 −21 38.4 −20 49.4 −9 68.8 +11 54.7 −3 54.3 −4
86.3 Swinv2-B-256 51.1 41.1 −10 40.0 −11 56.0 +5 62.8 +12 53.8 +3 54.8 +4 37.4 −14 61.9 +11 51.4 +0 48.2 −3
86.7 Deit3-B-384 61.8 56.0 −6 56.3 −5 60.3 −1 53.9 −8 48.8 −13 56.9 −5 51.6 −10 53.4 −8 48.4 −13 47.7 −14
85.7 Deit3-B-224 64.8 59.2 −6 58.1 −7 65.2 +0 60.0 −5 53.8 −11 62.5 −2 55.2 −10 58.7 −6 54.2 −11 53.2 −12
86.3 CnvNxt-B 47.2 41.1 −6 43.3 −4 54.9 +8 49.6 +2 42.4 −5 41.5 −6 40.5 −7 51.8 +5 44.2 −3 42.6 −5
84.1 CnvNxt-T 54.7 47.9 −7 45.4 −9 60.7 +6 46.9 −8 45.8 −9 37.4 −17 44.1 −11 56.6 +2 51.2 −4 49.2 −5
82.3 BiT-m 67.8 62.0 −6 63.2 −5 64.9 −3 50.0 −18 45.1 −23 40.7 −27 57.1 −11 58.0 −10 51.6 −16 54.4 −13
85.6 EffNetv2-M 50.7 48.3 −2 54.1 +3 54.6 +4 62.9 +12 51.6 +1 53.5 +3 89.8 +39 67.5 +17 45.4 −5 50.6 −0

none

81.1 ViT-B-384 69.5 67.7 −2 68.1 −1 66.7 −3 60.0 −9 57.1 −12 69.4 −0 65.8 −4 73.6 +4 68.7 −1 69.8 +0
84.6 Swinv2-B-256 69.9 67.6 −2 72.2 +2 67.5 −2 63.9 −6 60.0 −10 66.5 −3 68.8 −1 69.2 −1 63.5 −6 62.0 −8
85.1 Deit3-B-384 67.3 72.8 +5 87.6 +20 64.6 −3 64.0 −3 59.4 −8 60.0 −7 90.2 +23 74.4 +7 67.1 −0 56.9 −10
83.8 Deit3-B-224 70.3 71.9 +2 82.3 +12 68.4 −2 69.0 −1 64.3 −6 63.5 −7 83.1 +13 80.4 +10 73.0 +3 61.9 −8
82.6 XCiT-M-224 72.7 73.3 +1 79.2 +6 71.8 −1 66.2 −6 63.5 −9 64.9 −8 76.4 +4 71.8 −1 67.1 −6 66.0 −7
84.3 XCiT-M-224-d 68.3 66.2 −2 73.1 +5 66.9 −1 66.4 −2 61.9 −6 62.3 −6 72.4 +4 70.4 +2 64.6 −4 62.6 −6
84.4 CnvNxt-B 64.7 71.5 +7 89.1 +24 68.0 +3 65.8 +1 60.6 −4 65.4 +1 85.9 +21 70.5 +6 61.3 −3 58.6 −6
78.0 BiT-s 78.8 81.2 +2 82.9 +4 68.4 −10 83.5 +5 64.1 −15 73.5 −5 77.8 −1 83.2 +4 72.1 −7 84.1 +5
85.1 EffNetv2-M 65.3 65.3 +0 74.5 +9 62.8 −2 62.5 −3 54.9 −10 72.5 +7 69.6 +4 64.4 −1 59.6 −6 54.4 −11
84.9 EffNetb7 66.8 69.0 +2 81.5 +15 62.7 −4 68.1 +1 54.6 −12 72.7 +6 76.3 +10 66.8 +0 60.5 −6 53.7 −13
77.7 EffNet-B0 72.0 72.4 +0 79.6 +8 72.3 +0 83.3 +11 74.0 +2 75.2 +3 75.1 +3 86.9 +15 61.3 −11 69.8 −2
80.4 ResNet50 72.4 74.3 +2 77.9 +6 69.0 −3 85.9 +13 69.5 −3 78.6 +6 97.4 +25 77.9 +6 63.0 −9 62.1 −10

JFT 86.8 EffNetb7-ns 63.2 55.7 −7 61.5 −2 64.5 +1 87.4 +24 68.7 +6 89.2 +26 61.7 −1 73.8 +11 65.2 +2 63.7 +1
clip
+12k

87.2 ViT-B-384-l2b 50.2 47.4 −3 50.3 +0 52.2 +2 52.6 +2 47.3 −3 45.8 −4 44.9 −5 45.4 −5 40.1 −10 40.2 −10
87.0 ViT-B-384-oai 48.8 43.7 −5 44.1 −5 49.6 +1 57.7 +9 48.4 −0 52.5 +4 42.2 −7 45.0 −4 39.3 −10 39.1 −10

clip 86.6 ViT-B-384-l2b 61.9 61.6 −0 65.8 +4 57.5 −4 52.7 −9 50.5 −11 51.7 −10 63.2 +1 57.0 −5 50.8 −11 49.1 −13
86.2 ViT-B-384-oai 64.9 64.9 +0 69.7 +5 61.8 −3 55.7 −9 53.7 −11 56.9 −8 67.3 +2 61.4 −4 56.6 −8 54.3 −11

clip
z. shot

74.3 clip-ViT-L-336 —- —- —- —- —- —- —- —- —- 72.5 67.1
66.6 clip-ViT-B-224 —- —- —- —- —- —- —- —- —- 79.1 79.8

Table 4: Mean AUROC on our NINCO dataset. Higher is better. The difference to MSP is shown
in red if a method performs worse, and in green if it improves. Bold values mark the best-performing
method per model.

pre acc. model MSP MaxL Ener KL-M Maha RMaha ViM E+R KNN Cos MCM/RCos

21k

86.0 ViT-B-384 87.2 92.5 +5 92.7 +5 86.9 −0 95.0 +8 94.0 +7 94.0 +7 92.5 +5 85.9 −1 91.5 +4 91.7 +4
84.5 ViT-B-224 85.5 90.6 +5 90.8 +5 85.2 −0 94.0 +8 92.8 +7 92.5 +7 90.1 +5 82.6 −3 89.5 +4 89.4 +4
86.3 Swinv2-B-256 86.3 87.0 +1 85.8 −0 86.1 −0 88.0 +2 89.0 +3 89.9 +4 88.8 +3 84.3 −2 89.1 +3 89.8 +4
86.7 Deit3-B-384 81.1 77.7 −3 74.9 −6 83.6 +2 89.7 +9 90.0 +9 89.0 +8 80.7 −0 87.0 +6 90.1 +9 90.4 +9
85.7 Deit3-B-224 80.3 77.3 −3 74.8 −6 82.4 +2 88.3 +8 88.8 +9 87.6 +7 79.5 −1 85.2 +5 88.8 +8 89.0 +9
86.3 CnvNxt-B 87.9 87.6 −0 85.8 −2 88.0 +0 90.9 +3 91.8 +4 92.5 +5 87.9 −0 87.5 −0 91.5 +4 91.8 +4
84.1 CnvNxt-T 85.1 86.0 +1 85.3 +0 85.2 +0 89.8 +5 89.5 +4 92.5 +7 86.0 +1 86.0 +1 89.1 +4 89.6 +5
82.3 BiT-m 82.2 83.3 +1 82.5 +0 82.8 +1 90.6 +8 90.0 +8 92.2 +10 85.8 +4 86.4 +4 89.6 +7 88.5 +6
85.6 EffNetv2-M 86.3 85.1 −1 82.7 −4 87.3 +1 87.6 +1 88.9 +3 87.9 +2 73.0 −13 83.8 −3 90.1 +4 88.8 +3

none

81.1 ViT-B-384 81.4 84.2 +3 84.2 +3 80.7 −1 86.5 +5 87.3 +6 82.6 +1 84.6 +3 79.7 −2 84.4 +3 84.1 +3
84.6 Swinv2-B-256 80.4 77.8 −3 75.0 −5 81.9 +1 86.2 +6 86.7 +6 81.1 +1 80.2 −0 81.9 +1 85.8 +5 86.3 +6
85.1 Deit3-B-384 81.7 76.4 −5 66.6 −15 83.5 +2 86.9 +5 88.0 +6 84.8 +3 61.8 −20 80.4 −1 85.5 +4 87.0 +5
83.8 Deit3-B-224 81.0 78.8 −2 74.8 −6 82.3 +1 85.5 +5 86.9 +6 84.0 +3 74.6 −6 77.6 −3 83.8 +3 85.6 +5
82.6 XCiT-M-224 77.9 72.2 −6 64.5 −13 81.2 +3 85.1 +7 85.7 +8 86.0 +8 73.3 −5 80.9 +3 84.7 +7 85.0 +7
84.3 XCiT-M-224-d 82.7 80.2 −3 74.1 −9 82.9 +0 85.5 +3 86.8 +4 85.3 +3 78.6 −4 81.4 −1 85.8 +3 86.1 +3
84.4 CnvNxt-B 81.1 76.2 −5 64.6 −16 83.4 +2 85.2 +4 86.6 +6 82.5 +1 72.9 −8 81.3 +0 85.8 +5 86.9 +6
78.0 BiT-s 80.1 77.3 −3 75.6 −5 82.3 +2 71.2 −9 84.9 +5 77.9 −2 76.2 −4 68.8 −11 78.3 −2 69.8 −10
85.1 EffNetv2-M 81.8 78.3 −3 71.8 −10 84.0 +2 86.5 +5 88.9 +7 80.1 −2 79.0 −3 83.4 +2 87.3 +6 88.1 +6
84.9 EffNetb7 79.6 72.8 −7 64.6 −15 84.2 +5 84.5 +5 88.6 +9 81.6 +2 71.8 −8 82.5 +3 86.9 +7 87.9 +8
77.7 EffNet-B0 80.8 78.5 −2 74.9 −6 81.9 +1 76.7 −4 82.7 +2 81.6 +1 79.1 −2 76.2 −5 85.0 +4 82.3 +1
80.4 ResNet50 81.5 81.5 +0 81.2 −0 79.3 −2 75.8 −6 85.0 +4 81.3 −0 64.6 −17 76.3 −5 84.9 +3 85.5 +4

JFT 86.8 EffNetb7-ns 83.6 82.5 −1 78.6 −5 83.1 −0 78.1 −5 86.6 +3 74.6 −9 81.1 −2 79.2 −4 85.2 +2 85.0 +1
clip
+12k

87.2 ViT-B-384-l2b 86.1 82.6 −4 78.1 −8 88.8 +3 90.5 +4 91.1 +5 91.9 +6 83.4 −3 89.5 +3 92.2 +6 92.1 +6
87.0 ViT-B-384-oai 87.2 85.8 −1 84.2 −3 88.4 +1 89.6 +2 91.1 +4 90.8 +4 86.5 −1 89.9 +3 92.5 +5 92.5 +5

clip 86.6 ViT-B-384-l2b 81.1 73.5 −8 68.5 −13 85.9 +5 89.1 +8 89.1 +8 88.8 +8 71.7 −9 86.1 +5 89.8 +9 90.0 +9
86.2 ViT-B-384-oai 78.8 70.4 −8 65.0 −14 84.4 +6 88.6 +10 88.5 +10 88.3 +10 68.1 −11 84.6 +6 88.6 +10 89.2 +10

clip
z. shot

74.3 clip-ViT-L-336 —- —- —- —- —- —- —- —- —- 79.7 81.1
66.6 clip-ViT-B-224 —- —- —- —- —- —- —- —- —- 74.0 74.9
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Table 5: Mean AUPR-S on our NINCO dataset. Higher is better. The difference to MSP is shown
in red if a method performs worse, and in green if it improves. Bold values mark the best-performing
method per model.

pre acc. model MSP MaxL Ener KL-M Maha RMaha ViM E+R KNN Cos MCM/RCos

21k

86.0 ViT-B-384 97.2 98.4 +1 98.4 +1 96.6 −1 99.0 +2 98.8 +2 98.7 +2 98.4 +1 97.0 −0 98.2 +1 98.3 +1
84.5 ViT-B-224 96.7 97.9 +1 98.0 +1 96.1 −1 98.7 +2 98.5 +2 98.4 +2 97.8 +1 96.1 −1 97.8 +1 97.8 +1
86.3 Swinv2-B-256 96.2 95.8 −0 95.2 −1 96.6 +0 97.4 +1 97.5 +1 97.9 +2 96.6 +0 96.5 +0 97.7 +2 97.9 +2
86.7 Deit3-B-384 94.1 91.7 −2 90.4 −4 95.9 +2 97.9 +4 97.9 +4 97.6 +4 93.1 −1 97.1 +3 97.9 +4 98.0 +4
85.7 Deit3-B-224 94.1 91.7 −2 90.6 −3 95.5 +1 97.5 +3 97.6 +3 97.3 +3 92.7 −1 96.6 +3 97.6 +4 97.6 +4
86.3 CnvNxt-B 96.8 96.3 −1 95.7 −1 97.2 +0 98.1 +1 98.2 +1 98.4 +2 96.4 −0 97.2 +0 98.2 +1 98.3 +1
84.1 CnvNxt-T 96.0 95.9 −0 95.6 −0 96.4 +0 97.7 +2 97.6 +2 98.4 +2 95.8 −0 96.9 +1 97.6 +2 97.8 +2
82.3 BiT-m 95.7 95.7 −0 95.5 −0 95.3 −0 98.0 +2 97.7 +2 98.3 +3 96.6 +1 97.0 +1 97.7 +2 97.5 +2
85.6 EffNetv2-M 96.3 95.7 −1 95.0 −1 97.0 +1 97.3 +1 97.5 +1 97.2 +1 93.6 −3 96.5 +0 97.8 +1 97.5 +1

none

81.1 ViT-B-384 95.5 96.1 +1 96.2 +1 94.6 −1 96.9 +1 97.1 +2 95.7 +0 96.1 +1 95.2 −0 96.4 +1 96.3 +1
84.6 Swinv2-B-256 94.5 92.6 −2 91.4 −3 95.2 +1 96.9 +2 97.0 +2 94.9 +0 94.0 −1 95.8 +1 96.9 +2 96.9 +2
85.1 Deit3-B-384 95.2 92.9 −2 89.6 −6 95.7 +1 97.1 +2 97.4 +2 96.1 +1 88.2 −7 95.4 +0 96.8 +2 96.8 +2
83.8 Deit3-B-224 95.1 94.1 −1 93.0 −2 95.5 +0 96.8 +2 97.1 +2 95.9 +1 93.2 −2 94.8 −0 96.3 +1 96.6 +2
82.6 XCiT-M-224 93.7 90.7 −3 87.6 −6 95.3 +2 96.5 +3 96.8 +3 96.7 +3 91.6 −2 95.4 +2 96.5 +3 96.5 +3
84.3 XCiT-M-224-d 95.8 94.1 −2 92.1 −4 95.6 −0 96.7 +1 97.0 +1 96.5 +1 93.9 −2 95.6 −0 96.8 +1 96.9 +1
84.4 CnvNxt-B 94.9 93.0 −2 89.8 −5 95.8 +1 96.7 +2 96.9 +2 95.6 +1 92.8 −2 95.5 +1 96.8 +2 97.0 +2
78.0 BiT-s 95.3 94.7 −1 94.3 −1 95.3 +0 92.7 −3 96.5 +1 94.8 −0 94.4 −1 92.0 −3 94.7 −1 92.1 −3
85.1 EffNetv2-M 95.1 92.9 −2 90.4 −5 96.0 +1 97.0 +2 97.6 +3 94.9 −0 93.8 −1 96.2 +1 97.2 +2 97.1 +2
84.9 EffNetb7 94.0 90.7 −3 87.9 −6 96.2 +2 96.5 +3 97.5 +3 95.6 +2 90.9 −3 95.9 +2 97.0 +3 97.3 +3
77.7 EffNet-B0 95.1 94.1 −1 93.1 −2 95.4 +0 94.6 −0 96.1 +1 95.9 +1 94.6 −1 94.6 −1 96.5 +1 95.8 +1
80.4 ResNet50 95.5 95.6 +0 95.5 −0 94.2 −1 94.3 −1 96.7 +1 95.6 +0 91.7 −4 94.1 −1 96.5 +1 96.7 +1

JFT 86.8 EffNetb7-ns 95.8 94.7 −1 92.9 −3 95.8 +0 95.0 −1 97.2 +1 94.1 −2 94.4 −1 95.3 −1 96.8 +1 96.6 +1
clip
+12k

87.2 ViT-B-384-l2b 95.9 94.0 −2 92.6 −3 97.5 +2 98.0 +2 98.1 +2 98.3 +2 94.5 −1 97.7 +2 98.4 +2 98.4 +3
87.0 ViT-B-384-oai 96.6 95.5 −1 94.9 −2 97.3 +1 97.8 +1 98.1 +2 98.1 +2 95.9 −1 97.8 +1 98.5 +2 98.4 +2

clip 86.6 ViT-B-384-l2b 94.2 90.8 −3 89.2 −5 96.6 +2 97.6 +3 97.5 +3 97.4 +3 90.2 −4 96.8 +3 97.8 +4 97.8 +4
86.2 ViT-B-384-oai 93.1 89.6 −3 88.0 −5 96.1 +3 97.5 +4 97.5 +4 97.4 +4 89.2 −4 96.4 +3 97.5 +4 97.7 +5

clip
z. shot

74.3 clip-ViT-L-336 —- —- —- —- —- —- —- —- —- 95.2 95.5
66.6 clip-ViT-B-224 —- —- —- —- —- —- —- —- —- 93.6 93.9

Table 6: Mean AUPR-E on our NINCO dataset. Higher is better. The difference to MSP is shown
in red if a method performs worse, and in green if it improves. Bold values mark the best-performing
method per model.

pre acc. model MSP MaxL Ener KL-M Maha RMaha ViM E+R KNN Cos MCM/RCos

21k

86.0 ViT-B-384 60.2 69.8 +10 71.3 +11 60.4 +0 78.9 +19 74.9 +15 74.2 +14 69.4 +9 53.8 −6 65.3 +5 65.3 +5
84.5 ViT-B-224 56.1 64.9 +9 65.4 +9 56.4 +0 75.3 +19 72.4 +16 71.3 +15 62.0 +6 48.2 −8 59.5 +3 59.6 +3
86.3 Swinv2-B-256 61.9 68.2 +6 69.8 +8 54.7 −7 54.7 −7 59.9 −2 59.8 −2 71.6 +10 52.6 −9 60.1 −2 63.0 +1
86.7 Deit3-B-384 54.1 55.8 +2 54.7 +1 53.0 −1 59.2 +5 62.0 +8 57.2 +3 60.3 +6 59.0 +5 62.4 +8 63.4 +9
85.7 Deit3-B-224 50.4 53.5 +3 53.3 +3 49.6 −1 54.9 +4 58.2 +8 53.8 +3 56.7 +6 55.8 +5 59.2 +9 60.0 +10
86.3 CnvNxt-B 64.0 68.3 +4 67.0 +3 57.1 −7 65.3 +1 68.2 +4 69.6 +6 70.2 +6 59.5 −5 67.2 +3 68.1 +4
84.1 CnvNxt-T 58.3 63.4 +5 65.1 +7 52.4 −6 64.8 +7 65.3 +7 71.4 +13 65.0 +7 55.3 −3 60.3 +2 62.6 +4
82.3 BiT-m 47.7 52.5 +5 51.8 +4 51.7 +4 63.5 +16 66.2 +18 68.8 +21 55.7 +8 56.6 +9 62.1 +14 60.2 +13
85.6 EffNetv2-M 60.9 62.3 +1 58.7 −2 56.5 −4 54.5 −6 59.6 −1 58.6 −2 31.0 −30 49.7 −11 65.6 +5 61.5 +1

none

81.1 ViT-B-384 47.1 49.6 +2 50.3 +3 49.6 +2 56.6 +9 58.5 +11 48.3 +1 51.8 +5 43.9 −3 49.7 +3 49.2 +2
84.6 Swinv2-B-256 46.8 46.9 +0 42.7 −4 48.7 +2 52.1 +5 54.8 +8 48.3 +1 46.0 −1 46.3 −1 51.7 +5 53.6 +7
85.1 Deit3-B-384 49.8 43.1 −7 29.0 −21 51.4 +2 51.9 +2 55.5 +6 53.5 +4 25.4 −24 43.1 −7 49.3 −0 57.0 +7
83.8 Deit3-B-224 47.0 45.2 −2 35.7 −11 48.5 +2 49.4 +2 51.9 +5 50.9 +4 35.5 −11 38.5 −9 45.8 −1 52.7 +6
82.6 XCiT-M-224 42.9 40.1 −3 33.5 −9 46.8 +4 52.6 +10 54.2 +11 52.6 +10 38.6 −4 44.6 +2 50.3 +7 50.3 +7
84.3 XCiT-M-224-d 49.0 48.4 −1 41.7 −7 50.2 +1 51.3 +2 53.7 +5 53.1 +4 43.6 −5 46.0 −3 51.8 +3 52.6 +4
84.4 CnvNxt-B 49.6 43.7 −6 27.7 −22 48.8 −1 51.4 +2 55.5 +6 50.3 +1 33.3 −16 45.6 −4 53.1 +3 55.5 +6
78.0 BiT-s 40.5 37.5 −3 36.5 −4 49.1 +9 33.6 −7 51.5 +11 42.1 +2 39.4 −1 32.8 −8 43.1 +3 33.1 −7
85.1 EffNetv2-M 50.1 48.6 −1 39.0 −11 52.3 +2 53.8 +4 58.8 +9 45.3 −5 45.0 −5 52.2 +2 55.1 +5 59.1 +9
84.9 EffNetb7 48.3 43.9 −4 31.5 −17 53.8 +5 49.5 +1 59.2 +11 45.5 −3 39.4 −9 49.8 +2 54.0 +6 60.3 +12
77.7 EffNet-B0 45.3 44.1 −1 37.9 −7 45.9 +1 36.3 −9 45.1 −0 43.0 −2 43.0 −2 33.7 −12 54.2 +9 48.1 +3
80.4 ResNet50 44.8 44.7 −0 42.2 −3 48.0 +3 34.2 −11 48.4 +4 41.5 −3 22.0 −23 39.4 −5 53.1 +8 54.3 +9

JFT 86.8 EffNetb7-ns 52.7 56.3 +4 50.6 −2 49.3 −3 36.1 −17 50.2 −3 33.1 −20 50.6 −2 43.1 −10 50.4 −2 51.5 −1
clip
+12k

87.2 ViT-B-384-l2b 61.0 61.4 +0 58.3 −3 58.2 −3 62.4 +1 65.2 +4 66.9 +6 63.4 +2 64.2 +3 68.2 +7 68.0 +7
87.0 ViT-B-384-oai 62.2 64.9 +3 64.5 +2 60.5 −2 59.5 −3 64.2 +2 62.3 +0 66.8 +5 63.8 +2 69.4 +7 69.7 +7

clip 86.6 ViT-B-384-l2b 51.9 48.7 −3 43.8 −8 56.1 +4 61.0 +9 61.3 +9 60.2 +8 46.3 −6 55.9 +4 60.7 +9 63.0 +11
86.2 ViT-B-384-oai 50.2 44.6 −6 39.5 −11 53.9 +4 59.8 +10 59.8 +10 58.9 +9 42.1 −8 53.5 +3 58.3 +8 60.2 +10

clip
z. shot

74.3 clip-ViT-L-336 —- —- —- —- —- —- —- —- —- 44.2 48.5
66.6 clip-ViT-B-224 —- —- —- —- —- —- —- —- —- 37.5 38.0
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Figure 7: Mean FPR on NINCO vs. mean-FPR on previously used datasetes with fixed model
(left) and fixed method (right). We observe several ranking changes, including the best-performing
method and model.
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Table 7: FPR on all classes of NINCO (lower is better) for a pretrained ViT-B and a pretrained
ConvNext-B.

ViT-B-384-21k CnvNxt-B-21k

Dataset MSP MaxL Ener KL-M Maha RMaha ViM E+R KNN Cos RCos MSP MaxL Ener KL-M Maha RMaha ViM E+R KNN Cos RCos

Caracal 79.0 75.0 73.0 68.0 53.0 47.0 82.0 88.0 87.0 83.0 81.0 77.0 74.0 67.0 79.0 79.0 76.0 86.0 67.0 87.0 77.0 77.0

2TAmph 75.6 90.9 91.5 70.5 68.8 54.0 92.0 93.8 95.5 86.9 84.7 79.5 85.8 91.5 69.3 63.6 54.5 72.7 86.9 83.5 72.2 71.0

AFA 95.7 87.0 82.6 93.5 60.9 71.7 65.2 80.4 80.4 84.8 82.6 89.1 82.6 69.6 89.1 73.9 80.4 45.7 65.2 82.6 80.4 80.4

CatFSp 90.0 96.0 96.0 94.0 91.0 88.0 91.0 97.0 100.0 97.0 97.0 78.0 77.0 86.0 92.0 87.0 81.0 88.0 86.0 98.0 96.0 95.0

GFurS 100.0 98.9 96.7 95.6 97.8 96.7 75.8 100.0 98.9 100.0 100.0 98.9 98.9 81.3 96.7 100.0 100.0 100.0 87.9 100.0 100.0 100.0

Bagp 8.2 2.1 2.1 12.4 4.1 4.1 4.1 1.0 11.3 6.2 4.1 16.5 5.2 2.1 37.1 70.1 20.6 18.6 3.1 12.4 8.2 7.2

CSSala 76.0 86.0 89.0 76.0 42.0 60.0 57.0 93.0 100.0 94.0 94.0 78.0 71.0 66.0 79.0 90.0 70.0 92.0 66.0 97.0 86.0 82.0

Cabl 46.6 15.9 14.8 56.8 17.0 42.0 11.4 21.6 45.5 48.9 38.6 35.2 36.4 48.9 52.3 54.5 60.2 29.5 48.9 23.9 34.1 31.8

CQuesa 86.0 95.0 97.0 81.0 73.0 77.0 82.0 88.0 99.0 98.0 98.0 85.0 87.0 93.0 85.0 83.0 78.0 81.0 92.0 96.0 89.0 87.0

DThist 52.0 22.0 19.0 48.0 9.0 13.0 6.0 20.0 51.0 34.0 32.0 41.0 42.0 49.0 46.0 18.0 27.0 10.0 46.0 41.0 34.0 34.0

CBrûlée 53.5 33.3 32.3 66.7 14.1 24.2 23.2 28.3 79.8 62.6 54.5 30.3 19.2 24.2 58.6 67.7 45.5 36.4 19.2 45.5 41.4 39.4

LTSilF 59.0 28.0 26.0 51.0 8.0 4.0 36.0 40.0 79.0 44.0 40.0 35.0 17.0 11.0 68.0 92.0 63.0 94.0 11.0 98.0 75.0 66.0

CCake 77.5 62.5 55.0 71.2 35.0 83.8 18.8 56.2 88.8 51.2 46.2 81.2 85.0 93.8 66.2 11.2 40.0 10.0 88.8 12.5 17.5 20.0

CPitch 23.0 5.0 6.0 14.0 0.0 0.0 0.0 1.0 51.0 14.0 15.0 22.0 18.0 26.0 30.0 2.0 6.0 3.0 22.0 18.0 10.0 10.0

LTRoo 68.0 88.0 95.0 72.0 79.0 68.0 93.0 97.0 100.0 96.0 98.0 62.0 70.0 84.0 60.0 62.0 39.0 84.0 84.0 93.0 80.0 78.0

Donuts 81.0 79.0 80.0 86.0 84.0 88.0 74.0 77.0 97.0 86.0 86.0 76.0 70.0 71.0 82.0 77.0 82.0 68.0 71.0 82.0 82.0 82.0

Door 54.0 26.0 26.0 56.0 60.0 77.0 29.0 25.0 67.0 49.0 52.0 30.0 29.0 39.0 43.0 65.0 60.0 33.0 32.0 40.0 34.0 32.0

WDisp 52.5 36.4 35.4 44.4 21.2 35.4 24.2 38.4 61.6 28.3 30.3 58.6 51.5 54.5 59.6 69.7 60.6 62.6 55.6 49.5 37.4 36.4

EMicro 35.0 24.0 23.0 26.0 2.0 1.0 22.0 23.0 44.0 25.0 19.0 47.0 39.0 45.0 48.0 21.0 17.0 24.0 38.0 45.0 34.0 28.0

Franci 26.0 9.0 3.0 18.0 0.0 0.0 0.0 4.0 81.0 15.0 16.0 28.0 10.0 13.0 30.0 12.0 18.0 5.0 11.0 44.0 24.0 24.0

FieldRd 26.0 17.7 15.6 33.3 24.0 25.0 21.9 18.8 50.0 22.9 25.0 29.2 26.0 41.7 33.3 24.0 29.2 20.8 33.3 37.5 19.8 20.8

ForPth 24.0 5.0 3.0 38.0 3.0 11.0 3.0 4.0 29.0 19.0 18.0 13.0 11.0 18.0 21.0 9.0 18.0 4.0 12.0 20.0 15.0 15.0

MLCact 13.0 0.0 0.0 15.0 0.0 0.0 0.0 0.0 9.0 1.0 0.0 32.0 20.0 17.0 44.0 3.0 5.0 2.0 14.0 2.0 9.0 9.0

FireEx 16.0 2.8 0.9 13.2 1.9 2.8 0.9 0.0 5.7 1.9 1.9 5.7 3.8 4.7 10.4 73.6 26.4 41.5 3.8 0.9 1.9 1.9

FireW 50.0 30.0 29.0 45.0 11.0 10.0 28.0 28.0 32.0 26.0 24.0 58.0 62.0 69.0 47.0 16.0 22.0 19.0 68.0 45.0 35.0 35.0

Fries 38.0 30.0 39.0 37.0 3.0 1.0 22.0 6.0 99.0 70.0 76.0 67.0 53.0 56.0 57.0 82.0 55.0 73.0 53.0 96.0 82.0 73.0

GlMilk 83.1 64.0 55.1 86.5 82.0 89.9 46.1 68.5 77.5 86.5 86.5 61.8 56.2 46.1 73.0 79.8 82.0 49.4 47.2 65.2 77.5 75.3

Gramo 7.1 1.8 0.0 16.1 0.0 0.0 1.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 16.1 87.5 67.9 60.7 0.0 0.0 0.0 0.0

BSGrunt 49.0 20.8 12.5 51.0 2.1 4.2 2.1 10.4 56.2 17.7 20.8 31.2 26.0 29.2 42.7 3.1 7.3 1.0 20.8 24.0 18.8 15.6

HHeels 46.5 35.4 32.3 64.6 79.8 87.9 40.4 70.7 83.8 78.8 48.5 41.4 35.4 45.5 64.6 48.5 54.5 17.2 41.4 63.6 45.5 44.4

HinTp 88.2 84.3 82.4 82.4 64.7 56.9 76.5 80.4 98.0 88.2 90.2 68.6 54.9 41.2 80.4 86.3 86.3 68.6 39.2 92.2 86.3 88.2

HHClam 93.5 93.5 90.3 93.5 61.3 67.7 77.4 93.5 96.8 96.8 93.5 77.4 54.8 51.6 74.2 58.1 67.7 41.9 45.2 71.0 71.0 71.0

SilverHB 12.1 2.0 2.0 8.1 3.0 2.0 4.0 2.0 6.1 3.0 3.0 11.1 10.1 16.2 15.2 2.0 3.0 2.0 11.1 6.1 4.0 4.0

SwPea 10.0 1.0 1.0 12.0 0.0 1.0 1.0 0.0 33.0 2.0 2.0 19.0 14.0 19.0 29.0 0.0 1.0 0.0 9.0 1.0 1.0 1.0

RBSunf 76.0 12.0 5.0 69.0 2.0 2.0 4.0 1.0 65.0 14.0 9.0 36.0 13.0 7.0 53.0 81.0 57.0 30.0 7.0 44.0 35.0 18.0

ELFBug 37.0 26.0 49.0 38.0 3.0 3.0 44.0 71.0 98.0 67.0 83.0 35.0 20.0 17.0 66.0 45.0 29.0 22.0 16.0 67.0 41.0 36.0

Mbira 28.4 19.4 20.9 25.4 23.9 16.4 32.8 20.9 17.9 19.4 17.9 40.3 40.3 71.6 29.9 10.4 9.0 11.9 61.2 6.0 10.4 9.0

MWesen 97.0 33.3 18.2 90.9 3.0 30.3 3.0 9.1 57.6 57.6 39.4 78.8 51.5 30.3 87.9 51.5 78.8 6.1 33.3 81.8 84.8 84.8

C2SOct 40.0 49.0 58.0 36.0 22.0 17.0 61.0 62.0 87.0 54.0 52.0 40.0 48.0 58.0 45.0 25.0 13.0 34.0 51.0 59.0 34.0 32.0

RubyOct 42.0 48.0 48.0 39.0 22.0 14.0 55.0 48.0 88.0 54.0 54.0 30.0 34.0 44.0 32.0 25.0 13.0 32.0 40.0 50.0 28.0 28.0

PDeer 81.7 61.0 59.8 89.0 46.3 58.5 52.4 85.4 91.5 80.5 80.5 64.6 34.1 31.7 93.9 84.1 73.2 75.6 29.3 95.1 81.7 80.5

DFlath 58.0 33.0 32.0 52.0 3.0 18.0 13.0 32.0 62.0 31.0 33.0 62.0 58.0 53.0 68.0 37.0 39.0 26.0 47.0 64.0 52.0 49.0

EPWasp 73.0 55.0 56.0 64.0 16.0 29.0 29.0 63.0 90.0 75.0 72.0 39.0 27.0 24.0 73.0 63.0 43.0 45.0 24.0 76.0 65.0 59.0

FalseKW 80.6 74.6 74.6 74.6 55.2 55.2 59.7 86.6 98.5 91.0 89.6 73.1 53.7 53.7 74.6 85.1 77.6 86.6 56.7 97.0 85.1 83.6

Pyra 11.0 5.0 6.0 12.0 5.0 6.0 7.0 6.0 11.0 7.0 5.0 21.0 14.0 19.0 26.0 30.0 9.0 12.0 15.0 13.0 11.0 10.0

Sky 22.1 23.5 25.0 22.1 27.9 25.0 38.2 29.4 44.1 14.7 16.2 20.6 25.0 64.7 17.6 17.6 23.5 25.0 54.4 25.0 13.2 13.2

Dreamf 60.0 44.0 45.0 63.0 26.0 31.0 30.0 42.0 69.0 48.0 50.0 64.0 63.0 67.0 65.0 15.0 29.0 11.0 59.0 65.0 56.0 53.0

YTrump 14.0 1.0 0.0 4.0 0.0 0.0 0.0 0.0 54.0 10.0 14.0 14.0 7.0 5.0 23.0 3.0 1.0 0.0 1.0 3.0 0.0 0.0

Sciss 29.0 9.0 10.0 42.0 9.0 12.0 11.0 11.0 19.0 22.0 26.0 27.0 24.0 24.0 44.0 67.0 64.0 31.0 22.0 16.0 31.0 26.0

GCuttle 30.3 10.1 8.1 33.3 3.0 4.0 15.2 10.1 37.4 14.1 14.1 35.4 30.3 35.4 47.5 42.4 11.1 62.6 35.4 42.4 18.2 15.2

CCuttle 34.0 23.0 24.0 24.0 9.0 8.0 27.0 25.0 44.0 22.0 20.0 22.0 22.0 30.0 34.0 39.0 8.0 57.0 27.0 36.0 16.0 15.0

SCalam 21.2 11.1 12.1 21.2 4.0 4.0 13.1 8.1 40.4 15.2 15.2 29.3 25.3 27.3 35.4 10.1 5.1 11.1 22.2 34.3 18.2 18.2

ShCo 58.2 4.5 4.5 43.3 7.5 1.5 37.3 7.5 3.0 1.5 1.5 13.4 7.5 6.0 64.2 83.6 17.9 76.1 6.0 10.4 10.4 10.4

SCaterp 11.0 13.0 19.0 11.0 3.0 3.0 14.0 15.0 81.0 28.0 29.0 31.0 21.0 27.0 29.0 5.0 8.0 4.0 21.0 22.0 13.0 12.0

SBolo 67.2 47.8 49.3 83.6 68.7 79.1 50.7 22.4 100.0 100.0 100.0 71.6 76.1 82.1 82.1 74.6 61.2 73.1 82.1 100.0 94.0 91.0

Stapl 34.0 14.0 12.0 31.0 11.0 21.0 13.0 18.0 20.0 17.0 19.0 27.0 23.0 24.0 30.0 72.0 59.0 38.0 22.0 22.0 27.0 26.0

Rosyb 65.0 28.0 17.0 45.0 0.0 2.0 2.0 11.0 86.0 36.0 37.0 75.0 72.0 70.0 72.0 23.0 40.0 23.0 65.0 71.0 53.0 53.0

CATapir 13.0 10.0 11.0 12.0 4.0 3.0 15.0 15.0 23.0 13.0 13.0 29.0 32.0 39.0 48.0 51.0 10.0 74.0 36.0 58.0 24.0 24.0

MNewt 90.0 94.0 95.0 91.0 82.0 83.0 80.0 96.0 99.0 98.0 98.0 90.0 93.0 95.0 93.0 80.0 74.0 86.0 95.0 99.0 92.0 91.0

IPBNDol 57.0 47.0 45.0 56.0 27.0 29.0 47.0 64.0 90.0 64.0 69.0 47.0 36.0 39.0 64.0 84.0 59.0 92.0 41.0 94.0 72.0 69.0
‘ō‘ai 63.0 28.0 23.0 51.0 2.0 5.0 3.0 18.0 71.0 33.0 32.0 54.0 47.0 35.0 50.0 7.0 14.0 2.0 25.0 30.0 19.0 19.0

Waffle 57.4 54.1 59.0 55.7 59.0 49.2 60.7 52.5 83.6 52.5 57.4 70.5 72.1 80.3 55.7 59.0 62.3 59.0 75.4 54.1 62.3 62.3

Walker 77.8 52.5 46.5 53.5 42.4 57.6 44.4 35.4 56.6 56.6 52.5 34.3 17.2 15.2 35.4 32.3 22.2 18.2 14.1 12.1 12.1 11.1

WiChair 97.2 40.8 25.4 90.1 15.5 32.4 12.7 43.7 31.0 32.4 25.4 81.7 49.3 25.4 94.4 97.2 95.8 84.5 28.2 95.8 91.5 88.7

mean 51.9 37.8 36.9 50.3 27.5 31.2 32.6 38.5 62.7 46.0 45.0 47.2 41.1 43.3 54.9 49.6 42.4 41.5 40.5 51.8 44.2 42.6
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B POPULAR TEST OOD DATASETS FOR IMAGENET-1K

We use blue for the name of an ImageNet class and brown for the category name in the source dataset
used for the generation of the test OOD dataset. INATURALIST OOD PLANTS is a subset of 10 000
images curated by Huang & Li (2021) from 110 OOD plant species of iNat2017 (Van Horn et al.,
2018) which is sourced from the iNaturalist project. It is frequently used as test OOD dataset (Xia &
Bouganis, 2022; Ming et al., 2022).
PLACES is a subset of Places365 (Zhou et al., 2017) curated by Huang & Li (2021) as “50 categories
[ . . . ] that are not present in IN-1K”. It is used as test OOD dataset in (Huang & Li, 2021; Sun et al.,
2021; Ming et al., 2022). The dataset contains 9 822 images from 50 environment classes. We find
that several of these classes are either subsets of ID classes, e.g. hayfield (hay), cornfield (corn),
lagoon (seashore and lakeshore), or contain mostly ID objects, e.g. underwater (coral reef and scuba
diver), ocean (seashore).
TEXTURES (Cimpoi et al., 2014) contains 5640 images of various objects that show one of 47
patterns. It is used as test OOD dataset in (Huang & Li, 2021; Sun et al., 2021; Wang et al., 2021;
Xia & Bouganis, 2022; Ming et al., 2022) and others. Wang et al. (2022a) address the issue of
overlap with IN-1K and remove four categorically ID textures (bubbly (bubble), honeycombed (hon-
eycomb), cobwebbed (spider web), spiralled (spiral)). We find that even their version (denoted as
TEXTURES43) contains about 20% ID images.
SPECIES was proposed in (Hendrycks et al., 2022) as OOD dataset for IN-21K (Deng et al., 2009)
and should thus also be OOD for the IN-1K subset. Sourced from iNaturalist, it consists of 700 000
images from 1 316 species which were selected for not being in IN-21K. They sort the species into
10 superclasses. The largest superclass Fungi largely coincides with the IN-1K class mushroom, and
also many of the remaining species are ID. Papers evaluating on SPECIES for IN-1K OOD detection
include (Salehi et al., 2021; Yang et al., 2022; Song et al., 2022).
IMAGENET-O (Hendrycks et al., 2021) contains 2 000 images from IN-21K, excluding its subset
IN-1K. To make the dataset challenging it was composed from images where a ResNet-50 classifier
for a subset of 200 IN-1K classes attains high confidence. The samples being OOD relies on the
assumption that IN-21K without IN-1K is OOD for IN-1K. However, this assumption does not hold,
due to a significant overlap between ImageNet classes from IN-1K and IN-21K, e.g. analytical
balance/scale and pickle/cucumber, and a lack of filtering for incidental ID objects.
OPENIMAGE-O (Wang et al., 2022a) consists of 17 632 images from the OpenImage-v3 (Krasin
et al., 2017) test set which their human labellers categorize as OOD. It is also used in Yang et al.
(2022).
360OpenSetClasses (Bendale & Boult, 2016) uses those 360 classes (15.000 samples) from
ILSVRC2010 which are not part of ILSVRC2012. Like for IMAGENET-O, this leads to large
semantic overlap, e.g. the class organ pipe coinciding with the ID class organ/pipe organ.
Semantic Shift Benchmark (SSB) (Vaze et al., 2022) contains a hard and easy benchmark, each
consisting of 1000 classes, that were created by regarding the distances between nodes in the WordNet
tree. Similar to 360OPENSETCLASSES, we find both categorical and incidental ID contamination,
e.g. rainbow lorikeet/lorikeet. Papers evaluating on SSB include (Wen et al., 2022).
ImageNet-1K-OOD (Wang et al., 2022b) contains 50.000 images from 1.000 classes randomly sam-
pled from ImageNet-21K, such that those classes don’t overlap with ImageNet-1K and ImageNet-LT,
another dataset introduced by the authors. Categorical examples include bobwhite quail/quail and
king vulture/vulture.
COOD-benchmark (Galil et al., 2023) is a general framework for benchmarking ImageNet-1K OOD
detection. Their test set consists of ImageNet-21K samples which were filtered by class. It includes
severe contamination, including categorical cases like orange, orange tree/orange and cup/cup (with
different ids).
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C MODELS

In Table 8 we give an overview over the evaluated models. All model implementation and model
weights were taken from the publicly available timm-repository (Wightman, 2019), except for the
BiT-s weights, which can be obtained via the github repository of (Kolesnikov et al., 2020), and
the zero-shot CLIP models, which are also available via github. For the ViTs finetuned from CLIP
and the ViT without pretraining we used the timm-version 0.8.0dev0, for all other models version
0.6.12. IN-12k (description and defining synsets) is a subset of IN-21k, for which the classes with
few samples are excluded, leading to an overlap of roughly 85%.

Table 8: Overview over the evaluated models.

model pretraining top-1 acc. params timm name
ViT-B-384-l2b-12k laion2b + IN-12k 87.2 87M vit base patch16 clip 384.laion2b ft in12k in1k
ViT-B-384-oai-12k openai + IN-12k 87.0 87M vit base patch16 clip 384.openai ft in12k in1k

ViT-B-384-l2b laion2b 86.6 87M vit base patch16 clip 384.laion2b ft in1k
ViT-B-384-oai openai 86.2 87M vit base patch16 clip 384.openai ft in1k
ViT-B-384-21k IN-21k 86.0 87M vit base patch16 384
ViT-B-224-21k IN-21k 84.5 87M vit base patch16 224

Swinv2-B-256-21k IN-21k 86.3 88M swinv2 base window12to16 192to256 22kft1k
Deit3-B-384-21k IN-21k 86.7 87M deit3 base patch16 384 in21ft1k
Deit3-B-224-21k IN-21k 85.7 87M deit3 base patch16 224 in21ft1k
CnvNxt-B-21k IN-21k 86.3 89M convnext base in22ft1k
CnvNxt-T-21k IN-21k 84.1 29M convnext tiny 384 in22ft1k

BiT-m IN-21k 82.3 45M resnetv2 101x1 bitm
EffNetv2-M-21k IN-21k 85.6 54M tf efficientnetv2 m in21ft1k

EffNetb7-ns JFT - noisy student 86.8 66M tf efficientnet b7 ns
ViT-B-384 — 81.1 87M vit base patch16 384.augreg in1k

Swinv2-B-256 — 84.6 88M swinv2 base window16 256
Deit3-B-384 — 85.1 87M deit3 base patch16 384
Deit3-B-224 — 83.8 87M deit3 base patch16 224
XCiT-M-224 — 82.6 84M xcit medium 24 p16 224

XCiT-M-224-d — 84.3 84M xcit medium 24 p16 224 dist
CnvNxt-B — 84.4 89M convnext base

BiT-s — 78.0 45M resnetv2 101x1 bitm
EffNetv2-M — 85.0 54M tf efficientnetv2 m

EffNetb7 — 84.9 66M tf efficientnet b7
EffNet-B0 — 77.7 5M efficientnet b0
ResNet50 — 80.4 26M resnet50

CLIP-ViT-B16 openai 66.6 150M —
CLIP-ViT-B16 openai 74.2 428M —
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D OOD DETECTORS AND HOW TO EVALUATE THEM

An OOD detector for inputs from the domain X of possible input images is represented by a
score function S : X → R ∪ {±∞} which is generally supposed to be larger on ID inputs than on
OOD inputs. One example is the Maximum Softmax Probability (MSP) or confidence SMSP(x) =
maxk=1,...,K pk(x) of a classifier with output probabilities p for K ID classes. The MSP is the
standard baseline OOD detection method (Hendrycks & Gimpel, 2017), since it is intuitively expected
to be low on OOD compared to ID inputs. Observing that standard classifiers are frequently
overconfident on OOD inputs, OOD detection research aims at finding detectors that improve on this
baseline. In Appendix D.1, we give an overview of a range of OOD detection methods which have
been proposed for IN-1K as ID. An OOD detector is usually obtained by combining such an OOD
detection method with a concrete classifier model. We analyze OOD detectors in terms of the fraction
of falsely accepted OOD inputs at a true positive rate of 95%, short FPR. Detailed definitions can be
found in Appendix E.

Different OOD classes (and similarly also different OOD test datasets) represent different probabilistic
distributions of inputs that a detector is tested against. An important arising question is how the
collective of individual performance measurements can be interpreted and whether they can be
aggregated into one number that can be used to make an informed decision on which OOD detector
works best. Certainly, the notion of ‘best’ may notably vary depending on the application and situation
and we often cannot hope to model a ‘true’ out-distribution, or even be sure that it meaningfully
exists. An aggregate number which gives a good overview of an OOD detector’s performance on the
class based NINCO dataset is the mean FPR of the individual FPR values for each of the 64 OOD
classes of NINCO.

However, for many applications it is not possible to model the potential OOD inputs that might
be encountered at test time with a fixed probability distribution. Thus a single aggregate number
cannot tell the full story, and may hide outliers in the FPR values. For one, some errors might be less
acceptable than others, e.g. a FPR of 20.0% might be very bad for monochrome inputs, but would
lose much significance when subsumed into a mean. For OOD unit tests, where OOD detectors can
be expected to be very robust, we therefore propose regarding pass-fail statistics instead of mean FPR.
Also, an evaluator might want to be informed about the concrete failure modes of the model, e.g. all
OOD classes with a particular high FPR. An OOD detector showing consistent improvements on
most of the OOD classes (instead of only in terms of the mean) can be seen as strong evidence for the
method yielding actual improvement, as opposed to the detector overfitting to a limited scope of test
OOD data, which Wang et al. (2022a) describe as a form of hackability. Due to these considerations,
and with the OOD data being organized into OOD classes as in NINCO, we suggest evaluations of
OOD detectors to always provide the distribution of results over OOD classes and additionally to
make the individual results available, such that the reader can make an informed comparison based
on which types of OOD inputs are most relevant to them.

D.1 OOD DETECTION METHODS

Here we give an overview over the evaluated OOD detection methods. For clarity, we denote vectors
in bold and lowercase letters and matrices in bold an uppercase letters. We write neural networks
as functions n, which are parametrized by weights θ, take an input sample x and produce an output
vector o of size C, where C is typically the number of classes in a classification task (1000 in the case
of IN-1K). We refer to o as the logits of x, which can be transformed to a probability vector p (also
of size C) via the softmax function: pi = exp (oi)/

∑
c exp(oc). The network n can be decomposed

into a feature extractor h and the networks last layer g:

o = n(x) = g(h(x)),

where g is a fully connected, linear layer, i.e. g(h) = WTh+b with weight W and bias b. We refer
to h = h(x) as the features or the embeddings of x w.r.t. the network n. As presented in Section A,
for each sample x, a method returns an OOD-score s = f(x), a scalar value which is supposed to be
larger for ID data and smaller for OOD data. Methods accessing h(x) directly in order to compute
the OOD-score are referred to as feature-based methods, in contrast to methods that derive their
OOD-score from the logits o (even though the logits clearly implicitly also depend on the features).
In the following, we will describe how each methods computes the score s for a test input x.

20



Published at ICLR 2023 Workshop on Trustworthy and Reliable Large-Scale Machine Learning
Models

MSP (Hendrycks & Gimpel, 2017): The most popular OOD-detection baseline uses the confidence,
i.e. the max softmax probability of a models probability output vector:

s = max
c

(pc)

Max-Logit (Hendrycks et al., 2022): Similar to MSP, Max-Logit returns the largest entry of the
logit-vector o, i.e.

s = max
c

(oc)

Energy (Liu et al., 2020): The Energy based OOD detection method uses the denominator of the
softmax-function as OOD-score:

s = log

C∑
c

exp (oc)

KL-Matching (Hendrycks et al., 2022): KL-Matching computes a mean probability vector dc for
each of the C classes. For a test input, the KL-distances of all dc vectors to its probability vector p
are computed, and the OOD-score is the negative of the smallest of those distances:

s = −min
c

KL[p||dc]

In the original paper by (Hendrycks et al., 2022), the average for dc is computed over an additional
validation set. Since none of the other methods leverages extra data and we are interested in fair
comparison, we deploy KL-Matching like in (Wang et al., 2022a; Yang et al., 2022), where the
average is computed over the train set.

KNN (Sun et al., 2022): KNN is a non-parametric method that computes distances in the feature-
space. Specifically, the feature vector of a test input is normalized to z = h/||h||2 and the pairwise
distances ri(z) = ||z − zi||2 to the normalized features Z = {z1, ..., zN} of all samples of the
training set are computed. The distances ri(z) are then sorted according to their magnitude and the
K th smallest distance, denoted rK(z) is used as negative OOD-score:

s = −rK(z)

Like suggested in (Sun et al., 2022), we use K = 1000.
Mahalanobis distance (Lee et al., 2018): This popular method fits a class-conditional Gaussian with
shared covariance matrix to the train set, i.e. computes

µ̂c =
1

Nc

∑
i:yi=c

hi, Σ̂ =
1

N

∑
c

∑
i:yi=c

(hi − µ̂c)(hi − µ̂c)
T

where Nc is the number of train samples in class c and N is the total number of train samples. The
OOD-score of a test sample is then the Mahalanobis distance induced by Σ̂ between its feature h and
the closest class mean:

s = −min
c

(h− µ̂c)Σ̂
−1(h− µ̂c)

T

Relative Mahalanobis distance (Ren et al., 2021): A modification of the Mahalanobis distance
method, thought to improve near-OOD detection, is to additionally fit a global Gaussian distribution
to the train set without taking class-information into account:

µ̂global =
1

N

∑
i

hi, Σ̂global =
1

N

∑
i

(hi − µ̂global)(hi − µ̂global)
T

The OOD-score is then defined as the difference between the original Mahalanobis distance and the
Mahalanobis distance w.r.t. the global Gaussian distribution:

s = −min
c

(
(h− µ̂c)Σ̂

−1(h− µ̂c)
T − (h− µ̂global)Σ̂

−1
global(h− µ̂global)

T
)

ReAct (Sun et al., 2021): The authors propose to perform a truncation of the feature vector, h̄ =
min(h, r), where the min operation is to be understood element-wise and r is the truncation threshold.
The truncated features can then be converted to so-called rectified logits via ō = g(h̄) = WT h̄+ b.
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While the rectified logits can now be used with a variety of existing detection methods, we follow
(Sun et al., 2021) and use the rectified Energy as OOD-score:

s = log

C∑
c

exp (ōc)

As suggested in (Wang et al., 2022a), we set the threshold r such that 1% of the activations from the
train set would be truncated.

Virtual Logit Matching (Wang et al., 2022a): The idea behind ViM is that meaningful features are
thought to lie in a low-dimensional manifold, called the principal space P , whereas features from
OOD-samples should also lie in P⊥, the space orthogonal to P . P is the D-dimensional subspace
spanned by the eigenvectors with the largest D eigenvalues of the matrix FTF, where F is the matrix
of all train features offsetted by u = −(WT)+b (+ denotes the Moore-Penrose inverse). A sample
with feature vector h is then also offset to h̃ = h− u and can be decomposed into h̃ = h̃P + h̃P⊥

,
and h̃P⊥

is referred to as the Residual of h. ViM leverages the Residual and converts it to a virtual
logit o0 = α||h̃P⊥ ||2, where

α =

∑N
i=1 maxc o

c
i∑N

i=1 ||hP⊥
i ||2

is designed to match the scale of the virtual logit to the scale of the real train logits. The virtual logit
is then appended to the original logits of the test sample, i.e. to o, and a new probability vector is
computed via the softmax function. The probability corresponding to the virtual logit is then the final
OOD-score:

s = − exp (o0)∑C
c=1 exp (oc) + exp (o0)

Like suggested in (Wang et al., 2022a), we use D = 1000 if the dimensionality of the feature space d
is d ≥ 2048, D = 512 if 2048 ≥ d ≥ 768, and D = d/2 rounded to integers otherwise.

Cosine (Tack et al., 2020; Galil et al., 2023): This method computes the maximum cosine-similarity
between the features of a test-sample and embedding vectors ũc (sometimes also called concept-
vector):

s = max
c

ũT
c h/||ũT

c ||2 (1)

For zero-shot CLIP, ũc can be obtained by creating text-embeddings from the ImageNet class names.
Encoding ’A photo of a ...’ yields an embedding from the corresponding class. For classifiers, we use
the class-wise train means µ̂c, that are also used for Mahalanobis distance.

MCM/RCos (Ming et al., 2022; Techapanurak et al., 2020): Maximum-Concept-Matching was
recently introduced as a zero-shot OOD detection method for CLIP and applies additional softmax-
scaling to the cosine-similarities of the Cosine method, potentially with a temperature scaling
(which we omit, following (Ming et al., 2022)). Again, we extend this method to work with
conventional classifiers by using the class-means µ̂c like they are used for Mahalanobis distance as
embedding/concept vectors. We then refer to it as relative cosine (short: MCM/RCos or just RCos) in
order to distinguish it from CLIPs zero-shot method.

E DEFINITIONS OF OOD DETECTION METRICS

The performance of OOD detectors is commonly reported in terms of the false positive rate at
a fixed true positive rate Q, denoted as FPR@TPRQ, short FPR.This means that the detector is
interpreted as making the decision to accept an unknown input x if S(x) ≥ τ , for a threshold τ that
is chosen such that Q% of ID inputs are accepted, and rejecting the input as OOD if S(x) < τ . The
FPR@TPRQ counts the fraction of falsely accepted OOD inputs under this decision scheme. This
means the lower the FPR@TPRQ, the better the OOD detection performance. In the OOD detection
literature, the most commonly used value for Q is 95%, which we too use throughout this paper. We
also report results in terms of the mean area under the receiver-operator characteristic curve, short
AUROC in Table 4. It represents the probability that an ID input receives a higher score (equal scores
counted half) than an OOD input when both are drawn randomly from their respective evaluation
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datasets. Like for the FPR, the mean AUROC corresponds to first uniformly drawing an OOD class
and then drawing a sample from that class.

F ILLUSTRATIVE EXAMPLES FROM THE CLEANING PROCESS

✗ (brain coral) ✗ (coral reef)

✓ ✓

bluestriped grunt
✗ (spiderweb) ✗ (spiderweb)

✓ ✓

cat-faced spider
✗ (plane) ✗ (pole)

✓ ✓

sky
✗ (plate) ✗ (strawberry)

✓ ✓

waffles

Figure 8: Cleaning the OOD classes. Top: Samples that were excluded due to overlap with ID
classes. Bottom: Samples from the same OOD class that were included in the cleaned datasets.
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G DETAILS OF THE NINCO DATASET.
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Table 9: Detailed information for each OOD class. For determining overlap with classes of IN-21K,
we checked the 8 most common predictions of a ViT classifier for IN-21K on the NINCO OOD class.

OOD class name shortname # samples source dataset ImageNet-21K overlap
AFA (cyanobacterium) AFA 46 SPECIES microorganism
bagpipe Bagp 97 Imagenet-21k bagpipe
bluestriped grunt BSGrunt 96 SPECIES grunt
cable Cabl 88 scraped cable television
California pitcher plant CPitch 100 SPECIES pitcher plant
California slender salamander CSSala 100 SPECIES slender salamander
California two-spot octopus C2SOct 100 SPECIES octopus
caracal Caracal 100 iNat. Download caracal
cat-faced spider CatFSp 100 SPECIES unclear/very broad class
Central American tapir CATapir 100 SPECIES tapir
chicken quesadilla CQuesa 100 FOOD-101 -
common cuttlefish CCuttle 100 SPECIES cuttlefish
crème brûlée CBrûlée 99 FOOD-101 creme brulee
cupcakes CCake 80 FOOD-101 -
donuts Donuts 100 FOOD-101 doughnut
door Door 100 MyNursingHome interior door
dreamfish Dreamf 100 SPECIES sea bream
dune thistle DThist 100 SPECIES creme brulee
dusky flathead (fish) DFlath 100 SPECIES flathead
E. micromeris (cactus) EMicro 100 SPECIES -
Eastern leaf-footed bug ELFBug 100 SPECIES leaf-footed bug
European paper wasp EPWasp 100 SPECIES paper wasp
false killer whale FalseKW 67 SPECIES unclear/very broad class
field road FieldRd 96 PLACES byway
fire extinguisher FireEx 106 MyNursingHome fire extinguisher
fireworks FireW 100 scraped -
forest path ForPth 100 PLACES unclear/very broad class
Franciscan wallflower Franci 100 SPECIES wallflower
French fries Fries 100 FOOD-101 french fries
Galápagos fur seal GFurS 91 SPECIES arcella
giant cuttlefish GCuttle 99 SPECIES cuttlefish
glass of milk GlMilk 89 scraped milk
gramophone Gramo 56 scraped gramophone
high heels HHeels 99 scraped -
Hindu temple HinTp 51 scraped unclear/very broad class
Horse Hoof clam HHClam 31 SPECIES seashell
Indo-Pacific bottlenose dolphin IPBNDol 100 SPECIES dolphin
long-tailed silverfish LTSilF 100 SPECIES silverfish
Lumholtz’s tree-kangaroo LTRoo 100 SPECIES tree wallaby
M. wesenbergii (cyanobacterium) MWesen 33 SPECIES microorganism
marbled newt MNewt 100 SPECIES newt
mbira Mbira 67 scraped -
Mexican lime cactus MLCact 100 SPECIES barrel cactus
Pampas deer PDeer 82 SPECIES buck
pyramid Pyra 100 caltech-101 Cheops
redbreast sunfish RBSunf 100 SPECIES sunfish
rosybells (flowering plant) Rosyb 100 SPECIES -
ruby octopus RubyOct 100 SPECIES octopus
scissors Sciss 100 caltech-101 scissors
shuttlecock ShCo 67 scraped shuttlecock
silver-haired bat SilverHB 99 SPECIES bat
skipper caterpillar SCaterp 100 iNat. Download caterpillar
sky Sky 68 PLACES sky
southern calamari SCalam 99 SPECIES squid
spaghetti bolognese SBolo 67 FOOD-101 spaghetti
stapler Stapl 100 caltech-101 stapler
sweet pea SwPea 100 SPECIES unclear/very broad class
two-toed amphiuma (salamander) 2TAmph 176 SPECIES amphiuma
waffles Waffle 61 FOOD-101 -
walker Walker 99 MyNursingHome walker
water dispenser (jugless) WDisp 100 MyNursingHome water cooler
Windsor chair WiChair 71 caltech-101 Windsor chair
yellow trumpets YTrump 100 SPECIES yellow trumpet
‘ōhelo ‘ai (flowering plant) ‘ō‘ai 100 SPECIES -
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H DETAILS AND RECIPES FOR OOD UNIT-TESTS

We provide 400 samples for each of 17 OOD unit-tests, mirroring the sizes and file formats of random
ImageNet samples. Their reproducible definitions are given as follows:

• uniform noise (Hendrycks & Gimpel, 2017): Each RBG colour channel of each pixel is
independently sampled uniformly between 0.0 or 1.0.

• Gaussian noise (Hendrycks & Gimpel, 2017): For each image, first σ is chosen randomly
between (0.05, 0.075, 0.1, 0.15, 0.2, 0.3, 0.5).
Then each RBG colour channel of each pixel is independently sampled from N (0.5, σ).

• Rademacher noise (Hendrycks et al., 2019): Then each RBG colour channel of each pixel
is independently set to 0.0 or 1.0 with 50% probability.

• IN pixel permutations (Hein et al., 2019): We choose a random IN-1K validation image
and randomly shuffle its pixels (no remixing of colours).

• black: All colour channels are set to 0.0.
• white: All colour channels are set to 1.0.
• shades of grey: All colour channels are set to the same value, sampled uniformly between
0.0 or 1.0.

• monochrome: All pixels are set to a uniformly random RGB-colour (sampled uniformly
from [0.0, 1.0]3).

• tricolour: The image is split into three stripes of equal size, vertically or horizontally with
probability 50%.
Each stripe is set to an independent uniformly random RGB-colour.

• primary tricolour: The image is split into three stripes of equal size, vertically or horizon-
tally with probability 50%.
Each stripe is set to a colour where each RGB-channel value is chosen randomly as either
0.0 or 1.0.

• horizontal stripes: The image is split into a random number chosen between
(4, 5, 7, 10, 15, 20) of horizontal stripes of equal size.
Each stripe is set to an independent uniformly random RGB-colour.

• vertical stripes: The image is split into a random number chosen between
(4, 5, 7, 10, 15, 20) of vertical stripes of equal size.
Each stripe is set to an independent uniformly random RGB-colour.

• smooth noise (Hein et al., 2019): For each image, first σ is chosen randomly between
(10, 15, 25, 40, 60, 85).
A uniform noise image is sampled.
Then we apply a Gaussian filter with a kernel size of σ pixels.
Finally, the pixel values are scaled linearly such that the minimum brightness over all
channels and pixels is 0.0 and the maximum is 1.0.

• smooth noise+: For each image, first σ is chosen randomly between (10, 15, 25, 40, 60, 85).
A uniform noise image is sampled.
Then we apply a Gaussian filter with a kernel size of σ pixels.
Finally, each RGB channel is scaled linearly such that its minimum brightness over all pixels
is 0.0 and the maximum is 1.0.

• smooth color: For each image, first σ is chosen randomly between (10, 15, 25, 40, 60, 85),
δ uniformly between 0.1 and 0.3, and a uniformly random RGB-colour c.
A uniform noise image is sampled.
Then we apply a Gaussian filter with a kernel size of σ pixels.
Finally, each RGB channel is scaled linearly such that c− δ is the 2.5th quantile of its values
and c+ δ the 97.5th.

• smooth IN pixel permutations (Hein et al., 2019): For each image, first σ is chosen
randomly between (1, 1.5, 2, 3, 4, 6, 8).
An IN pixel permutations image is sampled.
Then we apply a Gaussian filter with a kernel size of σ pixels.
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• blobs (Hendrycks et al., 2019): For each image, first σ is chosen randomly between
(1.5, 2, 2.5, 3, 3.5, 4).
Each RBG colour channel of each pixel is independently set to 1.0 with 70% probability or
0.0 with 30%.
Then we apply a Gaussian filter with a kernel size of σ pixels.
Finally, all channel values below 0.75 are set to 0.0.

Where necessary, the resulting channel values are clipped to [0, 1]. We show samples of each unit-test
in the following Appendix I in Figure 12.
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I EXAMPLES IMAGES OF EACH OOD CLASS IN NINCO AND OOD
UNIT-TESTS

AFA bagpipe bluestriped grunt cable

California pitcher plant California slender salamander California two-spot octopus caracal

cat-faced spider Central American tapir chicken quesadilla common cuttlefish

crème brûlée cupcakes donuts door

dreamfish dune thistle dusky flathead E. micromeris

Eastern leaf-footed bug European paper wasp false killer whale field road

Figure 9: Samples of each class of the NINCO dataset (1/3).
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fire extinguisher fireworks forest path Franciscan wallflower

French fries Galápagos fur seal giant cuttlefish glass of milk

gramophone high heels Hindu temple Horse Hoof clam

Indo-Pacific bottlenose dolphin long-tailed silverfish Lumholtz’s tree-kangaroo M. wesenbergii

marbled newt mbira Mexican lime cactus Pampas deer

pyramid redbreast sunfish rosybells ruby octopus

Figure 10: Samples of each class of the NINCO dataset (2/3).
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scissors shuttlecock silver-haired bat skipper caterpillar

sky southern calamari spaghetti bolognese stapler

sweet pea two-toed amphiuma waffles walker

water dispenser Windsor chair yellow trumpets ‘ōhelo ‘ai

Figure 11: Samples of each class of the NINCO dataset (3/3).

uniform noise Gaussian noise Rademacher noise IN pixel permutations

black white shades of grey monochrome

tricolour primary tricolour horizontal stripes vertical stripes

smooth noise smooth noise+ smooth color smooth IN pixel permutations

blobs

Figure 12: Samples of each OOD unit-test.
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J TABLES - UNIT TESTS

Table 10: FPR of pretrained transformers for unit-tests. The ViTs pretrained only on ImageNet-21k
fail only few unit tests, the other models struggle often with feature-based methods.

model acc. method # fails max Gauss Rade Black Blob Grey Hor SmN SmN+ SmCol SmPxPerm Mono PxPerm Tri PrTri Uni Ver White
MSP 0 4.2 0.5 0.0 0.0 4.2 0.0 0.0 0.0 0.0 0.0 1.5 0.2 0.0 0.5 0.0 1.0 3.0 0.8

MaxLogit 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ViM 2 100.0 0.0 0.0 0.0 0.0 100.0 0.0 46.0 0.5 0.0 5.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0

Mahalanobis 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Energy+React 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

ViT-B-384-21k 86.0 Energy 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
KL-Matching 0 4.8 0.0 0.0 0.0 3.8 0.0 0.0 0.0 0.0 0.0 0.5 1.2 0.0 0.0 0.0 0.0 4.8 0.0

knn 0 4.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.2 1.8 4.8 0.0 0.0
Relative Mahalanobis 0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.2 0.0 0.0 0.0 0.0 0.0 0.0

MCM/RCos 0 3.5 0.0 3.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
cosine 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MSP 0 7.0 0.5 4.5 0.0 6.5 0.0 0.0 0.0 0.0 0.2 0.8 1.5 7.0 0.5 0.2 2.5 2.2 1.0

MaxLogit 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ViM 3 100.0 0.0 0.0 0.0 0.0 100.0 100.0 55.5 0.0 0.0 1.5 0.0 0.0 0.0 0.0 0.8 0.0 0.0

Mahalanobis 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Energy+React 0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0

ViT-B-224-21k 84.5 Energy 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
KL-Matching 2 16.2 0.5 3.2 0.0 7.0 0.0 0.0 0.0 0.0 0.2 0.2 12.0 16.2 0.5 0.2 1.8 3.5 0.0

knn 0 6.0 0.0 1.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.8 0.8 6.0 0.2 0.0
Relative Mahalanobis 0 9.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 2.2 5.2 9.8 0.0 0.0 0.0 0.0 0.0

MCM/RCos 1 16.2 0.5 16.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
cosine 0 1.8 0.0 1.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0
MSP 4 28.0 0.0 0.0 0.0 7.2 0.0 0.0 0.0 0.0 2.5 3.0 1.2 12.0 22.5 28.0 5.2 11.0 0.0

MaxLogit 2 17.2 0.0 0.0 0.0 4.5 0.0 0.0 0.0 0.0 1.0 2.2 0.2 6.8 13.5 17.2 2.8 7.8 0.0
ViM 8 100.0 0.2 20.2 12.0 0.5 100.0 100.0 100.0 100.0 31.0 22.8 6.8 2.0 0.0 0.0 0.8 2.2 0.0

Mahalanobis 13 100.0 19.5 48.8 36.5 4.5 100.0 100.0 100.0 100.0 93.0 91.8 45.8 27.5 1.0 0.8 2.8 19.0 13.2
Energy+React 0 8.2 0.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0 0.8 2.8 0.0 5.0 5.2 8.2 0.8 7.0 0.0

Swinv2-B-256-21k 86.3 Energy 2 14.2 0.0 0.0 0.0 7.0 0.0 0.0 0.0 0.0 0.2 2.5 0.0 7.5 11.8 14.2 2.2 9.0 0.0
KL-Matching 5 23.8 0.2 0.0 0.0 18.8 0.0 0.0 0.0 0.0 7.2 6.5 4.8 12.8 19.8 23.8 4.0 15.5 0.8

knn 0 3.5 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 3.5 1.8 1.8 0.0 0.0 0.0 0.0 0.2 0.0
Relative Mahalanobis 9 100.0 0.5 5.5 8.8 7.0 100.0 100.0 100.0 100.0 77.5 77.2 44.0 16.2 0.0 0.0 0.5 23.8 0.2

MCM/RCos 0 4.0 0.0 0.0 0.0 0.8 0.0 0.0 0.0 0.0 1.5 1.2 4.0 0.0 0.0 0.0 0.0 0.2 0.0
cosine 0 3.8 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 1.5 1.0 3.8 0.0 0.0 0.0 0.0 0.2 0.0
MSP 8 72.8 58.0 16.5 72.8 20.8 0.0 0.0 0.0 0.0 29.8 13.5 33.5 2.5 1.0 0.5 9.5 50.2 3.2

MaxLogit 7 75.5 62.5 17.8 75.5 13.5 0.0 0.0 0.0 0.0 17.2 6.0 12.0 0.0 0.5 0.5 8.0 39.2 2.0
ViM 7 100.0 0.0 0.0 0.0 0.5 0.0 100.0 27.0 36.2 56.0 73.8 30.0 5.8 0.2 0.0 2.2 27.5 0.0

Mahalanobis 6 100.0 0.0 0.0 0.0 0.8 0.0 100.0 15.5 5.5 39.5 50.2 42.0 2.5 0.0 0.0 0.8 29.8 0.0
Energy+React 3 60.5 35.8 8.2 60.5 3.8 0.0 0.0 0.0 0.0 8.2 3.5 6.8 0.0 0.0 0.0 6.8 24.8 0.8

Deit3-B-384-21k 86.7 Energy 5 84.2 73.5 24.2 84.2 11.8 0.0 0.0 0.0 0.0 8.5 4.0 6.8 0.0 0.2 0.0 8.2 31.2 2.0
KL-Matching 8 62.0 47.2 12.0 62.0 17.8 0.0 0.0 0.0 0.0 32.5 15.0 39.5 3.8 1.2 0.8 10.0 48.5 2.8

knn 2 20.2 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 14.2 3.0 20.2 0.2 0.0 0.0 0.5 1.5 0.0
Relative Mahalanobis 4 39.5 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.5 32.2 21.8 39.5 2.0 0.0 0.0 0.8 35.2 0.0

MCM/RCos 3 19.0 0.0 0.0 0.0 0.8 0.0 0.0 0.0 0.0 14.0 2.2 19.0 0.2 0.0 0.0 0.8 14.2 0.0
cosine 3 20.0 0.0 0.0 0.0 0.8 0.0 0.0 0.0 0.0 14.2 3.0 20.0 0.2 0.0 0.0 0.8 13.5 0.0
MSP 5 48.5 7.0 2.5 5.5 13.2 0.0 0.0 0.0 0.0 29.5 13.0 31.0 2.0 2.0 0.5 9.2 48.5 3.5

MaxLogit 2 39.0 6.5 2.5 4.5 9.8 0.0 0.0 0.0 0.0 11.5 5.8 9.8 0.2 0.8 0.0 6.0 39.0 1.2
ViM 6 100.0 0.5 0.2 0.0 0.2 0.0 100.0 53.8 9.0 61.5 82.2 39.0 1.5 0.5 0.2 3.5 15.2 0.0

Mahalanobis 6 100.0 0.5 0.0 0.0 0.2 0.0 100.0 61.3 8.2 64.0 73.8 43.5 2.0 0.0 0.0 1.5 16.8 0.0
Energy+React 1 27.0 2.2 0.8 2.0 5.5 0.0 0.0 0.0 0.0 5.8 1.5 5.0 0.2 0.0 0.0 2.5 27.0 0.0

Deit3-B-224-21k 85.7 Energy 1 36.2 8.8 3.0 6.5 8.5 0.0 0.0 0.0 0.0 6.2 1.8 5.5 0.2 0.5 0.0 5.2 36.2 0.8
KL-Matching 5 47.0 6.8 2.5 4.5 13.8 0.0 0.0 0.0 0.2 38.5 17.8 38.0 6.8 3.5 1.8 9.5 47.0 3.8

knn 2 18.8 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 13.8 3.5 18.8 0.0 0.0 0.0 1.0 3.8 0.0
Relative Mahalanobis 4 51.5 0.5 0.0 0.0 0.2 0.0 0.0 0.0 2.2 51.5 40.2 40.0 1.2 0.0 0.0 1.8 18.5 0.0

MCM/RCos 2 19.2 0.2 0.0 0.0 0.2 0.0 0.0 0.0 0.0 12.5 4.0 19.2 0.0 0.0 0.0 0.8 10.0 0.0
cosine 3 17.2 0.2 0.0 0.0 0.2 0.0 0.0 0.0 0.0 11.0 4.2 17.2 0.0 0.0 0.0 0.8 11.0 0.0
MSP 0 7.5 0.0 0.0 0.0 4.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.5 0.5 7.5 0.2

MaxLogit 0 4.5 0.0 0.0 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.2 0.0 4.5 0.0
ViM 5 100.0 0.2 0.0 18.0 0.5 100.0 100.0 97.0 14.8 0.8 2.2 0.0 1.2 0.5 0.0 1.2 1.5 0.0

Mahalanobis 16 100.0 83.0 43.8 99.8 4.2 100.0 100.0 100.0 100.0 99.8 99.5 37.5 80.2 18.0 14.8 19.2 38.8 38.8
Energy+React 0 3.8 0.0 0.0 0.0 1.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.2 3.8 0.0

ViT-B-384-l2b-12k 87.2 Energy 0 5.2 0.0 0.0 0.0 2.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 1.0 0.2 5.2 0.0
KL-Matching 0 8.5 0.0 0.0 0.0 5.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.8 1.8 2.8 8.5 3.2

knn 0 2.2 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.5 2.2 0.0
Relative Mahalanobis 10 100.0 3.2 4.5 44.2 5.8 100.0 100.0 100.0 53.5 30.5 56.2 2.5 16.5 10.0 8.5 10.0 12.2 24.5

MCM/RCos 0 1.2 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.2 0.0 0.8 1.2 0.0
cosine 0 1.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 1.0 0.0
MSP 1 12.8 0.0 0.0 0.0 8.8 0.0 0.0 0.0 0.0 0.2 1.0 0.2 0.0 2.0 3.8 1.5 12.8 0.5

MaxLogit 1 11.0 0.0 0.0 0.0 5.5 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 4.8 5.0 1.5 11.0 0.0
ViM 2 100.0 0.0 0.0 0.0 0.0 0.0 100.0 38.2 0.2 0.0 0.2 0.0 0.0 0.5 0.0 0.5 0.0 0.0

Mahalanobis 7 100.0 5.0 6.5 46.0 0.2 100.0 100.0 100.0 62.3 32.2 72.2 7.0 0.0 9.2 5.2 7.2 1.8 0.8
Energy+React 3 15.0 0.0 2.0 0.0 4.5 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 15.0 10.8 3.8 11.0 0.2

ViT-B-384-oai-12k 87.0 Energy 3 14.5 0.0 1.8 0.0 6.5 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 14.5 10.2 3.8 11.8 0.2
KL-Matching 0 9.8 0.0 0.0 0.0 9.8 0.0 0.0 0.0 0.0 0.5 2.8 1.0 0.2 2.2 4.5 5.5 7.5 2.2

knn 0 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.8 0.0 0.0 0.8 0.2 0.5 0.0 0.0
Relative Mahalanobis 6 100.0 0.0 0.0 2.8 1.0 0.0 100.0 87.2 16.5 15.5 28.0 3.0 0.2 10.8 6.0 8.0 1.2 0.2

MCM/RCos 0 5.5 0.0 0.0 0.0 0.8 0.0 0.0 0.0 0.0 0.2 1.5 0.0 0.0 5.5 3.5 3.0 0.0 0.0
cosine 0 4.5 0.0 0.0 0.0 0.8 0.0 0.0 0.0 0.0 0.2 1.0 0.0 0.0 4.5 1.5 2.5 0.0 0.0
MSP 1 18.0 0.0 0.0 0.0 18.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.8 0.5 0.2 7.2 0.0

MaxLogit 1 11.5 0.0 0.0 0.0 11.5 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.5 0.2 0.2 3.2 0.0
ViM 1 25.5 0.0 0.0 0.0 0.2 0.0 0.0 25.5 0.5 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.2 0.0

Mahalanobis 11 100.0 99.5 62.7 100.0 3.0 100.0 100.0 100.0 100.0 15.8 41.2 1.0 0.2 0.0 0.2 0.2 15.8 18.2
Energy+React 0 9.8 0.0 0.0 0.0 9.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 2.8 0.0

ViT-B-384-l2b 86.6 Energy 1 12.0 0.0 0.0 0.0 12.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.5 3.0 0.0
KL-Matching 1 12.8 0.0 0.0 0.0 12.8 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.8 0.2 0.2 8.5 0.0

knn 0 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.8 0.0 0.0 0.0 0.0 0.0 0.5 0.0
Relative Mahalanobis 8 100.0 75.2 33.8 95.2 8.8 100.0 100.0 100.0 42.2 0.8 10.0 0.0 0.0 0.0 0.0 1.8 11.5 2.2

MCM/RCos 0 0.2 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
cosine 0 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0
MSP 1 17.5 0.0 0.0 0.0 17.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.5 9.0 0.0

MaxLogit 1 13.5 0.0 0.0 0.0 13.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 5.5 0.0
ViM 2 100.0 0.0 0.0 0.0 2.0 0.0 100.0 30.0 0.5 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.2 0.0

Mahalanobis 11 100.0 15.5 6.0 47.5 1.5 100.0 100.0 100.0 100.0 95.0 90.8 26.5 26.8 0.0 0.2 1.8 8.5 21.2
Energy+React 1 12.2 0.0 0.2 0.0 12.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.5 0.0

ViT-B-384-oai 86.2 Energy 1 13.5 0.0 0.0 0.0 13.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.0 0.0
KL-Matching 1 16.8 0.0 0.0 0.0 16.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.8 9.5 0.0

knn 0 4.0 0.0 0.0 0.0 4.0 0.0 0.0 0.0 0.0 1.2 0.8 1.2 0.0 0.0 0.0 0.0 3.8 0.0
Relative Mahalanobis 10 100.0 0.2 1.0 34.2 2.0 100.0 100.0 100.0 89.0 69.0 64.2 14.5 29.5 0.0 0.2 4.2 7.8 25.5

MCM/RCos 0 0.8 0.0 0.0 0.0 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0
cosine 0 1.5 0.0 0.0 0.0 1.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0

mcm-clip 1 17.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 4.0 4.2 0.0 17.0 0.0 0.0 0.0 0.0 0.0
clip-ViT-B-224 66.6 cosine-clip 15 100.0 100.0 99.5 100.0 98.0 0.0 100.0 1.5 53.2 14.2 31.5 23.5 72.5 83.8 87.8 60.2 72.2 38.2

mcm-clip 0 5.0 0.0 0.0 0.0 0.8 0.0 0.0 0.0 1.2 5.0 0.5 0.0 1.0 0.0 0.0 0.0 1.2 3.8
clip-ViT-L-336 74.3 cosine-clip 14 100.0 100.0 99.8 100.0 98.2 0.0 100.0 48.2 88.8 5.0 33.2 3.2 31.8 94.2 88.5 83.2 79.0 73.2
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Table 11: FPR of pretrained convolutional networks for OOD unit-tests.

model acc. method # fails max Gauss Rade Black Blob Grey Hor SmN SmN+ SmCol SmPxPerm Mono PxPerm Tri PrTri Uni Ver White
MSP 1 13.5 0.0 0.0 0.0 0.2 0.0 13.5 2.2 5.5 2.0 5.8 0.0 0.5 2.5 8.2 0.2 0.2 0.0

MaxLogit 0 6.0 0.0 0.0 0.0 0.0 0.0 4.5 2.5 6.0 1.0 2.8 0.0 0.0 0.2 4.0 0.2 0.2 0.0
Energy 1 10.8 0.0 0.0 0.0 0.0 0.0 2.5 5.2 10.8 2.2 2.8 0.0 0.0 0.0 3.0 0.0 0.2 0.0

KL-Matching 2 29.2 0.0 0.0 0.0 2.0 0.0 29.2 2.5 2.0 2.5 6.2 0.0 1.2 4.2 10.8 0.2 0.0 0.0
Mahalanobis 4 100.0 0.8 42.5 100.0 0.0 100.0 0.0 0.0 0.0 0.0 2.0 2.8 0.0 0.0 5.0 0.2 0.0 100.0

CnvNxt-B-21k 86.3 Relative Mahalanobis 5 100.0 0.5 41.0 100.0 0.0 100.0 1.0 0.0 0.0 0.0 13.0 1.5 0.0 0.2 9.8 0.0 0.0 100.0
ViM 4 100.0 0.5 41.2 100.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 2.0 0.0 0.0 100.0

Energy+React 0 4.0 0.0 0.0 0.0 0.0 0.0 1.0 2.0 4.0 0.0 1.0 0.0 0.0 0.0 2.0 0.0 0.2 0.0
knn 0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0

cosine 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MCM/RCos 0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0

MSP 3 16.0 3.2 1.2 0.0 2.2 0.0 7.2 8.5 11.2 5.8 13.2 0.5 16.0 6.0 7.8 0.5 0.8 0.0
MaxLogit 4 24.8 17.0 16.5 0.0 0.2 0.0 1.0 3.5 5.2 3.8 9.5 0.0 11.0 1.8 1.5 24.8 0.2 0.0

Energy 3 60.2 29.8 60.2 0.0 0.2 0.0 0.5 0.8 2.5 2.8 7.2 0.0 9.5 0.8 0.2 38.2 0.0 0.0
KL-Matching 8 27.0 8.5 2.2 0.0 13.2 0.0 22.5 11.0 12.0 6.5 16.5 1.8 27.0 17.8 16.8 0.8 7.5 0.0
Mahalanobis 6 100.0 4.0 11.5 100.0 0.0 100.0 1.2 0.0 0.0 0.0 0.0 40.5 0.0 9.0 14.0 7.0 0.0 100.0

CnvNxt-T-21k 84.1 Relative Mahalanobis 4 100.0 0.5 7.5 100.0 0.0 100.0 1.5 0.0 0.0 0.2 1.2 17.0 1.0 3.0 9.5 5.0 0.0 100.0
ViM 4 100.0 1.0 7.0 100.0 0.0 100.0 0.2 0.0 0.0 0.0 0.0 13.0 0.0 1.2 5.2 5.5 0.0 100.0

Energy+React 3 34.8 22.2 34.8 0.0 0.0 0.0 0.5 0.0 1.2 1.8 5.0 0.0 5.2 0.2 0.0 28.7 0.0 0.0
knn 2 18.5 0.0 0.0 0.0 0.0 0.0 12.8 0.0 0.0 0.8 0.8 0.0 0.0 4.5 18.5 0.0 0.0 0.0

cosine 0 8.0 0.0 0.0 0.0 0.0 0.0 3.5 0.0 0.0 0.5 0.2 0.0 0.8 0.2 8.0 0.0 0.0 0.0
MCM/RCos 1 10.5 0.0 0.0 0.0 0.0 0.0 6.0 0.0 0.0 0.5 0.2 0.0 0.8 1.5 10.5 0.0 0.0 0.0

MSP 11 93.0 48.2 51.7 0.0 5.0 0.0 9.8 41.5 41.5 51.5 93.0 13.5 81.0 34.8 23.5 48.8 4.2 0.0
MaxLogit 10 87.8 36.0 40.0 0.0 1.2 0.0 1.8 40.0 42.2 49.5 87.8 6.2 71.5 13.2 11.2 35.2 1.8 0.0

Energy 10 86.8 33.8 32.0 0.0 1.0 0.0 0.8 65.2 68.0 62.5 86.8 6.0 72.0 11.2 12.8 27.3 5.2 0.0
KL-Matching 11 90.5 51.5 51.7 0.0 5.0 0.0 8.2 33.5 32.5 39.8 90.5 12.8 72.5 28.7 18.2 50.2 3.8 0.0
Mahalanobis 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

BiT-m 82.3 Relative Mahalanobis 0 2.8 0.0 0.0 0.0 0.0 0.0 0.0 0.2 1.2 1.0 2.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ViM 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Energy+React 8 63.2 6.2 4.2 0.0 0.0 0.0 0.8 61.5 63.2 57.8 62.7 4.0 31.8 15.8 14.5 4.8 29.5 0.0
knn 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

cosine 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MCM/RCos 0 1.5 0.0 0.0 0.0 0.0 0.0 0.0 0.2 1.0 1.5 1.5 0.2 0.0 0.0 0.0 0.0 0.0 0.0

MSP 4 52.2 0.2 0.0 0.0 1.0 0.0 0.2 10.2 9.0 20.0 52.2 0.5 14.2 0.5 0.0 0.5 0.0 0.0
MaxLogit 3 48.8 0.5 0.0 0.0 0.8 0.0 0.2 6.2 6.0 14.0 48.8 1.2 14.5 0.0 0.0 0.5 0.0 0.0

Energy 4 57.0 11.0 0.0 0.0 10.0 0.0 0.2 9.2 8.2 16.5 57.0 3.2 27.0 0.0 0.0 1.5 0.0 0.0
KL-Matching 5 50.2 0.8 0.0 0.0 2.8 0.0 0.8 18.0 16.2 23.5 50.2 0.2 14.5 1.0 0.0 0.2 1.0 0.0
Mahalanobis 0 3.2 0.0 0.0 0.0 0.0 0.0 0.5 2.0 1.5 3.2 0.0 0.0 0.0 0.0 0.8 0.0 0.0 0.0

EffNetv2-M-21k 85.6 Relative Mahalanobis 2 100.0 0.0 0.0 0.0 0.0 3.8 0.2 5.5 2.8 16.5 5.5 0.2 0.5 0.5 5.8 0.0 0.2 100.0
ViM 0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Energy+React 14 100.0 91.5 99.5 0.0 100.0 1.0 59.2 98.8 99.5 92.5 98.2 27.8 83.2 30.8 25.5 98.5 80.0 0.0
knn 0 5.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

cosine 0 5.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MCM/RCos 1 12.5 0.0 0.0 0.0 0.0 0.0 0.2 1.2 0.8 12.5 0.2 0.0 0.2 0.0 3.5 0.0 0.0 0.0

MSP 0 9.5 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.8 0.2 0.2 0.0 5.2 0.0 0.0 0.0 9.5 0.0
MaxLogit 0 8.8 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.2 0.0 0.0 0.0 8.8 0.0

Energy 3 43.0 18.0 43.0 0.0 11.8 0.0 0.0 0.0 0.2 0.5 0.2 0.0 0.5 0.0 0.0 9.5 9.2 0.0
KL-Matching 2 26.5 0.2 0.0 0.0 1.2 0.0 3.8 0.0 1.2 0.5 5.2 0.0 26.5 0.5 0.2 0.8 11.0 0.0
Mahalanobis 15 100.0 36.5 1.0 100.0 14.5 100.0 100.0 68.0 64.5 88.2 70.8 100.0 60.8 100.0 98.5 6.8 99.8 100.0

EffNetb7-ns 86.8 Relative Mahalanobis 13 100.0 0.0 0.0 100.0 0.0 100.0 94.2 25.5 24.8 46.2 39.5 100.0 12.5 98.5 80.0 0.0 99.0 100.0
ViM 16 100.0 37.8 1.5 100.0 25.0 100.0 100.0 73.2 68.5 89.5 72.8 100.0 61.3 100.0 99.0 10.8 99.8 100.0

Energy+React 0 8.2 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 8.2 0.0
knn 0 9.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 9.2 0.0 0.0 0.0 0.0 0.0

cosine 0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0
MCM/RCos 0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0

Table 12: FPR of transformers without pretraining for OOD unit-tests.

model acc. method # fails max Gauss Rade Black Blob Grey Hor SmN SmN+ SmCol SmPxPerm Mono PxPerm Tri PrTri Uni Ver White
MSP 7 43.8 0.0 0.0 0.0 15.8 0.0 26.2 11.8 11.2 13.2 5.5 0.0 43.8 0.5 10.5 1.0 4.5 0.0

MaxLogit 2 19.2 0.0 0.0 0.0 4.0 0.0 16.8 5.2 6.2 6.5 1.0 0.0 19.2 0.2 7.8 0.0 2.2 0.0
Energy 2 17.0 3.0 0.0 0.0 1.2 0.0 17.0 2.8 2.8 5.8 0.5 0.0 12.2 0.8 8.8 0.0 2.8 0.0

KL-Matching 6 44.8 0.0 0.0 0.0 13.8 6.2 28.0 8.2 8.2 9.0 4.8 3.0 44.8 10.2 12.2 0.2 27.5 0.0
Mahalanobis 4 80.8 19.0 0.5 0.0 0.0 80.8 22.0 0.8 0.2 0.2 1.2 8.8 22.8 9.8 3.2 8.0 1.0 0.0

ViT-B-384 81.1 Relative Mahalanobis 10 100.0 6.8 0.0 100.0 0.8 100.0 26.8 1.0 1.0 1.8 15.2 49.8 24.0 49.8 17.0 0.2 12.2 100.0
ViM 5 94.8 74.5 12.2 0.0 0.0 0.0 28.0 4.8 4.0 0.5 2.2 0.0 27.5 0.5 1.8 94.8 0.0 0.0

Energy+React 2 21.0 1.0 0.0 0.0 1.5 0.0 21.0 2.8 3.2 6.2 0.5 0.2 12.8 0.8 8.8 0.0 3.5 0.0
knn 5 85.2 82.2 85.2 0.0 3.0 0.0 18.8 4.0 4.0 6.8 0.8 1.0 7.2 0.5 10.5 84.8 0.0 0.0

cosine 3 23.2 23.2 0.0 0.0 3.0 0.0 14.0 2.8 3.5 3.2 0.8 0.8 14.0 0.2 7.2 1.0 0.0 0.0
MCM/RCos 4 38.2 38.2 3.2 0.0 3.8 0.0 14.8 3.5 3.5 4.2 0.8 1.0 15.8 0.2 8.5 16.8 0.0 0.0

MSP 4 27.8 0.0 0.0 0.0 20.5 0.0 27.8 10.0 10.8 3.8 9.0 0.0 25.0 3.2 2.8 0.2 3.5 0.0
MaxLogit 2 22.8 0.0 0.0 0.0 18.0 0.0 8.2 6.0 5.0 2.0 5.0 0.0 22.8 0.8 1.5 0.0 2.2 0.0

Energy 2 31.5 0.0 0.0 0.0 20.8 0.0 4.0 2.8 2.8 1.0 3.8 0.0 31.5 0.0 0.5 0.0 2.8 0.0
KL-Matching 6 49.8 0.0 0.0 0.0 21.0 0.0 49.8 15.0 13.8 6.5 10.5 0.0 24.5 8.5 6.0 0.2 4.2 0.0
Mahalanobis 12 100.0 51.2 49.5 100.0 5.0 100.0 60.0 7.0 5.0 5.5 18.2 100.0 3.0 97.8 90.8 52.5 35.2 100.0

Swinv2-B-256 84.6 Relative Mahalanobis 12 100.0 22.8 44.2 100.0 1.5 100.0 61.5 5.5 3.8 3.2 13.5 100.0 2.8 97.2 86.5 48.8 34.5 100.0
ViM 12 100.0 20.8 45.2 100.0 1.0 100.0 53.8 9.0 5.8 8.0 13.0 100.0 4.5 97.5 96.5 48.8 33.8 100.0

Energy+React 1 10.2 0.0 0.0 0.0 10.2 0.0 0.8 2.0 1.5 1.0 2.5 0.0 8.5 0.0 0.2 0.0 0.2 0.0
knn 1 32.0 0.0 0.0 0.0 0.0 0.0 32.0 5.0 3.2 1.0 0.0 6.2 1.8 8.0 0.8 0.0 0.0 0.0

cosine 1 25.5 0.0 0.0 0.0 0.0 0.0 25.5 3.0 1.0 1.0 0.0 0.2 1.2 3.0 0.2 0.0 0.0 0.0
MCM/RCos 1 33.5 0.0 0.0 0.0 0.0 0.0 33.5 3.0 1.2 0.8 0.5 0.0 1.5 4.2 0.5 0.0 0.0 0.0

MSP 3 34.8 0.0 0.0 0.0 0.0 0.0 34.8 9.5 16.2 3.8 4.2 0.0 10.8 0.0 0.8 0.0 0.5 0.0
MaxLogit 1 15.8 0.0 0.0 0.0 0.0 0.0 15.8 3.8 8.5 2.5 1.2 0.0 8.0 0.0 0.5 0.0 0.0 0.0

Energy 0 7.0 0.0 0.0 0.0 0.0 0.0 4.0 2.8 6.0 3.0 1.5 0.0 7.0 0.0 0.0 0.0 0.0 0.0
KL-Matching 4 61.3 0.2 0.0 0.0 0.0 0.0 61.3 13.2 19.2 6.5 6.0 0.0 13.2 0.5 4.2 0.5 3.5 0.0
Mahalanobis 14 100.0 99.2 99.8 100.0 66.5 100.0 98.5 6.2 1.5 32.8 46.8 100.0 6.8 100.0 100.0 99.5 96.2 100.0

Deit3-B-384 85.1 Relative Mahalanobis 14 100.0 78.0 97.0 100.0 23.8 100.0 95.8 2.5 1.0 14.8 38.8 100.0 4.0 100.0 100.0 84.2 85.2 100.0
ViM 8 100.0 0.0 0.0 100.0 0.0 100.0 82.8 0.2 0.5 1.0 0.0 100.0 0.0 99.2 89.5 0.0 47.8 100.0

Energy+React 6 57.5 0.0 0.0 0.0 0.0 0.0 35.0 48.5 57.5 25.2 22.2 0.0 54.0 0.0 1.0 0.0 0.5 0.0
knn 14 100.0 91.8 99.8 100.0 53.2 100.0 96.5 8.5 2.5 31.5 12.8 100.0 2.5 99.8 96.0 98.5 52.5 100.0

cosine 7 100.0 20.0 0.5 100.0 0.0 66.5 88.2 0.5 0.5 2.8 4.5 96.8 1.5 51.2 21.5 0.2 0.8 0.0
MCM/RCos 1 10.8 0.0 0.0 0.0 0.0 0.0 10.8 0.0 0.2 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

MSP 4 57.5 0.0 0.2 0.0 0.2 0.0 57.5 20.5 25.0 5.8 5.0 0.0 7.5 10.5 8.0 0.0 0.5 0.0
MaxLogit 3 51.5 0.0 0.0 0.0 0.0 0.0 51.5 15.2 23.2 4.8 3.8 0.0 4.5 4.0 4.2 0.0 0.2 0.0

Energy 3 49.0 0.0 0.0 0.0 0.0 0.0 49.0 12.5 22.0 2.2 3.0 0.0 8.8 0.5 0.8 0.0 5.5 0.0
KL-Matching 7 70.5 0.2 2.2 0.0 4.0 0.0 70.5 25.2 30.0 11.8 6.0 0.0 12.8 34.2 26.0 2.0 7.2 0.0
Mahalanobis 16 100.0 100.0 100.0 100.0 61.8 100.0 87.8 29.8 26.0 60.8 55.2 100.0 2.8 100.0 100.0 99.8 85.2 100.0

Deit3-B-224 83.8 Relative Mahalanobis 16 100.0 93.2 90.2 100.0 36.5 100.0 84.5 16.0 15.0 29.5 40.0 100.0 1.2 100.0 100.0 85.5 69.5 100.0
ViM 8 100.0 0.2 0.0 100.0 0.0 100.0 68.5 2.0 5.2 0.5 0.8 97.8 0.2 49.0 63.0 0.0 26.2 100.0

Energy+React 5 46.0 1.2 0.2 0.0 0.5 0.0 46.0 21.5 27.8 5.2 10.8 0.0 28.2 0.2 1.5 0.2 0.0 0.0
knn 15 100.0 40.8 35.5 100.0 27.3 100.0 74.8 35.2 31.0 53.2 8.5 100.0 4.0 96.2 91.0 15.5 31.5 100.0

cosine 7 100.0 8.8 2.0 100.0 0.2 100.0 70.8 4.2 7.5 2.0 1.2 100.0 1.8 49.0 36.8 1.0 0.8 100.0
MCM/RCos 1 57.2 0.0 0.0 0.0 0.0 0.0 57.2 0.5 2.0 0.5 0.2 0.0 0.2 9.0 4.0 0.0 0.0 0.0
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Table 13: FPR of convolutional networks without pretraining for OOD unit-tests.

model acc. method # fails max Gauss Rade Black Blob Grey Hor SmN SmN+ SmCol SmPxPerm Mono PxPerm Tri PrTri Uni Ver White
MSP 3 48.0 0.0 0.0 0.0 5.2 0.0 48.0 1.8 4.0 3.2 2.8 0.0 11.2 12.0 5.2 0.0 0.2 0.0

MaxLogit 1 40.2 0.0 0.0 0.0 2.2 0.0 40.2 2.0 4.2 1.5 1.0 0.0 6.0 6.5 3.2 0.0 0.0 0.0
Energy 4 56.0 0.0 0.0 0.0 1.0 0.0 56.0 18.2 32.2 4.0 1.8 0.0 10.5 5.5 6.5 0.0 3.0 0.0

KL-Matching 4 52.8 0.5 0.0 0.0 8.0 0.0 52.8 6.5 8.2 6.8 9.8 0.0 14.8 37.0 18.2 0.0 1.2 0.0
Mahalanobis 16 100.0 100.0 99.8 100.0 91.5 100.0 100.0 13.5 11.0 43.0 57.2 100.0 8.5 99.8 98.5 99.8 51.2 100.0

XCiT-M-224 82.6 Relative Mahalanobis 15 100.0 99.5 99.2 100.0 82.5 100.0 100.0 12.5 10.0 40.8 54.0 100.0 8.5 99.8 98.2 99.8 52.0 100.0
ViM 12 100.0 60.5 98.2 100.0 9.5 100.0 100.0 2.8 1.8 9.0 16.0 100.0 5.5 96.2 87.2 96.5 25.5 100.0

Energy+React 3 66.8 1.0 0.5 0.0 1.0 0.0 66.8 10.5 17.5 3.8 0.8 0.0 8.5 5.8 7.2 0.0 1.2 0.0
knn 4 68.8 2.5 44.5 0.0 7.5 0.0 49.5 0.5 0.2 1.0 0.2 68.8 3.2 21.0 7.5 2.5 0.0 0.0

cosine 1 24.8 0.0 0.0 0.0 5.0 0.0 24.8 0.5 0.0 1.5 0.2 0.0 2.2 8.2 1.2 0.0 0.0 0.0
MCM/RCos 2 54.2 0.0 0.0 0.0 6.0 0.0 54.2 0.5 0.0 1.8 1.0 0.0 2.5 17.8 7.2 0.0 0.5 0.0

MSP 9 100.0 21.0 45.0 0.0 1.2 54.2 60.5 6.5 9.0 6.2 18.5 3.2 36.8 10.2 8.5 36.8 0.2 100.0
MaxLogit 1 10.5 0.0 0.0 0.0 0.0 0.0 10.0 1.2 3.8 3.5 7.5 0.0 10.5 0.2 0.0 0.0 0.0 0.0

Energy 1 12.5 0.0 0.0 0.0 0.0 0.0 1.8 1.8 5.2 3.8 4.8 0.0 12.5 0.0 0.0 0.0 0.0 0.0
KL-Matching 12 100.0 41.0 48.0 100.0 4.2 82.5 82.8 5.0 5.2 6.5 22.2 14.0 39.5 36.0 25.2 42.8 1.8 100.0
Mahalanobis 12 100.0 24.0 95.0 100.0 5.0 100.0 85.2 1.5 1.2 4.8 12.2 100.0 4.5 100.0 97.2 50.2 46.5 100.0

XCiT-M-224-d 84.3 Relative Mahalanobis 12 100.0 11.5 75.8 100.0 1.2 100.0 84.5 2.0 1.5 3.8 13.5 85.2 4.5 98.8 95.0 24.8 45.5 100.0
ViM 10 100.0 10.0 65.2 100.0 0.0 100.0 77.5 0.0 0.0 0.2 2.8 96.0 1.0 97.0 79.5 27.3 37.2 100.0

Energy+React 0 9.2 0.2 2.0 0.0 0.0 0.0 2.5 0.0 0.2 2.8 3.8 0.0 9.2 0.0 0.0 0.0 0.0 0.0
knn 2 67.8 0.0 0.0 0.0 0.0 0.0 67.8 0.0 0.0 0.2 1.8 0.0 1.0 25.2 5.8 0.0 0.0 0.0

cosine 4 100.0 0.0 0.0 100.0 0.0 19.5 62.7 0.0 0.0 0.0 1.5 0.5 0.5 21.0 4.0 0.0 0.0 0.0
MCM/RCos 6 100.0 0.0 0.0 100.0 0.0 53.8 72.8 0.0 0.0 0.2 2.2 1.5 0.8 25.8 11.2 0.0 0.0 100.0

MSP 4 60.5 0.0 0.0 0.0 21.5 0.0 60.5 0.8 1.5 3.0 10.8 0.0 31.2 0.2 4.2 0.0 0.0 0.0
MaxLogit 4 69.2 2.5 0.0 0.0 25.0 0.0 69.2 2.5 4.5 7.2 12.5 0.0 52.5 0.2 4.8 0.0 0.0 0.0

Energy 12 100.0 66.2 52.5 0.0 86.2 0.0 90.0 97.8 100.0 86.8 50.7 3.0 98.0 7.8 38.0 49.8 58.2 0.0
KL-Matching 13 100.0 25.2 44.0 100.0 26.0 100.0 56.0 1.2 1.8 7.8 15.5 68.5 22.8 11.8 17.5 46.8 1.5 100.0
Mahalanobis 16 100.0 100.0 100.0 100.0 63.0 100.0 87.5 27.5 17.0 52.0 74.0 100.0 1.0 100.0 100.0 100.0 79.2 100.0

CnvNxt-B 84.4 Relative Mahalanobis 15 100.0 99.5 99.2 100.0 51.5 100.0 89.2 16.5 9.0 38.5 70.2 100.0 1.2 100.0 100.0 99.8 72.0 100.0
ViM 16 100.0 100.0 100.0 100.0 63.0 100.0 98.0 24.5 14.8 48.5 78.8 100.0 0.8 100.0 100.0 100.0 89.2 100.0

Energy+React 10 87.0 58.5 50.5 0.0 53.8 0.0 79.0 51.2 64.5 39.8 29.0 1.8 87.0 1.8 9.5 47.2 5.2 0.0
knn 12 100.0 84.5 58.8 0.0 7.2 56.2 81.2 13.8 8.5 29.0 2.2 88.5 0.2 100.0 97.2 84.2 65.0 100.0

cosine 1 27.5 0.0 0.0 0.0 0.0 0.0 27.5 0.0 0.0 0.0 0.5 0.0 0.0 0.2 0.0 0.0 0.0 0.0
MCM/RCos 1 49.0 0.0 0.0 0.0 0.2 0.0 49.0 0.0 0.0 0.0 1.2 0.0 0.2 0.2 1.8 0.0 0.0 0.0

MSP 8 89.0 4.8 13.8 0.0 89.0 0.0 76.0 37.2 36.8 10.0 9.0 6.5 47.0 10.5 8.2 7.5 68.5 0.0
MaxLogit 6 87.5 3.2 7.2 0.0 87.5 0.0 54.0 22.0 21.8 3.8 2.5 3.5 26.5 0.5 1.0 3.2 59.0 0.0

Energy 6 89.8 3.2 7.2 0.0 89.8 0.0 44.5 16.5 15.2 1.5 0.5 1.8 16.5 0.0 0.0 3.2 56.8 0.0
KL-Matching 16 100.0 5.0 27.0 100.0 50.0 100.0 73.0 18.8 15.5 21.8 12.2 91.0 24.0 48.5 51.7 12.0 71.5 100.0
Mahalanobis 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

BiT-s 78.0 Relative Mahalanobis 2 15.5 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.8 12.0 0.0 15.5 0.2 0.0 0.0 0.0 0.0
ViM 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Energy+React 3 75.8 0.8 2.5 0.0 75.8 0.0 20.0 0.2 0.0 0.0 0.2 0.0 0.5 0.0 0.0 1.5 39.8 0.0
knn 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

cosine 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MCM/RCos 10 95.0 4.2 15.5 0.0 6.2 0.0 95.0 17.5 18.5 12.0 5.2 34.0 24.5 93.0 85.8 5.5 54.2 0.0

MSP 1 18.0 0.0 0.0 0.0 18.0 0.0 6.0 2.2 4.0 0.5 0.0 0.0 4.0 0.0 0.0 0.0 0.0 0.0
MaxLogit 1 12.0 0.0 0.0 0.0 12.0 0.0 0.5 1.0 1.8 0.2 0.0 0.0 1.2 0.0 0.0 0.0 0.0 0.0

Energy 0 5.5 0.0 0.0 0.0 5.5 0.0 0.5 0.5 0.8 1.8 0.0 0.0 0.8 0.0 0.0 0.0 0.0 0.0
KL-Matching 2 35.0 0.0 0.0 0.0 23.0 0.0 35.0 3.8 4.0 2.5 0.5 0.0 7.0 0.0 0.5 0.0 0.0 0.0
Mahalanobis 12 100.0 40.5 3.8 100.0 14.0 100.0 90.5 2.0 2.2 18.5 67.0 100.0 1.5 99.5 100.0 6.2 71.8 100.0

EffNetv2-M 85.1 Relative Mahalanobis 9 100.0 0.2 0.0 100.0 0.0 100.0 84.5 1.0 0.8 6.5 25.2 100.0 0.5 96.8 87.0 0.0 65.8 100.0
ViM 14 100.0 80.0 10.8 100.0 27.0 100.0 91.8 4.5 3.2 33.2 65.5 100.0 1.5 94.2 98.8 40.8 67.2 100.0

Energy+React 0 2.8 0.0 0.0 0.0 2.8 0.0 0.0 0.2 0.2 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
knn 7 100.0 0.0 0.0 100.0 0.8 100.0 60.2 0.5 1.2 1.8 0.8 39.0 0.2 22.2 16.2 0.0 2.0 100.0

cosine 1 35.2 0.0 0.0 0.0 0.5 0.0 35.2 0.2 0.8 0.0 0.0 0.0 0.2 4.0 3.0 0.0 0.0 0.0
MCM/RCos 1 10.2 0.0 0.0 0.0 0.0 0.0 10.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0

MSP 3 17.8 0.0 0.0 0.0 1.5 0.0 17.8 12.5 14.0 4.5 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0
MaxLogit 0 10.0 0.0 0.0 0.0 1.0 0.0 5.2 8.0 10.0 3.2 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0

Energy 0 7.0 0.0 0.2 0.0 0.5 0.0 1.2 4.5 5.8 7.0 0.0 0.0 1.5 0.0 0.0 0.0 0.0 0.0
KL-Matching 3 27.0 0.0 0.0 0.0 5.0 0.0 27.0 16.5 15.8 5.0 0.2 0.0 0.2 0.0 0.0 0.0 0.0 0.0
Mahalanobis 16 100.0 32.8 11.8 100.0 94.2 100.0 99.2 76.2 67.5 75.8 88.5 100.0 14.5 100.0 100.0 6.5 99.5 100.0

EffNetb7 84.9 Relative Mahalanobis 14 100.0 1.8 5.2 100.0 30.8 100.0 97.5 35.5 30.5 32.8 88.2 100.0 12.5 100.0 99.2 3.8 98.5 100.0
ViM 14 100.0 17.0 10.0 100.0 82.2 100.0 99.2 74.8 63.5 76.0 76.5 100.0 8.0 100.0 100.0 3.8 99.5 100.0

Energy+React 0 6.0 0.0 0.0 0.0 0.5 0.0 0.2 5.0 6.0 3.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
knn 6 100.0 0.0 0.0 0.0 0.0 36.8 52.8 15.5 17.0 5.0 0.0 45.8 0.5 1.0 2.0 0.0 0.0 100.0

cosine 4 47.0 0.0 0.0 0.0 0.0 19.2 47.0 14.2 14.0 3.0 0.0 3.2 0.0 0.2 0.5 0.0 0.0 0.0
MCM/RCos 1 34.2 0.0 0.0 0.0 0.0 0.0 34.2 9.8 9.0 1.5 0.0 0.0 0.0 0.2 0.2 0.0 0.0 0.0

MSP 5 28.5 0.0 0.0 0.0 4.0 0.0 18.8 23.2 28.5 14.5 1.8 0.0 22.5 0.0 0.8 0.0 2.2 0.0
MaxLogit 5 25.0 0.0 0.0 0.0 1.8 0.0 11.0 22.5 25.0 12.2 0.5 0.0 17.2 0.0 0.2 0.0 4.8 0.0

Energy 5 31.5 0.0 0.5 0.0 0.8 0.0 6.5 30.8 31.5 18.2 0.5 0.0 27.3 0.2 2.5 0.0 26.5 0.0
KL-Matching 17 100.0 27.5 56.5 100.0 21.8 100.0 74.2 43.2 44.2 29.8 25.5 89.2 24.8 96.0 65.5 37.5 69.0 100.0
Mahalanobis 17 100.0 100.0 100.0 100.0 99.8 100.0 93.0 57.5 50.2 70.2 99.2 100.0 19.2 100.0 99.8 100.0 75.0 100.0

EffNet-B0 77.7 Relative Mahalanobis 17 100.0 97.5 99.2 100.0 88.2 100.0 86.0 59.2 54.0 64.2 99.0 100.0 51.5 99.8 97.0 99.8 80.0 100.0
ViM 15 100.0 56.2 99.0 100.0 44.2 100.0 77.8 15.2 6.5 40.8 76.5 100.0 0.0 99.2 81.0 98.2 59.8 100.0

Energy+React 0 6.5 0.0 0.0 0.0 0.2 0.0 0.0 3.0 5.2 5.0 0.0 0.0 0.0 0.0 0.8 0.0 6.5 0.0
knn 1 27.0 1.5 27.0 0.0 0.0 0.0 0.0 0.0 0.0 0.8 0.0 1.5 0.2 0.0 0.0 2.0 0.0 0.0

cosine 0 2.8 0.0 0.0 0.0 0.0 0.0 0.0 2.5 2.8 0.2 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0
MCM/RCos 9 96.8 39.5 96.8 0.0 6.2 33.0 13.8 25.0 29.5 9.0 0.8 15.2 7.2 8.5 20.0 94.5 4.2 0.0

MSP 3 73.2 0.0 0.0 0.0 23.5 0.0 73.2 5.5 9.0 7.2 6.8 0.0 12.5 4.2 3.5 0.0 2.0 0.0
MaxLogit 8 86.0 0.0 0.0 0.0 25.8 0.0 86.0 11.0 14.8 11.0 12.0 0.0 19.8 9.8 12.2 0.0 7.8 0.0

Energy 17 100.0 97.8 94.5 100.0 87.8 100.0 99.8 64.8 60.0 83.2 96.0 100.0 48.8 99.2 97.0 96.8 83.0 100.0
KL-Matching 4 81.5 0.0 0.0 0.0 23.8 0.0 81.5 3.2 5.2 8.0 5.8 0.0 10.0 11.5 10.5 0.0 6.2 0.0
Mahalanobis 17 100.0 100.0 100.0 100.0 66.8 100.0 83.2 46.2 49.2 71.2 88.5 95.8 14.5 95.5 100.0 100.0 96.2 100.0

ResNet50 80.4 Relative Mahalanobis 17 100.0 100.0 100.0 100.0 89.5 100.0 98.2 82.5 81.2 99.0 99.8 100.0 99.0 100.0 99.8 100.0 100.0 100.0
ViM 16 100.0 44.5 43.2 100.0 34.5 100.0 77.8 20.2 17.0 36.0 60.0 87.2 1.2 73.2 89.2 52.5 36.0 100.0

Energy+React 17 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
knn 3 28.0 11.0 12.5 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 28.0 0.0 0.0

cosine 0 8.8 0.0 0.0 0.0 0.0 0.0 8.8 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0
MCM/RCos 1 33.5 0.0 0.0 0.0 0.0 0.0 33.5 0.5 0.0 1.2 0.0 0.0 0.0 0.5 0.5 0.0 0.0 0.0

33



Published at ICLR 2023 Workshop on Trustworthy and Reliable Large-Scale Machine Learning
Models

K EFFECT OF ID CONTAMINATION ON ALL MODELS

In Table 14 we show the FPR values averaged across the cleaned subsampled datasets presented in
Table 1, and in Tables 17-16 the results on the individual datasets. Since TEXTURES and INATU-
RALIST are fairly easy OOD datasets, the FPR values of most models in Table 14 are lower than on
NINCO. In general, the results are however similar: Feature-based methods outperform methods not
leveraging feature-information directly, yet still fail for some models, and pretraining only on IN-21k
yields the best OOD-detectors. Again, Cosine and MCM/RCos improve fairly consistently over MSP,
and are in some cases even the best-performing method.

Table 14: Mean FPR on subsampled datasets (averaged).

pre acc. model MSP MaxL Ener KL-M Maha RMaha ViM E+R KNN Cos MCM/RCos

21k

86.0 ViT-B-384 39.7 27.0 −13 25.7 −14 38.4 −1 22.4 −17 25.5 −14 22.4 −17 27.5 −12 48.2 +8 30.6 −9 30.4 −9
84.5 ViT-B-224 43.3 30.8 −13 29.3 −14 42.7 −1 23.8 −19 28.2 −15 24.7 −19 32.6 −11 53.3 +10 37.0 −6 36.1 −7
86.3 Swinv2-B-256 41.9 32.3 −10 31.5 −10 46.4 +4 47.4 +5 40.4 −2 37.5 −4 27.8 −14 43.1 +1 35.5 −6 34.2 −8
86.7 Deit3-B-384 53.4 45.4 −8 46.4 −7 52.5 −1 40.8 −13 37.8 −16 41.2 −12 39.9 −13 40.1 −13 36.3 −17 36.0 −17
85.7 Deit3-B-224 55.1 46.9 −8 47.2 −8 56.1 +1 46.6 −9 42.6 −12 47.5 −8 42.0 −13 45.1 −10 41.4 −14 40.4 −15
86.3 CnvNxt-B 38.6 32.9 −6 35.3 −3 43.6 +5 36.3 −2 30.5 −8 29.9 −9 31.1 −8 37.0 −2 30.0 −9 29.5 −9
84.1 CnvNxt-T 44.1 37.6 −7 35.7 −8 50.7 +7 36.2 −8 37.0 −7 27.7 −16 34.0 −10 44.1 −0 40.2 −4 38.9 −5
82.3 BiT-m 59.9 52.0 −8 52.6 −7 55.3 −5 30.9 −29 32.7 −27 26.9 −33 46.3 −14 37.2 −23 32.9 −27 38.2 −22
85.6 EffNetv2-M 43.4 42.5 −1 49.7 +6 46.3 +3 43.7 +0 41.1 −2 37.0 −6 89.0 +46 50.2 +7 32.4 −11 38.5 −5

none

81.1 ViT-B-384 63.5 59.4 −4 58.8 −5 59.6 −4 49.1 −14 48.2 −15 61.4 −2 55.4 −8 64.0 +0 59.1 −4 60.9 −3
84.6 Swinv2-B-256 63.5 63.0 −1 68.6 +5 60.9 −3 49.4 −14 46.0 −17 52.0 −11 60.5 −3 57.0 −6 52.1 −11 50.4 −13
85.1 Deit3-B-384 60.0 64.8 +5 83.2 +23 57.8 −2 51.2 −9 48.5 −11 44.9 −15 89.2 +29 65.6 +6 57.2 −3 43.8 −16
83.8 Deit3-B-224 60.4 62.2 +2 76.1 +16 58.9 −1 57.6 −3 52.8 −8 48.9 −11 80.4 +20 73.7 +13 64.4 +4 49.5 −11
82.6 XCiT-M-224 65.8 65.2 −1 71.4 +6 65.4 −0 58.3 −7 55.7 −10 55.4 −10 66.9 +1 63.1 −3 57.3 −8 56.4 −9
84.3 XCiT-M-224-d 63.9 61.6 −2 69.9 +6 61.0 −3 55.4 −8 52.8 −11 50.4 −13 66.4 +3 59.5 −4 53.6 −10 52.3 −12
84.4 CnvNxt-B 63.1 72.3 +9 92.1 +29 62.8 −0 55.5 −8 52.1 −11 53.7 −9 88.7 +26 60.8 −2 53.6 −9 50.6 −12
78.0 BiT-s 75.3 77.7 +2 79.8 +5 59.8 −15 68.9 −6 51.2 −24 60.1 −15 65.8 −10 71.2 −4 56.0 −19 84.0 +9
85.1 EffNetv2-M 59.0 59.4 +0 70.5 +12 56.8 −2 48.2 −11 42.9 −16 57.4 −2 59.9 +1 54.7 −4 50.2 −9 43.5 −16
84.9 EffNetb7 60.1 63.4 +3 75.7 +16 56.0 −4 57.9 −2 47.6 −13 63.4 +3 66.6 +6 58.4 −2 52.7 −7 44.4 −16
77.7 EffNet-B0 69.3 69.9 +1 77.3 +8 68.2 −1 75.9 +7 68.6 −1 65.7 −4 67.8 −1 77.0 +8 51.7 −18 63.8 −6
80.4 ResNet50 68.3 70.0 +2 76.6 +8 64.5 −4 81.0 +13 75.9 +8 73.0 +5 97.6 +29 65.9 −2 51.7 −17 55.0 −13

JFT 86.8 EffNetb7-ns 53.8 49.9 −4 62.5 +9 52.7 −1 79.5 +26 53.2 −1 82.4 +29 57.0 +3 55.0 +1 47.0 −7 46.5 −7
clip
+12k

87.2 ViT-B-384-l2b 37.3 33.7 −4 35.6 −2 40.5 +3 43.6 +6 36.9 −0 36.7 −1 31.6 −6 35.0 −2 29.5 −8 29.3 −8
87.0 ViT-B-384-oai 38.7 33.1 −6 32.9 −6 40.7 +2 45.9 +7 37.4 −1 38.4 −0 31.2 −8 33.7 −5 29.2 −9 29.1 −10

clip 86.6 ViT-B-384-l2b 54.2 52.5 −2 57.2 +3 51.0 −3 40.2 −14 40.4 −14 38.4 −16 54.0 −0 44.0 −10 40.0 −14 39.5 −15
86.2 ViT-B-384-oai 56.7 55.0 −2 59.0 +2 53.9 −3 40.6 −16 40.8 −16 41.4 −15 56.0 −1 45.6 −11 41.3 −15 40.3 −16

clip
z. shot

74.3 clip-ViT-L-336 —- —- —- —- —- —- —- —- —- 64.4 51.8
66.6 clip-ViT-B-224 —- —- —- —- —- —- —- —- —- 71.4 60.0
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Table 15: Comparing the cleaned and original datasets in terms of FPR. The best method per model
and dataset is marked bold.

fpr
model acc. method Pl-f Pl-c Spc-f Spc-c IN-f IN-c txt-f txt-43 txt-c OpO-fOpO-c iNat-f iNat-cIN1K-fIN1K-c OS-f OS-c SBe-f SBe-c SBh-f SBh-c CO-f CO-c

MSP 60.5 37.9 65.8 41.9 63.0 58.3 54.2 52.3 43.4 28.2 27.2 10.5 8.9 83.0 61.3 71.0 32.6 70.7 33.8 77.6 53.4 48.5 38.2
MaxL 50.6 27.5 65.2 33.7 46.0 40.8 36.5 33.5 21.2 12.2 12.2 3.5 2.1 75.2 54.9 58.9 21.2 59.0 16.6 66.7 43.8 33.2 22.6
ViM 49.9 26.1 53.8 22.1 38.2 35.3 24.021.212.2 12.5 11.7 1.5 0.5 78.8 57.4 54.8 14.4 60.2 17.9 59.932.226.816.0
Maha 57.5 34.6 47.515.735.229.1 28.7 25.7 15.6 9.5 9.5 2.0 0.8 74.5 52.8 54.812.3 65.9 17.9 64.6 41.8 29.0 16.5
E+R 53.3 30.7 60.2 32.0 43.8 38.5 34.5 31.6 20.1 10.5 10.1 2.8 1.6 83.0 63.8 54.8 17.8 63.1 15.9 68.8 50.5 32.5 21.7

86.0 Ener 49.125.5 64.2 30.8 43.2 38.5 35.0 32.4 20.8 11.0 10.6 3.2 1.8 75.8 57.4 58.9 17.4 60.2 16.6 64.6 42.3 31.5 21.2
KL-M 64.4 43.1 68.5 39.5 57.5 53.7 50.7 48.8 38.5 26.8 25.8 8.5 6.8 82.4 62.1 69.4 29.2 71.9 33.8 77.1 51.4 48.8 37.7
KNN 69.4 50.3 81.5 59.9 50.2 46.0 38.2 36.2 25.3 36.5 37.5 40.8 41.0 91.5 86.0 64.5 42.4 67.9 24.5 75.0 71.2 54.2 46.2

RMaha 55.8 30.1 52.0 20.3 42.8 36.6 37.8 35.1 23.3 12.2 12.2 2.0 0.8 72.7 53.2 61.3 16.9 68.7 19.9 71.4 44.2 37.8 23.1
RCos 56.8 33.3 67.8 35.5 40.8 35.3 34.5 31.4 19.1 17.0 16.8 7.2 6.0 83.0 67.2 64.5 24.2 62.7 17.2 72.4 51.0 39.5 28.8

V
iT

-B
-3

84
-2

1k

Cos 57.0 32.7 67.0 33.7 42.5 36.6 36.2 33.2 20.8 15.5 15.2 6.2 5.0 83.0 66.0 66.1 25.4 62.7 19.9 72.4 51.4 40.0 30.2
MSP 59.5 39.9 66.2 40.7 67.8 62.8 51.2 49.3 38.5 35.2 36.1 15.2 14.1 89.7 65.5 69.4 39.4 79.5 35.8 81.8 58.7 53.2 44.3
MaxL 50.1 28.1 65.5 35.5 50.7 45.3 38.0 35.7 24.0 18.0 18.2 6.8 5.2 81.2 59.6 62.1 23.7 65.9 21.9 74.0 48.1 39.2 28.8
ViM 48.4 27.5 58.0 26.2 41.0 36.9 23.020.112.8 14.5 13.6 3.0 1.8 79.4 57.4 58.1 19.1 61.017.264.138.529.020.3
Maha 58.3 32.0 49.516.339.834.6 27.0 24.7 13.2 10.2 10.1 2.0 0.5 78.2 54.0 58.114.4 69.9 21.9 68.2 43.8 32.2 20.8
E+R 53.1 27.5 64.8 36.6 50.7 45.3 38.8 35.9 25.3 17.0 17.1 7.2 5.7 87.3 69.4 60.5 24.6 65.5 24.5 75.5 54.8 38.0 27.8

84.5 Ener 48.9 26.8 65.2 34.9 46.8 41.7 35.8 33.2 22.2 14.0 13.9 6.8 5.2 78.8 60.4 63.7 23.3 63.1 20.5 68.8 47.6 37.0 25.9
KL-M 64.4 43.8 69.0 38.4 62.3 58.3 50.5 48.5 37.8 34.2 35.3 12.5 10.7 87.9 63.4 66.9 35.2 77.5 41.1 83.9 60.1 53.8 45.3
KNN 70.4 53.6 83.5 65.7 56.5 52.1 37.2 35.7 26.0 44.5 45.7 39.5 39.2 90.9 86.8 72.6 49.6 75.9 29.8 81.8 75.0 65.0 62.7

RMaha 60.2 37.9 51.0 17.4 47.5 41.7 39.0 36.2 24.0 16.0 15.8 2.2 0.5 77.0 54.9 62.1 20.3 77.5 25.8 76.0 46.2 40.8 25.5
RCos 61.7 39.9 71.2 42.4 45.2 41.1 36.2 33.8 22.6 23.0 23.6 12.8 11.2 83.6 70.2 71.0 30.9 71.1 22.5 78.6 57.7 45.0 35.4

V
iT

-B
-2

24
-2

1k

Cos 60.0 39.2 70.5 41.9 51.5 46.9 35.8 33.2 22.6 22.0 22.6 11.5 10.2 85.5 71.1 70.2 31.8 71.5 22.5 77.6 59.6 48.0 38.2
MSP 58.8 37.9 65.0 44.2 62.0 59.9 53.5 51.5 44.1 34.5 34.5 19.8 17.5 80.6 61.7 70.2 33.1 67.9 35.8 76.6 54.3 48.0 38.2
MaxL 53.8 30.7 61.3 36.6 48.5 45.6 50.7 48.8 41.3 25.2 25.0 13.2 11.2 75.2 47.7 64.5 22.9 69.5 27.2 64.6 42.8 35.2 24.5
ViM 49.9 25.5 65.0 32.6 59.0 53.4 37.8 36.2 25.7 14.2 14.1 1.8 1.0 92.1 86.8 66.9 29.2 67.9 32.5 82.3 74.0 44.5 37.7
Maha 58.8 36.6 67.8 38.4 71.0 68.0 47.0 45.6 36.5 22.2 22.3 3.5 2.6 93.3 87.7 70.2 44.1 71.5 49.0 89.6 84.6 56.5 51.9
E+R 46.921.659.230.842.038.8 49.0 46.6 37.8 21.8 21.5 9.0 7.3 75.2 48.1 55.617.865.5 23.8 62.5 37.5 27.820.3

86.3 Ener 54.8 30.7 62.0 35.5 43.0 40.1 54.8 52.8 45.5 30.8 29.9 13.8 12.0 73.9 44.3 62.1 21.2 70.7 30.5 64.6 34.6 31.8 22.2
KL-M 64.2 47.7 70.0 44.8 66.0 64.1 52.5 50.9 42.0 33.2 33.7 20.0 17.8 86.7 70.6 67.7 39.4 69.9 36.4 82.3 66.3 56.2 47.6
KNN 60.2 35.3 73.5 44.8 63.2 58.6 38.8 37.3 27.4 20.2 20.1 7.8 6.5 95.2 90.2 66.1 34.7 70.3 29.8 84.4 79.8 53.0 46.7

RMaha 57.5 35.3 62.7 32.0 67.8 64.7 44.5 42.9 34.0 17.5 17.4 4.2 3.1 87.9 71.1 66.9 33.1 71.9 40.4 87.5 70.7 51.0 42.5
RCos 56.3 32.7 65.8 36.6 55.2 50.5 36.0 33.8 22.9 14.8 14.4 4.2 2.9 87.3 69.8 61.3 26.7 69.1 21.9 82.8 62.5 45.0 34.9Sw

in
v2

-B
-2

56
-2

1k

Cos 52.1 26.1 67.0 37.8 57.5 53.4 34.532.722.214.2 14.1 4.0 2.6 89.7 74.5 62.1 28.4 69.5 26.5 84.9 67.3 47.0 37.7
MSP 67.2 52.9 72.8 54.7 73.5 72.2 64.8 63.5 55.9 49.5 48.9 30.0 27.9 90.9 66.8 78.2 41.5 76.7 47.0 83.9 65.9 62.3 53.3
MaxL 61.5 41.8 72.8 46.5 59.5 57.0 63.5 61.7 53.1 43.8 43.5 29.0 27.2 83.0 60.0 70.2 37.3 76.3 33.1 78.1 53.4 54.5 46.2
ViM 50.1 28.1 68.8 43.6 63.7 61.5 50.2 48.3 38.9 20.5 19.8 3.8 1.8 92.7 86.4 66.1 32.6 62.7 29.1 79.7 72.6 45.5 38.7
Maha 52.6 29.4 66.0 40.1 66.2 63.8 48.2 46.1 37.5 22.2 22.0 5.8 3.7 90.3 79.1 66.1 33.5 65.1 32.5 82.3 68.8 46.5 38.7
E+R 56.0 32.7 73.0 45.9 51.749.5 58.2 55.8 45.5 34.8 33.7 23.2 21.9 81.2 62.6 63.7 34.7 69.1 22.573.453.4 44.0 36.3

86.7 Ener 62.7 43.1 76.5 53.5 53.2 51.1 67.0 64.9 56.6 47.2 47.0 39.8 38.6 81.8 56.6 66.9 36.0 75.1 31.8 75.5 53.4 51.7 42.5
KL-M 67.9 50.3 72.0 52.3 69.5 68.9 59.0 57.4 49.7 47.8 47.3 28.2 26.1 91.5 71.9 75.8 41.9 72.7 45.0 85.9 69.7 62.5 54.7
KNN 53.3 28.1 72.0 45.9 59.2 56.0 44.8 42.1 32.6 20.5 20.1 9.0 7.0 92.7 81.3 65.3 33.5 63.1 27.2 82.3 70.2 45.0 38.7

RMaha 51.6 28.1 64.239.0 62.0 59.5 46.2 43.4 34.0 21.5 21.2 6.8 4.7 90.3 71.9 64.5 30.1 64.3 29.1 80.7 62.0 43.536.3
RCos 52.8 27.5 67.8 41.3 57.0 54.7 42.239.729.5 21.2 20.7 6.5 4.7 90.3 68.9 65.3 28.0 65.1 24.5 81.8 59.1 43.5 37.3

D
ei

t3
-B

-3
84

-2
1k

Cos 52.8 26.8 68.0 41.3 58.5 55.7 42.8 40.2 29.9 21.5 20.9 6.5 4.7 90.3 69.8 65.3 28.0 64.7 25.8 82.8 59.6 43.8 37.3
MSP 65.4 48.4 73.2 53.5 73.5 72.5 66.8 64.6 59.4 47.2 45.9 36.2 35.0 89.7 70.2 75.8 51.7 75.1 49.0 82.8 67.3 61.5 53.3
MaxL 61.0 43.8 72.0 48.3 61.0 58.6 64.5 62.5 55.6 41.2 39.9 36.5 35.5 84.8 58.7 63.7 41.1 69.9 36.4 76.0 56.2 54.5 42.0
ViM 54.8 34.0 74.8 50.0 68.2 66.7 53.2 51.5 43.1 25.5 25.5 7.5 5.2 92.7 91.5 68.5 39.0 67.9 41.1 84.9 79.3 52.5 47.6
Maha 53.3 33.3 71.0 45.9 70.2 68.9 52.5 50.9 42.7 26.0 26.1 8.0 5.7 92.7 85.5 70.2 39.0 69.9 43.0 84.9 74.0 53.2 48.1
E+R 57.0 34.6 73.0 47.7 52.250.5 59.0 56.8 48.6 33.8 33.4 38.8 37.6 83.6 56.6 60.5 36.9 65.126.5 72.9 52.9 49.0 37.3

85.7 Ener 63.5 47.1 74.2 51.2 55.0 52.8 63.5 61.4 54.2 44.2 43.8 53.0 52.5 81.2 53.2 63.7 38.6 67.9 33.1 70.851.0 53.2 42.5
KL-M 68.1 51.6 74.5 55.8 71.8 70.9 63.0 61.1 55.6 48.2 46.5 34.2 32.9 91.5 75.7 74.2 55.5 75.1 47.7 84.9 69.2 63.7 55.7
KNN 56.3 35.9 75.8 51.2 62.7 60.2 47.8 45.3 36.8 24.2 23.9 14.8 12.8 93.9 83.8 70.2 42.8 65.9 29.1 85.4 73.6 51.0 45.8

RMaha 52.131.467.841.9 66.8 65.7 52.0 50.4 42.7 23.2 23.1 7.8 5.7 90.9 76.6 69.4 34.3 67.5 37.1 84.4 67.8 49.8 42.5
RCos 53.3 32.0 71.0 44.8 60.2 58.6 47.244.836.1 23.8 23.1 9.0 7.0 89.7 73.2 65.3 35.6 66.7 29.8 84.9 65.9 47.5 38.2

D
ei

t3
-B

-2
24

-2
1k

Cos 53.6 32.7 71.8 45.9 60.5 59.2 47.8 45.3 37.2 24.2 23.6 9.2 7.3 89.1 74.9 67.7 36.9 65.9 31.1 84.9 66.8 48.0 39.6
MSP 55.8 38.6 64.0 42.4 54.5 49.5 47.5 45.0 36.1 26.5 26.4 16.0 14.1 80.6 60.0 64.5 28.8 69.9 29.1 69.8 54.3 41.2 30.7
MaxL 55.1 35.9 65.0 39.5 52.2 46.6 46.0 43.7 34.0 24.8 24.5 13.0 11.2 78.8 54.9 60.5 24.2 65.9 25.2 63.0 48.1 36.526.4
ViM 43.517.0 64.0 34.3 60.2 55.7 41.2 38.6 27.1 14.0 13.6 4.5 3.1 83.0 78.3 67.7 37.7 63.5 35.1 78.6 66.8 42.2 35.4
Maha 48.9 26.1 67.2 40.1 65.2 61.5 46.0 43.2 32.6 20.0 19.3 8.2 6.8 87.9 84.7 69.4 45.3 68.3 45.7 83.3 75.0 49.8 42.0
E+R 52.8 34.0 69.2 43.0 45.041.4 43.0 40.5 30.6 24.2 24.2 12.8 11.5 77.0 51.9 62.1 21.263.1 21.2 60.9 40.936.5 27.4

87.2 Ener 60.0 41.2 71.0 45.9 49.5 46.0 50.0 48.0 39.6 29.2 28.3 16.2 14.9 77.0 52.8 62.1 22.5 67.9 27.2 60.4 42.3 40.2 31.1
KL-M 55.8 37.9 64.2 40.7 56.5 52.8 43.8 41.0 33.0 27.5 27.4 19.0 17.0 84.2 70.6 63.7 33.1 71.9 33.1 76.6 62.0 46.5 37.7
KNN 46.7 25.5 67.8 38.4 54.8 49.8 34.831.6 19.8 15.8 14.9 7.0 5.7 89.7 80.4 59.7 29.2 65.1 21.2 78.1 67.8 41.8 32.5

RMaha 49.4 22.9 63.5 34.3 60.5 56.6 42.2 39.7 28.5 16.5 15.8 6.0 4.4 86.7 77.9 64.5 33.9 65.1 32.5 83.3 65.4 44.5 34.0
RCos 46.4 22.9 60.529.7 50.0 45.3 35.2 32.2 19.4 12.2 11.7 4.5 2.9 84.2 66.0 58.9 22.9 65.1 19.2 76.0 55.8 38.0 26.9V

iT
-B

-3
84

-l
2b

-1
2k

Cos 46.9 22.9 60.529.7 50.0 45.3 35.0 31.9 19.112.2 11.7 4.5 2.9 84.2 66.8 58.1 23.3 65.1 19.9 75.5 56.2 38.0 26.9
MSP 57.0 39.9 65.0 41.3 55.0 52.8 50.7 48.8 40.3 30.2 30.4 17.0 14.9 80.0 61.7 65.3 27.5 70.3 27.8 72.9 51.9 45.0 37.7
MaxL 55.6 36.6 65.0 39.5 48.0 45.3 47.0 44.8 35.1 26.5 26.4 14.5 12.3 75.8 51.9 61.3 19.5 66.3 23.8 65.6 45.2 36.8 28.8
ViM 53.127.5 64.0 33.1 62.7 61.2 37.8 35.7 24.7 16.0 16.3 5.5 3.9 86.7 83.8 62.9 34.3 65.5 29.1 78.6 69.2 44.0 39.2
Maha 60.0 37.9 66.2 37.8 68.5 67.0 41.0 39.1 27.4 22.5 22.8 11.2 9.9 87.9 84.7 68.5 47.0 74.7 44.4 82.3 76.4 54.8 50.0
E+R 55.6 37.3 67.0 39.0 43.240.1 46.8 44.8 34.4 23.8 23.4 12.5 10.7 75.8 51.9 58.117.4 62.2 22.5 60.4 40.934.0 25.5

87.0 Ener 56.3 38.6 68.8 40.7 45.0 41.4 50.5 48.5 39.2 26.8 26.6 14.5 12.8 73.9 51.9 60.5 18.6 64.7 25.2 58.9 41.8 35.0 24.5
KL-M 61.7 43.1 67.0 41.9 55.2 53.7 48.0 46.4 37.8 29.0 29.1 16.2 14.1 84.2 67.7 66.9 30.1 70.3 30.5 77.6 58.7 48.2 40.6
KNN 57.5 34.6 67.8 39.0 47.2 44.0 30.227.915.3 15.0 15.2 8.0 6.3 89.1 77.0 62.1 28.0 61.017.2 75.5 60.6 40.2 33.0

RMaha 58.0 35.3 62.3 32.0 60.8 58.3 40.8 38.6 27.1 16.8 17.1 8.0 6.5 86.1 73.6 61.3 31.8 71.5 29.1 80.2 61.5 48.5 39.2
RCos 54.8 29.4 61.529.1 46.2 41.7 33.0 30.6 18.4 12.0 12.5 6.5 5.0 84.8 64.7 58.9 22.9 63.9 17.2 70.8 52.4 37.5 27.4V

iT
-B

-3
84

-o
ai

-1
2k

Cos 55.3 30.7 61.529.1 46.0 41.4 32.5 30.0 17.7 12.0 12.5 6.5 5.0 84.8 66.0 58.9 22.0 63.9 18.5 70.8 51.4 37.0 27.4
MSP 63.7 50.3 67.8 48.8 78.2 76.1 55.2 52.5 44.1 43.5 44.3 37.2 35.8 83.6 70.2 72.6 53.4 73.9 49.0 77.6 69.7 60.2 54.2
MaxL 62.0 44.4 71.2 51.7 73.2 71.2 55.0 52.0 43.4 38.2 39.4 37.2 36.3 83.0 67.2 71.0 51.3 75.5 49.7 77.6 69.7 60.2 52.8
ViM 50.923.5 66.2 37.2 59.557.6 40.2 37.3 25.7 18.0 18.8 11.0 9.4 84.8 77.9 65.3 41.1 61.821.974.5 68.8 48.2 40.1
Maha 56.3 32.7 65.0 36.6 63.0 61.2 39.0 36.2 26.0 19.0 19.8 10.8 8.9 84.2 77.4 62.1 40.3 63.1 28.5 76.0 69.7 49.5 40.6
E+R 59.5 38.6 78.0 58.7 70.8 68.6 57.5 54.7 45.8 38.8 39.9 45.2 44.6 84.8 71.1 74.2 50.8 74.3 47.7 78.1 70.7 60.2 57.5

86.6 Ener 62.5 44.4 79.0 61.6 72.2 70.2 60.5 57.6 49.3 42.8 44.3 52.0 51.7 86.1 71.5 77.4 53.4 76.3 51.7 79.2 70.2 64.8 61.3
KL-M 64.7 48.4 67.2 44.8 69.0 68.9 49.2 46.1 37.5 39.0 39.7 33.2 31.9 81.8 71.5 66.1 45.8 72.7 48.3 81.2 70.2 59.0 53.8
KNN 56.3 33.3 69.5 43.6 63.2 63.4 37.8 35.1 24.7 21.2 21.5 15.8 14.1 87.3 82.1 66.1 43.6 64.7 33.8 83.3 78.4 52.8 45.3

RMaha 58.3 32.0 64.5 39.5 64.0 61.5 40.0 37.3 26.4 19.0 19.8 12.2 10.4 83.0 71.9 64.5 39.4 62.7 33.1 78.6 68.3 49.8 41.5
RCos 54.8 32.0 64.2 37.8 64.0 61.8 35.232.220.5 20.5 21.5 13.5 11.7 81.8 73.6 65.3 39.0 64.3 32.5 79.2 64.448.039.6

V
iT

-B
-3

84
-l

2b

Cos 55.1 33.3 65.2 37.8 63.7 61.8 37.0 34.0 22.9 19.5 20.4 13.0 11.2 84.2 75.3 65.3 39.4 64.7 30.5 80.2 67.3 48.8 40.1
MSP 64.7 49.7 69.2 54.1 78.2 76.1 54.2 52.5 44.4 52.2 52.2 40.8 39.7 84.8 74.9 76.6 52.5 74.3 51.0 86.5 72.1 63.2 56.6
MaxL 63.5 49.7 71.8 54.7 73.2 70.9 55.2 53.6 45.1 49.2 49.5 37.8 36.8 85.5 72.8 75.8 48.7 75.1 49.7 85.9 73.1 59.5 54.2
ViM 50.928.1 66.5 37.8 66.5 64.4 41.2 38.6 29.5 24.0 23.6 12.811.2 87.3 77.9 68.5 38.1 63.1 34.4 79.2 68.3 50.0 41.5
Maha 53.1 29.4 65.2 37.2 65.0 62.1 41.2 38.9 29.2 23.2 24.2 14.0 12.3 86.1 73.2 66.1 37.7 67.1 33.8 81.8 65.9 51.2 41.5
E+R 63.2 48.4 75.2 56.4 71.0 69.3 60.0 58.4 51.4 45.8 46.7 38.5 38.4 86.1 76.6 73.4 48.7 72.3 50.3 84.9 72.6 61.8 57.1

86.2 Ener 65.7 52.3 76.2 58.1 73.8 72.5 62.7 61.1 54.5 51.7 52.4 44.5 44.1 86.7 75.7 78.2 52.5 75.1 53.0 84.9 74.5 64.5 59.0
KL-M 66.2 51.0 72.0 54.7 71.5 69.6 49.2 47.5 39.2 48.8 48.6 38.8 37.3 87.3 75.3 71.0 47.5 72.7 47.7 85.4 69.2 61.0 52.8
KNN 53.3 30.7 73.5 47.1 64.8 62.5 40.5 38.1 27.8 28.7 29.3 21.5 20.1 88.5 83.4 69.4 44.1 67.1 32.5 85.4 74.5 55.8 49.5

RMaha 55.1 32.0 64.5 38.4 67.8 66.0 43.2 41.0 31.6 26.0 26.9 15.8 14.1 81.8 69.4 66.136.0 68.3 33.8 81.8 63.048.537.7
RCos 55.3 30.1 65.8 39.5 63.260.237.234.623.6 24.5 25.3 16.8 15.1 83.6 71.1 67.7 36.0 68.3 33.1 83.9 66.8 51.0 42.0

V
iT

-B
-3

84
-o

ai

Cos 55.3 30.1 67.8 40.1 64.5 61.5 39.2 36.7 25.7 25.5 26.4 16.8 15.1 85.5 74.5 67.7 37.3 67.5 32.5 85.4 68.3 51.2 42.535
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Table 16: Comparing the cleaned and original datasets in terms of FPR. The best method per model
and dataset is marked bold.

fpr
model acc. method Pl-f Pl-c Spc-f Spc-c IN-f IN-c txt-f txt-43 txt-c OpO-f OpO-c iNat-f iNat-c IN1K-f IN1K-c OS-f OS-c SBe-f SBe-c SBh-f SBh-c CO-f CO-c

MSP 58.3 35.9 63.5 40.1 61.3 58.3 51.2 48.8 38.5 32.0 30.2 18.0 16.2 80.6 56.6 70.2 30.5 71.5 30.5 77.1 51.0 46.5 36.8
MaxL 59.5 37.9 61.0 37.2 53.8 49.8 47.2 44.8 31.9 28.2 25.8 18.5 17.0 76.4 49.8 66.9 22.5 64.7 25.2 67.2 35.6 40.5 28.8
ViM 49.6 24.2 56.2 30.2 44.2 40.5 29.0 26.0 14.6 12.0 10.9 1.8 0.8 86.1 75.7 57.3 24.6 65.1 25.2 73.4 56.2 35.5 26.4
Maha 55.3 28.8 57.8 29.1 59.0 56.3 32.0 29.5 18.1 15.5 14.4 3.0 1.8 84.2 75.3 65.3 35.2 68.7 41.7 83.3 63.5 45.2 34.9
E+R 57.5 33.3 60.2 33.1 49.0 44.0 48.2 46.1 34.4 26.8 24.7 18.2 17.0 71.5 50.2 63.7 17.8 65.9 23.2 60.4 34.1 39.5 29.7

86.3 Ener 63.0 41.2 63.5 39.5 49.5 45.0 55.2 53.9 43.8 36.0 34.0 26.0 25.1 72.1 48.5 66.9 21.6 67.9 27.8 60.9 31.2 41.0 30.7
KL-M 65.7 42.5 69.5 44.2 59.8 57.6 49.0 46.4 36.5 33.2 32.9 19.0 16.4 84.2 66.0 68.5 37.3 73.5 37.7 82.8 63.0 55.5 45.8
KNN 66.9 47.7 69.5 41.9 48.2 43.4 31.5 28.7 17.0 19.5 19.0 7.8 6.3 90.3 79.1 63.7 28.4 60.6 19.2 81.8 67.3 45.5 37.3

RMaha 57.8 32.0 56.5 27.3 54.5 50.5 33.5 30.6 18.4 16.2 15.5 2.8 1.3 80.0 56.6 60.5 24.2 68.7 27.8 76.6 54.3 40.5 27.8
RCos 59.0 30.7 62.7 32.0 50.0 45.6 32.0 29.0 16.3 15.2 14.9 4.5 2.9 84.8 61.3 63.7 23.7 62.2 17.2 75.0 51.0 40.2 28.3

C
nv

N
xt

-B
-2

1k

Cos 59.3 32.7 63.5 32.6 49.2 44.3 32.0 29.2 16.3 14.8 14.7 4.0 2.6 85.5 64.3 64.5 23.3 62.2 17.2 76.6 51.9 41.5 29.7
MSP 63.7 40.5 69.0 46.5 68.0 65.7 52.2 50.4 42.0 38.0 38.0 15.8 13.6 89.7 68.9 70.2 33.9 73.1 39.1 80.7 55.8 49.2 41.5
MaxL 61.0 37.9 67.8 41.3 58.8 56.0 47.5 45.8 36.5 32.2 32.1 12.2 9.9 84.2 61.7 65.3 25.8 68.7 30.5 73.4 48.6 41.8 33.0
ViM 48.6 24.2 53.0 25.6 47.5 43.7 27.8 24.9 15.3 11.5 10.3 2.5 1.0 84.8 68.5 53.2 16.1 64.3 21.2 69.8 53.8 34.2 25.0
Maha 55.6 31.4 56.8 29.7 64.2 61.8 31.0 28.7 17.4 15.8 15.2 3.8 2.3 84.8 75.7 64.5 28.4 71.1 37.7 79.2 66.8 42.5 31.6
E+R 57.8 34.6 67.5 38.4 51.2 47.2 45.0 43.4 33.7 28.5 27.7 8.2 5.7 82.4 59.1 64.5 23.3 68.7 29.8 71.9 45.2 37.0 29.2

84.1 Ener 61.0 40.5 67.8 39.5 51.5 47.6 47.5 46.1 36.8 31.8 31.2 12.0 9.4 82.4 58.7 64.5 24.6 69.5 29.8 71.9 43.3 38.8 31.1
KL-M 70.4 52.3 72.8 49.4 71.2 71.5 51.0 49.1 41.0 42.5 42.4 19.5 17.2 89.7 73.2 70.2 43.2 73.5 53.0 83.9 67.3 56.0 47.2
KNN 72.3 52.3 73.0 47.1 59.8 55.7 36.0 33.2 21.5 28.7 28.8 20.0 18.3 90.3 84.3 71.8 36.0 69.5 26.5 82.3 74.0 49.0 41.0

RMaha 59.3 41.8 59.0 32.0 63.7 61.2 38.0 35.7 25.3 21.2 21.5 5.2 3.4 84.8 67.2 65.3 26.3 74.3 31.8 79.2 62.0 43.5 34.0
RCos 63.0 39.9 65.2 36.0 62.0 58.3 38.2 36.2 25.3 24.2 24.5 10.8 8.9 86.7 71.5 67.7 30.5 69.1 32.5 81.8 65.4 44.0 35.4

C
nv

N
xt

-T
-2

1k

Cos 64.4 41.2 67.0 39.5 62.0 58.3 37.8 35.7 24.7 26.0 26.4 11.8 10.2 86.7 73.2 66.9 32.2 70.3 31.8 80.7 67.8 44.5 36.8
MSP 74.3 56.9 72.5 54.7 83.2 82.2 72.8 71.8 68.1 52.5 52.2 28.7 26.1 86.7 76.2 79.0 50.0 78.3 59.6 90.6 76.0 64.2 57.1
MaxL 69.6 47.7 65.8 41.3 80.2 79.3 66.5 65.4 59.7 43.5 43.5 17.0 14.1 83.6 74.0 77.4 36.9 78.3 57.0 87.0 68.3 58.2 50.0
ViM 54.1 28.1 47.0 22.7 38.2 34.6 5.5 5.1 2.1 14.2 12.2 2.2 1.0 85.5 67.2 64.5 13.6 73.9 33.1 79.2 57.7 39.2 24.1
Maha 64.4 41.8 52.5 25.0 36.8 33.3 6.5 5.9 2.1 19.0 16.0 4.5 2.9 84.2 68.1 69.4 17.8 80.3 39.1 83.9 62.5 48.0 31.6
E+R 64.2 44.4 46.5 29.1 75.8 74.8 67.8 67.3 64.6 44.2 43.8 10.2 8.4 77.0 57.9 74.2 29.7 82.7 62.9 70.3 48.6 55.5 45.3

82.3 Ener 70.9 51.0 66.5 42.4 79.8 79.0 69.0 68.4 62.8 43.5 42.9 15.2 12.8 84.8 76.6 77.4 36.4 80.7 57.6 85.9 66.8 59.0 50.0
KL-M 72.6 54.2 74.8 54.1 74.0 73.5 64.0 63.3 58.7 45.0 45.1 28.2 25.6 83.0 74.9 79.0 43.6 76.3 55.0 89.6 71.6 61.5 51.9
KNN 69.4 47.7 58.8 32.6 42.2 39.5 11.2 10.5 4.9 19.0 16.0 4.5 2.6 93.3 88.9 76.6 21.2 83.9 38.4 87.0 80.3 54.5 37.3

RMaha 65.2 45.8 49.5 20.3 56.2 54.4 23.8 22.3 13.9 23.0 22.0 4.0 2.6 73.3 55.3 72.6 19.5 80.7 37.1 78.6 56.7 49.2 31.6
RCos 66.2 39.9 62.5 36.0 64.5 61.8 31.2 29.5 18.4 24.2 23.4 6.0 4.4 83.6 72.8 73.4 28.4 74.3 33.8 82.8 65.9 49.8 35.8

B
iT

-m

Cos 63.7 37.3 58.8 30.2 50.5 46.9 16.5 14.5 6.6 18.5 17.1 4.2 2.6 83.0 71.5 70.2 21.6 74.7 29.1 83.9 65.4 48.5 33.5
MSP 61.5 39.9 67.0 45.3 65.2 62.5 52.2 50.4 42.4 36.8 36.7 19.5 17.5 85.5 62.6 76.6 40.3 76.7 34.4 83.9 54.8 51.7 41.0
MaxL 63.2 45.8 68.8 45.9 61.5 58.6 52.8 50.4 41.7 35.0 34.8 20.8 19.1 86.1 59.1 77.4 34.3 77.1 35.8 86.5 51.9 50.2 40.6
ViM 63.2 39.2 65.8 34.3 47.2 42.1 21.8 19.0 10.8 20.5 19.0 3.8 2.3 87.9 86.8 69.4 34.3 73.5 23.2 81.8 76.0 47.8 38.7
Maha 69.1 47.1 68.2 39.0 58.0 53.1 27.5 25.5 16.0 28.7 28.0 7.8 6.0 87.9 88.9 66.9 41.9 73.5 31.1 83.9 82.2 56.8 47.2
E+R 94.3 93.5 93.2 90.7 89.2 89.3 87.2 88.7 89.2 87.5 87.0 89.2 89.3 95.8 93.6 91.9 80.1 90.0 90.1 94.8 86.5 90.0 89.6

85.6 Ener 69.6 54.9 75.0 54.7 64.5 63.1 65.5 63.5 56.9 40.2 39.4 26.2 24.5 90.3 63.8 79.8 39.0 83.9 47.7 90.1 56.7 55.2 45.8
KL-M 65.9 45.8 70.2 47.1 64.5 63.1 51.7 50.4 42.4 37.8 38.6 23.0 21.4 84.2 69.4 76.6 42.4 75.5 32.5 83.9 63.0 54.2 43.4
KNN 83.5 71.9 75.5 52.9 45.5 41.4 26.0 24.7 14.6 40.8 38.3 13.2 11.5 95.2 95.3 74.2 40.3 88.0 47.7 93.8 86.1 65.0 52.4

RMaha 70.1 53.6 61.5 34.3 59.8 56.0 34.8 33.0 24.0 27.0 26.6 9.0 7.0 84.8 75.3 66.9 35.2 77.5 29.8 82.3 71.2 53.0 39.6
RCos 63.2 39.9 63.0 38.4 57.2 53.7 39.0 36.7 27.1 25.0 25.3 6.8 5.5 84.2 71.5 68.5 33.9 72.7 25.8 85.4 66.3 47.5 35.8

E
ff

N
et

v2
-M

-2
1k

Cos 60.5 37.3 59.8 29.7 41.8 37.5 23.8 22.0 12.8 22.0 21.5 5.2 3.9 83.6 71.1 67.7 26.3 73.9 18.5 83.9 63.9 45.2 34.0
MSP 54.6 34.0 69.5 53.5 69.2 67.3 56.0 54.2 48.3 42.5 41.6 38.8 37.1 84.8 69.4 75.8 62.3 73.9 53.6 83.3 69.7 63.0 55.2
MaxL 46.9 31.4 67.8 49.4 66.0 64.4 53.2 51.2 44.8 33.0 33.2 35.2 33.2 81.8 64.3 77.4 58.5 71.5 55.6 79.7 62.5 59.8 51.4
ViM 96.5 93.5 92.0 85.5 77.5 77.0 87.5 86.9 85.4 91.8 91.8 83.0 82.8 90.9 95.3 73.4 69.9 80.7 60.3 87.0 88.5 75.5 76.9
Maha 95.8 92.2 89.0 80.2 76.5 75.7 82.8 82.0 79.2 88.2 88.3 76.5 76.2 90.9 93.6 75.8 67.4 79.9 59.6 87.5 88.5 73.5 73.1
E+R 57.8 37.9 76.2 61.6 67.5 67.6 59.8 57.9 51.7 41.5 42.1 50.7 49.3 81.8 71.9 80.6 65.7 71.9 55.6 81.2 66.8 60.8 56.6

86.8 Ener 52.3 39.9 75.5 62.2 77.2 77.3 64.8 63.0 58.0 48.0 48.1 56.8 55.6 79.4 67.2 83.9 77.5 79.9 71.5 82.3 64.4 70.2 66.0
KL-M 62.5 37.9 74.0 54.7 62.3 59.9 53.2 51.7 45.5 40.8 40.5 32.8 30.8 87.3 78.3 69.4 55.1 69.9 51.0 85.4 73.1 62.5 53.3
KNN 63.7 41.8 83.5 67.4 65.2 63.8 43.2 41.0 29.5 45.5 46.5 36.5 35.0 90.3 91.9 77.4 55.9 67.5 36.4 83.3 79.3 59.5 57.1

RMaha 80.5 63.4 70.2 48.3 71.5 70.6 64.8 63.5 57.3 47.2 46.2 20.0 17.8 82.4 71.1 73.4 45.3 73.9 45.7 83.3 69.2 59.2 50.0
RCos 57.8 32.0 73.8 54.7 61.3 59.5 41.0 38.9 27.4 36.5 36.1 22.8 20.9 88.5 80.0 66.1 46.2 65.1 36.4 79.7 71.6 54.2 46.7

E
ff

N
et

b7
-n

s

Cos 57.0 31.4 75.2 55.2 61.5 58.9 40.0 37.8 26.0 35.0 35.3 24.2 22.5 89.1 83.0 68.5 47.0 65.5 37.1 78.1 72.6 54.5 48.1
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Table 17: Comparing the cleaned and original datasets in terms of FPR. The best method per model
and dataset is marked bold.

fpr
model acc. method Pl-f Pl-c Spc-f Spc-c IN-f IN-c txt-f txt-43 txt-c OpO-f OpO-c iNat-f iNat-c IN1K-f IN1K-c OS-f OS-c SBe-f SBe-c SBh-f SBh-c CO-f CO-c

MSP 71.6 58.8 78.2 61.6 82.8 81.9 62.5 60.9 54.2 54.0 54.1 46.8 45.7 92.7 81.3 76.6 64.0 77.1 55.6 87.0 78.4 66.0 63.2
MaxL 68.9 52.9 75.5 54.7 80.8 80.6 55.5 54.2 46.2 44.5 44.8 37.8 36.8 90.9 85.5 75.8 57.2 75.1 51.7 85.9 82.2 63.2 61.3
ViM 73.3 62.1 73.5 55.8 82.8 81.9 54.2 54.2 46.9 49.0 49.2 39.5 38.9 84.8 80.4 73.4 59.3 76.7 61.6 84.9 77.4 67.2 62.3
Maha 70.4 56.2 62.5 35.5 79.2 78.0 47.0 45.8 39.6 36.0 35.1 16.5 14.9 78.2 65.1 77.4 44.1 77.5 57.0 81.8 63.9 61.3 50.5
E+R 68.6 52.9 70.8 46.5 80.8 79.6 50.5 49.3 41.7 39.0 38.9 27.8 26.9 87.3 79.1 73.4 53.8 75.1 55.0 82.3 77.9 60.8 57.5

81.1 Ener 69.6 53.6 75.2 55.2 80.0 78.6 50.5 49.3 41.3 42.2 42.4 35.5 34.2 89.1 86.8 75.0 56.4 75.1 53.0 83.3 82.7 63.5 62.7
KL-M 72.8 60.8 72.2 52.3 77.8 76.4 59.5 58.2 52.8 51.0 51.4 36.2 35.0 86.7 76.6 76.6 58.1 76.3 59.6 83.3 75.5 63.7 57.5
KNN 74.8 64.7 81.5 64.0 78.5 77.0 48.8 47.2 41.3 49.0 49.7 55.2 54.3 92.7 88.5 75.8 66.9 72.7 45.7 89.1 85.6 66.5 66.0

RMaha 68.9 53.6 59.5 33.1 79.2 78.3 48.8 47.5 41.3 38.8 38.0 13.0 11.2 77.6 59.1 78.2 41.1 79.5 60.3 78.6 62.0 60.5 51.9
RCos 73.3 60.8 77.2 58.7 79.8 79.3 51.7 50.7 42.7 46.0 46.5 45.2 43.9 92.7 86.8 75.8 57.6 74.7 47.7 87.0 82.2 64.5 63.2

V
iT

-B
-3

84

Cos 71.4 58.8 76.0 56.4 79.5 79.0 49.8 48.5 41.0 44.8 45.1 41.8 40.2 91.5 86.0 75.0 55.9 73.5 45.7 86.5 80.8 63.0 61.3
MSP 68.6 52.3 78.0 64.0 83.8 84.1 66.0 64.9 58.0 58.2 57.3 47.8 46.7 91.5 77.9 80.6 59.7 75.5 57.0 88.0 77.4 67.8 63.7
MaxL 69.4 54.9 76.5 62.2 79.2 79.3 56.2 55.8 48.6 58.5 57.3 45.5 44.6 90.9 79.6 77.4 59.3 79.5 62.3 85.9 78.8 69.5 65.6
ViM 63.2 45.1 76.5 54.7 75.8 75.1 48.5 46.9 38.2 31.8 32.3 22.5 21.1 90.9 87.7 73.4 44.1 67.5 41.1 81.8 83.2 55.2 50.0
Maha 59.8 41.2 73.2 50.0 77.5 77.0 51.7 50.1 41.0 31.2 31.0 20.2 18.5 90.3 77.9 74.2 43.6 67.9 39.7 80.7 75.0 55.5 48.1
E+R 67.2 49.0 81.5 66.3 76.0 75.7 47.8 46.6 38.9 49.8 49.7 44.8 43.9 90.9 84.7 75.8 57.2 75.9 53.6 82.8 81.2 68.2 65.6

84.6 Ener 76.8 66.7 82.5 73.8 76.2 76.4 56.2 55.2 50.7 64.0 63.0 54.8 54.6 87.9 84.3 83.9 66.1 84.3 67.5 86.5 80.8 74.0 71.2
KL-M 72.6 56.9 75.0 58.7 79.5 80.3 63.0 62.2 55.6 51.7 50.8 45.0 44.1 91.5 77.0 77.4 56.8 72.3 53.0 83.9 76.4 65.2 60.4
KNN 64.7 47.7 79.5 60.5 79.2 78.3 49.5 47.7 39.2 37.5 38.6 40.5 39.2 93.3 90.6 78.2 53.0 66.7 39.7 83.3 84.6 59.8 55.2

RMaha 58.8 39.2 69.5 44.2 77.0 76.4 50.7 49.1 38.9 30.0 29.6 17.5 15.7 87.9 69.4 72.6 38.6 67.9 39.1 79.2 70.2 53.2 45.3
RCos 62.7 42.5 75.5 53.5 76.8 75.7 44.8 42.9 33.7 32.5 33.2 24.8 23.2 90.3 81.3 74.2 44.1 67.1 41.1 81.2 77.9 55.8 48.1

Sw
in

v2
-B

-2
56

Cos 63.5 43.1 76.2 55.2 77.2 76.7 47.0 45.0 36.1 33.5 34.0 28.7 27.4 90.9 83.4 75.0 47.0 67.5 39.1 81.2 80.3 56.8 50.9
MSP 64.7 52.3 76.5 60.5 80.8 79.9 58.0 55.8 50.0 57.2 57.6 41.5 40.7 90.3 75.7 77.4 61.4 76.7 55.0 86.5 72.6 59.2 54.2
MaxL 70.4 58.2 80.0 62.8 82.2 82.5 54.8 52.5 47.9 65.0 64.7 50.0 49.9 91.5 78.3 82.3 69.1 81.9 60.3 85.4 75.0 65.5 63.7
ViM 58.0 34.6 70.5 44.2 71.2 69.3 42.0 39.9 31.9 34.2 35.1 16.8 15.1 82.4 70.2 71.0 41.9 65.5 35.8 77.1 70.2 51.5 45.3
Maha 63.5 46.4 71.0 45.9 76.5 74.1 59.0 57.6 50.7 37.2 39.1 20.8 19.3 88.5 80.9 72.6 45.8 67.5 35.8 83.3 77.4 55.5 48.1
E+R 93.6 90.8 94.5 93.6 90.8 92.6 81.5 81.0 78.5 91.5 90.8 91.0 91.4 91.5 85.5 94.4 91.5 94.0 94.0 90.1 84.6 89.2 87.7

85.1 Ener 88.4 81.7 91.5 86.0 86.0 87.1 66.5 65.4 61.5 83.8 82.3 83.2 83.0 94.5 91.9 88.7 85.2 92.8 84.8 90.1 87.0 84.5 84.9
KL-M 69.9 54.9 77.2 58.1 74.5 73.1 56.5 54.4 49.3 51.5 51.9 39.2 38.6 89.7 77.0 76.6 55.9 73.5 51.0 84.9 72.1 57.8 53.8
KNN 66.4 51.0 84.8 69.8 82.5 81.6 64.2 62.7 55.2 50.5 53.3 59.8 59.5 93.3 93.6 75.0 63.6 67.5 43.0 83.9 85.1 65.5 66.0

RMaha 61.5 43.8 70.2 44.2 76.0 73.8 57.0 55.5 48.3 35.0 36.7 17.2 15.7 85.5 74.0 71.8 42.8 67.1 38.4 82.3 70.2 53.2 45.8
RCos 70.4 51.6 69.0 41.9 66.2 63.1 39.5 37.5 29.2 29.0 29.6 16.8 15.4 85.5 69.8 71.8 37.3 67.1 35.8 82.3 66.8 51.5 41.5

D
ei

t3
-B

-3
84

Cos 64.0 47.1 79.0 58.7 79.5 77.3 57.0 55.2 46.2 40.8 42.7 38.2 37.3 91.5 89.8 73.4 54.2 66.3 40.4 83.3 80.3 59.5 55.7
MSP 65.2 47.7 73.2 58.1 88.8 88.0 58.0 56.0 51.0 52.5 51.9 41.5 40.2 87.9 74.5 78.2 56.4 75.1 57.6 86.5 76.4 63.5 62.7
MaxL 64.4 46.4 74.0 58.1 86.8 85.4 55.0 52.8 47.2 56.0 55.7 46.8 45.7 92.7 79.1 78.2 61.9 79.5 60.9 86.5 78.8 66.0 65.1
ViM 57.8 36.6 67.2 40.7 80.8 79.3 44.0 42.6 35.8 35.5 35.1 18.8 17.5 81.2 72.3 73.4 47.5 72.3 47.7 81.8 74.0 58.2 51.9
Maha 67.4 49.0 75.2 52.3 85.8 84.1 65.2 64.6 60.8 41.5 42.4 28.5 27.2 86.1 81.3 72.6 50.8 72.7 47.0 82.3 80.3 62.7 58.0
E+R 83.2 75.8 84.5 72.7 84.8 86.1 69.5 68.1 63.5 79.8 80.2 78.2 78.1 95.8 94.0 87.9 81.8 88.8 80.1 92.7 89.9 81.2 82.5

83.8 Ener 75.3 63.4 82.5 74.4 85.8 85.8 63.7 62.5 58.3 74.2 74.5 69.8 69.5 95.2 87.7 91.1 79.7 88.4 78.8 90.6 86.5 81.2 78.8
KL-M 73.1 53.6 72.8 55.2 83.2 81.6 58.2 56.8 51.7 50.5 50.5 38.5 37.1 87.9 77.0 71.8 52.5 75.1 50.3 85.4 76.0 63.2 62.7
KNN 78.5 66.0 89.2 79.1 87.8 86.7 63.2 61.7 57.3 63.2 65.2 74.2 74.2 93.3 94.9 76.6 75.8 73.9 51.7 86.5 86.1 73.8 74.1

RMaha 64.7 45.8 68.0 43.6 85.5 84.1 62.3 61.7 58.3 37.8 38.3 21.8 20.1 84.2 74.5 71.0 44.5 71.5 43.7 81.2 73.6 59.8 54.2
RCos 68.4 49.7 70.0 45.9 74.0 71.2 45.0 43.4 37.2 38.8 39.4 25.0 23.8 83.0 68.9 73.4 47.0 73.1 44.4 81.8 68.3 56.2 49.1

D
ei

t3
-B

-2
24

Cos 72.8 53.6 82.2 66.3 84.2 82.8 57.0 55.2 49.7 52.0 53.3 51.0 50.4 92.1 92.3 73.4 64.8 72.3 48.3 83.3 84.6 64.8 62.7
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Table 18: Comparing the cleaned and original datasets in terms of FPR. The best method per model
and dataset is marked bold.

fpr
model acc. method Pl-f Pl-c Spc-f Spc-c IN-f IN-c txt-f txt-43 txt-c OpO-f OpO-c iNat-f iNat-c IN1K-f IN1K-c OS-f OS-c SBe-f SBe-c SBh-f SBh-c CO-f CO-c

MSP 70.1 58.8 79.8 69.2 86.0 84.1 61.5 59.8 54.2 59.0 59.8 49.0 48.0 92.1 84.3 79.0 64.8 75.9 58.3 88.5 78.4 64.8 63.7
MaxL 70.9 60.1 80.0 68.6 82.8 81.6 58.0 56.3 50.0 58.5 59.2 47.2 46.0 90.9 85.1 79.0 62.3 75.9 59.6 87.0 80.8 66.2 63.7
ViM 64.7 48.4 74.0 52.9 84.0 81.2 58.2 56.8 49.3 43.0 42.9 26.8 25.6 89.7 84.3 71.8 47.0 71.9 47.7 83.9 79.8 56.5 50.5
Maha 63.7 47.7 75.0 54.7 85.8 83.5 65.2 64.1 57.3 46.8 47.3 29.2 28.2 87.9 85.5 72.6 50.0 71.5 51.0 82.8 82.2 60.0 53.8
E+R 70.6 60.1 82.0 67.4 83.0 82.2 61.5 60.1 53.5 59.0 59.8 49.8 49.1 92.7 87.7 78.2 64.4 76.3 60.9 85.4 82.2 69.2 68.9

82.6 Ener 77.8 70.6 82.2 72.7 85.0 84.5 62.5 61.7 55.9 64.0 64.7 59.0 57.7 92.1 87.7 83.9 69.9 82.3 66.9 87.5 83.7 74.0 71.7
KL-M 72.3 59.5 78.8 70.3 83.8 82.2 61.5 60.1 55.2 60.5 60.6 52.0 51.2 89.1 82.6 77.4 64.0 79.5 56.3 88.0 78.4 64.2 59.0
KNN 65.9 51.0 82.5 65.7 84.2 82.8 55.0 53.6 45.5 50.7 51.6 49.5 48.8 93.3 93.2 74.2 61.0 71.5 48.3 83.3 83.7 63.5 62.7

RMaha 64.4 45.8 72.2 50.6 85.5 83.2 64.2 63.0 55.9 42.2 42.9 25.2 24.0 87.3 81.3 71.0 47.9 71.9 51.0 83.3 79.3 58.0 50.9
RCos 62.5 45.1 76.2 57.0 83.2 81.2 55.0 53.6 45.8 42.8 43.8 32.0 31.1 90.9 86.0 71.0 52.1 71.5 47.7 85.4 78.8 58.2 51.4

X
C

iT
-M

-2
24

Cos 62.0 45.1 77.5 58.1 83.2 81.2 54.2 52.5 44.8 44.5 45.4 33.8 32.9 91.5 87.7 71.8 53.0 71.1 47.7 84.4 81.2 58.8 53.3
MSP 72.8 58.2 74.2 61.6 87.5 87.7 60.2 58.7 53.1 55.5 55.2 49.8 49.1 91.5 79.6 79.0 64.4 75.5 55.6 83.3 76.9 65.2 61.3
MaxL 70.1 56.2 73.5 59.9 86.2 85.8 52.2 50.7 44.4 55.5 55.4 40.0 38.9 88.5 80.9 78.2 61.9 75.9 58.3 83.3 75.5 64.2 60.8
ViM 69.4 49.0 70.2 43.6 84.0 82.5 49.0 47.5 38.2 33.5 32.9 18.8 17.0 87.3 77.9 72.6 47.5 70.3 41.1 82.8 73.1 59.2 51.9
Maha 71.4 52.3 73.2 51.2 88.2 87.1 55.5 53.9 45.5 41.5 41.3 26.0 24.5 87.9 79.6 74.2 53.0 71.5 44.4 83.9 74.0 62.5 56.6
E+R 74.1 58.8 81.8 69.8 85.5 84.8 54.8 53.4 45.5 58.5 58.4 48.8 47.5 91.5 87.7 78.2 68.6 75.5 59.6 86.5 81.7 67.8 67.9

84.3 Ener 77.0 63.4 80.8 73.8 86.8 86.1 58.8 57.1 50.7 66.5 66.3 50.0 49.1 90.9 86.4 81.5 68.2 85.5 72.2 88.5 81.7 74.2 70.8
KL-M 75.3 63.4 76.0 60.5 83.0 83.5 56.2 54.4 46.9 56.2 56.0 45.2 44.6 90.3 76.6 75.8 58.9 73.5 49.0 82.8 74.5 63.2 57.5
KNN 73.1 54.9 82.2 65.7 86.0 84.8 47.0 45.0 35.4 41.5 42.4 41.8 40.7 93.9 90.2 79.8 58.5 69.1 40.4 84.4 81.7 62.3 59.9

RMaha 71.6 51.0 69.8 46.5 87.8 86.4 54.8 53.1 45.1 39.2 38.9 22.5 20.9 86.7 72.3 74.2 50.4 71.1 43.0 84.4 71.2 61.0 54.7
RCos 67.2 44.4 73.0 51.2 84.8 84.1 48.0 46.1 36.8 36.5 36.7 25.2 23.8 92.1 80.9 75.8 51.3 69.1 41.1 83.3 75.0 58.2 50.5

X
C

iT
-M

-2
24

-d

Cos 68.6 48.4 75.0 53.5 84.8 83.2 48.0 46.1 36.1 39.0 38.9 28.5 26.9 91.5 82.6 76.6 50.4 67.5 39.7 83.9 76.9 58.8 52.8
MSP 69.4 55.6 66.8 50.6 91.5 91.3 69.5 67.3 61.8 62.7 63.0 39.2 37.9 85.5 74.9 79.8 62.3 78.7 59.6 83.3 72.6 68.2 64.2
MaxL 77.8 66.7 72.2 60.5 94.0 93.9 75.8 75.1 69.8 78.0 78.3 49.8 49.1 84.8 74.0 88.7 74.6 88.8 79.5 87.5 75.5 77.0 73.1
ViM 66.7 44.4 74.2 51.7 84.8 83.8 51.2 49.3 39.9 37.2 37.8 32.8 31.3 87.9 80.0 70.2 48.3 73.5 43.7 85.4 77.4 59.0 52.4
Maha 66.2 43.8 74.8 55.2 87.8 87.1 54.5 52.8 44.1 37.8 39.1 39.5 37.6 87.9 80.4 71.8 50.4 71.5 41.7 84.4 76.0 60.2 55.2
E+R 92.1 88.9 84.2 86.0 95.8 95.5 89.8 89.8 87.8 92.5 92.7 76.8 76.5 87.3 86.0 97.6 89.8 94.4 96.7 89.6 83.2 92.8 92.5

84.4 Ener 94.3 94.8 86.2 90.7 96.2 96.1 93.2 93.6 92.4 95.8 95.9 85.8 85.6 89.1 85.5 98.4 93.6 96.8 98.0 90.6 85.1 96.2 95.8
KL-M 74.3 57.5 79.0 62.8 85.2 85.8 61.3 59.5 52.4 53.5 54.1 48.0 46.0 88.5 82.6 73.4 58.1 71.9 51.0 82.8 79.8 63.7 60.8
KNN 74.8 56.9 82.0 65.1 84.5 83.2 48.8 46.6 36.1 43.8 44.8 46.8 46.2 93.3 88.9 76.6 60.6 71.9 44.4 90.1 83.2 62.3 59.0

RMaha 64.7 42.5 70.8 50.6 87.8 87.1 54.2 52.5 43.8 35.2 36.4 29.8 27.7 84.8 71.5 71.8 47.0 70.3 42.4 83.9 71.2 57.5 52.8
RCos 65.9 41.8 70.0 48.8 84.2 83.2 49.0 46.9 36.5 34.8 35.9 26.5 25.1 89.7 79.1 75.8 44.1 69.9 40.4 84.4 73.1 55.2 49.1

C
nv

N
xt

-B

Cos 67.4 43.1 72.8 53.5 85.5 84.8 49.2 47.2 37.2 35.8 36.4 33.0 31.9 89.7 83.4 76.6 44.5 69.9 42.4 85.9 78.8 58.0 53.3
MSP 78.8 65.4 84.2 74.4 97.0 96.8 76.0 74.8 71.9 71.8 72.8 60.8 59.8 89.1 90.6 79.8 73.3 80.7 60.3 87.0 88.9 75.2 73.6
MaxL 75.3 60.1 85.0 74.4 98.0 98.1 72.2 70.8 68.4 71.0 72.3 75.0 75.2 89.7 92.8 82.3 77.5 79.1 64.9 88.0 91.3 77.8 80.2
ViM 69.1 58.2 80.8 66.3 64.8 62.8 6.2 5.6 3.5 44.5 42.4 53.5 53.5 94.5 94.9 87.1 62.7 87.1 57.6 97.4 91.3 75.5 67.5
Maha 80.5 72.5 83.2 70.3 70.8 67.6 17.0 16.1 13.9 62.5 60.3 61.3 60.6 93.9 97.0 96.0 71.6 93.6 79.5 95.8 90.4 82.0 74.1
E+R 56.0 39.2 76.8 61.6 90.8 90.6 51.0 49.3 45.1 53.8 53.3 48.2 48.6 83.6 87.2 83.9 66.1 81.9 70.9 86.5 88.9 73.2 71.7

78.0 Ener 75.6 61.4 85.2 75.6 97.8 97.7 73.0 71.6 68.1 70.2 71.2 79.0 80.2 89.7 92.8 84.7 78.4 79.9 76.2 90.1 94.2 79.5 81.6
KL-M 76.5 62.7 70.0 52.9 87.8 87.7 52.2 50.9 46.2 51.0 51.6 31.5 29.8 80.6 72.3 79.8 58.9 82.3 62.3 83.3 72.1 69.2 60.8
KNN 84.0 74.5 85.2 73.3 65.5 63.1 13.0 13.1 9.4 61.3 59.2 79.2 79.9 94.5 96.2 91.9 75.8 93.6 78.8 97.9 96.2 84.5 77.4

RMaha 80.0 69.3 56.0 34.3 77.8 77.7 24.2 22.5 15.3 42.2 40.8 24.2 22.5 77.0 68.9 83.1 47.9 87.6 67.5 84.9 63.5 70.5 56.1
RCos 90.1 85.6 87.8 83.7 93.5 93.5 66.2 65.1 60.8 75.5 77.2 87.8 88.3 86.7 92.8 87.9 88.6 89.6 76.2 89.1 93.8 85.8 84.0

B
iT

-s

Cos 68.9 53.6 74.5 57.6 67.2 64.4 11.8 10.5 7.6 45.0 42.1 39.0 38.6 87.3 90.2 87.1 58.5 90.4 57.6 91.1 89.4 68.2 56.1
MSP 66.9 50.3 72.0 52.9 87.5 87.4 54.8 53.4 47.2 53.2 54.3 45.2 44.4 85.5 77.0 77.4 56.4 74.3 53.6 84.9 71.2 59.2 54.2
MaxL 69.1 52.3 73.0 54.1 86.5 87.1 53.8 52.0 45.5 56.2 56.8 45.2 44.4 87.3 77.4 79.8 56.4 75.1 51.0 85.9 73.1 60.5 55.7
ViM 68.1 51.6 74.8 52.9 80.2 79.0 47.8 45.6 37.5 37.8 38.3 33.0 32.4 90.9 90.2 69.4 55.1 71.9 48.3 82.3 85.1 61.8 61.3
Maha 66.9 48.4 68.2 41.9 75.5 73.8 40.2 38.1 29.5 30.8 31.0 18.2 17.0 86.1 79.1 69.4 45.3 69.1 41.1 76.0 74.5 53.2 48.6
E+R 69.9 49.7 78.5 59.3 79.8 79.0 45.5 43.4 35.1 47.8 47.8 43.2 42.8 88.5 88.9 74.2 58.9 70.7 50.3 85.9 82.2 65.8 64.6

85.1 Ener 76.8 64.7 80.8 69.8 86.5 87.7 61.5 60.3 54.9 66.0 66.8 63.5 63.4 87.9 83.0 82.3 72.5 78.7 62.3 89.1 78.4 71.2 72.6
KL-M 71.1 56.9 70.8 50.6 81.5 81.6 54.5 53.6 46.9 49.8 49.5 41.0 40.2 84.8 71.5 73.4 51.7 71.1 51.0 82.8 71.2 61.8 53.8
KNN 69.9 51.6 74.8 51.7 80.5 79.3 43.5 41.0 32.6 38.5 39.9 35.5 34.5 89.7 84.7 75.8 51.3 69.1 44.4 83.3 79.3 55.8 52.4

RMaha 64.4 43.8 62.7 34.9 75.5 74.1 38.8 36.5 27.8 27.8 28.3 15.0 13.6 81.2 65.5 67.7 36.9 67.5 39.1 76.6 65.4 50.5 42.9
RCos 59.3 35.9 65.8 39.5 74.8 72.8 34.5 32.2 22.9 29.5 29.6 18.2 16.7 86.7 72.3 70.2 39.4 67.9 38.4 80.2 67.3 50.2 43.4

E
ff

N
et

v2
-M

Cos 65.9 43.8 71.2 47.7 80.2 79.3 43.0 40.8 31.6 33.8 34.8 27.0 25.8 87.9 77.4 73.4 44.9 68.7 44.4 81.8 72.6 54.5 49.5
MSP 66.7 59.5 68.5 50.6 86.5 86.4 55.5 53.6 46.5 52.2 52.7 44.2 43.1 84.2 77.9 77.4 57.6 73.9 57.6 83.9 73.1 60.8 56.6
MaxL 69.4 60.8 76.8 60.5 85.8 85.8 57.5 55.5 47.6 57.0 57.6 50.5 49.6 84.8 79.1 82.3 63.1 78.3 60.3 85.4 73.6 62.3 59.0
ViM 74.6 63.4 79.8 64.5 73.5 72.5 61.5 60.6 55.6 49.8 50.3 41.2 40.7 89.1 91.5 67.7 61.0 77.5 49.7 84.4 84.6 66.5 63.7
Maha 73.3 59.5 73.5 52.3 73.5 73.5 59.8 58.7 53.1 41.8 42.7 29.2 28.2 87.9 87.7 71.0 54.2 77.5 45.0 86.5 83.2 63.2 57.1
E+R 76.5 65.4 82.0 65.7 80.2 80.6 54.2 52.3 42.4 58.0 59.2 56.8 56.1 91.5 88.9 76.6 69.1 79.1 58.3 85.4 78.8 70.2 68.4

84.9 Ener 83.5 77.1 87.0 76.2 87.2 88.0 65.8 64.1 56.6 73.8 74.2 72.2 71.8 89.1 85.5 87.1 77.5 87.1 72.2 89.6 77.4 76.8 76.4
KL-M 69.4 57.5 70.2 48.8 79.0 78.3 50.2 48.3 42.4 44.0 45.1 38.0 36.3 86.1 75.7 69.4 50.8 73.5 54.3 82.8 73.6 61.0 53.3
KNN 75.1 59.5 77.8 58.1 77.0 76.7 47.5 45.0 35.4 42.2 44.3 44.2 43.1 87.9 86.0 71.8 58.1 69.5 43.0 84.9 81.2 59.8 56.6

RMaha 71.4 56.9 63.2 37.2 74.8 73.5 51.0 49.3 42.4 31.0 32.1 20.8 19.6 82.4 64.3 71.0 42.4 75.5 43.7 82.8 66.3 56.2 45.3
RCos 63.0 39.9 65.5 39.5 72.0 70.2 39.0 37.0 27.8 29.5 30.7 18.2 17.0 83.0 74.0 73.4 39.8 69.9 35.1 84.4 68.8 53.2 45.3

E
ff

N
et

b7

Cos 70.4 51.6 71.8 50.0 76.5 74.4 51.0 48.8 39.2 34.5 36.1 30.8 29.5 84.8 78.7 72.6 47.0 69.5 48.3 84.4 73.1 56.5 51.9
MSP 77.0 67.3 80.2 69.8 95.2 94.5 66.8 65.4 62.5 65.0 64.9 54.0 53.3 92.1 79.6 79.8 67.8 79.1 64.2 89.1 75.5 68.0 63.2
MaxL 80.7 70.6 83.5 73.8 93.8 93.2 66.5 65.1 60.1 67.0 66.8 61.5 60.8 88.5 73.2 83.9 69.9 80.7 66.9 85.9 71.2 69.2 62.7
ViM 84.2 75.2 79.5 65.7 74.5 71.5 24.8 23.6 17.0 56.8 55.2 54.8 53.8 90.3 93.2 81.5 74.6 83.5 53.0 91.1 90.9 77.2 73.1
Maha 90.1 85.0 83.0 72.7 77.8 76.1 44.2 44.2 37.8 70.5 70.9 65.2 64.0 92.7 95.3 89.5 87.3 90.0 69.5 94.8 92.8 84.5 83.5
E+R 82.5 72.5 83.5 71.5 84.0 82.5 50.0 49.6 44.1 64.8 64.1 63.5 62.9 90.9 74.5 86.3 68.6 85.9 71.5 85.9 72.1 72.0 61.8

77.7 Ener 86.9 77.8 86.2 79.1 91.5 91.9 72.8 72.4 69.4 77.2 76.9 75.8 75.7 87.9 74.9 89.5 78.0 85.9 85.4 87.0 70.7 76.8 70.3
KL-M 80.7 68.0 77.0 64.5 90.8 90.9 61.8 61.1 58.0 59.8 59.5 45.2 44.1 86.7 83.0 81.5 66.1 82.7 70.9 88.0 82.2 70.5 63.2
KNN 94.1 90.8 87.8 83.1 70.2 67.0 30.2 29.0 22.2 74.0 72.8 75.5 75.2 98.2 96.6 96.8 82.6 96.0 84.1 97.9 92.8 86.8 79.7

RMaha 83.2 69.3 71.8 57.6 89.0 88.0 55.0 54.2 50.3 61.8 61.7 46.5 45.2 87.9 83.0 86.3 71.2 83.1 69.5 90.1 88.9 77.0 70.3
RCos 77.5 62.1 64.8 48.8 89.5 89.3 53.0 51.7 45.5 56.2 56.0 38.2 37.1 86.7 80.0 83.1 66.9 82.7 67.5 88.0 84.1 71.8 64.2

E
ff

N
et

-B
0

Cos 71.6 54.2 59.0 41.9 73.2 72.2 23.0 21.7 14.2 41.5 38.6 24.2 22.5 88.5 79.1 80.6 49.2 83.5 61.6 85.9 80.8 65.0 54.7
MSP 73.1 58.2 79.5 69.2 96.0 95.5 63.7 62.5 58.3 62.3 62.5 51.0 49.9 92.7 83.0 83.1 67.4 83.1 60.9 90.1 81.2 66.5 65.1
MaxL 75.8 64.1 79.2 67.4 96.5 96.1 67.5 66.0 62.2 65.2 64.9 54.0 53.0 92.1 83.4 83.1 67.4 83.5 62.3 90.1 80.3 68.8 68.9
ViM 86.9 79.7 84.8 75.6 89.0 88.3 40.8 39.9 33.7 64.8 66.6 74.0 73.6 88.5 87.7 81.5 77.1 83.9 55.6 88.0 89.9 75.2 75.0
Maha 94.1 90.2 89.8 84.3 79.8 78.3 53.2 53.1 49.7 77.5 78.5 85.8 85.4 92.7 89.8 87.1 83.5 89.2 73.5 90.1 92.3 86.2 85.8
E+R 99.8 100.0 99.2 99.4 92.0 92.2 98.2 98.1 98.3 96.5 97.0 99.8 99.7 98.2 99.1 92.7 97.9 91.6 92.7 96.9 98.6 95.8 98.1

80.4 Ener 83.7 78.4 81.5 72.1 96.0 95.5 76.0 75.3 74.0 72.0 72.6 68.5 67.6 90.9 84.3 88.7 74.6 85.5 68.2 88.0 81.7 74.5 74.1
KL-M 75.3 62.1 75.0 62.8 93.2 92.2 58.8 57.1 51.7 57.2 57.1 44.5 43.6 91.5 77.4 82.3 62.3 83.1 60.3 84.9 77.4 66.5 62.3
KNN 84.2 73.9 82.2 69.2 68.5 65.0 24.0 23.1 16.0 58.2 57.3 58.8 58.7 89.1 88.9 84.7 70.3 89.2 67.5 89.6 87.5 78.8 70.8

RMaha 93.1 89.5 70.8 62.2 79.5 79.3 75.5 75.6 73.6 75.0 76.4 83.2 82.8 86.1 66.4 85.5 76.7 88.4 79.5 79.7 73.1 81.8 75.5
RCos 79.8 64.7 65.2 47.1 82.5 79.9 39.0 36.7 27.8 47.5 48.6 30.8 29.2 80.0 70.6 82.3 49.2 84.3 60.9 80.2 73.1 65.8 53.3

R
es

N
et

50

Cos 76.3 60.8 67.2 47.1 78.0 75.7 32.2 30.0 21.2 43.0 42.9 25.2 23.8 80.0 74.0 83.1 44.9 83.1 52.3 81.2 73.6 63.0 52.8
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L RESULTS ON NINCO CLASSES WITH AND WITHOUT OVERLAP WITH
IN-21K

Since the classes of NINCO can be distinguished by whether they belong to an IN-21k class or not,
we present results on both of these groups here. We note that they should be taken with care, since the
groups differ both in size (9 vs. 55 classes) and difficulty of the individual classes. Most models and
methods perform better on the classes with IN-21k overlap, and ViT+Maha is the best OOD-detector
in both cases. While RMaha and (Relative) Cosine yield the most consistent improvements over MSP
in both cases, ViM performs comparably better on the classes without overlap. Pretraining only on
IN-21k yields the best OOD-detectors in both cases.

Table 19: Mean FPR for classes without 21k overlap.

pre acc. model MSP MaxL Ener KL-M Maha RMaha ViM E+R KNN Cos MCM/RCos

21k

86.0 ViT-B-384 56.5 41.8 −15 39.6 −17 51.7 −5 31.7 −25 36.9 −20 32.2 −24 40.9 −16 67.3 +11 46.7 −10 42.2 −14
84.5 ViT-B-224 64.8 50.6 −14 48.3 −17 60.2 −5 34.1 −31 43.7 −21 34.8 −30 50.2 −15 68.5 +4 54.8 −10 53.5 −11
86.3 Swinv2-B-256 66.3 58.7 −8 59.1 −7 62.0 −4 40.1 −26 42.7 −24 34.3 −32 50.3 −16 54.8 −11 47.5 −19 47.3 −19
86.7 Deit3-B-384 72.9 71.1 −2 73.3 +0 68.6 −4 43.0 −30 43.6 −29 44.1 −29 64.4 −9 49.3 −24 47.2 −26 46.8 −26
85.7 Deit3-B-224 75.1 72.8 −2 72.6 −3 69.5 −6 47.7 −27 48.7 −26 47.1 −28 67.5 −8 56.3 −19 52.9 −22 53.5 −22
86.3 CnvNxt-B 61.4 60.0 −1 67.0 +6 57.6 −4 31.0 −30 37.4 −24 27.5 −34 61.6 +0 47.0 −14 40.6 −21 39.7 −22
84.1 CnvNxt-T 62.9 57.2 −6 54.4 −9 61.6 −1 34.7 −28 42.2 −21 30.6 −32 52.9 −10 53.3 −10 49.1 −14 46.2 −17
82.3 BiT-m 69.7 62.2 −7 63.9 −6 62.6 −7 40.9 −29 42.1 −28 31.5 −38 60.2 −10 39.1 −31 36.0 −34 42.1 −28
85.6 EffNetv2-M 55.9 51.8 −4 56.3 +0 55.7 −0 48.6 −7 46.9 −9 40.9 −15 96.5 +41 55.3 −1 33.8 −22 42.4 −14

none

81.1 ViT-B-384 70.0 64.5 −5 61.1 −9 65.0 −5 56.6 −13 56.2 −14 62.8 −7 59.7 −10 66.3 −4 63.0 −7 63.5 −6
84.6 Swinv2-B-256 72.4 67.7 −5 68.2 −4 68.2 −4 58.9 −13 56.9 −15 57.6 −15 65.8 −7 67.8 −5 62.2 −10 60.5 −12
85.1 Deit3-B-384 70.4 75.1 +5 85.4 +15 64.4 −6 59.3 −11 57.4 −13 51.5 −19 91.2 +21 70.7 +0 65.1 −5 49.2 −21
83.8 Deit3-B-224 76.4 77.1 +1 83.3 +7 69.5 −7 62.3 −14 60.0 −16 57.9 −18 83.9 +8 75.7 −1 69.4 −7 55.8 −21
82.6 XCiT-M-224 79.5 79.1 −0 82.4 +3 76.1 −3 71.6 −8 69.7 −10 69.2 −10 78.5 −1 76.6 −3 73.3 −6 73.0 −7
84.3 XCiT-M-224-d 72.6 71.7 −1 78.8 +6 66.6 −6 63.4 −9 60.8 −12 60.0 −13 75.3 +3 69.6 −3 62.7 −10 60.9 −12
84.4 CnvNxt-B 74.1 82.3 +8 94.5 +20 63.9 −10 59.3 −15 56.8 −17 56.2 −18 90.8 +17 65.7 −8 59.2 −15 58.0 −16
78.0 BiT-s 74.2 74.5 +0 76.5 +2 58.2 −16 83.2 +9 56.8 −17 64.4 −10 71.3 −3 81.3 +7 66.8 −7 77.2 +3
85.1 EffNetv2-M 70.0 69.5 −1 74.4 +4 65.3 −5 52.1 −18 51.4 −19 59.6 −10 61.7 −8 60.3 −10 56.6 −13 53.0 −17
84.9 EffNetb7 69.0 70.5 +2 81.3 +12 62.5 −7 55.5 −14 50.4 −19 59.2 −10 71.0 +2 61.7 −7 58.0 −11 50.4 −19
77.7 EffNet-B0 75.0 75.9 +1 84.0 +9 68.7 −6 71.0 −4 66.8 −8 62.2 −13 75.0 +0 85.8 +11 58.7 −16 62.8 −12
80.4 ResNet50 76.0 76.6 +1 77.5 +1 69.0 −7 77.0 +1 66.4 −10 75.1 −1 94.8 +19 64.0 −12 57.6 −18 56.6 −19

JFT 86.8 EffNetb7-ns 71.3 64.8 −7 67.5 −4 66.5 −5 83.7 +12 72.0 +1 85.2 +14 65.8 −6 70.3 −1 64.2 −7 63.8 −7
clip
+12k

87.2 ViT-B-384-l2b 53.7 51.1 −3 55.9 +2 52.7 −1 37.8 −16 40.2 −14 31.7 −22 47.3 −6 41.1 −13 37.3 −16 37.0 −17
87.0 ViT-B-384-oai 56.0 51.8 −4 54.6 −1 53.6 −2 40.9 −15 39.8 −16 36.9 −19 50.4 −6 36.6 −19 33.8 −22 34.1 −22

clip 86.6 ViT-B-384-l2b 65.8 63.5 −2 62.5 −3 59.0 −7 49.6 −16 50.4 −15 46.1 −20 61.0 −5 53.8 −12 49.5 −16 48.3 −18
86.2 ViT-B-384-oai 65.8 64.1 −2 67.7 +2 62.4 −3 52.4 −13 54.7 −11 48.1 −18 65.4 −0 57.1 −9 53.9 −12 53.4 −12

clip
z. shot

74.3 clip-ViT-L-336 —- —- —- —- —- —- —- —- —- 55.7 55.8
66.6 clip-ViT-B-224 —- —- —- —- —- —- —- —- —- 56.9 62.8

Table 20: Mean FPR for classes with 21k overlap.

pre acc. model MSP MaxL Ener KL-M Maha RMaha ViM E+R KNN Cos MCM/RCos

21k

86.0 ViT-B-384 51.1 37.2 −14 36.5 −15 50.1 −1 26.8 −24 30.2 −21 32.7 −18 38.1 −13 61.9 +11 45.9 −5 45.5 −6
84.5 ViT-B-224 56.8 45.8 −11 45.7 −11 56.7 −0 31.6 −25 35.7 −21 39.0 −18 49.3 −8 68.9 +12 54.6 −2 54.4 −2
86.3 Swinv2-B-256 48.6 38.2 −10 36.9 −12 55.0 +6 66.5 +18 55.7 +7 58.2 +10 35.3 −13 63.1 +15 52.0 +3 48.3 −0
86.7 Deit3-B-384 60.0 53.5 −6 53.6 −6 59.0 −1 55.7 −4 49.6 −10 59.0 −1 49.5 −10 54.1 −6 48.6 −11 47.8 −12
85.7 Deit3-B-224 63.1 57.0 −6 55.8 −7 64.5 +1 62.0 −1 54.7 −8 65.0 +2 53.1 −10 59.1 −4 54.4 −9 53.1 −10
86.3 CnvNxt-B 44.9 38.0 −7 39.4 −5 54.4 +10 52.6 +8 43.2 −2 43.8 −1 37.0 −8 52.6 +8 44.8 −0 43.0 −2
84.1 CnvNxt-T 53.3 46.4 −7 44.0 −9 60.6 +7 48.9 −4 46.4 −7 38.5 −15 42.7 −11 57.1 +4 51.5 −2 49.7 −4
82.3 BiT-m 67.5 62.0 −6 63.0 −4 65.3 −2 51.5 −16 45.6 −22 42.2 −25 56.6 −11 61.1 −6 54.2 −13 56.5 −11
85.6 EffNetv2-M 49.9 47.8 −2 53.8 +4 54.4 +4 65.3 +15 52.4 +2 55.6 +6 88.7 +39 69.5 +20 47.3 −3 51.9 +2

none

81.1 ViT-B-384 69.4 68.2 −1 69.3 −0 67.0 −2 60.6 −9 57.2 −12 70.4 +1 66.8 −3 74.8 +5 69.6 +0 70.8 +1
84.6 Swinv2-B-256 69.5 67.6 −2 72.9 +3 67.4 −2 64.7 −5 60.6 −9 67.9 −2 69.3 −0 69.5 −0 63.7 −6 62.3 −7
85.1 Deit3-B-384 66.8 72.4 +6 87.9 +21 64.6 −2 64.8 −2 59.7 −7 61.3 −5 90.0 +23 75.0 +8 67.5 +1 58.1 −9
83.8 Deit3-B-224 69.3 71.1 +2 82.1 +13 68.2 −1 70.1 +1 64.9 −4 64.4 −5 83.0 +14 81.2 +12 73.6 +4 62.9 −6
82.6 XCiT-M-224 71.5 72.3 +1 78.6 +7 71.1 −0 65.4 −6 62.5 −9 64.2 −7 76.0 +4 71.1 −0 66.1 −5 64.9 −7
84.3 XCiT-M-224-d 67.6 65.2 −2 72.2 +5 66.9 −1 66.9 −1 62.1 −6 62.7 −5 72.0 +4 70.6 +3 64.9 −3 62.9 −5
84.4 CnvNxt-B 63.2 69.7 +7 88.2 +25 68.7 +6 66.8 +4 61.2 −2 67.0 +4 85.1 +22 71.2 +8 61.7 −2 58.7 −5
78.0 BiT-s 79.6 82.3 +3 83.9 +4 70.0 −10 83.6 +4 65.3 −14 75.0 −5 78.9 −1 83.5 +4 73.0 −7 85.3 +6
85.1 EffNetv2-M 64.5 64.6 +0 74.6 +10 62.4 −2 64.2 −0 55.5 −9 74.7 +10 70.9 +6 65.1 +1 60.0 −4 54.6 −10
84.9 EffNetb7 66.4 68.7 +2 81.6 +15 62.7 −4 70.2 +4 55.3 −11 74.9 +8 77.2 +11 67.7 +1 61.0 −5 54.3 −12
77.7 EffNet-B0 71.6 71.9 +0 78.9 +7 72.8 +1 85.3 +14 75.2 +4 77.3 +6 75.1 +4 87.1 +16 61.8 −10 70.9 −1
80.4 ResNet50 71.8 73.9 +2 78.0 +6 69.0 −3 87.3 +16 70.0 −2 79.2 +7 97.9 +26 80.2 +8 63.8 −8 63.0 −9

JFT 86.8 EffNetb7-ns 61.8 54.2 −8 60.5 −1 64.1 +2 88.0 +26 68.2 +6 89.8 +28 61.1 −1 74.3 +13 65.4 +4 63.7 +2
clip
+12k

87.2 ViT-B-384-l2b 49.6 46.8 −3 49.4 −0 52.1 +3 55.0 +5 48.5 −1 48.1 −2 44.5 −5 46.2 −3 40.6 −9 40.7 −9
87.0 ViT-B-384-oai 47.7 42.3 −5 42.3 −5 48.9 +1 60.4 +13 49.8 +2 55.1 +7 40.9 −7 46.3 −1 40.2 −7 39.9 −8

clip 86.6 ViT-B-384-l2b 61.2 61.3 +0 66.4 +5 57.3 −4 53.2 −8 50.5 −11 52.6 −9 63.6 +2 57.5 −4 51.0 −10 49.2 −12
86.2 ViT-B-384-oai 64.7 65.1 +0 70.1 +5 61.7 −3 56.3 −8 53.6 −11 58.3 −6 67.7 +3 62.0 −3 57.0 −8 54.4 −10

clip
z. shot

74.3 clip-ViT-L-336 —- —- —- —- —- —- —- —- —- 75.2 68.9
66.6 clip-ViT-B-224 —- —- —- —- —- —- —- —- —- 82.8 82.6
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