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ABSTRACT

Vision Mamba has shown close to state of the art performance on computer vision
tasks, drawing much interest in increasing it’s efficiency. A promising approach
is token reduction (that has been successfully implemented in ViTs). Pruning
informative tokens in Mamba leads to a high loss of key knowledge and de-
graded performance. An alternative, of merging tokens preserves more informa-
tion than pruning, also suffers for large compression ratios. Our key insight is that
a quick round of retraining after token merging yeilds robust results across various
compression ratios Empirically, pruned Vims only drop up to 0.9% accuracy on
ImageNet-1K, recovered by our proposed framework R-MeeTo in our main eval-
uation. We show how simple and effective the fast recovery can be achieved at
minute-level, in particular, a 35.9% accuracy spike over 3 epochs of training on
Vim-Ti. Moreover, Vim-Ti/S/B are re-trained within 5/7/17 minutes, and Vim-S
only drops 1.3% with 1.2× (up to 1.5 ×) speed up in inference.
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Figure 1: Performance comparison w.r.t. reduction ratio: a) Transformer and Mamba in token
pruning; b) Merging and pruning with Mamba. Transformer and Mamba are respectively DeiT-
S (Touvron et al., 2021)/Vim-S (Zhu et al., 2024), tested on ImageNet-1K (Deng et al., 2009).

1 INTRODUCTION

Vision Mambas (e.g., Vim (Zhu et al., 2024)) have successfully introduced Mamba (Gu & Dao,
2023) into computer vision, achieving promising results (Zhu et al., 2024; Liu et al., 2024b; Pei
et al., 2024; Yang et al., 2024a). The success of Vim and its follow-up works (Vims) is closely tied
to the SSM (Gu & Dao, 2023) model’s efficient sequence processing.

Token reduction is popular in model efficiency. The efficiency of DynamicViT (Rao et al., 2021)
and its ilk (Meng et al., 2022; Liang et al., 2022; Chen et al., 2023) helps in conducting an effective
Transformer with reduced tokens. EViT (Liang et al., 2022) identifies the informative tokens and
simplifies the training process. AdaViT (Meng et al., 2022) shifts the view of computation reduc-
tion to attention heads and blocks, giving more flexibility to handling image tokens. Token pruning
has yielded promising outcomes in ViTs (Rao et al., 2021; Liang et al., 2022; Pei et al., 2024), yet
its efficiency in Vim remains unexplored. Token reduction performs well in input-agnostic Trans-
former (Bolya et al., 2023), while that on Mamba is unexplored. Therefore, comparative analyses
of the performance between Transformer and Mamba are conducted in Fig. 1a. These present a
challenge that the token pruning operation, designed on ViTs, performs less effectively on Vim.

Mamba’s sequential dependency implies that token reduction varies from Transformer. A closer
look at the difference between Transformer and Mamba: after a given time t, the token in Mamba
contains more general knowledge than that in Transformer, due to the enrichment effect of SSM:
tokens are asymmetric in the amount of information they keep (Theorem 1). As a result, the tokens
at the end of a sequence share the most general knowledge. Pruning these informative tokens leads

1
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to the high loss of general knowledge and performance drop. So pruning is not a good solution to
make Mamba more efficient.

Token merging (Kong et al., 2022; Bolya et al., 2023) is an alternative solution for token reducing. It
has demonstrated commendable performance in ViTs, and it preserves more token information than
pruning. We present a performance comparison between pruning and merging under various reduc-
tion ratios, and the merging consistently outperforms pruning in Fig. 1b. Pruning directly removes
tokens, resulting in loss of key knowledge. In contrast, merging preserves more key knowledge.

However, merging performance drops as the reduction ratio grows either, as shown in Fig. 1b. This
suggests that training-free is not a good solution for maintaining key knowledge and performance in
Mamba. In Tab. 1b, we observe that simply re-training the model with token merging enhances the
performance of Mamba. We find that re-training effectively rebuilds the key knowledge in Mamba.

R-MeeTo (Re-training Merged Token) is therefore proposed. Its overall goal is to rebuild an ef-
fective pruned Mamba model with a faster inference speed. Empirically, R-MeeTo recovers token-
reduced models’ performance, leading only up to 0.9 drop on ImageNet-1K. We show that the re-
covery can be achieved at minutes-level. In particular, a 35.9 accuracy is regained over three epochs
of training in only 4.2 minutes on Vim-Ti. The inference efficiency is up to 1.5x on RTX 4090s. We
highlight the main contributions of this paper below:

• We hypothesize that the key knowledge loss in tokens mainly causes the token reduction’s
performance dropa, a view comprehensively from both theoretical and empirical research.

• A simple yet effective framework R-MeeTo, fast recovering key knowledge and perfor-
mance, provides an direction for practical and industrial visual Mamba’s efficiency.

• Our framework recovers the pruned models at minute-level, e.g, for Vim-Ti, R-MeeTo
recovers 35.9% accuracy with only 8 minutes re-training on ImageNet-1K.

2 METHODOLOGY
2.1 PRELIMINARY: STATE SPACE MODELS

Structured SSM. Structured Sate Space Model (SSM) is a linear time-invariant system w.r.t. time
t, whose discrete form is shown as follows:

ht = Aht−1 +Bxt, yt = Cht (1)

where the state matrix A, the input matrix B, and the output matrix C are three learnable parameters,
xt and yt are respectively input and output, and ht is the hidden state at time t. ht and ht−1 are
simplified as h and h− in following transfer equations and analyses. These diagonal plus low-rank
structure are designed to compute sequence-to-sequence modules efficiently (Dao & Gu, 2024).

Selective SSM. In Mamba (Gu & Dao, 2023), proposed Selective SSM change the linear time-
invariant system into non-linear time-variant system with a design of a discrete non-linear operator
decided by ∆t. ∆t is directly used as a gate to discrete A and B, and further influence C, which
change the system into the non-linear and time-variant one:

ht = Atht−1 +Btxt, yt = Ctht (2)

where At, Bt and Ct are dependent on xt and thus time-dependent version of the ones in Equ. 1.
In this section, we use Xt to represent the input of SSM xt’s random variable, and Yt is output yt’s
random variable accordingly.

2.2 DISCUSSIONS

In this section, we propose explanations about the observations in Fig. 1. The analyses are based on
the difference between the Attention Block and SSM from information transferring perspectives.

The key knowledge (i.e., specific and general knowledge) is reduced by token reduction, and further
the remnant tokens and their imbalance lead to performance drop. As shown in Fig. 2, the essential
causes are: 1) a large amount of general knowledge is irreparably reduced; 2) specific knowledge
keeping ratio is low and imbalanced. Further experiments in Fig. 3 support our theorem, if we shuffle
token after reduction, only Mamba dropping, which means tokens in Transformer is not sensitive to
its order of tokens’ indexes. Moreover, token reduction’s disruption to sequential dependency is one
of the reasons for performance dropping, due to the knowledge embedded in the tokens’ sequence.

2
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Takeaways. The main conclusions are as follows:

Mamba is more sensitive in pruning. Due to the marginal enrichment effects proposed in Theorem 1,
we show that it’s a higher chance to prune tokens containing more general knowledge in Mamba,
according to Corollary 2.

Merging performs better in Mamba. It’s because merging keeps more key knowledge by token
keeping and filtering with similarity, according to Corollary 3.

Re-training is a simple and effective solution. With most of the key knowledge still retained, the
performance can simply recovered by re-training as shown in Tab. 1b.

2.3 DETAILED ANALYSES AND RELATED THEOREMS

IB

IB

Reduced General Knowledge

Specific Knowledge

General Knowledge

T1 …   t   … 1 T…   t   … 1 T…   t   …

T1 …   t   … 1 T…   t   … 1 T…   t   …
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Attention Block State Space Model
State Space Model

(Bidirectional)

Token Reduction

IB: Information Bottleneck
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e
n
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k
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n

s

Reduced-MoreReduced-RandomReduced-Even

Figure 2: Analysis’ sketch: Mamba is sensitive to token
reduction from information perspective.

In order to conduct fair comparison, the
modules are assumed to be with the
same information compression and ex-
traction ability to get rid of the com-
plicated impacts of the models’ perfor-
mance about scale of parameters, train-
ing tricks and others. Y T and Y M

are the output signals of the Attention
Block and SSM respectively.
Assumption 1. (Equal compressed in-
formation.) The output signals have the
same entropy, both in general and in in-
ference.{

H(Y T
0:T ) = H(Y M

0:T ),

H(Y T
0:T |Xt) = H(Y M

0:T |Xt), ∀t ∈ [T ].
(3)

where H is the Shannon entropy, and 0 : T represents the discrete tokens’ indexes from 0 to T − 1.
Assumption 2. (Equal amount of shared knowledge.) Given the same inputs or not, the same
general knowledge amount share between Yt:T and Y0:t should be kept.{

I(Y T
t:T ;Y

T
0:t) = I(Y M

t:T ;Y
M
0:t ), ∀t ∈ [T ],

I(Y T
t:T ;Y

T
0:t|Xt) = I(Y M

t:T ;Y
M
0:t |Xt), ∀t ∈ [T ].

where I is the mutual information. (4)

Remark 1. Under Assumption 1, its equations allow us to focus on the equally expressive Attention
and SSM modules, instead of the number of parameters, implementation tricks and detailed design
involved. Assumption 2 guarantees that the amount of general knowledge is the same between
Attention Blocks in Transformer and SSMs in Mamba, for any inputs {Xt}t∈[T ].

Thus, the effect of external factors to performance is ruled out with given assumptions, according
to Remark 1, and we therefore study the inherent effects and differences between these modules’
mechanisms as followings.
Theorem 1. (Enrichment effect in Mamba.) Under Assumption 1 and Assumption 2, we have the
following relationship between Attention Block and SSM.{

I(Y M
t:T ;Xt) ≥ I(Y T

t:T ;Xt), ∀t ∈ [T ],

I(Y M
t:T ;Xt:T ) ≥ I(Y T

t:T ;Xt:T ), ∀t ∈ [T ].
(5)

Corollary 1. (Directions of SSM along time t and reverse.) The direction of the inputs in SSM is
only decided by time t. It means that in a reverse (backward) SSM, where time t decrease from T to
0, we have a similar result as follows:{

I(Y M
0:t+1;Xt) ≥ I(Y T

0:t+1;Xt), ∀t ∈ [T ],

I(Y M
0:t ;X0:t) ≥ I(Y T

0:t;X0:t), ∀t ∈ [T ],
(6)

which can be simply obtained by the same derivation as forward SSM and the commutative.

3
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Remark 2. Theorem 1 shows that the tokens after time t from a SSM block have more information
about inputs at time t, comparing to what a equally expressive Attention Block have. Moreover,
Corollary 1 shows that bidirectional SSM likewise has a knowledge enrichment effect, with the
mutual information of the inputs {Xt}t∈[T ] enriched in the direction of time t change.

Proposition 1. (Marginal enrichment.) Conclusion of the 1st part: the tokens on both sides (i.e.,
those close to 0 or T in bidirectional SSM) concentrates more general knowledge. Moreover, the
enrichment effect in Mamba is more serious than that in Transformer, according to Theorem 1.

I(
X

;Y
)

Attention block 

SSM forward

Mutual Information

(DeiT-S and Vim-S on ImageNet-1K.)

1 98
T1 t

Tiny (0.14) Base (0.31)

0.42

Small (0.31)

Transformer Mamba

Acc. Drop across Model sizes (reduction ratio)

-0.5 -2.2 -1.2 -2.2 -2.8 -6.2

+0.1 -9.4 +0.1 -6.6 -0.1 -3.5

0.00 0.280.14

Acc. drop across reduction ratios

shuffle
tokens

reduce re-train

3 epoch

(w/o shuffle)

w/ shuffle
196

Figure 3: Supporting facts. 1) The empirical results of I(X;Y ),
the mutual information between inputs X and outputs Y . Mamba
is sensitive to token order. 2) Only Mamba’s performance drops
if we further Shuffle Tokens before re-training. The Attention Block
and SSM are measured by MINE (Belghazi et al., 2018) on the mid-
dle layers of DeiT-S and Vim-S (7-th/12 layers and the 14-th/24
layers respectively.) Experiments about i) token reduction are con-
ducted with DeiT-S (Touvron et al., 2021) (Transformer) and Vim-
S (Zhu et al., 2024) (Mamba) on ImageNet-1K (Deng et al., 2009).
The reduction ratios in the experiment about ii) shuffled tokens
are 0.14 for Vim-Ti and 0.31 for Vim-S/Vim-B (see Sec. 3.4 for
more details about ablation). Shuffle strategy is odd-even shuffle:
[0,1,2,3]→[0,2], [1,3]→[0,2,1,3].

By information bottleneck
theory (Tishby et al., 2000;
Tishby & Zaslavsky, 2015),
we view the inputs of each
blocks X0:T , the outputs of
the Attention or SSM mod-
ules in the block Y0:T , and
ultimately the ideal output
of the block Ŷ0:T (e.g., the
ground truth label for the last
block, ideal tokens’ represen-
tations for the next block), as
a Markov chain: Ŷ → X →
Y (with simplified indexes).
We have a objective of a well-
trained model:

min I(X;Y )− βI(Ŷ ;Y ),
(7)

where β is a given hyper-
parameter.

According to Equ. 7, in a
well-trained model, a large
amount of the specific infor-
mation about X and Y is
compressed, and more general knowledge is stored in Y . Further, Proposition 1 tell us that gen-
eral knowledge is stored in tokens on both sides in Mamba. Thus, we have the following corollaries
about the key knowledge, i.e. the specific and general ones, explaining the performance drop in
Mamba’s token reduction.

Corollary 2. (Higher risk of token reduction in Mamba.) In Mamba, the further to the center the
token is, the larger ratio of general knowledge it has, leading to the risk of general knowledge being
removed. Meanwhile, the closer to the center the token is, the larger ratio of specific knowledge,
leading to the risk of specific knowledge being removed. This doesn’t happen in Transformers. Thus,
pruning marginal or central tokens drops a much larger ratio of each key knowledge, and therefore
drops performance due to the fact that performance is supported by both specific knowledge and
general knowledge. Even in bidirectional SSMs, the tokens in both directions are distinct, simple
additive introducing more noise and limited knowledge keeping.

Corollary 3. (Merging is better.) In merging, besides not directly deleting the token, filtering the
general knowledge based on token similarity prevents the loss of all key knowledge in reduced tokens
at once. Merging is thus better than pruning. However, similarity-based reduction do not prevent
the loss of specific knowledge, and recovering this key knowledge is thus needed.

2.4 METHOD

According to the aforementioned analyses, one of the main causes about Mamba’s sensitivity and
performance drop is the loss of key knowledge by token reduction. Therefore, in this section, we
focus on the ways to effectively keep and recover the key knowledge in Mamba.

As discussed in Sec. 2.2 and Sec. 2.3, compared with pruning, merging remains the general knowl-
edge in the reduction tokens by fusing similar tokens. As results in Tab. 1a, 1) merging keeps higher
performance than pruning, especially in high reduction ratios. More given general knowledge re-

4
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reduction ratio
top-1 acc.(%)

pruning merging ∆

0.14 78.4 78.5 0.1↑
0.28 76.4 76.7 0.3↑
0.42 71.7 72.9 1.2↑
0.54 53.4 60.7 7.3↑

(a) Merging vs. pruning. Merging consistently out-
performs pruning.

reduction ratio
top-1 acc.(%)

training-free re-trained ∆

0.14 78.5 80.0 1.5↑
0.28 76.7 79.5 2.8↑
0.42 72.9 78.4 5.5↑
0.54 60.7 76.3 15.6↑

(b) Re-training vs. training-free. Re-training leads
to higher performance.

Table 1: a) Comparison between token pruning and merging operations on the performance of Vim-
S. ∆ represents the difference in performance when using merging compared to pruning. Merging
achieves higher top-1 accuracy (%) than pruning and retains more information from the unreduced
tokens. b) Comparison between training-free and re-trained on the performance of token merged
Vim-S. ∆ is the difference between retraining or not. Re-training works effectively.

stored, 2) re-training is simple but effective to recover the performance in Mamba with limited
specific knowledge, as shown in Tab. 1b.

Consistent with these facts empirically and theoretically, our proposal is that both token merging
and re-training should be combined for key knowledge keeping and recovering. Our framework, R-
MeeTo (Re-training Merged Token), is therefore simple, compatible, and effective simultaneously.

R-MeeTo. The whole process of our algorithm is shown in Algorithm 1 (in Appendix B). Merging
and re-training are two main operations in our algorithm.

R-MeeTo: Merging. Every two blocks we perform a token merge operation. In each merge process,
we pick the r closest token pairs and add them into one token in each pair. The distance between
tokens is measured by cosine between tokens’ features as default.

R-MeeTo: Re-training. We minimize the standard cross-entropy loss on training set as default.
As shown in Tab. 1b, performance increases dramatically after only 3 epochs, and thus we simply
propose that re-training is a process with compatibility and efficiency for key knowledge recovering.

3 EXPERIMENT
3.1 SETTINGS

Datasets and models. We conduct all of our experiments on the ImageNet-1K (Deng et al., 2009)
classification task and report top-1 accuracy (%). All images are augmented and resized to 2242

for evaluation. The baseline Mamba models comprise three variants of Vim (Zhu et al., 2024):
Vim-Ti with 7 million parameters, Vim-S with 26 million parameters, and Vim-B with 98 million
parameters. Following training techniques used in previous work (Touvron et al., 2021; Rao et al.,
2021), all baseline models are initialized using pretrained weights (Zhu et al., 2024).

Implementation details. All experiments are conducted on a single machine equipped with 4
NVIDIA TESLA A100 40GB GPUs. During training, we use a batchsize of 128 with gradient
accumulation performed over two steps, resulting in an effective total batchsize of 1024. Moreover,
all models are trained with AdamW optimizer with a learning rate decaying from 2e-5 to 1e-6 using
a cosine scheduler, and a weight decay of 5e-2. To ensure consistent FLOPs across R-MeeTo and
other comparison methods, the token reduction ratio is set by default to 0.14 for Vim-Ti/DeiT-Ti and
0.31 for the other models. The blocks of even indexes except the 0th block are selected to merge. By
default, tokens’ features (Xt) are merged and then reordered to preserve the order.

3.2 COMPARATIVE EXPERIMENTS

Comparative designs. To validate both our theoretical claims and the practical effectiveness of
R-MeeTo, we conduct a comparison of top-1 accuracy and FLOPs against two state-of-the-art token
pruning techniques in Mamba: Token Recognition (Liang et al., 2022) and Hidden State Align-
ment (Zhan et al., 2024). Additionally, to assess the generality of R-MeeTo, we compare the perfor-
mance of the re-trained VideoMamba (VideoM) (Li et al., 2024a) with token merged and the orig-
inal pretrained one. Specifically, Vim-Ti and VideoM-Ti, due to their low capacity, are re-trained
with token merging for 30 epochs. Contrarily, other models undergo re-training for 15 epochs.
Additionally, following Vim (Zhu et al., 2024), Vim-B is re-trained using EMA with a 0.996 de-
cay rate. Analyses. The comparison results are presented in Tab. 2. We observe that R-MeeTo

5
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method
top-1 acc.(%) FLOPs (G)

Vim-Ti Vim-S Vim-B Vim-Ti Vim-S Vim-B

Vim (baseline) (Zhu et al., 2024) 76.1 0.0 80.5 0.0 81.9 0.0 1.45 0.00 5.08 0.00 18.870.00
Token Recognition (Liang et al., 2022) 71.3 4.8↓ 74.8 5.7↓ - - 1.28 0.17↓ 3.57 1.51↓ - -
Hidden State Alignment (Zhan et al., 2024)75.1 1.0↓ 78.8 1.7↓ - - 1.29 0.16↓ 3.60 1.48↓ -
R-MeeTo (ours) 75.3 0.8↓ 79.9 0.6↓ 81.3 0.6↓ 1.28 0.17↓ 3.58 1.50↓ 13.215.66↓

PlainM-L1PlainM-L2PlainM-L3PlainM-L1PlainM-L2PlainM-L3

PlainM (baseline) (Yang et al., 2024b) 77.9 0.0 81.6 0.0 82.3 0.00 3.00 0.00 8.10 0.00 14.4 0.0
Token Recognition (Liang et al., 2022) 75.0 2.9↓ 78.3 2.7↓ 78.9 3.4↓ 2.44 0.56↓ 6.22 1.88↓ 8.35 6.05↓
Hidden State Alignment (Zhan et al., 2024)77.4 0.5↓ 81.0 0.6↓ 81.7 0.6↓ 2.46 0.54↓ 6.27 1.83↓ 8.44 5.96↓
R-MeeTo (ours) 77.3 0.6↓ 81.4 0.2↓ 82.1 0.2↓ 2.46 0.54↓ 6.29 1.81↓ 8.46 5.94↓

VideoM-TiVideoM-S VideoM-BVideoM-TiVideoM-S VideoM-B

VideoM (baseline) (Li et al., 2024a) 76.9 0.0 81.2 0.0 82.7 0.0 1.45 0.0 5.08 0.00 18.87 0.00
R-MeeTo (ours) 75.9 1.0↓ 80.1 1.1↓ 81.9 0.8↓ 1.28 0.17↓ 3.58 1.50↓ 13.215.66↓
Table 2: Comparison between different token reduction methods on the performance of Vim-Ti,
Vim-S and Vim-B in ImageNet-1K classification. R-MeeTo (ours) consistently achieves higher
top-1 accuracy (%) than competing methods across various scales of Vims and VideoMs while
maintaining comparable FLOPs. PlainMamba (PlainM) are from (Yang et al., 2024a).
consistently achieves higher top-1 accuracy than competing methods across various scales of Vim
models while maintaining comparable FLOPs. Specifically, R-MeeTo demonstrates a substantial
improvement over Token Recognition for Vim-Ti, achieving a 3.7% higher top-1 accuracy. For
Vim-S, R-MeeTo outperforms both Token Recognition and Hidden State Alignment, with consid-
erable gains, respectively. Moreover, R-MeeTo yields a notable reduction in FLOPs for Vim-B and
VideoM-B, decreasing from 18.87G to 13.21G, with only a 0.6%/0.8% decrease in top-1 accuracy,
respectively. Additionally, unlike competing methods that show decreased performance with larger
models after token reduction, R-MeeTo effectively recovers performance across models of varying
scales, highlighting its robustness.

3.3 FASTER MAMBA IN MINUTES

hardware Vim-TiVim-SVim-B

1 × 8 × H100 (single machine) 16.2 25.2 57.6
2 × 8 × H100 (InfiniBand (Pfister, 2001)) 8.1 12.9 30.6
4 × 8 × H100 (InfiniBand (Pfister, 2001)) 4.2 6.8 16.9
Table 3: Wall time (minutes) of re-training Vim-Ti, Vim-
S and Vim-B for 3 epochs on 3 hardwares. Give us min-
utes, we back a faster Mamba. Fig. 4 shows how fast it is.

We conduct re-training experiments for
3 epochs on Vim-Ti, Vim-S, and Vim-
B for ImageNet-1K classification. The
experiments are performed on a sin-
gle machine equipped with 8 NVIDIA
H100 GPUs. Additionally, we conduct the same experiments on two and four machines, each with
8 NVIDIA H100 GPUs, connected via InfiniBand (Pfister, 2001). This setup allows us to evaluate
the scalability and performance of R-MeeTo across different hardware configurations. Specifically,
gradient accumulation is performed over two steps, with the per-GPU batch sizes set as follows:
Vim-Ti at 2304 = 1152× 2, Vim-S at 1408 = 704× 2, and Vim-B at 512 = 256× 2. This ensures
optimal utilization of GPU memory for each model variant. We report the wall time (in minutes)
for each re-training in Tab. 3. As shown, all Vims are re-trained within 60 minutes. Re-training the
Vim-S model on 4× 8× H100 costs≤ 10 minutes only. Give us minutes, we back a faster Mamba.

3.4 ABLATION STUDY

Case study on token order: odd-even shuffle.

\model tiny small base
order ✗ ✓ ∆ ✗ ✓ ∆ ✗ ✓ ∆

DeiT 69.7 69.7 0.0↓ 79.1 79.0 0.1↓ 80.7 80.7 0.0↓
Vim 64.8 74.0 9.4↑ 72.8 79.3 6.6↑ 72.5 80.2 7.7↑

Table 4: Ablation study on the impact of token or-
der’s to top-1 accuracy (%) of DeiT and Vim using
R-MeeTo. ∆ represents the difference in perfor-
mance between with and without reordering. To-
ken reordering has minimal impact on the perfor-
mance of DeiT models but plays a critical roles in
the performance of Vim models.

We first conduct a case study on tokens’ or-
der after merging. Specifically, we re-train Vim
and DeiT models on the ImageNet-1K for 3
epochs using R-MeeTo, comparing results on
whether tokens shuffle. The shuffle strategy
is odd-even shuffle, e.g., indexes from 0 to 3:
[0, 1, 2, 3] → {[0, 2], [1, 3]} → [0, 2, 1, 3]. It
works in Transformers (Bolya et al., 2023).

Analyses. The final top-1 accuracy comparison is presented in Tab. 4. As shown, token re-ordering
has minimal impact on the performance of DeiT models during re-training and token merging, with
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no significant difference in top-1 accuracy when re-ordering is applied or omitted. In contrast,
maintaining token order substantially enhances performance for Vim models, with comparable im-
provements for Vims, respectively. These findings validate our theoretical claims and highlight the
critical role of maintaining token order in Vims, particularly for the smallest variant (i.e., Vim-Ti),
underscoring its importance in token reduction. model featuretraining-freere-trained ∆

Vim-Ti

Xt 38.2 74.0 35.8↑
Ct 34.8 73.8 39.0↑
Bt 49.7 73.8 24.1↑
∆t 31.2 73.9 42.7↑

Vim-S

Xt 76.3 79.3 3.0↑
Ct 76.1 78.7 2.6↑
Bt 74.9 78.1 3.2↑
∆t 76.2 78.6 2.4↑

Table 5: Ablation study on the impact of dif-
ferent feature choices to top-1 accuracy (%)
during token merging in R-MeeTo. ∆ repre-
sents the difference in performance between
training-free and re-trained models using se-
lected feature. Token features (Xt) can ac-
curately summarizes the information within
tokens in the Vim architecture.

Quantitative study on token order: shuffle ra-
tio. To further investigate the role of token order in
Vims during token reduction, we first conduct ex-
periments where only rs% of the tokens’ features
(Xt) are shuffled before each token reduction oper-
ation. Here, rs denotes the shuffle ratio, defined as
the proportion of unordered features relative to the
total number of features. Next, to explore how dif-
ferent level of shuffle ratios influence varying token
reduction methods, we evaluate the performances of
re-trained Vim-S models using both token pruning
and merging. All models are re-trained for 3 epochs
for consistency in comparison.

Analyses. Tab 6a shows the performance of
training-free and re-trained Vims under different
shuffle ratios. As observed, the performance of
training-free Vims drastically declines as the ran-
domness in the ordering of feature sequences increases. This emphasizes the importance of token
order in the Vim architectures. This effect is particularly pronounced for Vim-Ti, likely due to
its fewer number of parameters and lower capacity. Nonetheless, re-training substantially recovers
performance for both Vim-Ti and Vim-S, validating the effectiveness of our proposed method (i.e.,
R-MeeTo). On the other hand, the comparison of different token reduction operations across differ-
ent shuffle ratios is illustrated in Tab 6b. It can be seen that token merging consistently outperforms
token pruning for both training-free and re-trained models at all shuffle ratios. These results further
support our theoretical conclusions and validate that better do token merging instead of pruning.

model shuffle ratio training-free re-trained ∆

Vim-Ti

0.1 24.0 69.9 45.9↑
0.3 8.3 65.5 57.2↑
0.5 5.7 64.3 58.6↑
0.7 5.1 63.9 58.8↑

Vim-S

0.1 61.3 76.2 14.9↑
0.3 33.2 73.0 39.8↑
0.5 27.3 71.9 44.6↑
0.7 26.1 71.6 45.5↑

(a) Varying shuffle ratio. Token order is crucial.

operation shuffle ratio training-free re-trained ∆

pruning

0.1 61.0 76.0 15.0↑
0.3 33.0 72.6 39.6↑
0.5 27.2 71.5 44.3↑
0.7 25.6 71.4 45.8↑

merging

0.1 61.3 76.2 14.9↑
0.3 33.2 73.0 39.8↑
0.5 27.3 71.9 44.6↑
0.7 26.1 71.6 45.5↑

(b) Merging wins pruning at all shuffle ratios.
Table 6: Ablation study on the impact of token order’s on the performance of Vim-Ti and Vim-S
in ImageNet-1K classification with varying shuffle ratios. Shuffle ratio represents the proportion of
unordered token features relative to the total number of token features. ∆ represents the difference
in performance between training-free and re-trained models. Maintaining token order is important
in Vim architecture for all token reduction methods, re-training can effectively recover the model
performance after token reduction.
Metric ablation: features. To assess the impact of different features on measuring token similarity,
we apply the token merging operation each to tokens’ features (Xt), the output features (Ct :=
Ct(Xt)), the input features (Bt := Bt(Xt)) and gated features (∆t := ∆t(Xt)). Then, we re-train
Vims on ImageNet-1K with each feature for 3 epochs.

Analyses. A previous study (Bolya et al., 2023) on token merging in ViT concluded that to-
kens’ features (Xt) are less effective than other features (e.g., attention query, attention key,
etc.) for determining token importance. However, within the Vim architecture, our findings
reveal the opposite ones, as shown in Tab. 5. Specifically, Vim-Ti’s performance after to-
ken reduction and re-training has little difference for all features, showing its compatibility.
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model distance training-free re-trained ∆

Vim-Ti
cosine 38.2 74.2 36.0↑
ℓ1 38.1 74.2 36.1↑
ℓ2 38.2 74.3 36.1↑

Vim-S
cosine 76.3 79.3 3.0↑
ℓ1 76.3 79.3 3.0↑
ℓ2 76.3 79.4 3.1↑

Table 7: Ablation study on the impact of
different distance function to top-1 accuracy
(%) during token merging in R-MeeTo. ∆
represents the difference in performance be-
tween training-free and re-trained models us-
ing selected distance function. The Vims
show robustness to the choice of distance
function in the token merging operation.

Meanwhile, in Vim-S, employing Xt results in no-
tably better performance, outperforming other fea-
tures by up to 0.9%. These overall results suggest
that Xt can accurately summarize the information
within tokens in the architectures.

Metric ablation: distance function. To investigate
the impact of different distance functions, we con-
duct experiments as follows. Detailedly, we select
cosine similarity, ℓ1 distance, and ℓ2 distance as our
distance functions for measuring token similarity in
the token merging operation. we compare the final
top-1 accuracies of re-trained Vims on ImageNet-1K
using selected functions for 3 epochs.

Analyses. The results are illustrated in Tab. 7. As
observed, all three distance functions yield comparable top-1 accuracies, with only marginal differ-
ences across trials. Namely, no single distance function consistently outperforms the others across
all experiments for both Vim-Ti and Vim-S models. These findings suggest that the Vim architec-
tures demonstrate robustness to the choice of distance functions in the token merging operation,
indicating flexibility in similarity metrics keeping performance, supporting our design.

dataset 100% 10% 5% 1%

acc. (w/o re-train: 76.3) 79.2 78.4 78.4 76.0
∆ (Comparing to 76.3) 2.9↑ 2.1↑ 2.1↑ 0.3↓

Table 8: Ablation study on the impact of differ-
ent dataset scales to top-1 accuracy (%) of Vim-S
using R-MeeTo. ∆ represents the difference in
performance between training-free and re-trained
models using a subset of the full ImageNet-1K
dataset. R-MeeTo demonstrates adaptability to
smaller datasets but becomes susceptible to over-
fitting when the dataset is too limited in size.

Re-training efficiency. To evaluate the adapt-
ability and scalability of our approach, we con-
duct ablation experiments by re-training Vims
on the ImageNet-1K’s smaller subsets. These
subsets have 1%, 5%, and 10% data of the
original ImageNet-1K dataset. The re-training
phase sustains 3/subset ratio epochs, maintain-
ing a consistent number of model update steps.
Subsequently, to evaluate R-MeeTo’s scalabil-
ity over extended re-training, we re-train mod-
els on full ImageNet-1K varying #epochs.

epoch 1 3 5 7 15

acc. ( w/o re-train: 76.3) 79.0 79.3 79.5 79.6 80.0
marginal benefit 2.6 1.0 0.6 0.5 0.3

minutes 36 107 180 255 536
Table 9: Ablation study on the impact of re-
training duration to top-1 accuracy (%) of
Vim-S in ImageNet-1K classification using
R-MeeTo. Marginal benefit represents the
difference in performance between training-
free and re-trained models for each addi-
tional epochs. Re-training for 1-5 epochs is
the most cost-effective. Wall time reported is
trained on 4 A100.

Analyses. The results validating the adaptability and
scalability of R-MeeTo are presented in Tab. 8 and
Tab. 9. As shown in Tab. 8, R-MeeTo demonstrates
the highest effectiveness on the full ImageNet-1K
dataset, outperforming the performance of training-
free model by 2.9%. Additionally, re-training on 5%
subsets still achieves a 2.6% improvement over the
training-free method, supporting R-MeeTo’s adapt-
ability on smaller datasets. However, re-training on
only 1% subsets shows decreased performance com-
pared to the training-free approach due to increased
susceptibility to over-fitting. In contrast, longer re-
training phases consistently enhance model perfor-
mance after token merging, as seen in Tab. 9, confirming R-MeeTo’s scalability with extended re-
training epochs. Nevertheless, the incremental performance gains diminish with prolonged training,
indicating that the benefits of extended re-training gradually reach a plateau. In summary, re-training
for only 1-5 epochs provides the best trade-off between performance and computational cost.

Inference throughput. We comprehensively measure the empirical throughput (inference per
second in float16 precision) and top-1 accuracy of Vim-S using R-MeeTo across various reduction
ratios on NVIDIA RTX 3090, RTX 4090, V100, A4000, A100, and H100 GPUs to evaluate the
efficiency and scalability of our approach on different hardware architectures. This benchmarking
allows us to assess how well R-MeeTo adapts to both consumer-level and enterprise-level GPUs,
offering opportunities into performance gains achieved by varying the reduction ratio.

Analyses. The results are detailed in Fig. 4. Notably, a slight decrease in top-1 accuracy occurs
at a reduction ratio of 0.14, likely due to I/O and additional computational overhead surpassing the
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Figure 4: Throughput and top-1 accuracy comparison of Vim-S using R-MeeTo across different
reduction ratios and GPUs. R-MeeTo effectively optimizes inference speed while preserving strong
model accuracy across various hardware platforms. Notably, the performance drop at 0.14 ratio
comes from I/O and additional computational overhead outweighing the benefits of token reduction.

token reduction benefits. For other reduction ratios, throughput is significantly enhanced across all
tested GPUs, with only a marginal decrease in performance. These results validate the efficiency
and scalability of our proposed method, demonstrating that R-MeeTo effectively optimizes inference
speed. Meanwhile, it also maintains robust model accuracy across a range of hardware architectures,
making it adaptable for both consumer-level, enterprise-level and other high-performance devices.

4 RELATED WORK

Vision Mamba. Mamba (Gu & Dao, 2023), based on SSM (Gu et al., 2022; Mehta et al., 2023;
Fu et al., 2023; Smith et al., 2023), achieves a competitive performance with Transformer (Vaswani
et al., 2017) with only linear complexity of #tokens. Recently, many works(Huang et al., 2024; Li
et al., 2024a; Liu et al., 2024b; Patro & Agneeswaran, 2024; Pei et al., 2024; Yang et al., 2024a; Guo
et al., 2024; Hatamizadeh & Kautz, 2024; Chen et al., 2024b; Shi et al., 2024; Ruan & Xiang, 2024)
explore the effectiveness of Mamba in computer vision. The architectures of Mamba in computer
vision have two main branches: 1) Vim series (Zhu et al., 2024; Huang et al., 2024; Li et al., 2024a),
design a more effective bi-directional scanning block. 2) Vmamba (Liu et al., 2024b) series (Liu
et al., 2024b; Yang et al., 2024a; Pei et al., 2024; Patro & Agneeswaran, 2024), focus on cross-scan.
Moreover, different types of data are employed, e.g., video (Li et al., 2024a;b; Yang et al., 2024c;
Hu et al., 2024; Chen et al., 2024a), 3D (Zhang et al., 2024; Liang et al., 2024; Han et al., 2024; Liu
et al., 2024a), multimodel (Shi et al., 2024; Li et al., 2024b; Dong et al., 2024; Qiao et al., 2024),
motion sequence (Zhang et al., 2025). However, these works primarily focus on mechanisms and
data, lacking further optimization of existing popular vision Mambas and theoretical supports.

Token Reduction. Token pruning, as a popular strategy to reduce tokens, has already demonstrated
great potential in accelerating Transformers in both natural language processing (Goyal et al., 2020;
Kim et al., 2022; Kim & Cho, 2021) and computer vision (Meng et al., 2022; Rao et al., 2021; Yin
et al., 2022; Fayyaz et al., 2022; Song et al., 2022). However, directly deleting tokens inevitably
loses the information of pruned tokens. Merging (Xu et al., 2022; Liang et al., 2022; Kong et al.,
2022; Ryoo et al., 2021; Bolya et al., 2023; Marin et al., 2023; Chen et al., 2023), as an alternative
of tokens reduction, preserves the information from discarded tokens. As an example of merging in
Transformers, ToMe (Bolya et al., 2023) achieves inference acceleration without training. However,
Mamba has fundamental differences from Transformers, making it challenging to apply methods
from Transformers to Mamba. The difference comes from the sequence dependency of tokens in
SSM. The most related work is Hidden State Alignment (Zhan et al., 2024), which designs a selec-
tive skipping mechanism to choose pruned tokens in Vims. This work focuses on pruning methods
in Mamba. Besides Hidden State Alignment (Zhan et al., 2024), a limited number of works cur-
rently reveal the essential cause of performance dropping by token reduction. The method about
merging and its usage in Mamba is even less. Our work provides analyses about the main causes,
availability of merging, and further gives effective solutions for both accelerating and recovering
pruned Mambas’ performance.

5 CONCLUSION
In this paper, we propose three main observation about token reduction in Mamba: 1) Mamba is
more sensitive in token reduction; 2) Merging keep more key knowledge than pruning; 3) re-training
can recover the dropped performance simply and efficiently. From the perspective of information
transfer, we analyses the main causes of the sensitivity and performance drop are the enrichment
effect, the imbalance knowledge storage in Mamba, and the loss of key knowledge. Empirically, we
provide verification about our theory and the compatibility and efficiency of the proposed recovering
strategy, i.e. R-MeeTo, on token reduction.
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Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
state spaces. In ICLR, 2022.

Hang Guo, Jinmin Li, Tao Dai, Zhihao Ouyang, Xudong Ren, and Shu-Tao Xia. Mambair: A simple
baseline for image restoration with state-space model. In ECCV, 2024.

Xu Han, Yuan Tang, Zhaoxuan Wang, and Xianzhi Li. Mamba3d: Enhancing local features for 3d
point cloud analysis via state space model. In ACM MM, 2024.

Ali Hatamizadeh and Jan Kautz. Mambavision: A hybrid mamba-transformer vision backbone.
arXiv:2407.08083, 2024.

Vincent Tao Hu, Stefan Andreas Baumann, Ming Gui, Olga Grebenkova, Pingchuan Ma, Johannes
Fischer, and Björn Ommer. Zigma: A dit-style zigzag mamba diffusion model. In ECCV, 2024.

Tao Huang, Xiaohuan Pei, Shan You, Fei Wang, Chen Qian, and Chang Xu. Localmamba: Visual
state space model with windowed selective scan. arXiv:2403.09338, 2024.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Gyuwan Kim and Kyunghyun Cho. Length-adaptive transformer: Train once with length drop, use
anytime with search. In ICLR, 2021.

Sehoon Kim, Sheng Shen, David Thorsley, Amir Gholami, Woosuk Kwon, Joseph Hassoun, and
Kurt Keutzer. Learned token pruning for transformers. In KDD, 2022.

Zhenglun Kong, Peiyan Dong, Xiaolong Ma, Xin Meng, Wei Niu, Mengshu Sun, Xuan Shen, Geng
Yuan, Bin Ren, Hao Tang, et al. Spvit: Enabling faster vision transformers via latency-aware soft
token pruning. In ECCV, 2022.

Kunchang Li, Xinhao Li, Yi Wang, Yinan He, Yali Wang, Limin Wang, and Yu Qiao. Videomamba:
State space model for efficient video understanding. In ECCV, 2024a.

Shufan Li, Harkanwar Singh, and Aditya Grover. Mamba-nd: Selective state space modeling for
multi-dimensional data. arXiv:2402.05892, 2024b.

Dingkang Liang, Xin Zhou, Wei Xu, Xingkui Zhu, Zhikang Zou, Xiaoqing Ye, Xiao Tan, and Xiang
Bai. Pointmamba: A simple state space model for point cloud analysis. In NeurIPS, 2024.

Youwei Liang, Chongjian Ge, Zhan Tong, Yibing Song, Jue Wang, and Pengtao Xie. Not all patches
are what you need: Expediting vision transformers via token reorganizations. In ICLR, 2022.

Jiuming Liu, Ruiji Yu, Yian Wang, Yu Zheng, Tianchen Deng, Weicai Ye, and Hesheng Wang. Point
mamba: A novel point cloud backbone based on state space model with octree-based ordering
strategy. arXiv:2403.06467, 2024a.

Yue Liu, Yunjie Tian, Yuzhong Zhao, Hongtian Yu, Lingxi Xie, Yaowei Wang, Qixiang Ye, and
Yunfan Liu. Vmamba: Visual state space model. In NeurIPS, 2024b.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In ICLR, 2019.

Dmitrii Marin, Jen-Hao Rick Chang, Anurag Ranjan, Anish Prabhu, Mohammad Rastegari, and
Oncel Tuzel. Token pooling in vision transformers. In WACV, 2023.

Harsh Mehta, Ankit Gupta, Ashok Cutkosky, and Behnam Neyshabur. Long range language model-
ing via gated state spaces. In ICLR, 2023.

Lingchen Meng, Hengduo Li, Bor-Chun Chen, Shiyi Lan, Zuxuan Wu, Yu-Gang Jiang, and Ser-Nam
Lim. Adavit: Adaptive vision transformers for efficient image recognition. In CVPR, 2022.

Badri N Patro and Vijay S Agneeswaran. Simba: Simplified mamba-based architecture for vision
and multivariate time series. arXiv:2403.15360, 2024.

Xiaohuan Pei, Tao Huang, and Chang Xu. Efficientvmamba: Atrous selective scan for light weight
visual mamba. arXiv:2403.09977, 2024.

Gregory F Pfister. An introduction to the infiniband architecture. High performance mass storage
and parallel I/O, 2001.

Yanyuan Qiao, Zheng Yu, Longteng Guo, Sihan Chen, Zijia Zhao, Mingzhen Sun, Qi Wu, and Jing
Liu. Vl-mamba: Exploring state space models for multimodal learning. arXiv:2403.13600, 2024.

Yongming Rao, Wenliang Zhao, Benlin Liu, Jiwen Lu, Jie Zhou, and Cho-Jui Hsieh. Dynamicvit:
Efficient vision transformers with dynamic token sparsification. In NeurIPS, 2021.

Jiacheng Ruan and Suncheng Xiang. Vm-unet: Vision mamba unet for medical image segmentation.
arXiv:2402.02491, 2024.

Michael Ryoo, AJ Piergiovanni, Anurag Arnab, Mostafa Dehghani, and Anelia Angelova. Token-
learner: Adaptive space-time tokenization for videos. In NeurIPS, 2021.

Yuheng Shi, Minjing Dong, and Chang Xu. Multi-scale vmamba: Hierarchy in hierarchy visual
state space model. arXiv:2405.14174, 2024.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Jimmy TH Smith, Andrew Warrington, and Scott W Linderman. Simplified state space layers for
sequence modeling. In ICLR, 2023.

Zhuoran Song, Yihong Xu, Zhezhi He, Li Jiang, Naifeng Jing, and Xiaoyao Liang. Cp-vit: Cascade
vision transformer pruning via progressive sparsity prediction. arXiv:2203.04570, 2022.

Naftali Tishby and Noga Zaslavsky. Deep learning and the information bottleneck principle. In ITW,
2015.

Naftali Tishby, Fernando C. Pereira, and William Bialek. The information bottleneck method.
arXiv:physics/0004057, 2000.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and
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A DETAILED EXPERIMENT SETTINGS

Token reduction ratio. We use a reduction number of each layer r to control the whole token
reduction ratio. Table 10 shows the relationship between the reduction of each layer and the token
reduction ratio.

r 0 5 10 11 13 15 20

reduction ratio 0 0.14 0.28 0.31 0.36 0.42 0.54

Table 10: Relationship between reduction number of tokens r for each layer and the reduction ratio.

In our experiments, our token reduction strategy is to reduce r tokens each time, and the ablation of
r, w.r.t. performance, is shown in Table 11.

model
r the number of reduced tokens per layer

0 1 2 3 4 5 6 7 8 9 10 11

Vim-Ti 76.1 44.9 52.3 40.3 44.5 38.2 41.7 37.0 40.0 35.6 38.4 35.5
Vim-S 80.5 77.4 78.0 78.7 78.4 78.5 78.3 78.1 77.7 77.5 76.7 76.3
Vim-B 80.3 79.1 78.6 78.3 78.8 78.4 78.7 78.5 78.6 78.3 78.4 78.3

Table 11: Ablation of pruning hyperparameter r: deciding reduction ratio↑. Larger r means larger
reduction ratio. Top-1 accuracy (%) is reported.

Token-reduced blocks. In Fig. 1, the Mamba and Transformers are all pruned and merged by the
same reduction ratio. The r number of pruned and merged blocks is layer-wise. Other experiments
without comparison with Transformer in the main paper is empirically using even-block reduction,
where the first block (indexed as 0) is kept and the other even-indexed blocks are token-reduced.
The intervals between reduced tokens are 2 blocks as default, which means that we reduce tokens
every 2 blocks. Additional experiments using odd-block reduction are also included in Section. D.3
of Appendix, where the odd-indexed blocks are token-reduced.

B IMPLEMENTATION DETAILS

The framework of R-MeeTo is shown in Algorithm 1, and the detailed modules are distributed in
Algorithm 2, Algorithm 3 and Algorithm 4.

Our R-MeeTo is consists of 2 main modules: token reduction and re-training. The first module
follows ToMe (Bolya et al., 2023), but our implementation is on Mamba instead of Transformer. We
therefore propose our token merge method in the algorithms and simply use re-training to recover
performance. The intuitions of each process are presented in the comments.

C ANALYSES DETAILS

C.1 EXPLANATION

Tokens order. The token order means that before merge, we save the time t order of the tokens, and
after merge, we sort the tokens in the original time t order (default setting).

Features in Tab. 5. The feature is obtained by the outputs of components in Mamba, including
outputs of bi-directional SSM and linear projection Xt, output features of bi-directional SSM Ct,
hidden states’ increments Bt and gated features ∆t.

Less data and less training iteration. Re-training on subset (with less data). We re-train Vim-S on
1%, 5%, 10% subset of ImageNet-1K. We maintain the same iterations for all subsets. Re-training
with less iterations. We re-train Vim-S with 1/3/5/7 epochs on full ImageNet-1K.
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Algorithm 1 Re-training Merged Tokens (R-MeeTo).

1: Input: model: Mθ, dataset: D, distance: dist.(·, ·).
2: Output: a faster model.
3: tkns(l) ← {tkn(l)t }t∈[Ntotal] := M

(l)
θ (D), l ∈ [L];

4: ▷ M has L layer to reduce.
5: ▷ l is hidden below, ∵ we do the same for each layer.
6: – Token Reduction –
7: tkns1, tkns2 ← Grouping(tkns);
8: ▷ tkns,tkns1,tkns2: the input, 1-st and 2-nd divided tokens
9:

dist.←→ dists← {disti,j := dist.(tkni, tknj)},
10: ∀ tkni, tknj ∈ tkns1, tkns2;
11: ▷ Calculate distance between tokens in the groups.
12: toMs← {(i, j)| − disti,j ∈ top-r(−dists)};
13: ▷ Take the r closest: tokens to merge.

14: ˆtkns
(l+1)

← { ˆtkn
(l)

t }t∈[Ntotal−r×l]

15: := Merge(toMs); ▷ ˆtkn: the next layer’s inputs;
16: – Re-training –
17: θ̂ ← Use dataset D to re-train θ for given epochs.
18: Return reduced and re-trained θ̂

Algorithm 2 Our Implementation: Grouping.

1: Input: given tokens: tkns.
2: Output: grouped tokens: tkns1, tkns2.
3: tkns1 ← {tkni|i%2 = 0, i ∈ [idx(tkns)]}
4: tkns2 ← {tkni|i%2 = 1, i ∈ [idx(tkns)]}
5: ▷ Divide tokens into odd and even indexes.
6: Return tkns1, tkns2

Shuffle ratio. Shuffle ratio is defined as follows:

shuffle ratio = Nshuffled/Ntotal, (8)

where Nshuffled refers to the number of shuffled tokens. Ntotal refers to the total number of tokens.
Higher shuffle ratio means more serious disruption to tokens’ order.

C.2 THEORETICAL ANALYSES

Proposition 2. (No dependency before in SSM’s tokens.) In a SSM block, as a sequential com-
ponents, its outputs Y0:t before time t do not have dependency on the inputs Xt at t. Thus, we
have:

I(Y M
0:t ;Xt) = 0,∀t ∈ [T ].

Definition 1. (Mutual information) Mutual information between 2 signals is defined with Shannon
entropy H as:

I(X;Y ) = H(X)−H(X|Y )

= I(Y ;X) = H(Y )−H(Y |X)

Definition 2. (Interaction information’s definition.) Interaction information between 3 signals is
defined with Shannon entropy H as:

I(X;Y ;Z) := H(X) +H(Y ) +H(Z) +H(X,Y, Z)

−H(X,Y )−H(X,Z)−H(Y, Z).

Lemma 1. (Equal total knowledge.) The amount of total knowledge, compressed by Attention
and SSM blocks from inputs Xt at time t, is the same if Assumption 1 holds. I(Y T

0:T ;Xt) =
I(Y M

0:T ;Xt), ∀t ∈ [T ]

14
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Algorithm 3 Our Implementation: Distance.

1: Input: given token groups: tkns1, tkns2.
2: Output: distance matrix between tokens: dists .
3:

1−cos←→ {disti,j := 1− cos(tkns1, tkns2)},
4: ∀ tkni ∈ tkns1, tknj ∈ tkns2
5: ▷ Calculate cosine distance between tokens: 1− cos
6: Return {disti,j}

Algorithm 4 Out Implementation: Merge.

1: Input: tokens to merge: toMs, source tokens: tkns
2: Output: merged tokens: { ˆtknt}
3: ˆtkns← {tkni + tknj |(i, j) ∈ toMs}
4: ▷ Add tokens together.
5: ˆtkns← ˆtkns ∪ {tkni ∈ tkns|(·, i) ∧ (i, ·) /∈ toMs}
6: ▷ Update token set.
7: Return ∪ ˆtkns ▷ Keep Order.

Proof.

I(Y T
0:T ;Xt) = H(Y T

0:T )−H(Y T
0:T |Xt)

= H(Y M
0:T )−H(Y M

0:T |Xt)

= I(Y M
0:T ;Xt).

Theorem 1 is proven as followings:

Proof. Since the second inequality is simply introduced by the first, we mainly prove the inequality
for the first, i.e.:

I(Y M
t:T ;Xt) ≥ I(Y T

t:T ;Xt), ∀t ∈ [T ]

We add the both sides of the inequality as follows:

I(Y T
t:T ;Xt) + I(Y T

0:t;Xt)

= I(Y T
0:T ;Xt)︸ ︷︷ ︸

total knowledge

+ I(Y T
0:t;Y

T
t:T ;Xt)︸ ︷︷ ︸

interaction info.

I(Y M
t:T ;Xt) + I(Y M

0:t ;Xt)

= I(Y M
0:T ;Xt)︸ ︷︷ ︸

total knowledge

+ I(Y M
0:t ;Y

M
t:T ;Xt)︸ ︷︷ ︸

interaction info

.

With Lemma 1, let K represents the total knowledge, we have:

I(Y T
t:T ;Xt) = I(Y T

0:T ;Xt) + I(Y T
0:t;Y

T
t:T ;Xt)− I(Y T

0:t;Xt)︸ ︷︷ ︸
≥0

I(Y M
t:T ;Xt) = I(Y M

0:T ;Xt) + I(Y M
0:t ;Y

M
t:T ;Xt),

(9)

where we only need to discuss the first two terms for the targeted inequality. The first term, called to-
tal knowledge, is discussed in Lemma 1, and the second term is the interaction information between
Xt, Y0:t and Yt:T .

I(Xt, Y
T
0:t, Y

T
t:T )

= H(Xt) +H(Y T
0:t) +H(Y T

t:T ) +H(Xt, Y
T
0:T )

−H(Xt, Y
T
0:t)−H(Xt, Y

T
t:T )−H(Y T

0:t, Y
T
t:T )

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Reorganize this equation, we have:

I(Xt;Y
T
0:t;Y

T
t:T )

= H(Xt) +H(Y T
t:T )−H(Xt, Y

T
t:T )︸ ︷︷ ︸

(1)

− [H(Y T
0:t, Y

T
t:T )−H(Y T

0:t)︸ ︷︷ ︸
(2)

]

+H(Xt, Y
T
0:T )−H(Xt, Y

T
0:t)︸ ︷︷ ︸

(3)

,

where each term has a tranform as follows:

(1) = I(Xt;Y
T
t:T )

= H(Xt)−H(Xt|Y T
t:T )

(2) = H(Y T
t:T |Y T

0:t)

(3) = H(Y T
t:T |Y T

0:t, Xt).

We have:

I(Xt;Y
T
0:t;Y

T
t:T ) = I(Xt;Y

T
t:T )− (2) + (3)

= I(Y T
t:T ;Xt)− (2) + (3)

= [H(Y T
t:T )− (2)]− [H(Y T

t:T |Xt)− (3)]

i) With Assumption 2, we simply have:

I(Xt;Y
T
0:t;Y

T
t:T ) = I(Y T

0:t;Y
T
t:T )− I(Y T

0:t;Y
T
t:T |Xt).

= I(Y M
0:t ;Y

M
t:T )− I(Y M

0:t ;Y
M
t:T |Xt).

= I(Xt;Y
M
0:t ;Y

M
t:T )

Thus, according to Lemma 1 and Equ. 9, the inequality holds.

ii) However, with Proposition 2 and without Assumption 2, the followings hold:

I(Xt;Y
T
t:T |Y T

0:t) + I(Y T
0:t;Y

T
t:T ;Xt)︸ ︷︷ ︸

I(Xt;Y T
t:T )

+ I(Xt;Y
T
0:t|Y T

t:T )︸ ︷︷ ︸
≥0

= I(Xt;Y
M
t:T |Y M

0:t )︸ ︷︷ ︸
I(Xt;Y M

t:T )

+ I(Y T
0:t;Y

T
t:T ;Xt)︸ ︷︷ ︸

=0

+ I(Xt;Y
M
0:t |Y M

t:T )︸ ︷︷ ︸
=0

,

where the equation holds is because of non-dependent tokens and Lemma 1. Interaction information
has term

(3)− (2) = −I(Xt;Y
T
t:T |Y T

0:t),

and this means the key knowledge is transferred between tokens Y T
0:T , leading a trade-off and balance

between storing knowledge in Transformer’s tokens of 0 : t or t : T .

The inequality is thus proven, notice that the time t is not specified in our proven, and the second
equation can be obtained by the reductio ad absurdum.

D MORE EXPERIMENTS

D.1 EXPERIMENTS ON VIDEOS

Comparative experiment on VideoMamba. We perform experiments on the Kinetics-400 (K400)
video dataset (Carreira & Zisserman, 2017) to further evaluate our R-MeeTo.
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reduction ratio
RTX 3090 RTX 4090 V100 A4000 A100 H100

acc. (%) im/s speed im/s speed im/s speed im/s speed im/s speed im/s speed

0.00 80.5 739 1.00 × 1470 1.00 × 736 1.00 × 398 1.00 × 1007 1.00 × 1954 1.00 ×
0.14 79.9 706 0.96 × 1370 0.93 × 687 0.93 × 370 0.93 × 935 0.93 × 1757 0.90 ×
0.28 79.4 825 1.12 × 1653 1.12 × 810 1.10 × 429 1.08 × 1122 1.11 × 2020 1.03 ×
0.31 79.3 892 1.21 × 1701 1.16 × 829 1.13 × 468 1.18 × 1143 1.14 × 2158 1.10 ×
0.42 78.3 936 1.27 × 1956 1.33 × 936 1.27 × 494 1.24 × 1295 1.29 × 2254 1.15 ×
0.54 76.5 1029 1.39 × 2183 1.49 × 1043 1.42 × 544 1.37 × 1425 1.42 × 2446 1.25 ×

Table 12: Throughput and top-1 accuracy comparison of Vim-S using R-MeeTo across different
reduction ratios and GPUs. R-MeeTo effectively optimizes inference speed while preserving strong
model accuracy across various hardware platforms. Notably, the performance drop at the reduction
ratio of 0.14 results from I/O and additional computational overhead outweighing the benefits of
token reduction.

method
top-1 acc.(%) FLOPs (G)

VideoM-Ti VideoM-S VideoM-M VideoM-Ti VideoM-S VideoM-M

VideoM (Baseline) 76.9 0.0 79.3 0.0 80.5 0.0 11.54 0.09 40.43 0.00 115.33 0.00
R-MeeTo (training-free) 75.4 1.5↓ 77.5 1.8↓ 78.4 2.1↓ 9.49 2.05↓ 30.99 12.33↓ 71.71 43.62↓
R-MeeTo (re-train) 76.5 0.4↓ 78.5 0.8↓ 78.9 1.6↓ 9.49 2.05↓ 30.99 12.33↓ 71.71 43.62↓

Table 13: Comparison between VideoMamba (Li et al., 2024a) with and without R-MeeTo on the
performance of short-term understanding on Kinetics-400 (Carreira & Zisserman, 2017) classifica-
tion. R-MeeTo yields a notable reduction in FLOPs while only leading to a slight accuracy drop.
Top-1 accuracy (%) and GFLOPs are reported.

Settings. The clip is set to 8 frames per video. We set r=88 for VideoM-Ti/S/M. We apply the base
learning rate of 2e-5 and re-training epochs of 30 for VideoM-Ti and 15 for VideoM-S/M. The top-1
accuracy and FLOPs are reported. We merge for every two blocks of the models. We merge 11
times in VideoM-Ti and VideoM-S, 15 times in VideoM-M.

Analyses. The reported comparison results are shown in Tab. 13. The R-MeeTo decreases top-
1 accuracy slightly with notably reduced FLOPs. Specifically, R-MeeTo reduces commendable
GFLOPs for Videom-Ti/S/B respectively, with only minimal performance drop. Note that the exact
reduction ratio of VideoM-Ti/S is 0.31, while 0.42 for VideoM-M, because the depth of VideoM-
Ti/S is 24 while the depth of VideoM-M is 32.

Ablation study on r. We conduct an ablation study on r token merging number per layer in VideoM-
Ti/S/M. We evaluate the models in training-free setting by the top-1 accuracy on Kinetics-400 (Car-
reira & Zisserman, 2017). The clip is 8 frames per video.

Analyses. The results are shown in Tab. 14. Our method seems more robust on video tasks than

model / r 0 8 16 24 32 40 48 56 64 72 80 88

VideoM-Ti 76.89 76.94 76.95 76.92 76.95 76.80 76.61 76.48 76.23 75.98 75.81 75.45
VideoM-S 79.28 79.23 79.16 79.13 79.10 78.97 78.90 78.68 78.43 78.02 77.86 77.41
VideoM-M 80.47 79.78 79.68 79.74 79.70 79.51 79.39 79.31 79.12 78.90 78.75 78.44

Table 14: Ablation of pruning hyperparameter r: deciding reduction ratio↑. Larger r means larger
reduction ratio. Top-1 accuracy (%) is reported

on image tasks. The underlying reason can be the data redundancy in videos is larger than that in
images.

D.2 ABLATION STUDY ON MERGING

General settings. We set r = 5 for Vim-Ti and r = 11 for Vim-S. Learning rate decreases from
2e-5 to 1e-6 by cosine scheduler during re-training. The number of training epochs is 3. Top-1
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model
n (the n-th closest to merge)

1-st 3-rd 5-th 7-th 14-th

Vim-Ti (Zhu et al., 2024) 74.1 74.1 74.2 74.1 74.0
Vim-S (Zhu et al., 2024) 79.2 79.2 79.1 79.0 78.7

Table 15: Quantitative study on token similarity. The similar number means the order of matching
pairs of one chosen-merged token. As we choose the less similar pairs to be merged, the performance
on top-1 accuracy (%) of ImageNet-1K (Deng et al., 2009) decreases.

model
interval k (merge every k layer)

2 4 6 8

Vim-Ti (Zhu et al., 2024) 74.2 74.1 74.2 74.1
Vim-S (Zhu et al., 2024) 79.2 79.2 79.3 79.4

Table 16: Ablation study on merging step. We merge tokens for every merging step. We compare
the performance on top-1 accuracy (%) of ImageNet-1K (Deng et al., 2009). The performance of
R-MeeTo is maintained if the token ratio is the same.

accuracy (%) on ImageNet-1K (Deng et al., 2009) is reported. Block reduction number is 11 in
Vim-Ti/S.

Ablation on merging n-th closest token. We conduct the experiment using the closet number of
1-st, 3-rd, 5-th, 7-th, and 14-th. We re-train the model for 3 epochs. The other settings are the same
as the default settings.

Analyses. The results are shown in Tab. 15. The fact that the 1st-14th close tokens used for merging
have little impact suggests that the similarities are actually very common in a wide range of tokens.
There are actually a lot of similar tokens, and the redundancy is very large, supporting the overall
intent of token reduction.

Ablation on layer-wise intervals. Here, we merge tokens in Vim-Ti/S by different intervals. We
set the r ∈ [5, 11, 18, 28] in Vim-Ti and r ∈ [11, 24, 40, 62] in Vim-S to maintain the reduction ratio
of Vim-Ti/S as 0.14/0.31. We fix #output tokens in Vim-Ti/S as 142/76.

Analyses. The reported results are all shown in Tab. 16. Larger intervals result in larger token
reduction granularity. Larger granularity leads can introduce extra noise and decreases performance.
Because of keeping the same number of reduced parameters, a larger interval make fewer reduction
times, resulting in more tokens being reduced at once.

Ablation on token merging operations. To further explore an effective way for merging two token
pairs. We conduct the ablation study on four merging operations: sum, mean, max pool, and min
pool.

Analyses. The results are presented in Tab. 17. We observe that in both Vim-Ti and Vim-S, after
re-training, different operation has limited impacts on performance.

D.3 ODD-BLOCK REDUCTION

Comparison between token pruning and merging. We conduct the training-free experiment on
Vim-S. We report the top-1 accuracy on ImageNet-1K (Deng et al., 2009).

Analyses. The results are shown in Tab. 18. Merging consistently outperforms pruning on both
even-block and odd-block reduction settings.

Comparison between training-free and re-training. We conduct the training-free and re-training
experiment on Vim-S. We use a odd-block reduction merging operation.

Analyses. The results are shown in Tab. 19. We observe that re-training consistently enhances the
performance on both even-block and odd-block reduction settings.
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model merge op. training-free re-trained ∆

Vim-Ti (Zhu et al., 2024)

sum 38.2 74.1 35.9↑
mean 41.8 74.1 32.3↑
max 43.4 74.2 30.8↑
min 39.7 74.2 34.5↑

Vim-S (Zhu et al., 2024)

sum 76.3 79.2 2.9↑
mean 76.2 79.3 3.1↑
max 74.7 79.5 4.8↑
min 74.5 79.4 4.9↑

Table 17: Ablation study on the impact of different token merging methods on top-1 accuracy (%)
in R-MeeTo. ∆ represents the difference in performance between training-free and re-trained mod-
els. The max pool and min pool methods will performance better than the sum and mean merging
methods after re-training.

reduction ratio pruning merging ∆

0.14 78.3 78.4 0.1↑
0.28 76.1 76.3 0.2↑
0.42 69.9 71.5 1.6↑
0.54 44.9 54.6 9.7↑

Table 18: Comparison on the performance of Vim-S between token pruning and merging operations
with odd-block reduction. Merging consistently outperforms pruning on both even-block and odd-
block reduction settings. Top-1 accuracy (%) is reported.

Comparative experiment. We re-train Vim-Ti/S for 30/15 epochs respectively with R-MeeTo using
odd-block reduction. We use a batchsize of 128 with gradient accumulation performed over two
steps, and total batchsize of 1024= 4×128×2. Models are trained with AdamW (Loshchilov &
Hutter, 2019) optimizer with a learning rate decaying from 2e-5 to 1e-6 using a cosine scheduler,
and a weight decay of 5e-2.

Analyses. The result is shown in Tab. 21. The difference between even-block and odd-block reduc-
tion operations is limited compare to the results in the main paper.

D.4 ABLATE MODULES

Settings. We conduct a series of ablation studies to systematically evaluate the impact of key mod-
ules in Algorithm 1. Specifically, we modify the default operations in the algorithm to study the
impacts on the overall performance:

1) We replace the default top-r selection mechanism in Line 10 of Algorithm 1 with a random-r
approach. This change allows us to assess the importance of selecting the top-r operations versus
randomly choosing r candidate tokens. 2) Next, we alter the default token pairs to merge in Line
3 of Algorithm 4 by replacing it with a random pair selection strategy. This modification helps
us evaluate the effectiveness of the default merging strategy compared to a purely random pairing
approach. 3) Finally, we ablate the impact of the Grouping (·) operation in Algorithm 1. By replac-
ing this component, we aim to understand how the grouping mechanism contributes to the overall
performance of the algorithm.

Analyses. The results are shown in Tab. 22 and Tab. 20 Dropping any module or introducing ran-
domness lead new noise, which makes performance degrade. This proves the necessity of our indi-
vidual modules.
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reduction ratio training-free re-trained ∆

0.14 78.4 80.0 1.6↑
0.28 76.3 79.2 2.9↑
0.42 71.5 78.0 6.5↑
0.54 54.6 75.6 21.0↑

Table 19: Comparison of the performance of Vim-S between the training-free and re-trained model
with odd-block reduction. Re-training consistently enhances the performance on both even-block
and odd-block reduction settings. Top-1 accuracy (%) is reported.

model Grouping(·) training-free re-trained ∆

Vim-Ti (Zhu et al., 2024)
odd-even 38.2 74.1 35.9↑

front-behind 29.0 72.9 43.9↑
random 42.1 73.0 30.9↑

Vim-S (Zhu et al., 2024)
odd-even 76.3 79.2 2.9↑

front-behind 72.6 76.8 4.2↑
random 72.6 77.1 4.5↑

Table 20: Grouping Ablation. Ablate Grouping(·) operation in Algorithm 2. Grouping is based
on the indexes, time t. Odd-even: splitting the tokens into two groups according to their odd-even
indexes. Front-behind: splitting the tokens into the first half part and the last half part. Random:
randomly splitting all tokens into two groups.

D.5 VISUALIZATION.

Settings. We provide visualization results on the ImageNet-1K dataset (Deng et al., 2009) and K-
400 (Carreira & Zisserman, 2017) using a Vim-S and VideoM-S re-trained by R-MeeTorespectively,
with r = 10 achieving top-1 accuracy of 79.9 and 78.5. These visualizations aim to demonstrate
its effectiveness and provide qualitative insights into its decision-making process, supporting the
quantitative results in the main paper.

Analyses. We observe that the image tokens belonging to the same object are successfully merged
into a single group. This phenomenon suggests that R-MeeTo can accurately merge image tokens
that exhibit similar features in reality. This capability not only validates the effectiveness of the
method in feature extraction and matching but also demonstrates its robustness and adaptability in
handling complex image scenes.
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Figure 5: Visualization of R-MeeTo on ImageNet-1K (Deng et al., 2009). Tokens belonging to one
object are merged into one.
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Figure 6: Visualization of R-MeeTo on Kinetics-400 (Carreira & Zisserman, 2017). Tokens belong-
ing to one object across frames are merged into one.
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method
top-1 acc.(%) FLOPs(G)

Vim-Ti Vim-S Vim-Ti Vim-S

Vim (Baseline) (Zhu et al., 2024) 76.1 0.0 80.5 0.0 1.50 0.00 5.10 0.00
Token Recognition (Liang et al., 2022) 71.3 4.8↓ 74.8 5.7↓ 1.28 0.22↓ 3.57 1.53↓
Hidden State Alignment (Zhan et al., 2024) 75.1 1.0↓ 78.8 1.7↓ 1.29 0.21↓ 3.60 1.50↓
R-MeeTo (ours, odd-block) 75.1 1.0↓ 79.7 0.8↓ 1.27 0.23↓ 3.45 1.65↓

Table 21: Comparison on the performance of Vim-Ti/S in ImageNet-1K (Deng et al., 2009) clas-
sification between different token reduction methods. R-MeeTo (odd-block) achieves higher top-1
accuracy (%) than competing methods while maintaining comparable FLOPs.

reduction ratio
Vim-Ti Vim-S Vim-B

default (top-r) random-r default (top-r) random-r default (top-r) random-r

0.14 38.19 37.08±0.12 78.52 77.96±0.09 78.39 78.05±0.09

0.28 38.41 33.45±0.19 76.73 75.74±0.07 78.40 77.90±0.10

0.31 35.49 30.74±0.18 76.29 75.23±0.11 78.28 78.24±0.07

0.42 30.83 23.15±0.14 72.86 71.53±0.12 77.36 77.36±0.10

0.54 7.44 5.10±0.10 60.67 56.32±0.14 75.07 75.01±0.09

(a) Top-r v.s. Random-r. Ablate Top-r operation (Line 10 in Algorithm 1) into random selection.

reduction ratio
Vim-Ti Vim-S Vim-B

default random pair default random pair default random pair

0.14 38.19 35.36±0.15 78.52 77.76±0.08 78.39 78.27±0.08

0.28 38.41 31.12±0.21 76.73 74.06±0.12 78.40 77.91±0.09

0.31 35.49 26.91±0.17 76.29 73.06±0.14 78.28 77.56±0.07

0.42 30.83 14.49±0.20 72.86 65.22±0.14 77.36 76.16±0.09

0.54 7.44 0.80±0.05 60.67 33.80±0.19 75.07 72.70±0.10

(b) Paired merging v.s. Random. Ablate pairing (Line 3 in Algorithm 4) into random pairing, where we shuffle
tokens’ indexes between i and j pair.

Table 22: Modules’ ablation experiments on default setting. Top-1 accuracy (%) is reported.
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