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Abstract

Large language models (LLMs) often suffer001
from hallucination, generating factually incor-002
rect or ungrounded content, which limits their003
reliability in high-stakes applications. A key004
factor contributing to hallucination is the use005
of hard labels during training, which enforce006
deterministic supervision, encourage overconfi-007
dence, and disregard the uncertainty inherent in008
natural language. To address this, we propose009
mitigating hallucination through knowledge010
distillation (KD), where a teacher model pro-011
vides smoothed soft labels to a student model,012
reducing overconfidence and improving fac-013
tual grounding. We apply KD during super-014
vised finetuning on instructional data, evalu-015
ating its effectiveness across LLMs from dif-016
ferent families. Experimental results on sum-017
marization benchmarks demonstrate that KD018
reduces hallucination compared to standard019
finetuning while preserving performance on020
general NLP tasks. These findings highlight021
KD as a promising approach for mitigating022
hallucination in LLMs and improving model023
reliability.1024

1 Introduction025

Large language models (LLMs) have demonstrated026

remarkable capabilities in generating fluent and027

contextually coherent text, achieving state-of-the-028

art performance in various natural language pro-029

cessing (NLP) tasks, including machine translation030

(Vaswani, 2017), question answering (Brown et al.,031

2020; Chowdhery et al., 2023), and summarization032

(Zhang et al., 2020; Raffel et al., 2020). However,033

despite their impressive generative abilities, a fun-034

damental challenge remains: hallucination—the035

tendency of LLMs to generate false, misleading,036

or unverifiable content (Ji et al., 2023; Bang et al.,037

2023). Hallucinations in LLMs pose serious con-038

cerns, particularly in applications that demand fac-039

1Our code and data will be publicly available upon accep-
tance.

tual accuracy, such as medical diagnosis (Moor 040

et al., 2023; Chu et al., 2024), legal document gen- 041

eration (Guha et al., 2024), and scientific content 042

summarization (Xie et al., 2023). Consequently, 043

mitigating hallucination in LLMs is a critical re- 044

search direction for ensuring reliability and trust- 045

worthiness in real-world applications. 046

Most LLMs are trained using next-token pre- 047

diction based on maximum likelihood estimation 048

(Radford et al., 2019; Touvron et al., 2023; Dubey 049

et al., 2024). During training, models are optimized 050

using the cross-entropy loss, which compares the 051

predicted token probabilities to the ground-truth 052

next token. Traditionally, ground-truth tokens are 053

represented as one-hot vectors, known as hard la- 054

bels. This means that the model is forced to assign 055

the entire probability mass to a single token while 056

treating all alternative completions as incorrect. 057

Although this approach is widely adopted, it has 058

several drawbacks that may exacerbate hallucina- 059

tion. First, hard labels encourage overconfidence 060

in incorrect predictions. Since only one token is 061

treated as correct during training, the model learns 062

to disregard other reasonable continuations, lead- 063

ing to overconfident mispredictions (Müller et al., 064

2019; Guo et al., 2017). Second, hard labels vio- 065

late the principle of maximum entropy (Jaynes, 066

1957), which suggests that, given partial infor- 067

mation, the most rational probability distribution 068

should retain as much uncertainty as possible. By 069

artificially forcing a single correct answer, hard 070

labels introduce arbitrary assumptions that can mis- 071

lead the model, particularly in ambiguous contexts. 072

Third, hard labels fail to capture contextual de- 073

pendencies effectively. Language generation is 074

inherently probabilistic, and multiple completions 075

can be equally valid depending on prior context 076

(Holtzman et al., 2020). Hard labels, by contrast, 077

encourage rigid decision-making, making LLMs 078

more prone to hallucinating confident but incorrect 079

outputs. 080
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To address these issues, we propose an alterna-081

tive training approach based on knowledge distil-082

lation (KD) (Hinton, 2015; Kim and Rush, 2016).083

Instead of training models with hard labels, we in-084

troduce smoothed soft labels derived from a teacher085

model. In this paradigm, the teacher model gen-086

erates probability distributions over possible next087

tokens, providing a richer and more informative088

training signal for the student model.089

Using soft labels offers several advantages over090

traditional hard-label training. First, soft labels091

introduce uncertainty-aware supervision, allowing092

the student model to learn from a more calibrated093

probability distribution rather than a binary correc-094

t/incorrect signal. This helps mitigate overcon-095

fidence and encourages more flexible decision-096

making. Second, soft labels better align with097

the principle of maximum entropy, as they retain098

nonzero probabilities for multiple plausible con-099

tinuations, thereby reducing arbitrary assumptions100

in model predictions. Finally, because soft labels101

are generated by a highly capable teacher model,102

they provide contextually grounded probability dis-103

tributions that naturally reinforce faithful and less104

hallucinatory outputs.105

In this paper, we investigate how knowledge106

distillation with smoothed soft labels can be lever-107

aged to reduce hallucination in LLMs. We con-108

duct experiments on three LLM families: Llama-109

2, Llama-3.1, and Qwen-2.5, evaluating different110

student-teacher pairs to analyze the effectiveness of111

KD in mitigating hallucination. To systematically112

evaluate hallucination, we focus on faithfulness113

hallucination, which occurs when a model gen-114

erates outputs that are not grounded in the given115

context (Huang et al., 2023). We assess model116

performance using CNN/Daily Mail and XSUM,117

two widely used summarization benchmarks from118

the hallucination leaderboard (Hughes et al., 2023).119

Our evaluation leverages three complementary met-120

rics: ROUGE-L for n-gram overlap, factual consis-121

tency for assessing context-grounding, and factual122

rate for measuring hallucination at the span level123

(Chuang et al., 2024).124

Our key findings can be summarized as follows:125

• Knowledge distillation reduces hallucination:126

Across all models, in most cases, finetuning127

with soft labels outperforms standard super-128

vised finetuning in mitigating faithfulness hal-129

lucination. This supports our hypothesis that130

soft labels provide a more effective training131

signal than hard labels. 132

• KD preserves general performance: In addi- 133

tion to hallucination benchmarks, we evalu- 134

ate models on general NLP tasks, including 135

OpenBookQA, ARC, and HellaSwag, to en- 136

sure that KD does not degrade broader reason- 137

ing and comprehension abilities. Our results 138

show that KD maintains or improves general 139

performance, indicating that it is a viable tech- 140

nique for enhancing LLM reliability without 141

compromising overall capabilities. 142

Our findings demonstrate that knowledge dis- 143

tillation effectively reduces faithfulness hallucina- 144

tion while maintaining strong generalization across 145

NLP tasks. By replacing hard labels with soft, 146

uncertainty-aware training targets, KD improves 147

model calibration and factual grounding, making 148

LLMs more reliable. 149

2 Methodology 150

2.1 Problem Formulation 151

Autoregressive language models are trained us- 152

ing the next-token prediction task (Radford et al., 153

2019). Given an input sequence of tokens, the 154

model generates a probability distribution over the 155

vocabulary and is optimized to minimize the cross- 156

entropy loss between the predicted probabilities 157

and the true labels: 158

Lsupervised = LCE(σ(z), y), (1) 159

where z represents the logits from the model, σ 160

denotes the softmax function, and y are the ground- 161

truth labels. 162

However, this standard training paradigm typi- 163

cally relies on hard labels (Figure 1), which assign 164

a probability of 1 to a single correct token in the 165

vocabulary and 0 to all others. While this simpli- 166

fies training, we argue that it introduces critical 167

issues—particularly overconfidence and hallucina- 168

tion—due to its rigid assumptions. 169

2.2 Hard Labels and Hallucination 170

In standard language model training, ground-truth 171

labels are typically represented as one-hot vectors, 172

assuming a single correct next token. However, 173

this rigid labeling has several drawbacks. 174

Hard labels cause overconfidence Neural net- 175

works trained on hard labels often exhibit poor 176

calibration, meaning they assign excessively high 177
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Figure 1: Comparison of cross-entropy optimization with hard labels vs. smoothed soft labels. The figure
illustrates how training with (a) hard labels differs from training with (b) contextually smoothed labels in an
autoregressive language model. In (a), the hard label for the word “physics” is represented as a one-hot encoded
(OHE) vector, assigning full probability (1.0) to a single token while forcing all alternative predictions (e.g., “Maths”,
“Assignments”, “Arts”) to have zero probability. This OHE representation introduces zero entropy, disregarding the
inherent uncertainty in natural language, and leading the model to overconfidently discard reasonable alternatives.
This forced certainty can cause the model to develop spurious assumptions and hallucinate incorrect outputs when
faced with ambiguous contexts.

confidence to incorrect predictions (Müller et al.,178

2019; Guo et al., 2017). In language modeling,179

consider the input: “The student did well in ...”,180

as shown in Figure 1. A well-calibrated model181

should distribute probability mass across multiple182

plausible completions, such as “physics”, “maths”,183

“assignments”, “arts”. However, when trained with184

hard labels, the model is forced to treat only one185

option (e.g., “physics”) as correct while disregard-186

ing all other reasonable alternatives. This results187

in overconfidence, which can exacerbate halluci-188

nation—the model’s tendency to generate fluent189

but incorrect outputs. We further observe the over-190

confidence of LLMs in our exploratory analysis in191

Appendix A.192

Hard labels introduce arbitrary assumptions193

From an information-theoretic perspective, opti-194

mizing a model with hard labels violates the prin-195

ciple of maximum entropy (Jaynes, 1957). The196

principle states: “In making inferences on the basis197

of partial information, we must use the probabil-198

ity distribution with maximum entropy, subject to199

whatever is known.”. Hard labels contradict this200

by enforcing a deterministic choice for the next to-201

ken, even when the context suggests multiple valid202

options. This injects arbitrary assumptions into the203

model, leading to over-specified predictions that204

may not generalize well.205

Hard labels overlook contextual dependencies206

Language models generate predictions condition-207

ally based on prior tokens, yet hard labels do not208

explicitly encode these dependencies. Consider209

the word “country”. In “America is a ...”, the next210

token might be “country” or “continent”; in “She211

lives in a ...”, “country” is a much stronger can-212

didate “continent”. Hard labels ignore this differ-213

ence by treating each token in isolation, limiting 214

the model’s ability to adjust predictions based on 215

context. This lack of flexibility may lead to hallu- 216

cinated responses that do not align with preceding 217

information (Chen et al., 2022; Miao et al., 2021). 218

Given these limitations, we propose an alterna- 219

tive: smoothing hard labels via knowledge distilla- 220

tion to mitigate hallucination. 221

2.3 Smoothing Hard Labels with Knowledge 222

Distillation 223

Knowledge Distillation (KD) is traditionally used 224

to transfer knowledge from a large teacher model 225

to a smaller student model for efficiency (Hinton, 226

2015; Kim and Rush, 2016). However, in this work, 227

we leverage KD differently. Instead of hard labels, 228

we use soft labels produced by a highly capable 229

teacher model to provide a smoother training signal 230

for the student model. These soft labels preserve 231

uncertainty, allowing the student model to learn a 232

more realistic probability distribution over possible 233

outputs. 234

This approach directly addresses the issues out- 235

lined in §2.2: (1) Mitigating overconfidence: soft 236

labels distribute probability mass across multiple 237

reasonable tokens, reducing extreme confidence 238

in incorrect predictions. (2) Avoiding arbitrary 239

assumptions: Since the teacher-generated prob- 240

abilities preserve entropy, they align better with 241

the maximum entropy principle. (3) Enhancing 242

context awareness: the teacher model produces 243

context-dependent probability distributions, lead- 244

ing to more coherent and contextually appropriate 245

predictions. 246

Specifically, given an input sequence, we define 247

the knowledge distillation loss as 248

LKD = LCE(σ(zs), σ(zt)), (2) 249
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where zs and zt are the logits from the student and250

the teacher models respectively. The overall train-251

ing loss is a combination of standard supervised252

learning and knowledge distillation:253

L = Lsupervised + αLKD, (3)254

where α is a hyperparameter controlling the influ-255

ence of the teacher’s soft labels.256

3 Experiments257

3.1 Mitigating Hallucination with KD258

Training an LLM from scratch with KD would259

be computationally expensive and impractical. In-260

stead, we apply KD during supervised finetuning261

on an instructional dataset to approximate the ben-262

efits of pretraining with smoothed labels while263

ensuring computational efficiency. Specifically,264

we finetune student models on the Dolly dataset265

(Conover et al., 2023) using knowledge distillation266

from a larger teacher model. This setup enables us267

to investigate the impact of KD without requiring268

full-scale pretraining.269

To systematically evaluate the impact of KD,270

we conduct experiments on three teacher-student271

model pairs from different families. For the272

LLaMA-2 series, we use LLaMA-2-7B-chat as273

the student and LLaMA-2-13B-chat as the teacher274

(Touvron et al., 2023). Both sequence-level and275

word-level KD are applied in this setting, where276

Dolly is augmented using greedy decoding from277

the teacher model. For the LLaMA-3.1 series, we278

use LLaMA-3.1-8B-Instruct as the student and279

LLaMA-3.1-70B-Instruct as the teacher (Dubey280

et al., 2024), applying only word-level KD with-281

out additional data augmentation. Similarly, for282

the Qwen-2.5 series, Qwen-2.5-7B-Instruct serves283

as the student, and Qwen-2.5-32B-Instruct is the284

teacher (Bai et al., 2023), with word-level KD be-285

ing applied.286

Before distillation, each teacher model is first287

finetuned on Dolly to ensure alignment with the288

dataset. For efficient finetuning of LLaMA-3.1-289

70B-Instruct, we adopt Low-Rank Adaptation290

(Dettmers et al., 2023). We explore various hy-291

perparameter settings, including learning rates of292

1e− 5 and 5e− 6, batch sizes of 2, 4, and 8, and293

KD weight coefficients α of 0.01, 0.1, 1.0, and294

10.0. All experiments are implemented using the295

MiniLLM framework (Gu et al., 2024) and run on296

four NVIDIA H100 GPUs. Each training session297

takes approximately one hour.298

As a baseline, we finetune the student models 299

directly on Dolly without KD, denoted as model- 300

SFT. This allows us to assess the impact of KD 301

by comparing distilled models with those trained 302

solely on hard labels. 303

3.2 Hallucination Evaluation 304

Hallucination in language models can be broadly 305

classified into two types (Huang et al., 2023). Faith- 306

fulness hallucination occurs when a model gener- 307

ates outputs that are not grounded in the provided 308

context, while factuality hallucination refers to er- 309

rors where the generated content contradicts real- 310

world knowledge stored in the model’s parametric 311

memory. In this study, we focus on faithfulness 312

hallucination, as it directly pertains to the model’s 313

ability to generate contextually consistent outputs. 314

To evaluate faithfulness hallucination, we use lm- 315

evaluation-harness framework (Gao et al., 2024). 316

We select two benchmark datasets from the allu- 317

cination leaderboard (Hughes et al., 2023) and in- 318

tegrate them into the harness. The first dataset, 319

CNN/Daily Mail (CNNDM), consists of news arti- 320

cles from CNN and Daily Mail paired with multi- 321

sentence summaries. The second dataset, XSUM, 322

contains BBC news articles with highly abstrac- 323

tive single-sentence summaries. Both datasets are 324

widely used to assess the faithfulness of model- 325

generated summaries. To ensure a fair evalua- 326

tion, we test models only on the test splits of each 327

dataset, keeping the training and validation splits 328

untouched. 329

For measuring faithfulness hallucination, we 330

employ three metrics. ROUGE-L measures the 331

n-gram overlap between the generated and refer- 332

ence summaries, serving as a traditional metric for 333

summarization performance. Factual consistency, 334

computed using the hallucination evaluation model 335

from Vectara (2024), assesses whether a generated 336

summary is supported by the input article. Addi- 337

tionally, we adopt factual rate (Chuang et al., 2024), 338

which determines whether a span of text is factual 339

or hallucinatory based on the distribution of atten- 340

tion weights between the context and the generated 341

text. For LLaMA-2, we use an off-the-shelf clas- 342

sifier from Chuang et al. (2024). For LLaMA-3.1 343

and Qwen-2.5, we follow the same methodology 344

to train separate classifiers. These classifier are 345

then used to produce the factual rates based on 346

generated attention weights. 347
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Method CNNDM XSUM
ROUGE-L (%) FC (%) FR (%) ROUGE-L (%) FC (%) FR (%)

Llama-2-7B
+SFT 28.0±0.30 86.3±1.2 94.8±1.3 17.4±0.41 73.8±1.7 91.2±3.2
+KD0.1 28.4±0.35 87.4±0.7 95.4±0.9 17.7±0.31 75.0±1.4 90.4±3.5
+KD1.0 28.6±0.29 87.4±1.0 94.4±1.3 17.8±0.33 75.2±1.3 89.6±3.7
+KD10.0 28.8±0.21 87.7±0.4 93.9±0.4 18.0±0.12 76.2±1.5 89.7±1.5
Llama3.1-8B
+SFT 31.4±0.32 93.5±0.5 80.7±2.2 20.6±0.14 79.2±1.3 59.1±1.4
+KD0.01 31.7±0.14 93.3±0.6 79.2±3.3 20.6±0.14 79.1±1.3 60.5±1.0
+KD0.1 31.6±0.16 93.3±0.7 78.4±4.2 20.6±0.15 79.2±1.3 59.9±0.7
+KD1.0 31.2±0.26 93.8±0.2 78.0±3.9 20.2±0.12 80.9±0.1 59.6±1.9
Qwen2.5-7B
+SFT 27.5±1.14 92.3±0.9 89.5±0.7 20.2±0.99 76.0±0.9 71.6±2.2
+KD0.01 27.8±1.39 92.3±0.9 89.4±0.7 20.3±1.04 76.0±1.2 71.9±2.1
+KD0.1 27.8±1.37 92.3±0.9 89.6±0.6 20.2±1.00 76.4±0.8 72.4±1.5
+KD1.0 27.8±1.30 92.5±1.0 90.2±1.2 20.0±0.76 77.6±0.5 73.6±1.9

Table 1: Hallucination evaluation results for student models finetuned with supervised finetuning (SFT) and
knowledge distillation (KD). Models are evaluated on the CNN/Daily Mail (CNNDM) and XSUM datasets using
three metrics: ROUGE-L (↑, %) for n-gram overlap, factual consistency (FC, ↑, %) for context grounding, and
factual rate (FR, ↑, %) for specialized hallucination detection. Each experiment is conducted with varying learning
rates and batch sizes, and results are reported as the mean and standard deviation across runs. The results suggest
that in most cases KD reduces hallucination compared to SFT, as models trained with soft labels from a teacher
model demonstrate improved faithfulness.

3.3 Results on Hallucination348

Table 1 presents the hallucination evaluation results349

across different models and training approaches.350

The results demonstrate that in most cases models351

finetuned with KD outperform their SFT baselines352

across all model families, hallucination metrics,353

and both datasets. This confirms that training with354

soft labels from a teacher model significantly miti-355

gates hallucination compared to training with hard356

labels.357

It is important to highlight that our models were358

not finetuned on the training splits of CNN/-359

Daily Mail or XSUM. Instead, finetuning was360

performed on an entirely different dataset, Dolly,361

making our experimental setup different from mod-362

els specifically optimized for these summariza-363

tion benchmarks. Consequently, our results may364

not match those reported on the hallucination365

leaderboard. However, the goal of this work is366

not to optimize for leaderboard performance, but367

rather to investigate whether knowledge distillation368

can reduce hallucination in a general setting where369

models are trained on broad instructional data.370

A deeper analysis reveals that different halluci-371

nation metrics capture different aspects of model372

behavior. For example, when evaluating Llama-2 373

on XSUM, the KD-trained model outperforms the 374

SFT model in ROUGE-L and factual consistency 375

but performs slightly worse in factual rate. This dis- 376

crepancy arises because factual rate was explicitly 377

designed for hallucination detection and has been 378

shown to generalize well to XSUM, even though 379

it was trained on CNN/Daily Mail (Chuang et al., 380

2024). In contrast, ROUGE-L and factual consis- 381

tency tend to emphasize surface-level text simi- 382

larity rather than deep factual grounding. These 383

findings underscore the importance of considering 384

multiple evaluation metrics when analyzing hallu- 385

cination tendencies. 386

3.4 Results on General Benchmarks 387

Since knowledge distillation alters the model’s 388

training dynamics by encouraging smoother proba- 389

bility distributions, it is crucial to assess whether 390

KD affects general model performance on broader 391

NLP tasks. To address this, we evaluate stu- 392

dent models on a range of reasoning, compre- 393

hension, and commonsense benchmarks. The se- 394

lected datasets include ARC (Challenge & Easy) 395

(Clark et al., 2018) for commonsense reasoning, 396

HellaSwag (Zellers et al., 2019) for story comple- 397
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Arc_Challenge Arc_Easy HellaSwag OpenbookQA
Llama-2-7B
+SFT 38.4±0.4 50.1±1.0 66.4±2.3 41.7±0.5
+KD0.1 39.5±0.4 50.2±1.9 66.8±1.1 40.8±0.7
+KD1.0 39.6±0.4 51.5±1.7 67.5±0.8 40.9±1.1
+KD10.0 39.4±0.8 53.2±1.6 67.1±0.7 40.7±0.9
Llama3.1-8B
+SFT 57.1±0.5 82.4±0.3 78.7±0.9 49.6±0.2
+KD0.01 57.5±0.4 82.1±1.0 78.8±1.0 49.9±0.7
+KD0.1 57.3±0.3 82.4±0.7 78.7±0.8 49.8±0.4
+KD1.0 56.2±0.3 82.4±0.5 77.6±0.2 49.1±0.9
Qwen2.5-7B
+SFT 50.3±3.3 67.6±6.0 74.8±2.6 48.4±1.1
+KD0.01 50.7±3.5 66.6±4.8 74.7±2.9 48.5±1.8
+KD0.1 50.7±3.2 66.7±4.9 74.8±2.9 48.5±1.5
+KD1.0 50.8±3.4 69.1±6.3 74.8±2.3 47.9±0.9

Table 2: Performance evaluation of student models finetuned with supervised finetuning (SFT) and knowledge
distillation (KD) on general NLP benchmarks. The models are assessed on ARC (Challenge & Easy), HellaSwag,
and OpenBookQA using length-normalized accuracy (%). Each experiment is conducted with varying learning
rates and batch sizes, and results are presented as the mean and standard deviation. The findings indicate that
KD does not degrade performance on general reasoning and comprehension tasks, suggesting that knowledge
distillation effectively mitigates hallucination without compromising broader model capabilities.

tion, and OpenBookQA (Mihaylov et al., 2018)398

for science and reasoning tasks. Performance is399

measured using length-normalized accuracy.400

Table 2 presents the results on general bench-401

marks. Our findings indicate that KD does not402

degrade performance across these tasks. In most403

cases, KD-trained models match or outperform404

their SFT counterparts, demonstrating that distilla-405

tion does not compromise the model’s reasoning or406

comprehension abilities. This result is particularly407

important, as it shows that reducing hallucination408

via KD does not come at the expense of broader409

model performance.410

3.5 Case Study411

To further illustrate the impact of KD on reduc-412

ing hallucination, we present a case study com-413

paring the SFT summary (from Qwen-2.5-SFT)414

and the KD summary (from Qwen-2.5-KD0.1) for415

a given input context (from XSUM). The exam-416

ple, shown in Figure 2, highlights how KD helps417

generate more faithful and contextually grounded418

summaries.419

The SFT summary contains several hallucina-420

tory details that are unrelated to the given con-421

text. Specifically, it introduces factual errors by422

discussing the history of Sale Sharks, including423

information about its founding year, stadium, team424

colors, and past achievements—none of which ap- 425

pear in the provided context. This suggests that 426

the model, when finetuned using hard labels, tends 427

to over-rely on parametric knowledge rather than 428

grounding its response in the input. 429

In contrast, the KD summary closely follows 430

the input text, preserving key factual details while 431

avoiding irrelevant or fabricated content. The sum- 432

mary correctly states that Josh Strauss has signed 433

with Sale Sharks and retains the correct timeline 434

and reasoning for his transfer. Importantly, it accu- 435

rately conveys that Strauss has been sidelined by a 436

kidney injury, a critical piece of information from 437

the original context. Additionally, the KD sum- 438

mary introduces minor refinements, such as spec- 439

ifying a “two-year contract”, demonstrating that 440

KD can smooth output distributions while main- 441

taining informativeness. 442

4 Related Work 443

Hallucination mitigation Previous works have 444

proposed various methods to reduce hallucinations. 445

Radford et al. (2019) underscore the importance of 446

rigorous curation and filtration of training data by 447

human experts, which includes removing misinfor- 448

mation and biases, data deduplication, etc. Though 449

effective, it is hard to scale up the filtering pro- 450
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Context SFT Summary (Baseline) KD Summary

It had already been announced the 30-year-old

would leave the Warriors when his contract

expires this summer. The South Africa-born

forward becomes Sale's first new signing for

next season. "Josh is a world class ball-carrying

forward," said Sharks director of rugby Steve

Diamond. "He has been performing well for both

Glasgow and Scotland over the past five years and

will complement the squad in the ball-carrying

department." Strauss joined Glasgow from Super

Rugby side Lions in 2012 and, after three years of

residency, qualified to play for Scotland in time

for the 2015 World Cup. Number eight Strauss

has been sidelined by a kidney injury sustained

during the Six Nations defeat by France, ruling

him out of the rest of the tournament. "Since

coming to the UK I always had it in the back of

my mind that I wanted to play in the

Premiership," said Strauss. "I have really

enjoyed my time with the Warriors, but I asked

my agent to look around for me. He came back

with Sale Sharks who have a good name, a

good record in the Premiership and looked an

attractive proposition."

Sale Sharks are a professional

rugby union team based in Sale,

Greater Manchester, England.

They compete in the

Premiership Rugby, the top tier

of English rugby union. The

team was founded in 1998 as a

merger between Sale and

Stockport RFC. The club's

home ground is the AJ Bell

Stadium in Sale. The club's

colours are red and white, and

their nickname is the Sharks.

The club's first season in the

Premiership was 2001-02. The

club has won the Premiership

twice, in 2005 and 2010, and

the European Challenge Cup in

2011. The club has also won

the Anglo-Welsh Cup, the

European Cup, and the

European Challenge Cup.

Glasgow Warriors forward Josh

Strauss has signed a two-year

contract with Premiership side

Sale Sharks. The South Africa-

born forward becomes Sale's

first new signing for next

season. He is expected to

complement the squad in the

ball-carrying department.

Strauss has been sidelined by a

kidney injury sustained during

the Six Nations defeat by

France, ruling him out of the

rest of the tournament. Since

coming to the UK, he always

had it in the back of his mind

that he wanted to play in the

Premiership. He has really

enjoyed his time with the

Warriors, but he asked his agent

to look around for him. He

came back with Sale Sharks

who have a good name, a good

record in the Premiership and

looked an attractive proposition.

Figure 2: Comparison of summaries generated by the SFT and KD models. The SFT summary introduces
hallucinated content (highlighted in red) that is factually incorrect or not present in the input context. In contrast, the
KD summary remains faithful (highlighted in blue) to the provided input, accurately conveying key details without
introducing unrelated or incorrect facts. This case study illustrates the effectiveness of knowledge distillation in
mitigating hallucination and improving factual consistency.

cess as data volume expands. Meng et al. (2022)451

later proposes a model editing technique that lo-452

cates "buggy" parameters and updates them to al-453

ter the model’s behavior, avoiding hallucinatory454

predictions, which also struggles with large scale455

updates. Other model updating techniques like456

factuality enhanced decoding that modifies model457

logits (Lee et al., 2022) or the well studied retrieval-458

augmented generation (RAG) (Shuster et al., 2021;459

Lewis et al., 2020; Guu et al., 2020) where models460

retrieve relevant knowledge and give answer con-461

ditioned on that knowledge, have shown positive462

results and gained popularity. However, these are463

ad-hoc methods that do not directly deal with hal-464

lucination from the foundational level. Similar to465

our work, there are methods that focus on the train-466

ing process of language models. For example, Lee467

et al. (2022) combats chunked factual knowledge in468

GPU constrained training environments using the469

prefix token TOPICPREFIX, (Liu et al., 2024) that470

sharpens attentions weights to address attention471

glitches, etc. While improve the training paradigm472

fundamentally, they overlook the discussed flaws473

that hard labels impose on models. 474

Hallucination benchmarks A variety of bench- 475

marks have been developed to evaluate hallucina- 476

tions in LLMs (Tonmoy et al., 2024). Some ex- 477

amples of tasks-specific benchmarks used to deter- 478

mine LLM hallucinations are listed as the follow- 479

ing. Summarization: CNN-DM (See et al., 2017), 480

MSMARCO (Nguyen et al., 2016), and XSUM 481

(Narayan et al., 2018). Open QA : TruthfulQA 482

(Lin et al., 2022), FalseQA (Hu et al., 2023), and 483

StrategyQA (Geva et al., 2021). Multi-choice QA: 484

MMLU (Hendrycks et al., 2020), WiCE (Kamoi 485

et al., 2023), and FEVER (Thorne et al., 2018). In 486

order to maintain consistency in reporting hallu- 487

cination mitigation performance, several leader- 488

boards and benchmarks have been established 489

which allow researchers to submit their models 490

for evaluation (Hong et al., 2024; Hughes et al., 491

2023; Li et al., 2023). 492

Hallucination detection Traditional n-grams 493

metrics like ROUGE-L (Lin, 2004) and classifier- 494

based metrics like factual consistency (Vectara, 495

7



2024) are commonly used to evaluate halluci-496

nations. The former measures n-grams overlap497

among pairs of prediction and ground truth, and498

the latter is a T-5 based classification model that499

predicts whether a prediction is fully supported500

by a context. Nonetheless, these metrics might501

fall short in differentiating the subtle discrepan-502

cies between the generated content and the source503

content (Huang et al., 2023), since they are lim-504

ited to assessing only the generated text (hence505

external metrics). Other methods operate on log-506

probabilities (Yuan et al., 2021; Fu et al., 2023)507

and entropy (Xiao and Wang, 2021), which can be508

viewed as internal metrics that process data at the509

last softmax stage in the transformer architecture.510

Recently Chuang et al. (2024) proposes Lookback-511

Lens classifier for hallucination detection, which512

predicts the level of factuality, i.e., factual rate,513

based on the ratio of attention weights given to con-514

text versus those given to newly generated tokens.515

Factual rate is used in our work since it addresses516

two main downsides of mainstream metrics: 1) it517

examines internal states across all attention layers518

excluding non-linear transformations in forward519

layers, offering a new perspective to understand the520

intricate behaviors of LLMs. 2) grounded on the521

task of hallucination detection, factual rate gives a522

direct estimation of hallucination instead of being523

grounded on overlaps measure like ROUGE-L.524

Knowledge distillation There are a wide range525

of distillation techniques, from distributions di-526

vergence to hidden states similarity (Xu et al.,527

2024). Divergence-based methods minimize the528

divergence between the probability distributions of529

the teacher and student models. Similarity-based530

methods aim to align hidden states of the models,531

ensuring similar manner in processing information532

among the models. Since distributions divergence533

KD is very close to the analogy in §2.2, we argue534

that divergence-based KD can address the short-535

comings of hard labels and reduce hallucination536

in LLMs. In particular, our work concentrates537

on sequence and word-level KD (Kim and Rush,538

2016), a form of divergence-based KD. Through539

word-level KD, student models learn from teachers’540

prediction at each timestep. Through sequence-541

level KD, students learn from teachers’ prediction542

of sequences, which does not have a close-form543

cross-entropy representation like word-level KD.544

Instead, teacher-generated text used as labels in545

LCE and LKD approximately represent sequence-546

level distributions. Essentially, Equation (3), when 547

applied with token labels generated by teachers, is 548

equivalent to sequence and word-level combined 549

KD. In contrast, when applied with the original 550

labels from the training dataset, the paradigm re- 551

duces to word-level KD. In terms of KD effec- 552

tiveness, recent research also shows mixed results. 553

For instance, Wang et al. (2024) finds that KD 554

produces less capable models than SFT, while dis- 555

tillation pretraining has produced more capable 556

models than supervised pretraining in Gemma and 557

Gemini (Team et al., 2024), Minitron (Sreenivas 558

et al., 2024), and AFM (Gunter et al., 2024) fam- 559

ilies. This is further discussed in the recent work 560

about distillation scaling laws (Wang et al., 2024), 561

where, among other findings, it is better to choose a 562

smaller teacher, slightly more capable than the tar- 563

get student capability, rather than a large, powerful 564

teacher. This research is helpful in understanding 565

any inconsistencies in our results and in designing 566

optimal KD experiments in the future. 567

5 Conclusions 568

This paper explores knowledge distillation (KD) 569

as a strategy for mitigating hallucination in large 570

language models (LLMs) by replacing hard-label 571

training with smoothed soft labels. We demon- 572

strate that KD reduces overconfidence and im- 573

proves factual grounding by enabling models to 574

learn from a more calibrated probability distri- 575

bution. Through experiments on multiple model 576

families and summarization benchmarks, we show 577

that KD-trained models exhibit lower hallucination 578

rates compared to standard finetuning while main- 579

taining strong general NLP performance. Our find- 580

ings highlight the limitations of traditional hard- 581

label supervision and emphasize the need for more 582

uncertainty-aware training paradigms. Future work 583

could explore adaptive KD strategies that dynami- 584

cally adjust soft-label smoothing based on context 585

sensitivity, integrate KD with retrieval-augmented 586

generation (RAG) for further grounding, or ex- 587

tend these techniques to multimodal and domain- 588

specific LLMs to improve factual accuracy across 589

diverse applications. 590

Limitations 591

Dependence on a well-calibrated teacher model 592

The effectiveness of KD relies on the quality of 593

the teacher model. If the teacher itself exhibits 594

hallucination or poor factual calibration, the stu- 595
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dent model may inherit these weaknesses rather596

than mitigating them. While KD smooths token597

probabilities, it does not inherently improve the598

correctness of the teacher’s outputs. Future work599

could explore selecting or adapting teacher models600

with explicit hallucination mitigation techniques to601

ensure more reliable supervision.602

KD in instruction finetuning To fully avoid603

assumption-prone behavior, KD should ideally be604

integrated into pretraining rather than applied only605

during finetuning. For example, Llama-3.2-1B606

was pretrained using logits from Llama-3.1-70B as607

word-level targets2, although the effects on halluci-608

nation have not been explicitly documented. Due609

to resource constraints, our experiments focused610

solely on instruction finetuning, meaning our re-611

sults may not capture the full potential of KD in612

mitigating hallucination when used at scale dur-613

ing pretraining. Investigating how KD influences614

hallucination when applied earlier in the training615

pipeline remains an important direction for future616

research617

Limited scope in hallucination categorization618

Our study specifically targets faithfulness halluci-619

nation, where the model generates content that is620

inconsistent with the provided context. However,621

factuality hallucination, where the generated text622

contradicts real-world knowledge, is another criti-623

cal issue that we did not examine. Since different624

types of hallucinations require different mitigation625

strategies, future work should explore whether KD626

has similar benefits for factuality hallucination and627

how it compares to other debiasing techniques.628

Computational cost of knowledge distillation629

Although KD is more computationally feasible630

than pretraining from scratch, it still introduces ad-631

ditional overhead compared to standard finetuning.632

Running teacher inference and student optimiza-633

tion increases resource demands, especially for634

large teacher models. Optimizing KD efficiency,635

such as distilling from smaller ensembles or using636

precomputed soft labels, could make this approach637

more practical for large-scale deployment.638

Evaluation limitations and alternative metrics639

Our evaluation primarily relies on ROUGE-L, fac-640

tual consistency, and factual rate, but other relevant641

metrics—such as METEOR, BERTScore, and Self-642

2https://ai.meta.com/blog/llama-3-2-connect-2024-
vision-edge-mobile-devices/

CheckGPT—were not considered. These alterna- 643

tive metrics could provide additional insights into 644

hallucination tendencies, particularly for assessing 645

deeper semantic alignment and self-consistency. 646

Additionally, we did not incorporate human evalua- 647

tion, which remains the gold standard for assessing 648

hallucination, as it can capture nuanced errors that 649

automated metrics 650

Multi-faceted nature of hallucination While 651

our study focuses on overconfidence from hard 652

labels, hallucination arises from a broader range 653

of factors. Exposure bias—caused by the discrep- 654

ancy between teacher-forced training and autore- 655

gressive inference—can lead to hallucination when 656

the model generates sequences unobserved during 657

training. Data imbalance can amplify hallucination 658

in low-resource knowledge areas. The attend-to-all 659

mechanism in transformers may dilute attention 660

over longer sequences, degrading faithfulness. Ad- 661

ditionally, models can exhibit inability to reject 662

incorrect patterns, as seen in ChatGPT’s persis- 663

tent success in Tic-Tac-Toe even when instructed 664

to lose. Given the multifaceted nature of halluci- 665

nation, our work addresses only one contributing 666

factor. A more comprehensive mitigation strategy 667

should integrate KD with other techniques, such 668

as reinforcement learning from human feedback 669

(RLHF), retrieval augmentation, and uncertainty- 670

aware decoding. 671
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A Overconfidence Evaluation1064

To justify the use of smoothed labels in reducing1065

overconfidence, we first verify that LLMs are over-1066

confident when finetuned with hard labels.1067

In our experiments, four LLMs, including1068

Mistral-7B, Llama2-7B, Pythia-6.9B (Penedo1069

et al., 2023) and Falcon-7B are finetuned on the1070

multiple choice QA dataset of CommonsenseQA1071

(Talmor et al., 2019) using QLoRA (Dettmers et al.,1072

2023). The finetuned models are evaluated on the 1073

validation set of CommonsenseQA with zero shot 1074

prompts. For a fair comparison, they are compared 1075

to vanilla (unfinetuned) models in a few-shot set- 1076

ting with instances from the training set as example 1077

shots. 1078

To measure confidence, the negative log- 1079

likelihood (NLL) of incorrect answers are used. 1080

Specifically, when the model answers incorrectly, 1081

we extract from the first prediction step the NLL of 1082

its answer, which is either “a”, “A”, “b”, “B”, “c”, 1083

“C”, “d”, “D”, “e”, or “E”. The generated answers 1084

are also utilized to calculate the overall accuracy 1085

of these models. 1086

Model acc
Llama-2-7B 32.8
Llama-2-7B-SFT 48.8
Mistral-7B 70.0
Mistral-7B-SFT 76.4
Pythia-6.9B 20.6
Pythia-6.9B-SFT 19.4
Falcon-7B 21.3
Falcon-7B-SFT 20.4

Table 3: Accuracy of LLama-2-7B, Mistral-7B, Falcon-
7B, and Pythia-6.9B on the validation set of Common-
senseQA.

Figure 3 presents the overconfidence of vanilla 1087

and finetuned LLMs on their incorrect predictions, 1088

and table 3 shows their accuracy. For all incorrect 1089

answers, the level of confidence is very high for 1090

all models, with the curves mostly leaning towards 1091

zero. After finetuning, Mistral and Falcon become 1092

more confident in their incorrect answers, which is 1093

evident by the height increase of the orange curves 1094

from the blue curves. Falcon and Pythia, on the 1095

other hand, do not seem to perform well on the mul- 1096

tiple choice QA task, with their accuracy worsens 1097

after finetuning. These results indicate that finetun- 1098

ing with hard labels may improve accuracy in a par- 1099

ticular task, but hardly reduce, or even raise their 1100

overconfidence. This necessitates the use of label 1101

smoothing in order to mitigate overconfidence and 1102

thus hallucination. 1103

B Experiments on Small Scale LMs 1104

As support evidence, in addition to experiments 1105

with 7B and 8B models, we also evaluate small 1106

scale LMs from 350M to 1B parameters: Bloomz- 1107

560M and MT0-580M (Muennighoff et al., 2022), 1108
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Figure 3: Kernel density estimation of confidence levels of incorrect answers in vanilla and finetuned (a) LLama-2-
7B, (b) Mistral-7B, (c) Falcon-7B, (d) Pythia-6.9B, when evaluated on the validation set of CommonsenseQA. The
confidence level is measured as the NLL.

OPT-350M (Zhang et al., 2022), and Pythia-1B1109

(Biderman et al., 2023). We reuse models from1110

(Boizard et al., 2024)3, which are finetuned un-1111

der SFT and KD (with Llama-2-7B and Mistral-1112

7B teachers) on PubMedQA question-answering1113

dataset (Jin et al., 2019) and DialogSum summa-1114

rization dataset (Chen et al., 2021). Evaluation1115

benchmarks used include HotpotQA (Yang et al.,1116

2018), TruthfulQA (Lin et al., 2022) for factual-1117

ity hallucination, and CNN/Daily Mail (See et al.,1118

2017) for faithfulness hallucination. Metrics used1119

include ROUGE-L (Lin, 2004), CHRF (Popović,1120

2015), BERTSCORE (Zhang et al., 2019), and1121

METEOR (Banerjee and Lavie, 2005).1122

Table 4 illustrates the performance of student1123

models of Bloomz-560M, OPT-350M, mt0-580M,1124

and Pythia-1B with Llama-2 teacher on Truthful1125

QA and Hotpot QA. KD models consistently out-1126

3https://huggingface.co/Nicolas-BZRD

perform their baseline counterparts, showing en- 1127

hancements in all metrics, affirming their effective- 1128

ness in dealing with complex QA tasks. Likewise, 1129

Bloomz-560M, OPT-350M, and Pythia-1B demon- 1130

strate enhancements over the baselines on CNN/- 1131

Daily Mail when employing KD with Mistral as the 1132

teacher for the summarization task (Table 5). How- 1133

ever, the student model for MT0-base, exhibits a 1134

minor decline in performance compared to the base 1135

model on the same dataset. These improvements 1136

are consistent with those on larger scale LMs, con- 1137

solidating our hypothesis. 1138
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Student Version TruthfulQA Hotpot QA
rougeL CHRF BertScore METEOR rougeL CHRF BertScore METEOR

Bloomz-560M SFT 11.4 16.3 80.7 12.1 16.8 20.8 83.8 15.3
KD 13.2 17.0 81.5 13.1 19.2 23.3 85.1 16.7

mt0-580M SFT 32.8 41.9 88.2 38 5.2 13.8 80.8 9.7
KD 35.4 42.3 88.5 38.6 6.1 15.0 81.3 10.7

OPT-350M SFT 17.5 22.3 46.2 17.9 6.7 14.8 80.5 11.1
KD 16.6 20.4 37.8 16.6 6.9 15.4 80.9 11.2

Pythia-1B SFT 25.9 39.2 86.9 33.6 6.2 14.3 80.7 11.8
KD 27.8 41.1 87.2 36.2 7.4 16.2 81.2 12.9

Table 4: Hallucination evaluation results for smaller scale student models with supervised finetuning (SFT) and
knowledge distillation (KD). Models are evaluated on Truthful QA and Hotpot QA for question answering.

Student Version
CNNDM

rougeL CHRF BertScore METEOR

Bloomz-560M
SFT 20.4 33.2 85.8 25.6
KD 20.8 33.6 85.9 26.1

mt0-580M
SFT 21.9 35.0 85.6 27.7
KD 21.7 33.9 85.6 26.4

OPT-350M
SFT 23.1 35.4 86.3 28.4
KD 23.5 35.7 86.4 28.9

Pythia-1B
SFT 21.5 34.9 86.1 27.1
KD 21.7 35.0 86.2 27.6

Table 5: Hallucination evaluation results for smaller scale student models with supervised finetuning (SFT) and
knowledge distillation (KD). Models are evaluated on CNN/Daily Mail for summarization.
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