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Abstract

Language model outputs are not always reliable, thus prompting research into
how to adapt model responses based on uncertainty. Common approaches include:
abstention, where models refrain from generating responses when uncertain; and
linguistic calibration, where models hedge their statements using uncertainty quan-
tifiers. However, abstention can withhold valuable information, while linguistically
calibrated responses are often challenging to leverage in downstream tasks. We
propose a unified view, Conformal Linguistic Calibration (CLC), which reinter-
prets linguistic calibration as answer set prediction. First we present a framework
connecting abstention and linguistic calibration through the lens of linguistic prag-
matics. We then describe an implementation of CLC that allows for controlling the
level of imprecision in model responses. Results demonstrate our method produces
calibrated outputs with conformal guarantees on factual accuracy. Further, our
approach enables fine-tuning models to perform uncertainty-aware adaptive claim
rewriting, offering a controllable balance between factuality and specificity.

1 Introduction

Large language models (LLMs) can provide knowledge responses based on their comprehensive
training sets [48 159, [78]], but these responses may not be trustworthy [41}[26]], and can be stated in
an over-confident tone [42]]. One solution is to communicate a calibrated uncertainty measure to
the user, so as to enable more informed decision-making [80]]. This uncertainty information can be
expressed in different ways, which we hereby classify into two groups. The first set of approaches
marks a response explicitly with the model’s level of confidence [66, 112, 165]. When such uncertainty
expressions are conveyed through text generation and are adjusted to faithfully represent accuracy
of the response, this is called linguistic calibration [42, 13,16} 69]]. For example, a model uncertain
in its response may state: “Possibly the largest city in the US is Los Angeles” (Fig E] However,
how to interpret linguistic uncertainty can be unclear and subjective. Also, the outer structure
introduced by linguistic calibration hampers the downstream task / evaluation [34], as it is unclear
what special treatment should be given to these uncertain assertions. Another set of approaches have
the model generate prediction sets instead of a single response, such that with high probability some
are acceptable [50, 32| 55]]. A special case of this is when a model abstains from responding when it
is not confident 58 281 39,145, 9L [18]]. E.g., “I don’t know” is trivially equivalent to predicting the
set of all possible answers. However, this breaks the normal human-model interaction paradigm, and
the set prediction is not directly actionable [11].

! Answer by population is New York City, by area is Sitka.
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To address these limitations, we propose a novel unifying view, Conformal Linguistic Calibration:
having the model express uncertainty levels by gener-
ating less specific claims until they are confident. We
achieve this by reinterpreting uncertainty quantifiers
as set prediction using recent advances [19] in possi-
ble world semantics [30}29]. At a high level, being
more confident in a claim means that a subject would
only regard it as false in counterfactual worlds that are
drastically different from the actual one. These grad-
ually less similar counterfactual worlds form a series
of nested sets corresponding to the subject’s belief
[36.163]. From this perspective, linguistic calibration Ssmiten(iz] | DM ook
can be seen as a form of soft abstention, whereas tradi-
tional abstention [28} 44] corresponds to committing
to the universal set of all possible worlds. As shown CLC (This Work) 1—»| A coastal city
in this allows us to improve the flexibility
and controllability over an abstention-based approach.
Also, our formulation naturally supports conformal
prediction techniques [67, 1], offering probabilistic
guarantees on factuality while producing confident,
clear claims that are easy for downstream use. In
summary, we:

Q: What is the largest US city?

Linguistic Cal. [42] E—» Possibly Los Angeles

Calibration [3] —»  60% Los Angeles

Figure 1: Distinct from previous approaches
CLC allows generating a less precise but more
confident statement.

1. Propose a new paradigm for model to communicate their uncertainty.

2. Provide an algorithmic instantiation of the process by probing semantic uncertainty [31]],
building nested subsets, and summarizing beliefs, which can be post-hoc calibrated through
learn-then-test (LTT) [[1].

3. Show that our approach enables a smooth trade-off between factuality and specificity
[74]—for example, allowing a 7B model to outperform GPT-40 in factuality on a challenging
QA dataset by answering less specifically [[74].

4. Train an amortized, uncertainty-aware claim rewriter that explicitly trades off specificity for
factuality following user instructions. We release both our rewriting model and dataset.

2 Related Work

LLM Factuality Evaluation Large language models enable rich long-form generation [5 |46]],
yet hallucinations remain persistent [41} 26} 24]. To monitor factual precision, evaluation pipelines
typically decompose model outputs into atomic claims and verify each against trusted sources or
retrieval-augmented evidence [43|[71} [72]. Subsequent work sharpens these pipelines by improving
claim extraction and coverage [73| 21} 27], but the focus remains on enumerating verifiably true
statements. As a result, they offer limited guidance on how to modulate hedging or other forms of
controlled imprecision that influence downstream usability [34].

Conformal Prediction and Risk Control Risk-sensitive frameworks complement precision-centric
evaluation by directly bounding the probability of erroneous outputs. Conformal prediction has been
adapted to over-generation, abstention, delegation, and clarification settings in language applications
(50, 28 [77] 20}, 149} 117, [56]], providing explicit coverage guarantees when the model defers, expands,
or filters its answers. The closest approach to ours, Mohri and Hashimoto [44]], drops uncertain
claims to improve faithfulness, and Cherian et al. [10] refine the procedure via adaptive conformal
prediction. We maintain the original answer space but rewrite claims so that conformal guarantees
translate into interpretable hedging, allowing users to trade specificity for reliability while retaining
coherent narratives.

3 Preliminaries

We focus on the setting where given a prompt z, a language model £ generates response y = L(x)
where y € ). The overall goal is to find a post processor 7 : ) — J/, that ensures a probabilistic



guarantee for a user specified probability a € (0, 1):
P(T (y) is factuality correct) > 1 — .

One particular challenge is to find a 7 that will almost always work without too many constraints on
Y. For example Mohri and Hashimoto [44] shows that for longer generations one can come up with a
simple solution for 7~ where one can drop a subset of claims, a process they called back-off, but this
will not work for more atomic generations like in question answering, as back-off is highly restrained
by explicitly stated claims. Yet atomic-claim-level operation is very desirable, as previous works have
demonstrated the benefit of decomposition for various fact verification problems [43} 27,153, [73|164].
To allow being less specific beyond the surface form, we need a more sophisticated process for
identifying plausible alternatives to the input claim to guide post-processing. We now describe how
the post-processing step 7 can be formalized in terms of belief. This helps connect back to linguistic
calibration, and we provide a way to achieve our desired guarantee despite the additional complexity
our proposal introduces.

3.1 Possible World Semantics

The notion of a possible world has a long tradition in philosophy, described as the “limit of a series of
increasingly more inclusive situations” [16]]. Following Kripke [29]], modal expressions are evaluated
by asking which alternative situations remain accessible from the world we currently inhabit. We
therefore treat a claim as the set of worlds in which it remains true: relaxing the claim (i.e., hedging)
enlarges that set, lowering the risk of factual error while preserving informativeness.

Formally, a Kripke model M = (W, R, IF) consists of a set of possible worlds T, an accessibility
relation R where R(w,u) indicates that world u is accessible from w, and a satisfaction relation
I that evaluates formulas at a world. These ingredients let us define the familiar necessity and
possibility operators for a claim

Definition 3.1 (Necessity). Under M at w € W, a necessitation Oc is true iff Vu € W such that
R(w,u), we have u I c.

The “possibly” operator < then follows in the usual way:

Definition 3.2 (Possibility).
Oc = -O=e.

Accessibility relations organize the worlds around w into concentric spheres that reflect increasingly
remote departures from what the agent regards as normal or likely. A claim is necessary within a
sphere if it holds throughout that sphere, and merely possible if it holds in at least one world contained
in it. Different modals can therefore adopt different relations: Hintikka [23] extends Kripke semantics
to belief with a plausibility-based relation Rp calibrated to empirical constraints on human belief. To
model graded confidence, Goodman [[19] combines such relations with similarity orderings, where
u > A4, U means that agent A judges u to be at least as similar to w as v is. The resulting nested
family
Saw = {{u EWsturagy,vhstoe W}

collects precisely these spheres [35]]. Given a subjective probability Pr4 ,,, one can associate each
confidence level d with the set of worlds

Conf? (w) = ﬂ {p € Saws.t.Pry,(p) > d},

which is itself nested and can be repackaged as an accessibility relation that yields graded confidence
modals. Viewing claims as nested sets of worlds thus reveals a direct bridge between claim generation
and set prediction, allowing us to adapt conformal prediction techniques for risk control in Section 4]
We defer richer illustrations of this perspective to the expanded revision, where additional space is
available.

Throughout this work we view a claim as a nullary predicate that does not take arguments.



3.2 Conformal Prediction

Split Conformal Prediction Vovk et al. [[67], Shafer and Vovk [61], Papadopoulos [47] provide
standardized tools to construct prediction sets that provide coverage guarantees. Concretely, using
a calibration dataset (X;,Y;)i=1,...n. split conformal prediction gurantees that for i.i.d. sample
(Xiests Yeest) With a prediction set C'(Xeq) € 2%, then for any designated target threshold o € (0, 1)

P(Y;esl S C(Xlest)) Z 1 — Q. (1)
Following the view of Gupta et al. [22]], the split conformal prediction procedure starts from a
sequence of nested candidate output sets, and use calibration data to select the correct level of in the
nested set until the coverage guarantee is achieved.

However, this approach requires that the prediction sets to select from are nested, or similarly,
the non-conformity score, or equivalently the set construction is by thresholding on a sequence of
monotonous non-conformity scores [2]. Instead of using the quantiles of a scoring function, a more
general extension of conformal prediction called Learn-Then-Test (LTT) [1]] relies on hypothesis
testing to identify a viable region to control any hyper-parameter sensitive risk.

Learn-Then-Test (LTT) extends conformal prediction to find a hyperparameter configuration A
control the expectation of any risk function R such that

P(sup R(A) <€) >1—au
AEA

Unlike conformal risk control [2], LTT does not rely on the risk function being monotonous on .
To achieve this, LTT associates the null hypothesis: H, : R(\) > ¢ to each configuration )\, and
calculates a conservative p-value [4] for each of the hypotheses, from which the LTT guarantee
directly follows.

4 Methods

In this section, we outline the procedure for deriving the risk-controlled process 7T, as illustrated in
Building on our previous discussion in Section [3.1] the objective is to leverage conformal
prediction techniques to manage the risk associated with adherence to each level of the nested sphere.
The underlying intuition is that the confidence level V' can equivalently be represented by a claim ¢
that describes the sphere V[ﬂ We formalize this property as follows:

Definition 4.1 (Description). A claim ¢ is said to describe a sphere V' iff

Ove) A (=Ounvo). 2
Thus given a set of source claims {cy, ca, . .., cy }, we aim to rewrite them to a set of less specific (or
imprecise) claims {by, b, ..., by} that each properly describes its corresponding possible world set

(sphere) {W1, Wa, ..., Wy} such that for any designated target threshold o € (0,1)
PlowdW =W,| >1-a,

which matches the guarantee in Equation (T)). However, there is no practical way to directly evaluate
Uyc as there is no way to constructively derive the set Wj. In this section, we describe a data
processing pipeline that for each claim c derives a sequence of candidate target claims bl, b2, ... b%

such that the corresponding possible world sets in theory satisfy the nested assumption W! ¢ W2 C

4.1 Less Specific Rewriting

In this section, we outline the pipeline to derive a less specific claim from a source answer string, with
the goal of having the factuality risk of the generated claim properly controlled. We call this process
claim rewriting. Our claim data is sourced from QA datasets, motivated by recent advancements in
decomposition [[72, 21]], which demonstrate that complex text can be broken down into relatively
simple, targeted questions [8, [76]. Furthermore, prior work has established that conversion between
questions and claims is feasible and natural [[7]).

3With a slight abuse of notation, we denote the necessity operator associated with modal logic M =
(W, Ry, IF) by Oy, where the accessibility relation is defined as Ry (w, u) := I[u € U]. A similar convention
applies to the possibility operator <.
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Figure 2: The overview of our conformal linguistic calibration approach. Instead of relying on direct
operations like subclaim drop-off, we probe the model’s internal belief by semantically clustering all
sampled answers into nested sets, and writing less specific claims that are associated to each answer
set level through Equation (2).
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Answer Sampling Given a question ¢, we repeatedly sample K responses from a language model
L, denoted as aj I'| This approach is a standard technique for estimating predictive uncertainty in
natural language generation (70,311 |3].

Identifying Clusters From the sampled answer set {a}, we identify semantically unique clusters

Z{Q=1 [31]]. Previous approaches typically employ an entailment model or its extensions to establish

an equivalence relationship—such as bidirectional entailment—to induce clusters [31,38]]. However,
while the number of clusters identified using this method serves as a useful indicator of response
uncertainty, the clustering itself tends to be quite noisy. This is partially due to the inherent difficulty
of fully defining an equivalence relationship in real-world scenarios. When operationalized through a
Natural Language Inference (NLI) model [[13}40], such relationships often suffer from a lack of deep
semantic understanding and excessive sensitivity to surface variations.

To address these issues, we instead use a single LLM call to directly generate a list of identifiable
unique answer cluster names from {a}. The details of this prompt, along with other relevant prompts,
are provided in Appendix [A]

Estimating Answer Multiplicity Given the answer set {a} and a set of representative unique
answers Z C {a}, we estimate the multiplicity of each cluster representative z; € Z by counting the
number of answers that are semantically equivalent to the corresponding cluster name. The cluster
assignment J; (ay,) is determined using a similarity metric s(-, -) € [0, 1], which assigns ay, to the i-th
cluster such that

5:(ax) 1 if ¢ = argmax;e g s(ax, 2;)
i\ak) = .
F 0 otherwise

with arbitrary tiebreak. And the multiplicity is simply given through m(z;) = Zszl 0;(ak).

We acknowledge that while accurately estimating m(c) is important, minor noise in answer cluster
assignment does not compromise the validity of the pipeline. This is because the entire rewriting
process is calibrated using the Learn-Then-Test (LTT) framework, as described in Section

Constructing Nested Cluster Sets In line with the approach of Wang et al. [70], we employ
majority voting to identify the most confident answer, which we designate as the original answer 2}
where

Z1 = argmax m(z;),
i€|Q|
Zy ={z1}.
We then incrementally add other clusters into the set to form a set of nested cluster sets

Z~1CZ~2C"'CZN.

To better align with the interpretation described in Section [3.1} we prioritize clusters that are se-
mantically closer to the representative of the most frequent cluster. For example, given the question
“When did Brexit happen?”, if the most confident answer is 21 = “2020” and other unique responses
include “2016” and “2019”, we would prefer to include “2019” first due to its temporal proximity,
even if “2016” appears more frequently. Notice that while conformal prediction for probabilistic

*For simplicity, we omit the superscript when the dependence on g is clear.



classification typically constructs the predictive set incrementally by adding classes in the reverse
order of their predicted membership probabilities, we find that this approach results in a predictive set
that is difficult to distinguish from the remaining answers, making the task of rewriting a less specific
claim unnecessarily challenging.

We observe that embedding-based similarity metrics often fail to accurately capture spatial, temporal,
or numerical distances. To address this, we propose an LLM-based incremental selection scheme,
in which an LLM is repeatedly prompted to select the cluster names most similar to those already
included. While ideally, we would extend the predictive set by one cluster at a time, doing so for large
N would be computationally prohibitive. Instead, we begin with a predefined set of target thresholds
A1, A2, ..., A\ and, given a subset Z,, already selected, we prompt the LLM to select an additional d
items, where

|2\ Zn|

d = min [()\ - Mult(Zn))W

W, s.t. A — Mult(Z,) > 0,
AEA

where Mult(Z) = > __, m(z). This is to take the minimum expected number of additional clusters
to include to achieve the next target threshold.

Belief Probing The final step in the claim rewriting process involves associating a more general
claim with each nested cluster set Z,, using a rewriting function f : 2¥ — ). To accomplish this, we
verbalize both Z,, and its complement 2\ Z,, as the beliefs of a hypothesized question-answering
agent. We then prompt the LLM to summarize this belief in a less specific claim b,, that arims to
satisfy Equation (2).

We find that explicitly framing these clusters as the belief of an error-prone agent—rather than as
objective facts—is crucial (See [Table 3| in [Appendix A). Without this outer structure, the LLM
generating the claim often disregards clusters that contain non-factual responses, making faithful
belief generation challenging. This belief summarization process helps the model adhere to the
coherence theory of truth [72]. The theoretical validity of this approach is established in the following
theorem.

Theorem 4.2. For claims by that describe V, and by that describes Vs, if by — bs then
V1 CVs.

The proof follows directly from the argument presented in Appendix [B] While our approach performs
well in practice, the unconstrained nature of the prompting mechanism means that it does not
inherently guarantee f(Z;) — f(Z;) for all j > ¢. This limitation further justifies our choice to
calibrate using the Learn-Then-Test (LTT) framework [[1]] rather than a simpler method like Conformal
Risk Control [2]]. Still the validity of the summaries has been confirmed by a small-scale manual
verification conducted by one of the authors. We sampled 11 instances from each of five question
types of SimpleQA [74] (“Date,” “Number,” “Place,” “Person,” “Other”’) and asked a human annotator
to identify all answers entailed by the LLM-generated belief. Two “Person” questions were excluded
due to vague criteria involving subjective judgments (e.g., whether a name belongs to a famous
chemist or is a “traditional” surname). On the remaining examples, annotation precision and recall
were relatively high: 0.81 and 0.91, respectively.

4.2 Conformalizing Rewriting with LTT

After generating a sequence of progressively less precise claims starting from the most frequent
answer cluster for each question, we apply Learn-Then-Test (LTT) [1] to linguistically calibrate the
response, ensuring it aligns with the optimal specificity level while maintaining the desired factuality
guarantee.

Risk Score In theory, the expectation of any loss function [, where the risk is defined as R(F\oL) :=
E[I(F o L(x),Y)], satisfies the requirements for LTTF|However, for a controlled comparison, we
specifically focus on factuality metrics that do not penalize generality. Many automatic evaluation
metrics are overly rigid, as they fail to account for semantic equivalence (e.g., exact match) or reject

>We use o to denote function composition.



claims that differ in specificity from the gold target [43,[74]. In LLM-based evaluations, this issue
can often be mitigated by slight modifications to the evaluation prompt, as detailed in Appendix |A} to
yield to following loss function:

1, y) = 1, if ¢ is admissable
v»yr= 0, otherwise ’
In this setting, we naturally use the multiplicity threshold as the hyperparameter A. Specifically

Ta(z1) = f(Zw),
where n’ = argmin Multi(Z,) s.t. Multi(Z,,) > A.

Notice that due to the discrete natural of M, on the same question ¢, different A might lead to the
model generalize the original claim to the same vaguer claim. Then given « the goal is to find valid A
such that

P(R(ﬂoﬁ)ge) >1-a,

with regard to risk-tolerance § and error level «. This is called by Angelopoulos et al. [1] as an
(«v, §)-risk-controlling-prediction (RCP). Following Bates et al. [4], we calculate Hoeffding-Bentkus
inequality p-values.

To summarize, for a given claim c and a designated risk control level «, our method finds A\, and
corresponding 75 (c) to form a four element tuple (c, &, Aa, Ta(c)).

5 Experiments and Results

We conduct three sets of experiments to validate key claims in the paper. Section[5.1|shows that by
carefully controlling the LLMs to respond less specifically, we can greatly improve their factuality
and maintain valid guarantee over factual errors. Section[5.2]further demonstrates that this specificity-
decreasing rewriting indeed reduces new information provided by responses from LLM responses.

Since the CLC process involves oversampling and multiple rounds of LLM processing—which can
be computationally expensive—we also explore, in a different domain, whether this procedure can be
distilled into the LLM itself to enable efficient, high-quality rewrites, as shown in Section[5.3]

5.1 Linguistically Calibrated Question Answering

Dataset We apply the Conformal Linguistic Calibration pipeline described in Section @] to two
Question Answering (QA) tasks, and examine how gradually less specific rewritings affect the
factuality of the LLM response: SimpleQA [74] is a recent benchmark designed to evaluate language
models’ ability to answer short, fact-seeking questions. Despite its simple format, the dataset presents
a significant challenge, as the answers are adversarially curated against GPT-4. The authors demon-
strate that even state-of-the-art models like GPT-40 perform poorly on this benchmark, achieving
only 38.2% accuracy while exhibiting overconfident predictions. For our experiments, we create
calibration set and test set making sure that each answer type is split evenly. Natural Question [33]
is a widely studied QA dataset with short or long answers paired with real search queries issued to
the Google search engine. To better align with the SimpleQA setting, we focus on evaluating on a
subset of NQ dev that admits short answers that are not yes or no. As NQ can have more than one
human annotation for the correct short answer, we consider an LLM response factual if it is evaluated
as consistent against any one of the human-extracted correct answers.

Evaluation Metric While traditional QAs are typically evaluated with exact matches (EM) or
semantic equivalence [79]], as discussed in Section [21;2] we need a coverage metric that does not
unfairly penalize responses that are less specific than the gold answers, as detailed in Appendix [A]
We thus modify the evaluation prompt from SimpleQA [74] to evaluate whether the less specific
response from the model is relevant and consistent with corresponding gold answer, similar to
factuality evaluation [43164]]. We use Llama3-8B-Instruct [15] as base model L, generating K = 100
responses per question. We then produce progressively less precise claims as described in Section .1}
using GPT-40 while targeting multiplicities 7 € {20, 30, 40, 50, 60, 70, 80,90, 100}. Notably, this
process can still result in a finer-grained set of cluster levels than the predefined target multiplicities.
Consequently, during the LTT stage, the controlling multiplicity threshold parameter A is any integer
within (0, 100].



Baseline 'We compare our approach against a standard abstention baseline, where the model may
choose not to answer if its confidence is below a certain threshold. Under this setting, we define
the percentage characterizing how much the model back off from the original generation as the
percentage of questions the model abstain from answering, and we compare performance with our
approaches at the same marginal answer set coverage percentage. That is, an abstantion model that
answers p percent of questions are compared against a CLC model that responds with more generic
answers at the level that on average covers p percent of the sampled answer set. Notice that As
p — 1, both approaches provide little information, and as p — 0 both approaches converge to not
modifying original answers at all. To make sure the comparison is fair, for each question we use the
same set of 100 sampled responses to quantify answer uncertainty for both approaches, and use the
multiplicity of the top-1 answer as the confidence score. Since the answer formats in both datasets are
short and atomic—admitting no further decomposition [72]—this setup, in the limit, aligns with the
single-claim generation setting described by Mohri and Hashimoto [44]. The corresponding results

are shown in the left and middle plots of

Our results show that for both SimpleQA (Figure 3| Left) and NQ (Figure 5| Middle), the factuality of
responses from our approach tightly aligns with the lower bound of the conformal guarantee region,
indicating it avoids generating trivially true answers. Compared to traditional abstention, our method
offers three advantages. First, while abstention improves factuality by answering only a small subset
of questions, CLC answers all questions while still enhancing factuality. Second, on challenging
datasets like SimpleQA—where models struggle to confidently answer even a few questions—our
method significantly outperforms abstention. Third, CLC yields more consistent factuality gains as
the relaxation percentage increases, whereas abstention becomes unstable at higher abstention ratios.

5.2 Informativeness Scoring

We conduct further evaluation to show that the improvements in factuality comes in trade-off with
less specificity. To achieve this, we evaluate the informativeness of our generation at different
answer multiplicity. We adopt the Conditional Pointwise Mutual Information (CPMI) [27] as
the informativeness measure, which quantifies informativeness as the negative log likelihood of a
generation given what was already known in the prompt. We operationalize CPMI with a publically-
available general conditional probability estimator [68]]°| To make sure that the conditional probability
is not confounded by the parametric knowledge, we call Qwen2.5-72B-instruct to mask personal
entity with “PersonX”, similar to how ATOMIC commonsense reasoning data is created [60]]. We
also compare our approach to a naive rewriting baseline where the base model (Llama-3-7b-Instruct)
is prompte(ﬂ to directly rewrite the response to boost confidence to at least equal to the multiplicity.

The result is shown in For both SimpleQA and NQ, while the factuality of the responses in-
crease with growing multiplicity threshold, their CPMI steadily decrease. Our results demonstrate that
CLC enables explicit factuality-informativeness trade-off. What’s more, the naive rewriting baseline
failed to facilitate fine-grained trade-off, and easily degenerates to rewrites with low informativeness.

5.3 Claim Rewriting on FActScore

Since the original CLC process is costly as it requires answer over sampling and a pipeline for
claim rewriting, we further show that this process can be amortized. To this end, we fine-tune
Llama-3-8B-Instruct [15] on the synthetic data generated in Section [5.1] which consists of 2,042
instances from SimpleQA and 1,728 instances from NQ with various level of back-off generation.
We evaluate its performance in rewriting atomic claims decomposed from biography generation.

Specifically, we assess changes in FActScore [43] before and after applying the claim rewriter T to
all decomposed atomic sub-claims. FActScore is a method that evaluate the precision of supported
claims decomposed from a generation. For evaluation, we use the dev split of the Core [27] expansion
of the FActScore dataset, which consists of an extended list of biography topics beyond those in the
original FActScore dataset and includes frequency values associated with each topic.

6ht‘cps ://huggingface.co/Zhengping/conditional-probability-regression
7As shown in Table
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Figure 3: Left: On SimpleQA, the prediction risk on the test set falls within the conformal guarantee
region and remains closely aligned with the respective lower accuracy thresholds, while outperforms
abstention by a large margin/’| We sample answers to the same question, “Pepi Litman was born in
...7, at different multiplicity thresholds: ( “Kiev / Kyiv.” X), ( “a major cultural and historical
center in central or eastern Ukraine.” X), (I “a major cultural and historical center of Ukraine.”
V). This demonstrates how our rewriting process effectively trades factual specificity for controlled
imprecision. Middle: On datasets where the model already achieves non-trivial performance, such
as Natural Questions, our guarantee remains valid, and the model still benefits significantly from
adjusting precision levels. Abstention does not steadily improves factuality. Right: Fine-tuning
an LLM on the imprecise claim rewriting data enables adaptive rewriting. While instruction-tuned
models exhibit better alignment with designated confidence levels, all models trained on our claim
rewriting data adhere to confidence specifications more effectively than an out-of-the-box model.
Dash line indicates the out-of-the-box performance without CLC.

Given the series of weaknesses identified in the standard FActScore configuration %} we restrict
verification to Core-filtered [27] subclaims. These subclaims are assessed against BM25 [57]-
retrieved text chunks from a full Wikipedia dump.

7 —— NQ (CLC)
-6 Naive
E 6
O 571 — SimpleQA (CLC)

4. Naive = S~

1 20 40 60 80 100 1 20 40 60 80 100
Multiplicity Threshold

Figure 4: Average CPMI scoring of claims for SimpleQA (left) and NQ (right). CLC rewriting
results in smooth and steady decrease in CPMI scores while naive rewriting does not. Shades
corresponds to 95% confidence interval.

We compare the following four claim rewriters trained on 2 A100 80G:

Tgase: This rewriter directly prompts the off-the-shelf Llama3 8B model with the instruction: “Rewrite
the following claim to be less specific until you verbalization itistrue: claim.”

Tsrr: This model is fine-tuned using the same prompt on triplets of the form (verbalization,
claim, rewrite—at-\) derived from the SimpleQA and Natural Questions rewriting data. The
threshold X for each verbalized uncertainty level is determined based on an analysis of the conformal
guarantee presented in Figure 3]

Topo: Following best practices for Direct Preference Optimization (DPO) [52}[511[54], we further fine-
tune Tsgr on preference data. Specifically, we always prefer rewrite-at-A over alternative rewritings
that exhibit noticeable deviations.

"Including susceptibility to trivial claims, inability to verify claims involving secondary entities [75} 62} [81].



Torro: Odds Ratio Preference Optimization (ORPO) [25] offers an alternative alignment approach
by applying a minor penalty to disfavored generation styles at the SFT stage. We train this model
using the same dataset as Tppo.

The FActScore of the rewritten generations is presented in the right panel of Figure[3] The transition
from “guess” through “somewhat confident” and “confident” to “certain” indicates the gradual
raising of the required confidence level By generalizing individual claims, all of our claim
rewriters effectively enhance the FActScore of the generated outputs. In contrast, the out-of-the-box
Llama model (7g,s) does not consistently follow the instruction to rewrite claims to the designated
uncertainty level. It is also interesting that the tuned model seems to learn to adapt its level of
rewriting specificity based on the difficulty of the claim, as shown in Appendix [C|

6 Conclusion

We propose a novel linguistic calibration paradigm that enables models to express and communicate
uncertainty through imprecise language. Unlike prior approaches that discard uncertain claims
or merely express uncertainty by directly stating confidence level, our method rewrites them into
more general or less specific beliefs. Our results show that, unlike prior uncertainty-aware risk
control methods, CLC enables models to respond unambiguously to all questions while steadily and
effectively improving factuality and maintaining valid risk control guarantees.

We further demonstrate that conformal linguistic calibration can be fine-tuned into a base model,
enabling it to adaptively adjust claim specificity based on confidence levels. We believe this work will
also encourage a more nuanced evaluation of automatic factuality pipelines, emphasizing the need to
account for factors beyond factual accuracy. Future work will expand this analysis to examine how
Al confidence communication shapes human decision-making while acknowledging the challenges
of conducting human-based factuality trade-off evaluations due to known biases [37, [14].
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our main claim is that we propose a novel paradigm for LLMs to communicate
their confidence that enables explicit factuality-specificity trade-off. This paradigm is outline
in Sectionf4] and our experiments in Section 5] provides solid evidence for the effective of
our approach.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It s fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Our pipeline relies heavily on LLM for data processing, that are not always
guaranteed to satisfy the requirements. We discuss potential impact and our mitigations
near the end of Sectiond] Also, per reviewer request we further discuss future work and
challenges in Section 6]

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms

and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to

address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
Justification: Appendix
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We explain algorithm design in details in Section [ and for experimental

settings we discuss in Section 5}

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We submit codebase for reproducing all results, and our experiments are all
based on open-access datasets as described in Section 3]

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

 Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Section[3]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: Section[3]
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Section[3]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed and made sure that our paper complies with the code of
ethics.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: Appendix [E]
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our data are fully built on public available dataset, endpoints and open-source
LLMs. And this work advocates transparency and intend to improve LLM reliability.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: Appendix [F]
Guidelines:

* The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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13.

14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We will release the rewriting dataset and the fine-tuned model through hug-
gingface upon camera-ready.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]
Justification: Section
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for
what should or should not be described.
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A Prompt Templates

Table 1: Prompt for identifying unique answer to a given question.

Field Content

Examples [User] Given a list of answers to a question, identify semantically distinct answers.

**]ist of Answers**:
S{Answers}
[Agent] **Semantically Distinct Answers**:${SD_Answers}
Input [User] Given a list of answers to a question, identify semantically distinct answers.

**List of Answers**:
${Answers}

Table 2: Prompt using iterative clustering fornested set construction.

Field Content

Instruction Given a list of already **selected items**, your task is to find **K additional
items** from the list of **candidates** that are **most similar** to the
items already selected. The similarity can be based on **specific attributes,
characteristics, or metrics** relevant to the nature of the items, such as style,
influence, or shared features.

You should return a list of **K items** from the **candidates** list
and store them in a variable named **increments**.

Inputs:

1. K: The number of additional items to add to the selected list.

2. selected: A list of already selected items (could be names, objects, etc.).

3. candidates: A list of candidate items from which we need to select the K
most similar items.

For Example:

" “python
K =1
selected = ["Red"]
candidates = ["Yellow", "Black", "White"]

Expected Output: Return a list of **K items** from the **candidates** list
that are **most similar®** to the items in the **selected** list.

" "python
increments = ["Yellow"]
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Examples

" “python
K =1
selected = ["William Butler Yeats"]
candidates = ["Agatha Christie", "Benjamin Franklin",

"Napoléon Bonaparte']

[Agent] Based on your inputs, we are tasked with selecting 1 item
from the list of candidates that is most similar to the selected item, **"William
Butler Yeats"**. The similarity could be based on characteristics like occupation,
influence, or style.

- **William Butler Yeats** was an Irish poet and one of the foremost
figures of 20th-century literature.

- #*Candidates**:

- **Benjamin Franklin**: American polymath, writer, scientist, diplomat.
- **Napoleon**: French military leader and emperor.

- ** Agatha Christie**: British writer known for her detective novels.

In this case, based on occupation (both are writers), **Agatha Christie** is most
similar to **William Butler Yeats**.

Thus, the result would be:

" “python
increments = ["Agatha Christie"]
Input " “python
K = SK
selected = S$SELECTED
candidates = $SCANDIDATES
Table 3: Prompt for generating belief that describes a belief.
Field Content
Instruction [User] Suppose a human subject is going to respond to a question but they

don’t know the exact answer. However, they explicitly state their belief that
some answers could be correct and some are definitely wrong. Given their
underlying belief reflected please provide a vaguer claim that best summarizes
the respondent’s belief by focusing on the characteristics that the could-be-correct
answers share while the definitely-wrong answers don’t. The answer will be used
to evaluate the human subject’s response, so please be faithful to the discussions
provided and don’t correct them even if they are wrong. Importantly, please
make sure that all answers in the candidate group is covered by the vague answer
claim suggested.

Questions and beliefs are provided below. Please respond after reason-
ing about the similarities and differences between the positive and negative

answers. Wrap your answer in a code block (" “answer ). The answer should
start with “The respondent believes that”.
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Examples

Input

[User] **Question:** Who’s the best football player of all time?
**Belief:** The respondent believes that the answer is either Pele, Diego
Maradona, or Lionel Messi, but not Cristiano Ronaldo, Zinedine Zidane, nor
Johan Cruyff.

[Agent] **Positive Group: Pelé, Diego Maradona, Lionel Messi**

*Time Period*: Spanning from the 1950s to the present.

*QGeographic Origin*: South America (Brazil and Argentina).

*Influence*: Known for their extraordinary dribbling skills, creativity, and
playmaking abilities.

*Philosophy*: These players are celebrated for their flair, technical prowess, and
ability to change the course of a game single-handedly. Pelé (Brazil) is renowned
for his goal-scoring and three World Cup victories. Maradona (Argentina) is
famous for his “Hand of God” goal and his incredible dribbling, particularly in
the 1986 World Cup. Messi (Argentina) is known for his consistency, vision, and
record-breaking achievements with FC Barcelona and Argentina.

*Distinct Features*: Emphasis on individual brilliance, creativity, and a deep
connection with their home countries’ footballing culture.

**Negative Group: Cristiano Ronaldo, Zinedine Zidane, Johan Cruyff**

*Time Period*: Spanning from the 1970s to the present.

*QGeographic Origin*: Europe (Portugal, France, Netherlands).

*Influence*: Known for their versatility, tactical intelligence, and leadership on
the field.

*Philosophy*: These players are celebrated for their physical prowess, strategic
thinking, and ability to perform in crucial moments. Ronaldo (Portugal) is known
for his athleticism, goal-scoring, and adaptability across leagues. Zidane (France)
is celebrated for his elegance, control, and pivotal role in France’s 1998 World
Cup win. Cruyff (Netherlands) is a pioneer of “Total Football,” influencing
modern football tactics and philosophy. *Distinct Features*: Emphasis on
tactical intelligence, versatility, and significant contributions to both club and
national team success.

**Key Differentiation**: The positive group is characterized by South American
flair, individual brilliance, and a deep cultural impact on football. The negative
group is defined by European tactical intelligence, versatility, and a strategic
approach to the game.

The respondent believes that the best football player
of all time comes from South America.

[User] **Question**: ${question}

**Belief**: S {belief}

Table 4: Prompt for evaluating factuality when imprecision occurs on
SimpleQA [75].

Field

Content

Instruction

[User] Your job is to look at a question, a gold target, and a predicted an-
swer, and then assign a grade of either [“CONSISTENT”, “INCONSISTENT”,
“NOT_ATTEMPTED”].

First, I will give examples of each grade, and then you will grade a new example.
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Examples

The following are examples of CONSISTENT predicted answers.

Question: What are the names of Barack Obama’s children?

Gold target: Malia Obama and Sasha Obama

Predicted answer 1: sasha and malia obama

Predicted answer 2: Each of them has a girl’s name.

Predicted answer 3: They have the same last name as their father, Obama.
These predicted answers are all CONSISTENT because:

- They do not contain any information that contradicts the gold target.

- Only semantic meaning matters; capitalization, punctuation, grammar, and
order don’t matter.

- Hedging and guessing are permissible, provided that the response is a consistent
generalization of the gold answer.

The following are examples of INCONSISTENT predicted answers.

Question: What are the names of Barack Obama’s children?

Gold target: Malia and Sasha

Predicted answer 1: Malia.

Predicted answer 2: Barack Obama does not have any children.

Predicted answer 3: It’s possible you may mean Betsy and Olivia. However, you
should clarify further details with updated references if necessary. Is that the
correct answer?

Predicted answer 4: It may be the case that Obama’s child is named James. How-
ever, it’s recommended to confirm the most accurate and updated information
since this could change over time. This model may not always reflect the most
current information.

These predicted answers are all INCONSISTENT because:

- An inconsistent statement in the answer that contradicts the gold target.
Inconsistent statements that have some hedging (e.g., "it is possible that",
"although i’'m not sure, i think") are also considered inconsistent.

- Notice that a hedging answer is inconsistent only if it contradicts the gold target.

The following are examples of NOT_ATTEMPTED predicted answers.

Question: What are the names of Barack Obama’s children?

Gold target: Malia and Sasha

Predicted answer 1: I don’t know.

Predicted answer 2: I need more context about which Obama you are talking
about.

These predicted answers are all NOT_ATTEMPTED because:
- They explicitly state that the model does not know the answer or needs more
information to answer the question.

Also note the following things:

- Do not punish predicted answers if they omit information that would be clearly
inferred from the question.

- For example, consider the question “What city is OpenAl headquartered in?"
and the gold target "San Francisco, California”. The predicted answer "San
Francisco" would be considered consistent, even though it does not include
“California”.

- Consider the question "What award did A pretrainer’s guide to training data:
Measuring the effects of data age, domain coverage, quality, & toxicity win at
NAACL 247, the gold target is “Outstanding Paper Award”. The predicted
answer “Outstanding Paper” would be considered consistent, because “award” is
presumed in the question.
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Examples - For the question “What is the height of Jason Wei in meters?”, the gold target is
“1.73 m”. The predicted answer “1.73” would be considered consistent, because
meters is specified in the question.

- For the question “What is the name of Barack Obama’s wife?”, the gold target
is “Michelle Obama”. The predicted answer ‘“Michelle” would be considered
consistent, because the last name can be presumed.
- Do not punish for typos in people’s name if it’s clearly the same name.
- For example, if the gold target is "Hyung Won Chung", you can consider the
following predicted answers as consistent: "Hyoong Won Choong", "Hyungwon
Chung", or "Hyun Won Chung".
- A response being too general is not a reason to mark it as INCONSISTENT.
- For example, if the gold target is "Lion", you can consider the following
predicted answers as consistent: “Living thing”, "Something".
- For the question “Who wrote the book *The Great Gatsby’?”, the gold target
is “F. Scott Fitzgerald”. The predicted answer “Some 20th century authors”,
“Somebody wrote it” would be considered consistent, because it is a generalization
of the gold target.
- When the response could be correct under certain interpretation, you should
grade it as consistent, in favor of the model.
- If the answer asks for multiple pieces of information, you should only grade
whether the answered information is correct.
- For example, if the question asks for two names containing “Malia”, you should
grade “Malia” as CONSISTENT.
- If the question asks for a month and a year and the gold target year is 2004, you
should grade “2004” as CONSISTENT.
- If the response specifies multiple possible answers, you should grade it as
inconsistently only if none of the possible answers are correct.
- For example, if the gold target is "2004", you should grade both “2004, 2005
and "during late 1990s to early 2000s" as CONSISTENT, because the correct
answer is included in the response.

Input [User] *°°
Question: ${question}
Gold target: ${target}
Predicted answer: $ {predicted_answer}

Table 5: Claim rewriting template. The verbalization is associated to the designated level. For the
levels qualitatively examined in the paper, Guess corresponds to the verbalization “would guess”, S.
Conlf. corresponds to “are somewhat confident”, and Conf. corresponds to “are confident”.

Field Content

Input [User] the following claims to be less specific until you ${verbaliza-
tion} isistrue: ${source_claim}

Your response should only contain the claim itself, without any addi-
tional context.

B Nested Property
Proof of Theorem[{.2] Suppose there’s a possible world v € V1, but v ¢ V5. Given that
(b1 = b2) — (O(b1 — b2))

Thus by Definition[3.1)and Definition4.1|we have v I bo. However, since v ¢ V> we have v € W\ V5,
again by Definition 4.1|we have v I —b5, which is a contradiction. O
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C More Examples

In this section of the appendix, we examine additional examples to illustrate how our trained claim
rewriter adaptively modifies given claims as shown in Table[6] shifting them toward varying levels
of uncertainty. We observe that the extent of rewriting differs across claims, with some undergoing
more substantial transformations than others. Notably, the uncertainty levels introduced at different
rewriting stages are distinct and pronounced.

D System Evaluation

We conduct additional evaluation to critical components in our system to make sure that they are
robust enough for the main conclusion to hold.

D.1 Number of Answer Samples Needed

We study how many sampled answers are required for our clustering pipeline to recover the diversity
of plausible completions. For each question we run the answer sampling and iterative clustering
routine described in Sectionwhile capping the sampling budget at K € {20, 40, 60, 100}. We then
record the number of unique clusters that survive the pruning step and average across 500 held-out
prompts. The resulting curve, summarized in Table [/| shows diminishing returns: quadrupling the
budget from 20 to 80 samples (interpolated between reported points) yields only moderate gains in
cluster coverage. While Learn-Then-Test (LTT) remains valid even when K = 20, we observe that
higher K provides more nuanced uncertainty control, but even K=20 maintains sufficient cluster
diversity for effective calibration.

D.2 Belief Probing Robustness

To gauge how the belief probing stage behaves in practice, one author manually inspected 50
sampled prompts across different SimpleQA question types. Each inspection checked whether the
model-authored belief summary entailed answers in the set it needs to summarize. The review
achieved precision 0.81 and recall 0.91, suggesting that the summarization process reliably captures
the intended answer sets and that occasional mis-clusterings do not materially weaken our risk
guarantees.

E Impact Statement

Our work introduces a promising approach to making the trade-off between imprecision and factuality
more explicit, which could have a meaningful impact across various LLM applications. By proposing
a new way to express models’ uncertainty, we open up potential opportunities for more effective
human-LLM interaction. This may contribute to increased transparency and accountability in critical
domains such as law, journalism, and science, where understanding the reasoning behind uncertainty
is valuable. Additionally, our approach has the potential to inspire further advancements in automatic
fact-checking systems, encouraging a more comprehensive evaluation of factuality.

F License and Agreement

The SimpleQA dataset [[74]] is released under the MIT license. We use the version released with the
simple-eval repository)'?| The Natural Question dataset [33] is released under the Apache-2.0 license.
We use the open subset)”| The open-weight model we use includes models from the Llama3 family,
which are released under the Llama3 license, and models from or fine-tuned from the Qwen2.5 family,
which are released under Apache-2.0 license.

12https ://github.com/openai/simple-evals
13https ://github.com/google-research-datasets/natural-questions.git
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Table 6: More examples occurring when backing off claims from the CORE dataset.

Claim

"Lost in White" is a horror-thriller.

Guess~ "Lost in White" is a horror-thriller.

S. Conf.~ "Lost in White" is a type of film that blends elements of horror and thriller
genres.

Conf.~~ "Lost in White" is a film that blends elements of thriller and horror genres.

Carl Rackemann played 10 One-Day Internationals (ODls).

Guess~> Carl Rackemann played 10 One-Day Internationals (ODIs).

S. Conf.~ the number of One-Day Internationals played by Carl Rackemann could be any
positive integer from 0 to 143.

Conf.~> the number of One-Day Internationals played by Carl Rackemann is a positive
integer.

Kadegaon is located in the Kolhapur district.

Guess~ Kadegaon is located in the Kolhapur district.

S. Conf.~» Kadegaon is located in the Kolhapur district.

Conf.~ the village Kadegaon is located in a district of Maharashtra, India.

Tim Whitnall was born on May 12, 1954.

Guess~ Tim Whitnall was born on the 12th of a month in 1954.

S. Conf.~» Tim Whitnall was born on a day that is any date within a wide range of possible
dates, or they are unsure of his birthdate.

Conf.~> there is no available information about Tim Whitnall’s birthdate, and they are
uncertain or unaware of it.

Yoon Seok-ho’s films explore themes of trauma.

Guess~ Yoon Seok-ho’s films explore themes of trauma.

S. Conf.~~ Yoon Seok-ho’s films explore themes related to human emotional experience
and social issues.

Conf.~> Yoon Seok-ho’s films explore themes of human emotional experience and social
commentary.

Tadashi Imai died in 1999.

Guess~ Tadashi Imai died in 1999.

S. Conf.~» Tadashi Imai died sometime between the 1960s and 2000.

Conf.~ the date of Tadashi Imai’s death is uncertain or not specifically known.

Ernie Dingo gained national recognition for his role as Jacko in the television series "The
Sullivans.”

Guess~ Ernie Dingo gained national recognition for his role as Jacko in the television
series "The Sullivans."

S. Conf.~ there is a possibility that Ernie Dingo gained national recognition for his role as
Jacko in "The Sullivans," but they are uncertain about the specific year or character name.
Conf.~ the actor who gained national recognition for his role as Jacko in "The Sullivans"
is an Australian entertainer from the mid to late 20th century.

Zeki Demirkubuz’s films feature non-linear narratives.

Guess~ Zeki Demirkubuz’s films feature non-linear narratives.

S. Conf.~~ Zeki Demirkubuz’s films feature complex narrative structures that explore
themes of identity and human experience.

Conf.~ Zeki Demirkubuz’s films feature complex and unconventional narrative structures.

Zia Fatehabadi used the "radif" in his ghazals.

Guess~ Zia Fatehabadi used the "radif" in his ghazals.

S. Conf.~ the use of "radif" in Zia Fatehabadi’s ghazals is a traditional and structural
element of classical Urdu poetry.

Conf.~ the use of "radif" in ghazals is a traditional feature of classical Urdu poetry.
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Table 7: Average number of clusters while sampling budget K increases.

K Avg. # Cluster

20 8.676
40 13.735
60 17.806
100 24.461
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