
Journal of Data-centric Machine Learning Research (2025) Submitted 01/25; Revised 07/25; Published 11/25

Towards Human-Guided, Data-Centric LLM Co-Pilots

Evgeny S Saveliev˚ es583@cam.ac.uk
University of Cambridge, Cambridge, UK

Jiashuo Liu˚: liujiashuo77@gmail.com
Tsinghua University, Beijing, China

Nabeel Seedat˚ ns741@cam.ac.uk
University of Cambridge, Cambridge, UK

Anders Boyd a.c.boyd@amsterdamumc.nl
Amsterdam University Medical Centers, Amsterdam, NL

Mihaela van der Schaar mv472@cam.ac.uk
University of Cambridge, Cambridge, UK

Reviewed on OpenReview: https: // openreview. net/ forum? id= MWOrjmelCI

Editor: Matthias Feurer

Abstract
Machine learning (ML) has the potential to revolutionize various domains and industries,
but its adoption is often hindered by the disconnect between the needs of domain experts
and translating these needs into robust and valid ML tools. Despite recent advances in
LLM-based co-pilots to democratize ML for non-technical domain experts, these systems
remain predominantly focused on model-centric aspects while overlooking critical data-
centric challenges. This limitation is problematic in complex real-world settings where raw
data often contains complex issues, such as missing values, label noise, and domain-specific
nuances requiring tailored handling. To address this we introduce CliMB-DC, a human-
guided, data-centric framework for LLM co-pilots that combines advanced data-centric
tools with LLM-driven reasoning to enable robust, context-aware data processing. At
its core, CliMB-DC introduces a novel, multi-agent reasoning system that combines a
strategic coordinator for dynamic planning and adaptation with a specialized worker agent
for precise execution. Domain expertise is then systematically incorporated to guide the
reasoning process using a human-in-the-loop approach. To guide development, we formalize
a taxonomy of key data-centric challenges that co-pilots must address. Thereafter, to address
the dimensions of the taxonomy, we integrate state-of-the-art data-centric tools into an
extensible, open-source architecture, facilitating the addition of new tools from the research
community. Empirically, using real-world healthcare datasets we demonstrate CliMB-DC’s
ability to transform uncurated datasets into ML-ready formats, significantly outperforming
existing co-pilot baselines for handling data-centric challenges. CliMB-DC promises to
empower domain experts from diverse domains — healthcare, finance, social sciences and
more — to actively participate in driving real-world impact using ML. CliMB-DC is open-
sourced at: https://github.com/vanderschaarlab/climb/tree/climb-dc-canonical
Keywords: Agent, Co-Pilot, Data-centric AI, Large Language Model

∗. Equal Contribution
†. Research conducted while visiting the van der Schaar Lab, University of Cambridge.

©2025 Evgeny Saveliev, Jiashuo Liu, Nabeel Seedat, Anders Boyd, and Mihaela van der Schaar.

https://openreview.net/forum?id=MWOrjmelCI
https://github.com/vanderschaarlab/climb/tree/climb-dc-canonical

Saveliev*, Liu*, Seedat*, Boyd, van der Schaar

1 Introduction

Over the past decade, machine learning (ML) has evolved at a breathtaking pace, raising
hopes that advanced ML methods can transform a wide range of domains and industries.
However, for many domain experts — including medical researchers, social scientists, business
analysts, environmental scientists, education researchers and more — conceiving a problem
through which ML can provide a solution remains challenging. Despite having a deep
understanding of their data and domain-specific challenges, these individuals often lack
the programming or technical background needed to implement sophisticated ML pipelines
(Pfisterer et al., 2019), and thus are considered non-technical domain experts. This gap in
expertise creates a significant barrier to realizing the potential of ML across these domains.

Recent advancements in large language models (LLMs) have paved the way for AI
co-pilots that promise to automate various aspects of ML development through natural
language interaction (Hassan et al., 2023; Tu et al., 2024). However, current co-pilots
remain predominantly focused on model-centric aspects—such as architecture selection and
hyperparameter tuning—while overlooking the fundamental role of the data-centric side to
ML. Since data-centric aspects largely determine the performance, fairness, robustness and
safety of ML systems, ignoring the processes of constructing and handling data can negatively
affect performance or worse lead to incorrect conclusions. Unfortunately, real-world data often
contains missing values, inconsistencies, mislabeled records, and domain-specific nuances (see
Table 1) and thus the data is usually not ML-ready (Sambasivan et al., 2021; Balagopalan
et al., 2024). Furthermore, applying a “one-size-fits-all” data cleaning script from an LLM
co-pilot that cannot be tailored to the varying structures of data risks erasing critical signals
or introducing biases, and leaves the domain experts powerless to intervene.

There is indeed a growing interest in data-centric AI within the ML community —
emphasizing the importance of ML to improve data quality, curation, and characterization
(Seedat et al., 2024; Zha et al., 2023; Liang et al., 2022). In particular, numerous data-centric
ML tools and methods have been developed for handling common data issues, such as missing
values, noisy labels, and data drift (Northcutt et al., 2021a; Jarrett et al., 2022; Seedat
et al., 2022a, 2023b; Liu et al., 2023). However, for non-technical domain experts, these
tools are often abstract to implement and remain out of reach to use. Integrating these tools
into LLM-based co-pilots would not only allow tailored handling of data and thus empower
domain experts, but also would broaden the use of data-centric AI research across various
disciplines and application settings — including healthcare, finance, environmental studies,
education, etc.

Despite their value, data-centric tools are not a panacea in and of themselves and cannot
be applied by co-pilots in isolation. Actions like imputing data or rectifying noisy labels
require contextual understanding to avoid distorting critical domain-specific information.
This underscores the need for expert oversight—guidance from individuals deeply familiar
with the nuances of the data—to ensure that actions align with domain-specific goals and
constraints. Such guidance is crucial in high-stakes fields like healthcare and finance, where
improper data handling can lead to misleading conclusions or harmful decisions.

This interplay between human expertise and data-centric automation presents a unique
challenge for LLM-based co-pilots. Designing systems capable of nuanced reasoning and
iterative planning, while effectively incorporating expert feedback, remains a significant

2

Towards Human-Guided, Data-Centric LLM Co-Pilots

hurdle. A co-pilot must not only execute tasks but also intelligently sequence and adapt
data processing pipelines with a human-in-the-loop approach.

To address these challenges, we introduce Clinical predictive Model Builder with Data-
Centric AI (CliMB-DC), a human-guided data-centric framework for LLM co-pilots. Build-
ing on the CliMB1 ecosystem which focuses on democratizing model building, we advance
upon it and address its limitations much like other co-pilots by integrating advanced data-
centric tools, along with a novel LLM-driven reasoning process to enable robust, context-aware
data processing for real-world ML challenges. Specifically, CliMB-DC introduces a novel,
multi-agent reasoning system that combines a strategic coordinator for dynamic planning and
adaptation with a specialized worker agent for precise execution. Domain expertise is then
systematically incorporated to guide reasoning using a human-in-the-loop approach. Where
CliMB established the foundation, CliMB-DC advances this vision by enabling sophisticated
reasoning about data quality, integrity, and domain-specific constraints—essential capabilities
for developing trustworthy ML systems when analyzing complex, real-world data.

Our contributions are as follows:

• Taxonomy of Challenges: We formalize a taxonomy of data-centric challenges that
co-pilots need to address.

• Data-Centric Tools: We integrate state-of-the-art, data-centric tools into an extensi-
ble and open-source framework. The broader accessibility for non-technical domain
experts to these data-centric tools allows them more options when tailoring their data
management accordingly. It additionally provides an opportunity for the data-centric
ML research community to incorporate new tools or validate their tools more easily.

• Human-in-the-Loop Alignment: We implement a human-in-the-loop system to
ensure contextual alignment of data processing actions with domain-specific require-
ments. Moreover, we are able to incorporate domain expertise through natural language
interaction, allowing experts to guide and assess data transformations without requiring
coding experience.

• Multi-Agent Planning and Reasoning : We introduce a novel multi-agent reasoning
approach that combines a strategic coordinator agent with a specialized worker agent,
enabling sophisticated planning and adaptation of data-centric workflows.

• Empirical Case Studies: We conduct empricial case studies on real-world healthcare
data, demonstrating where existing co-pilots fall short in handling the complexities of
real-world data and illustrate the advantages of our approach.

CliMB-DC represents a significant step toward democratizing ML for non-technical
domain experts, while ensuring the responsible and effective use of data-centric AI tools. By
combining automation with expert oversight, our framework enables robust ML development
that respects domain-specific knowledge. In general, the target audience for the CliMB-DC
framework is broad, encompassing a wide range of users, including:

1. CliMB is a preliminary co-pilot version of CliMB-DC. The technical report can be found at (Saveliev
et al., 2024). Extensions are introduced in Sec. 4.

3

Saveliev*, Liu*, Seedat*, Boyd, van der Schaar

Age Sex Cr … Event Status

68 Female 0.62 … 0

59 - 0.81 … 0

- Female - … 1

67 Male - … 0

- Male 0.86 … 0

70 Male 87.0 … 1

59 Female - … 1

Missingness & Outliers

Age Sex Cr … Event
Category

Alive
Status

Event

Status

68 Female 0.62 … Alive Alive 0

59 - 0.81 … Dead NLR Alive 0

- Female - … Dead LR Dead 1

67 Male - … Alive Alive 0

- Male 0.86 … Alive Alive 0

70 Male 87.0 … LT Dead 1

59 Female - … LT Dead 1

LLM Co-pilot

Failure Reason 1:

 Does NOT deal with missingness!

Failure Reason 2:

 Does NOT deal with label leakage! Keep

the “Event Category” and “Alive Status” for

prediction.

Label Leakage

ID Age Sex Cr … Event
Category

Alive
Status

Event
Status

1 59 Female 0.62 … Alive Alive 0

1 59 - 0.81 … Alive Alive 0

2 - Male - … Dead LR Dead 1

2 67 Male - … Dead LR Dead 1

3 - Female 0.69 … Alive Alive 0

3 70 Female 0.89 … Alive Alive 0

3 70 Female 0.91 … LT Dead 1

Multiple Measurement

Failure Reason 3:

 Does NOT deal with multiple

measurement! It does not know the ID means

“Patient ID”. It keeps the “ID” for prediction.

LLM Co-pilot

LLM Co-pilot

…

Data Quality

More Realistic Data

More Data Issues …

Figure 1: Illustrative examples of potential data issues in real-world healthcare scenarios,
highlighting challenges at various levels and demonstrating how the current LLM
co-pilot struggles to address these issues.

• Non-Technical Domain Experts: CliMB-DC has the potential to empower non-
technical domain experts across diverse domains and application settings, including
medical researchers, biostaticians, epidemiologists, social scientists, business analysts,
policy makers, environmental scientists, education researchers and more. In particular,
CliMB-DC enables these varied non-technical domain experts to seamlessly harness
data-centric tools for research on their own datasets through an intuitive, user-friendly
interface. We note that while we contextualize and instantiate CliMB-DC as a tool for
healthcare, we envision that such a system could be relevant to non-technical domain
experts in other data-driven domains such as finance, environmental management,
education etc.

• Data-Centric Researchers: CliMB-DC provides a platform for data-centric re-
searchers to effortlessly compare existing tools, integrate and validate new ones, accel-
erating the advancement of data-centric AI.

• ML Researchers: CliMB-DC can enable ML researchers across various fields to lever-
age state-of-the-art, data-centric tools for data preprocessing, cleaning, and assessment,
simplifying and streamlining the ML research process.

2 Taxonomy of Data-centric Issues Facing Co-pilots

Recent advancements in LLM-based agents used in co-pilots have largely concentrated on
code generation for model-centric issues, such as algorithm selection, hyperparameter tuning
and performance evaluation. These processes take on datasets that have been assumedly
clean (e.g., outliers removed, missingness assessed and handled, data errors removed, etc.)
and problem setups that are well-defined for an ML task. However, transforming raw,
sometimes disorganized, real-world datasets into clean, structured ones, while at the same

4

Towards Human-Guided, Data-Centric LLM Co-Pilots

time defining a clear problem setup is not necessarily trivial and can be complex, particularly
for non-technical domain experts with limited experience in data science. Such data-centric
challenges are precisely the area where co-pilots are expected to provide significant support,
yet have been overlooked.

Motivated examples from healthcare. In healthcare scenarios, it is common for some
variables collected during data acquisition to be highly correlated with the outcome or to have
been measured only after the outcome occurred. Including such variables in predictive models
can lead to label leakage, compromising the model’s validity. Consequently, these variables
must be carefully excluded during model construction. As illustrated in Figure 1 (middle),
current LLM co-pilot fail to exclude variables such as “Event Category” and “Alive Status”,
which are highly correlated with the outcome “Event Status”. Including these variables
results in exceptionally high predictive performance, which is a misleading conclusion for
users. Similarly, healthcare datasets often contain multiple records for a single patient, as one
patient could come to the hospital multiple times for follow-ups or during a chronic condition.
However, current LLM co-pilots do not automatically perform aggregation to handle such
cases. Being unable to appropriately account for these data structures can result in severe
label leakage and render the problem setup meaningless, as demonstrated in Figure 1 (right).

Beyond label leakage, data-centric challenges in ML —including issues with data quality,
preprocessing, and curation—are particularly pronounced in healthcare. These datasets are
often collected by clinicians with limited data science expertise, rather than by experienced
data scientists. Some datasets are retrieved from bioinformatic pipelines, which could have
problems with certain reads or even produce invalid measurements. As a result, data are
frequently incomplete and noisy, but usually in a context-dependent manner. The complexity
when processing these data necessitates domain-specific expertise, assessment and handling.
However, such challenges remain under-explored in the field of co-pilots.

Key perspectives for ensuring reliable LLM co-pilots. In this work, we present
a formalized taxonomy of key issues that LLM co-pilots must address to enable reliable
deployment in healthcare scenarios. Our taxonomy follows a bottom-up approach, drawing
on a broad survey of literature where these challenges have been extensively documented
and analyzed (Zadorozhny et al., 2022; Avati et al., 2021; Estiri and Murphy, 2019; Tomašev
et al., 2019; Ghassemi et al., 2020; Beaulieu-Jones et al., 2017; Ferri et al., 2023; Singh et al.,
2021; Haneuse et al., 2021). After synthesizing insights from these diverse studies and their
practical applications, we present a structured taxonomy, highlighting the most pressing
data-centric challenges affecting ML workflows. As shown in Table 1, these perspectives
address both data-centric and model-centric aspects.

On the data-centric side, we highlight elements related to data formatting, as well as
statistical (both training and test). When an LLM co-pilot fails to address these data issues
effectively, it can lead to a range of problems. These include issues with the final ML model
(e.g., overfitting, model bias, poor generalization, and limited interpretability) along with
flaws in experimental setups (e.g., improper formulation of the problem and label leakage
(see case study 1 and 2 in Section 6.2)).

While not included in the table, we also note there do remain model-centric challenges.
While algorithm selection, hyperparameter tuning, and performance evaluation, have been
frequently discussed and relatively well-covered in recent LLM co-pilots, there should also be a

5

Saveliev*, Liu*, Seedat*, Boyd, van der Schaar

Table 1: Taxonomy of key data-centric challenges frequently encountered in healthcare
machine learning pipelines. While not exhaustive, these categories represent a
significant fraction of issues that co-pilots must address to ensure strong predictive
performance, robustness, fairness, and clinical feasibility.

Category Issues Description References high-
lighting issue

Resultant Issues

Data-Centric
(Formatting)

Multiple
measure-
ments

Challenges from datasets including multiple
observations for a single individual, requiring
aggregation and standardization.

(Tschalzev et al.,
2024; Liu et al.,
2024; Oufattole
et al., 2024; Sett
et al., 2024)

Ill-posed problem setup, Tempo-
ral misalignment, Potential data
inflation

Multiple files Datasets from different sources/periods of time
need to be correctly aggregated or harmonized
across files.

(Balagopalan et al.,
2024; Lehne et al.,
2019; Nan et al.,
2022; Schmidt et al.,
2020)

Ill-posed problem setup, Inconsis-
tent representation, Duplication
risk

Inconsistent
data

Data might be inconsistent based on units or
how data might be represented.

(Rychert, 2023;
Monjas et al., 2025;
Szarfman et al.,
2022)

Ill-posed problem setup, Label
leakage, Reduced reproducibility

Data extrac-
tion

Data might be stored in heterogenous text
fields and needs to be extracted as features.

(Bao et al., 2018;
Zhao, 2019; Hahn
and Oleynik, 2020)

Ill-posed problem setup, Inconsis-
tent representation

Feature re-
dundancy

Multiple features conveying similar informa-
tion in a dataset.

(Chicco et al., 2022;
Apicella et al., 2024;
Meng et al., 2022;
Sasse et al., 2023)

Poor generalization, Poor inter-
pretability, Label leakage

Data-Centric
(Statistical -

Train)

Outliers Extraordinary values (leading to soft outliers)
or mistakes in the data creation process (pos-
sibly leading to hard outliers).

(Zadorozhny et al.,
2022; Avati et al.,
2021; Estiri and
Murphy, 2019)

Overfitting, Misleading perfor-
mance metrics, Potential data
misinterpretation

Label leakage Features can include future information or tests
dependent on the outcome, or datasets can
have multiple correlated outcome variables.

(Tomašev et al.,
2019; Ghassemi
et al., 2020)

Ill-posed problem setup, Over-
optimistic performance, Failed
clinical deployment

Missingness Missing values caused by not being recorded
(MCAR), later feature aggregation (MAR), or
differing clinical practices (MNAR).

(Beaulieu-Jones
et al., 2017; Ferri
et al., 2023; Singh
et al., 2021; Ha-
neuse et al., 2021)

Imputation risk, Model bias, Re-
duced external validity

Noisy labels Incorrect labels caused by erroneous annota-
tion, recording mistakes, or difficulty in label-
ing.

(Yang et al., 2023;
Wei et al., 2024;
Boughorbel et al.,
2018)

Poor generalization, Compro-
mised interpretability, Unstable
model calibration

Data valua-
tion

General data quality issues impacting model
performance.

(Bloch et al., 2021;
Enshaei et al., 2022;
Tang et al., 2021;
Pandl et al., 2021)

Poor generalization, Suboptimal
performance, High curation over-
head

Data-Centric
(Statistical -

Test)

Subgroup
challenges

Poor performance or generalization on certain
subgroups (in-distribution heterogeneity).

(Oakden-Rayner
et al., 2020; Suresh
et al., 2018; Goel
et al., 2020; Cabr-
era et al., 2019;
van Breugel et al.,
2024)

Poor generalization, Fairness con-
cerns

Data shift Changes due to novel equipment, different mea-
surement units, or clinical practice evolution
over time.

(Pianykh et al.,
2020; Koh et al.,
2021; Patel et al.,
2008; Goetz et al.,
2024)

Poor generalization, Model bias,
Need for continuous monitoring

6

Towards Human-Guided, Data-Centric LLM Co-Pilots

Dataset with:
• Multiple clinical
sites
• Repeated patient
measurements
• Missing values
• Survival outcome
data

E.g. clinical trial

Dataset with:
• Structured patient
features
• Unstructured text
notes
• Complete records
only
• Binary outcome
data

E.g. medical records

Dataset with:
• Real-time sensor
data
• Multiple measure-
ments per patient
• Outliers from de-
vice artifacts
• Continuous out-
come values

E.g. ICU monitoring

Dataset with:
• Lab test results
• Patient symptoms
• Diagnosis-related
features (label leak-
age)
• Binary outcome
data

E.g. diagnostic
model

Data for-
matting

Data in-
tegrity

Feature en-
gineering

Modeling

Post-hoc
analysis

Multiple
file joining

Multiple measure-
ments aggregation

Missing data
handling

User-guided data
transformation

Feature selection

AutoML for
survival analysis

Feature im-
portances

Data char-
acterization

Invalid
row/column
removal

Redundant
feature removal

Text feature
extraction

Feature selection

AutoML for
classification

Feature im-
portances

Multiple measure-
ments aggregation

Outlier removal

Data drift
correction

User-guided data
transformation

AutoML for
regression

Data char-
acterization

Feature im-
portances

Invalid
row/column
removal

Data leak-
age removal

Redundant
feature removal

Feature selection

AutoML for
classification

Feature im-
portances

Data valuation

1

Figure 2: Addressing real data challenges is complex and requires multi-step reasoning.

focus on domain-specific model classes and model interpretability. Different from typical data
science tasks that mainly focus on classification and regression: domain-specific model classes
account for temporal dependencies, hierarchical structures, and clinical context, ensuring that
models are both accurate and practically applicable. These issues arise frequently in data
from healthcare settings. For instance, specialized models are designed for survival analysis,
a critical and widely applied task in healthcare. Moreover, the role of interpretability is
to ensure that predictive models can provide transparent and actionable insights, which is
crucial for enabling clinicians to trust and validate their decision-making.

Our taxonomy consequently offers a systematic foundation for challenges that co-pilots
should address and hence should impact the design and evaluation of LLM co-pilots. Specifi-
cally, we posit that the structured taxonomy will enable the development of co-pilots that
are better equipped to handle real-world data issues, ultimately fostering more reliable,
interpretable, and impactful ML systems in high-stakes domains like healthcare.

Challenges vary by problem and context. While the taxonomy of challenges describes
each issue in an isolated manner, real-world scenarios often require a more integrated
approach. When a co-pilot addresses a user’s task, the challenges are inherently problem-
and context-dependent, requiring end-to-end consideration. As illustrated in Figure 2, there
can be multiple data issues, which must be handled in a nuanced manner, thereby making
real-world applications complex. Consequently, systems must be capable of reasoning about
these challenges autonomously, while gathering and considering expert human feedback.

7

Saveliev*, Liu*, Seedat*, Boyd, van der Schaar

Table 2: Comparison of different co-pilots along different dimensions.

Perspective Capability DS-Agent AutoGen Data-
Interpreter OpenHands CliMB-DC (Ours)

Components Data-centric tools × × × × ✓
Clinical models × × × × ✓

Expert Input Static integration ✓ × ✓ ✓ ✓
Dynamic integration × × × ✓ ✓

Data-centric
Reasoning

Setup refinement × × × × ✓
Performance refinement × × × × ✓

Pipeline

End-to-end automation × ✓ ✓ ✓ ✓
Replanning × × × × ✓

Backtracking × × × × ✓
Code refinement ✓ ✓ ✓ ✓ ✓

3 Related Work

This work engages not only with LLM-based interpreter tools, but also with the broader area
of data-centric AI research. Appendix A provides extended related work.

LLM-Based Co-pilots. The rapid advancements in LLMs have paved the way for various
stages of ML and data science workflows to be automated by co-pilots and code interpreters
that leverage the reasoning and code generation capabilities of LLMs (Tu et al., 2024;
Hollmann et al., 2024; Low and Kalender, 2023). These tools allow users to specify their
requirements for data science pipelines via natural language and thus offer greater flexibility
compared to traditional AutoML systems. Prominent examples include systems that chain
task execution (e.g., AutoGPT, DS-Agent (Guo et al., 2024)), modular frameworks for
multi-step reasoning (e.g., OpenHands (Wang et al., 2024)), and graph-based workflow
decomposition (e.g., Data Interpreter (Hong et al., 2024)). We provide a summary of these
LLM co-pilots in Table 2, along with a detailed analysis of the co-pilots in Appendix A.1.

Despite recent progress, significant challenges remain in addressing the complex, data-
centric aspects of real-world ML workflows. Many co-pilots operate within predefined
pipelines or task hierarchies, making them ill-suited for dynamic, data-centric workflows.
Furthermore, while these systems excel in automating code generation, they often lack
mechanisms for robust data reasoning, such as diagnosing data issues, incorporating domain-
specific knowledge, or addressing contextual nuances (e.g., data leakage or feature importance
validation). These gaps are especially pertinent to real-world datasets that commonly exhibit
variability and noise-common to data from healthcare settings (as summarized in Table 1).

Additionally, the effectiveness of these co-pilots to empower non-technical domain ex-
perts, particularly in healthcare, remains a significant challenge. Healthcare data is often
characterized by heterogeneity, complexity, and susceptibility to biases and data quality
issues. Hence, a co-pilot blindly applying generic data processing techniques to raw clinical
data can lead to the introduction of errors and the loss of important clinical information. For
example, detecting and removing outliers based on the percentile of a variable distribution
might remove extreme lab values that are clinically meaningful, as they could represent a
critical underlying condition rather than noise. In another example, correcting suspected
label errors without domain-specific knowledge risks obscuring meaningful patterns or rare
cases that are needed in downstream decision-making. These challenges underscore that
when using co-pilots with non-technical domain experts, there is a need for co-pilots to reason
and update via expert human guidance along with incorporating data-centric tools.

8

Towards Human-Guided, Data-Centric LLM Co-Pilots

Among existing frameworks, OpenHands (Wang et al., 2024) and Data Interpreter (Hong
et al., 2024) are the closest to incorporating data-centric aspects and are particularly relevant
due to their emphasis on multi-step reasoning and dynamic task execution.

Challenges with Existing Co-pilots. Despite the progress demonstrated by OpenHands,
Data Interpreter, and similar systems, several key challenges remain (C1-C4):

• (C1) Overlooking Data-Centric Challenges: Existing co-pilots often overlook
data quality issues such as multi-measurements, noise, outliers, and missingness. In
particular, they do not integrate state-of-the-art data-centric tools. They also fail to
incorporate domain-specific reasoning for tasks requiring contextual interpretation,
such as deciding how to deal with multiple measurements or whether a statistical
anomaly is meaningful or erroneous. The integration of human expertise is vital for
this contextual reasoning.

• (C2) Static Workflow Architectures: Many systems operate with predefined task
structures, making them ill-suited for data science workflows which depend on the
unique challenges in the data or can be dynamically influenced via human expertise.

• (C3) Healthcare-Specific Challenges: The inability of these systems to contex-
tualize healthcare data poses risks to using currently available frameworks. Some
examples already mentioned include erroneous exclusion of clinically meaningful ex-
treme lab values or data redundancy when retrieving data from electronic medical
records or bioinformatic pipelines. Again, the integration of human expertise along
with data-centric tools is vital in this regard.

• (C4) Shallow Reasoning: While these systems excel at automating task execution,
they lack mechanisms for higher-level reasoning about data, such as validating correla-
tions, diagnosing feature leakage, or ensuring robustness after data transformations.

Data-centric AI. Data-centric AI represents a paradigm shift in ML in which assessing
and improving the quality of the data are prioritized over model-specific tasks (Liu et al., 2022;
Liang et al., 2022; Zha et al., 2023; Whang et al., 2023; Seedat et al., 2024). This paradigm
has gained increasing importance within the ML community and has led to advances in
methods and tools to systematically address issues, such as mislabeled samples (Seedat
et al., 2023b; Northcutt et al., 2021a; Pleiss et al., 2020), missing data (Jarrett et al., 2022;
Stekhoven and Bühlmann, 2012), outliers (Zhao et al., 2019; Yang et al., 2022), data leakage
(Mitchell et al., 2019; Seedat et al., 2024), and data drifts (Cai et al., 2023; Liu et al., 2023).
These approaches have demonstrated improvements in model generalization in the context of
real-world scenarios characterized by noisy and heterogeneous data.

Despite the benefits of data-centric AI being demonstrated, existing LLM-based co-pilots
adopt a model-centric perspective-focusing on automation of the model building pipeline,
while neglecting the underlying data challenges. These limitations make existing co-pilots
less effective for real-world applications where data quality directly impacts further modelling.
We posit that the inclusion of data-centric AI tools in LLM-based co-pilots could significantly
enhance their utility by automating the process of identifying data issues, improving dataset
quality, and ensuring robust ML workflows. However, the autonomous application of these
tools without contextual oversight can have unintended consequences.

9

Saveliev*, Liu*, Seedat*, Boyd, van der Schaar

Consequently, we advocate that data-centric AI tools are integrated into LLM-based
co-pilots, while emphasizing the importance of the human-in-the-loop to contextualize and
guide their usage.

4 CliMB-DC: An LLM Co-Pilot from a Data-Centric Perspective

Problem Setting. Denote D “ tpxi, yiquni“1, where x “ px1, . . . , xpq with xd P Xd and
y P Y, be a well-curated, “ML-ready” dataset suitable for training a given ML model (in-
cluding an AutoML model) and achieving optimal target performance. Here, we consider a
general scenario including both the supervised setting depending on the label types – such as
classification Y “ t1, . . . , Cu, regression Y “ R, and time-to-event analysis Y “ pt0, 1u,Rě0q.

Data corruption faced in practice. In real-world healthcare scenarios datasets have nu-
merous challenges as discussed. Additionally, since non-technical domain experts have limited
expertise in data science, it often results in uncurated datasets, denoted as D̃ “ px̃i, ỹiq

ñ
i“1,

where x̃ “ px̃1, ¨ ¨ ¨ , x̃p̃q with x̃d P X̃d. These datasets are subject to various data-centric
issues, as highlighted in Table 1. If left unprocessed, such issues can lead to undesired failures
or suboptimal performance in downstream ML models. To clarify this concept, we formalize
how a well-curated dataset, D, can be (unknowingly and unintentionally) transformed into
an uncurated dataset, D̃, through a series of L data corruption processes during real-world
data collection.

D̃ “ gpDq “ gL ˝ ¨ ¨ ¨ ˝ g1pDq, (1)

where gℓ represents the corruption applied at the ℓ-th step. A well-curated dataset, D, can
be corrupted in numerous ways, impeding the optimal performance and clinical impact of
ML models. Based on our taxonomy in Table 1, we categorize the prominent data-centric
issues commonly encountered in healthcare datasets, each representing a specific type of
corruption function.

Ideal data-centric curation. Suppose it is feasible to revert the data corruption process
applied to the well-curated dataset, D, from the given uncurated dataset, D̃. Ideally, the
goal is to construct a series of L data curation functions, f1, . . . , fL, where each curation
function is specifically designed to revert the corresponding data corruption function applied
to D, i.e., fℓ “ g´1

ℓ .

Domain-specific model learning. Once the dataset is curated, the objective is to select
an appropriate, context-dependent model class and train an ML model that achieves strong
generalization performance for the user-defined task descriptions.

Then we move on to introduce in detail our proposed LLM co-pilot designed through a
data-centric lens, named Clinical predictive Model Builder with Data-Centric AI (CliMB-
DC) 2. See Figure 3 for the overall architecture.

10

Towards Human-Guided, Data-Centric LLM Co-Pilots

Figure 3: The overall architecture and workflow of CliMB-DC, which primarily consists of
three entities that interact with the the evolving state bank: (i) a coordinator
agent responsible for reasoning and planning, (ii) a worker agent for code writing
and execution, and (iii) the user or human experts.

4.1 Overall Architecture

Recall that given an initial dataset D0, our goal is to find an optimal sequence of transforma-
tions f “ pf1, . . . , fLq that yields a curated dataset D˚ suitable for downstream ML tasks.
Each transformation fi P F is selected from a space of possible operations, guided by both
LLM reasoning and expert feedback. The curated dataset is then used to select and train
domain-specific ML models for prediction.

Our framework, CliMB-DC (see Figure 3), addresses challenges (C1-C4 in Section 3)
faced by the existing co-pilot through a dual-agent architecture that combines the strengths
of LLM-based reasoning with human domain expertise.

The system consists of a high-level coordinator agent, responsible for managing the overall
data processing strategy, and a specialized worker agent, tasked with executing specific
data transformations. This separation of responsibilities enables CliMB-DC to maintain
strategic oversight while ensuring operational efficiency. Additionally, the framework supports
continuous integration of expert feedback, facilitating iterative refinement of the strategy.
As shown in Figure 3, the CliMB-DC workflow involves three entities (coordinator and
worker agents, and the user/expert) interacting with the evolving state bank (which
includes tool sets pulled from the tool registry)3; each aspect is elaborated on below:

State bank. The state bank stores the system states at each time step t. Formally,
the system state S at time t is defined by Sptq “ tDptq,Hptq,Pptq,Mptq, T ptqu, where Dptq

represents the current dataset state, Hptq captures the interaction history including expert
feedback, Pptq maintains the dynamic episode plan, Mptq tracks episode completion metadata,
and T ptq contains the available data-centric and modeling tools that can be used by the
worker agent.

Tool registry. Recent advances in data-centric AI have led to the development of a variety
of methods and tools from across the community. CliMB-DC integrates a large variety of
diverse data-centric (and model-centric tools) from across the literature (see Table 3) which
are available to the worker agent to utilize. Although not exhaustive, the current set of tools
covers a diverse set of scenarios linked to the data-centic challenges taxonomy in Section 2.

2. Code found at: https://github.com/vanderschaarlab/climb/tree/climb-dc-canonical
3. Architecturally, the coordinator and worker agents and the tool registry are the key components of

CliMB-DC. The state bank emerges through repeated agent/user interaction with the system.

11

https://github.com/vanderschaarlab/climb/tree/climb-dc-canonical

Saveliev*, Liu*, Seedat*, Boyd, van der Schaar

Table 3: Overview of tools available in CliMB-DC. This ensures data/model-centric tools
are accessible to non-technical domain experts, while also providing data-centric
ML researchers a platform for tool impact.

Tool class Available tools

Data understanding
Descriptive statistics,
Exploratory data analysis (EDA),
Feature selection (Remeseiro and Bolon-Canedo, 2019)

Feature extraction (from text) spaCy Matcher
Data characterization Data-IQ (Seedat et al., 2022a),TRIAGE (Seedat et al., 2023a)
Missing data HyperImpute (Jarrett et al., 2022)
Data valuation KNN-Shapley (Jia et al., 2019)
Data auditing (outliers) Confident Learning (Cleanlab) (Northcutt et al., 2021b,a)
Data imbalance SMOTE (Chawla et al., 2002)

Model building AutoPrognosis 2.0 (Imrie et al., 2023)
(supports regression, classification, survival analysis)

Post-hoc interpretability
Permutation explainer (Breiman, 2001),
SHAP explainer (Lundberg and Lee, 2017),
AutoPrognosis 2.0 subgroup analysis (Imrie et al., 2023)

Test time risk or failure analysis Data-SUITE (Seedat et al., 2022b),
SMART Testing (Rauba et al., 2024)

Moreover, as outlined in Section 5, we illustrate the extendable nature of the framework to
easily integrate new tools from the ML community.

Coordinator agent. The Coordinator agent is the strategic planner of the system, re-
sponsible for maintaining a high-level view of the data processing pipeline and making
decisions about task sequencing (i.e. the plan). It implements a three-stage reasoning process
that continuously evaluates progress, identifies potential issues, and adapts the processing
strategy based on both automated metrics and expert feedback. Operating through reason-
ing process πC , the Coordinator maps the current system state to the next-step strategic
decisions/processing decision (i.e. plan Ppt`1q):

πC : Sptq Ñ Ppt`1q. (2)

The detailed reasoning approach is demonstrated in Section 4.2.

User/Expert integration. Domain expertise is systematically integrated throughout
the process through feedback that ensures all transformations align with domain-specific
requirements and constraints. This integration occurs through a natural language feedback
mechanism that evaluates proposed transformations and enriches the system’s understanding
of the domain. Additionally, it captures domain knowledge that enhances the future rea-
soning and decision making by the coordinator agent, creating a continuous learning loop
that improves the system’s performance over time. The detailed interaction mechanism is
introduced in Section 4.2 (see Equation 5 in State Observation).

Worker agent. The Worker agent acts as the system’s execution engine, translating
high-level plans from the coordinator agent into concrete data transformations instantiated in
code. It combines LLM capabilities with specialized data-centric tools to implement precise,
context-aware transformations while maintaining interactions to integrate information from

12

Towards Human-Guided, Data-Centric LLM Co-Pilots

domain experts. The Worker’s execution process is formalized as:

πW : pSptq,Pptq, T ptqq Ñ pHpt`1q,Dpt`1q,Mpt`1qq (3)

where Sptq represents the current state, T ptq indicates the current selected/available tool, and
Dpt`1q denotes the resultant (new) dataset state, Hpt`1q and Mpt`1q denote the updated
history records. The Worker operates at a granular level, focusing on individual data
processing episodes and ensuring each transformation aligns with both technical requirements
and domain expertise.

4.2 Details of CliMB-DC’s Reasoning Process

Before introducing CliMB-DC’s reasoning approach, we first highlight the challenges in our
specific scenarios faced by an alternative approach — Monte Carlo Tree Search (MCTS)
(Coulom, 2006; Rakotoarison et al., 2019).

Figure 4: Challenges of Monte Carlo Tree Search (MCTS). We highlight two key drawbacks
of MCTS. First, prediction performance cannot serve as a reliable reward, as it
may favor data issues such as label leakage or meaningless problem setups (middle).
Second, MCTS suffers from low efficiency, requiring experts to endure long waiting
times and evaluate a large number of trials (right). In contrast, CliMB-DC’s
proposed reasoning approach enables immediate backtracking and replanning,
significantly enhancing efficiency.

Challenges of MCTS. Monte Carlo Tree Search (MCTS) is a commonly used reasoning
and planning mechanism that generates random paths to explore and evaluate potential
plans based on a reward function. (Coulom, 2006; Rakotoarison et al., 2019) However, the
complex nature of real-world data issues introduces several critical challenges, significantly
limiting the practicality of MCTS in these contexts.

While existing co-pilots like OpenHands Wang et al. (2024) or DataInterpreter Hong
et al. (2024) do not use MCTS, we provide this conceptual comparison to illustrate why
MCTS, a common planning approach based on exhaustive tree exploration (as often used in
reinforcement learning or agent simulations) is unsuitable in data-centric ML settings. We
highlight the key challenges as follows:

• Lack of intermediate reward model: MCTS depends on a well-defined reward
model. However, in our setting, there is no clear reward model, particularly for all
the intermediate states that may arise. Even human experts are unable to provide
such detailed rewards. For instance, given a dataset, it is challenging for experts to
evaluate all the data issues listed in Table 1. As a result, MCTS would require complete

13

Saveliev*, Liu*, Seedat*, Boyd, van der Schaar

model training and evaluation to obtain reward signals, making iterative data curation
computationally prohibitive.

• Prediction performance is unsuitable as the final reward: Another significant
challenge for MCTS in our scenarios is that prediction performance cannot be directly
used as the final reward. It is critical to first ensure that the entire data processing
pipeline is valid and free from issues such as label leakage, which could render perfor-
mance metrics unreliable. For example, as shown in Figure 4 (middle), if the state Sp2q

introduces label leakage, relying solely on performance to determine the reward would
assign an artificially high reward to this node. However, such a state should be avoided
in the final path.

• Low efficiency: A further challenge is the low efficiency of the process. Since
prediction performance is inadequate as a final reward, expert evaluation may be
necessary. However, MCTS involves random exploration and requires numerous steps
to transform a raw dataset into a well-trained prediction model. As shown in Figure 4
(right), this results in lengthy trials, and the large number of trials exacerbates the
inefficiency. Additionally, in many scenarios, users may be unable to examine the
details of all trials due to time constraints or limited expertise in data science and
clinical domain knowledge. These limitations significantly restrict the applicability of
MCTS in our scenarios.

The challenges associated with MCTS largely arise from its approach of treating all data
processing steps as unknown and unexplored, attempting to navigate the entire sequence of
actions, as is common in gaming scenarios. In contrast, data processing typically follows a
well-established order of operations, making such exhaustive “searching” unnecessary. For
example, addressing data missingness generally precedes other transformations or feature
engineering steps, and exploring these well-known rules through extensive random trials is
both inefficient and redundant.

A more practical alternative to MCTS is to focus on refining “local processing” within the
general sequence of operations. Our framework incorporates automated planning combined
with expert validation to ensure both technical quality and domain-specific appropriateness.
The key innovation lies in enabling the method to backtrack after errors and consult experts
when necessary, such as for decisions involving the meanings of features, handling label leakage,
or determining whether to drop specific features, etc. As shown in Figure 4 (left), when
combined with immediate expert feedback, the coordinator enables prompt backtracking,
significantly improving efficiency.

CliMB-DC’s proposed multi-stage reasoning. The reasoning mechanism of CliMB-DC
is demonstrated in Figure 5. At time t, the coordinator agent takes the current state bank
tSp0q, . . . , Spt´1qu as input, and outputs the plan via:

P pPptq|tSp0q, . . . ,Spt´1quq
looooooooooooooomooooooooooooooon

coordinator reasoning

“
ÿ

Optq

P pOptq|Spt´1qq
looooooomooooooon

state observation

¨

ˆ

ÿ

βptq

P pβptq|Optqq
loooooomoooooon

backtracking

P pPptq|βptq,Optqq
looooooooomooooooooon

lookahead planning

˙

, (4)

where

14

Towards Human-Guided, Data-Centric LLM Co-Pilots

Figure 5: The framework of the coordinator agent in CliMB-DC, encompassing three parts
named State Observation (SO), Backtracking Assessment (BA), and Lookahead
Planning (LP).

1. State Observation (SO): P pOptq|Spt´1qq denotes the state observation stage, where
the coordinator analyzes the project state, focusing primarily on the last state Spt´1q.
And it will gather expert human feedback Γptq from history interactions. Therefore,
P pOptq|Sptqq can be formulated as:

P pOptq|Spt´1qq “
ÿ

Γptq

P pΓptq|Spt´1qqP pOptq|Γptq,Spt´1qq, (5)

where Γt denotes the expert feedback at time t and the summation is a marginalization
over all possible feedback signals. To inform its decision, the coordinator extracts
information about the project state such as evaluating experiment outcomes, data
quality metrics and expert feedback received, together denoted as Optq. In practice, we
observe a single realized feedback message from the user at each step; the marginalized
form is included to make the underlying probabilistic dependencies explicit.

2. Backtracking Assessment (BA): Based on the analysis, the coordinator determines
if previous decisions need revision or updating. If the project is not progressing
satisfactorily (e.g., due to data quality issues or expert feedback indicating problems),
the coordinator identifies a backtracking point k ă t ´ 1 and restores the project state
to Spkq (i.e. backtrack step), which is denoted by P pβptq|Optqq.

3. M-Step Lookahead Planning (LP): The coordinator evaluates the current plan,
focusing specifically on the next M episodes et, . . . , et`M´1 within the plan Pptq.
For each episode ei, the coordinator assesses two key aspects: (i) Necessity and (ii)
Appropriateness. Leveraging the history and user interactions (expert feedback) stored
in Optq, the coordinator refines the plan by excluding episodes considered unnecessary
or inappropriate and incorporating new ones as needed. This process ensures the
updated plan Pptq remains aligned with the user’s objectives. Specifically, this can
involve the following types of updates:

– Reordering episodes to better handle dependencies;
– Removing unnecessary episodes;
– Adding new episodes to address identified gaps;
– Modifying episode parameters based on expert input.

The coordinator then issues this updated plan to the worker agent to execute at the
next iteration. When the Worker agent completes an episode, control returns to the
Coordinator for the next iteration of plan analysis and refinement.

15

Saveliev*, Liu*, Seedat*, Boyd, van der Schaar

Example 1 (Demonstration of the reasoning process.) Let us consider the case of a
dataset with missingness and how the reasoning process works. As shown in Figure 6, after
loading the dataset, the co-pilot detects the missingness issue and initially plans to address it
using the DropNA function, which removes all rows with missing values, resulting in the state
Sp2q. However, the State Observation (SO) module identifies a new problem: the reduced
dataset size falls below 50, which is insufficient for subsequent processing and difficult to
remedy. In response, the Backtracking Assessment (BA) module is triggered, rolling the state
back to Sp1q.

In the next step, the SO module detects the missingness issue, and the BA module is not
triggered. Drawing on the history record, which indicates that using “DropNA” previously
led to backtracking, the Lookahead Planning (LP) module revises the plan and selects an
alternative approach—imputation—to address the missingness issue.

Use Tool
𝑺(𝟏) 𝑺(𝟐)

DropNA

State
Observation

(SO)

𝒪(𝟑)

data size < 50

Backtracking
Assessment

(BA)

hard to fix
backtracking

Backtracking

Example

𝑺(𝟏)
State

Observation
(SO)

𝒪(𝟐)

missingness

Backtracking
Assessment

(BA)

𝒫(𝟏)

Previous Plan:

DropNA

According to history 𝓗(𝟏), using

DropNA will backtrack, let’s CHANGE!

𝒫(𝟐)

Updated Plan:

Imputation

Replanning

Example

Lookahead
Planning

(LP)

Figure 6: Example of backtracking and replanning in handling missing data, showcasing how
the Backtracking Assessment (BA) and Lookahead Planning (LP) modules in the
proposed reasoning approach collaborate to efficiently resolve data issues.

Reasoning process algorithm. We formalize this iterative process in Algorithm 1, which
details the interaction between components and the progression of transformations.

4.3 Worker Agent

The worker agent takes the updated plan and integrates it with the available tool set (see
Table 3). It then generates and executes the necessary code to complete the plan. If execution
fails, the agent autonomously updates the code to ensure successful execution. Additionally,
the worker agent can verify the availability of required Python packages, installing them if
necessary before proceeding with execution. For the case studies in Section 6, we perform an
ablation study by removing the coordinator & our tool set from CliMB-DC to emphasize the
reliability of our worker agent in code generation and execution.

Remark on worker and coordinator agents : We clarify that the multi-agent architecture
of coordinator and worker are instantiated with the same backbone LLM, however, they
are differentiated via distinct prompting, role specialization, tool access, memory modules,
distinct reasoning responsibilities and system state partitioning.

16

Towards Human-Guided, Data-Centric LLM Co-Pilots

Algorithm 1 CliMB-DC Optimization with Expert Integration
Require: Initial dataset Dp0q, tools T
Ensure: Curated dataset D˚

1: Initialize Sp0q “ tDp0q,H,Pp0q,H, T u

2: D˚ Ð Dp0q

3: while not converged do Ź Coordinator reasoning phase
4: Optq Ð StateObservepSptqq Ź see Section 4.2
5: βptq Ð AssessBacktrackpOptqq

6: if βptq “ 1 then
7: pD˚,Sptqq Ð RestoreCheckpointpHptqq

8: continue
9: end if

10: Pptq Ð PlanningpOptqq

11: while not episode_complete do Ź Worker execution phase
12: ft Ð W.ProposeTransformpSptq,Pptq, T ptqq

13: D˚ Ð ftpD˚q

14: end while
15: Spt`1q Ð UpdateStatepSptq,D˚,Hptqq Ź Update system state
16: end while

5 CliMB-DC: Open-source software toolkit

Code: https://github.com/vanderschaarlab/climb/tree/climb-dc-canonical
Beyond usage by diverse users and improved performance, an important aspect for

CliMB-DC for impact in healthcare is its role as a software toolkit to empower domain
experts. Consequently, a key aspect is the open-source nature of the framework, which
enables the community to contribute and integrate new tools to extend its capabilities.

To achieve this goal of empowerment for diverse users, three software challenges are vital
to address: extensibility to new tools, human integration, and support for diverse predictive
tasks in medicine, specifically classification, survival analysis, and regression. This enables a
more robust and user-friendly system for clinical predictive modeling.

5.1 Extensibility to New Tools

The diversity and rapid development of data-centric tools means the framework must be
capable of integrating new tooling from the community with minimal effort.

Data-Centric Tool Support: CliMB-DC emphasizes a data-centric AI approach by
integrating specialized tools (see Table 3) that enhance dataset quality including:
• Imputation Tools: Frameworks like HyperImpute handle missing data with advanced

iterative imputation techniques.
• Exploratory Analysis and data quality evaluation: Tools such as Data-IQ enable detailed

subgroup analysis, data heterogeneity and noisy labels.
• Interpretability : Built-in post-hoc interpretability methods like SHAP and permutation

explainers ensure models remain transparent and actionable.

17

https://github.com/vanderschaarlab/climb/tree/climb-dc-canonical

Saveliev*, Liu*, Seedat*, Boyd, van der Schaar

Tool use: The worker uses tools through code generation, which calls Python APIs or
data-centric tools using their desired software interfaces (e.g., Data-IQ, hyperimpute, shap,
etc.). Tools are registered with metadata, including API signatures and expected inputs,
offering controlled tool usage. In the case of custom operations, the worker writes executable
Python code, which is logged and shown to the user — to allow for traceability.

Extensibility: (i) We have a tool registry which catalogs the available tools, their supported
predictive tasks, and their data requirements, enabling users to easily incorporate new methods
without modifying core system logic. (ii) Modular APIs allow developers to register new
tools, ensuring that CliMB-DC evolves alongside data-centric advances. (iii) The Open-
source architecture encourages community contributions to expand the ecosystem of available
data-centric tools to the co-pilot. This enables broader accessibility to data-centric tools
for non-technical domain experts thereby empowering them. Additionally, it provides an
opportunity for the data-centric ML research community to easily incorporate new tools
and/or validate their tools, facilitating research impact via usage on diverse applications.

5.2 Human Integration Through UI and Feedback

More complex ML frameworks generally require a wider range of skill sets that are often
lacking by non-technical domain experts, whereas the setup of more complex biological
research questions risk being misunderstood by technical domain experts. One way of
minimizing the impact of these limitations is creating a user interface (UI) that allows both
mutual understanding of the tasks between users and integrates specific feedback from the
type of user.

User Interface The UI for CliMB-DC combines output from natural, conversational
language, along with updates on the progress of the task pipeline accompanied with visu-
alizations (see Figure 7). This type of interface provides non-technical domain experts the
opportunity to perform tasks that they might not be able to do directly with an ML tool
and technical domain experts the opportunity to examine more closely which ML procedures
were effectuated.

Oftentimes, users with technical and non-technical domain expertise employ different
terminology for the same task or problem at hand, obfuscating the processes needed to
complete the task or solve the given problem. For example, users from the ML community
might adapt a feature selection process prior to or during predictive modeling, while those
from the epidemiology community would refer to this process as model building (see Table 8
for more examples). The fact that users can communicate desired processes in their natural
language makes it possible to carry out the intended task, supporting its nuances and bringing
about a more fluid user experience.

Dynamic Plan Refinement via expert guidance CliMB-DC importantly incorporates
human feedback into its reasoning. The user can refine the data science pipeline in an iterative
manner by weighing in their expertise on a variety of processes (e.g., on data transformations,
feature selection, or model evaluation). The iterative feedback dynamically adjusts the plan,
ensuring alignment with domain-specific goals and that outputs are clinically relevant.

18

Towards Human-Guided, Data-Centric LLM Co-Pilots

Session

management

Session controls (user-

initiated retry, backtrack,

confirm shortcut, etc.) Natural language input

Information dashboard

Conversation record (natural

language, code/tool execution

output, interactive charts etc.)

Figure 7: The user interface of CliMB-DC, which supports natural language input, multi-
modal conversation record and dashboard, session controls (including user-initiated
retry and backtracking), and session management across multiple conversations.

5.3 Support for Diverse Predictive Tasks

Clinical datasets require predictive modeling across varied tasks, including classification, sur-
vival analysis, and regression, each with distinct data processing and modeling needs. Recall
that in carrying out these analytics, non-technical domain experts like clinical researchers,
biostatisticians, epidemiologists etc, do not need to do ML analytics. Rather CliMB-DC
facilitates this with domain expertise used to guide and validate the process.

6 Case Studies

We now empirically investigate multiple aspects of CliMB-DC to handle real-world healthcare
data challenges.

1. Does it work?: We highlight for multiple data-centric challenges from our taxonomy,
where vanilla co-pilots fail and the data-centric lens with human feedback helps.

2. Why does it work?: We provide an in-depth analysis via various case studies to
better understand why CliMB-DC succeeds and other co-pilots fail.

Datasets. We employ real-world tabular healthcare datasets with varying characteristics.
Specifically, different sample sizes, dimensionality, task types (classification, survival analysis)
and task difficulty. These datasets reflect the following data challenges (as defined in our
taxonomy): (i) Lung cancer: Data leakage (ii) PBC Dataset: Unaggregated data (based on
identifiers) and (iii) Prostate cancer prediction: Ambiguous and Hard examples (mislabeled
and outliers). The datasets are detailed in Appendix B.

Baselines. We compare CliMB-DC as discussed in the related work to Data Interpreter
(Hong et al., 2024), OpenHands (Wang et al., 2024) and LAMBDA (Sun et al., 2025) as
representative co-pilots. Additionally, we perform an ablation of CliMB-DC. We remove
the coordinator, highlighting its value, while assessing the worker agent’s reliability in code

19

Saveliev*, Liu*, Seedat*, Boyd, van der Schaar

generation and execution. This ablation is instantiated both with and without tools. We
refer to these configurations as CliMB-DC (No coordinator, With tools) and CliMB-DC
(No coordinator, No tools), respectively. These can be thought of as ablations which are
reflective of the original CliMB. Unless otherwise stated all results are averaged over 5 runs.
In addition to the results in the main paper, Appendix C and D provides a detailed analysis
of the logs of interactions for CliMB-DC and the baselines.

6.1 Does it work?

To demonstrate the effectiveness of CliMB-DC, we conduct the following case studies on
healthcare datasets using different data challenges. Below, we summarize the results and the
context and importance of these datasets:

• Case study 1: In the dataset on predictors of lung cancer, the primary challenge
involves addressing data leakage. This scenario is particularly complex as it combines
survival analysis with the need to identify and handle potentially leaked information
from outcome-related variables. Table 5 demonstrates based on C-index that both
Data-Interpreter and OpenHands were unable to provide valid results in almost all
scenarios and produced several different reasons for failures, most of which was related
to data leakage. CliMB-DC was able to produce valid results without run failures.

• Case study 2: In the dataset on predictors of PBC, unaggregated data and potential
data leakage are presented as simultaneous challenges. Table 4 demonstrates based
on C-index that both Data-Interpreter and OpenHands were unable to provide vaild
results, mainly due to failure to aggregate data per patient and identify data leakage.
This scenario is especially relevant to healthcare settings where multiple measurements
per patient are common. CliMB-DC was able to handle these issues and produce valid
results, while maintaining temporal consistency and avoiding information leakage.

• Case study 3: In the datasets comparing predictors of prostate cancer mortality from
the SEER (USA) and CUTRACT (UK) datasets, the challenge lies in handling data
quality issues and data drifts, across different healthcare systems. Table 6 demonstrates
based on AU-ROC that all three tools were able to produce valid results, while
the accuracy and AU-ROC was slightly higher when using CliMB-DC. The results
demonstrate our framework’s robustness in managing dataset shifts while maintaining
consistent performance across different healthcare contexts.

20

Towards Human-Guided, Data-Centric LLM Co-Pilots

Table 4: Results on the PBC dataset, where the primary data challenges are addressing
unaggregated data and data leakage. The prediction task in this case is survival
analysis, a specialized and less common task compared to those typically encountered
in general machine learning fields. The whole processing procedure of the proposed
CliMB-DC is shown in Figure 8.

Method Human Assistance Results Valid C-Index Failure Modes % runs tested

Data-
Interpreter - × 0.789

Failed to aggregate data per patient 100%
Failed to identify data leakage 100%
Failed to produce results 40%
Failed to set up survival problem 20%

OpenHands - × 0.468

Failed to aggregate data per patient 100%
Failed to identify data leakage 100%
Failed to set up survival problem 60%
Convergence issues causing task failure 20%

LAMBDA - × N/A Failed to process or load data 100%

CliMB-DC
(No Coordinator
& No Tools)

- × 0.663

Failed to aggregate data per patient 100%
Failed to identify data leakage 80%
Failed to produce results 60%
Fail to solve convergence error 20%

CliMB-DC (No
Coordinator & With Tools) - × 0.914 Failed to aggregate data per patient 100%

Failed to identify data leakage 100%

CliMB-DC - ✓ 0.953 (Successful) 100%

Table 5: Results on the Lung Cancer dataset, where the primary data challenge is addressing
data leakage. The prediction task in this case is survival analysis, a specialized
and less common task compared to those typically encountered in general machine
learning fields. The whole processing procedure of the proposed CliMB-DC is shown
in Figure 9.

Method Human Assistance Results Valid C-Index Failure Modes % runs tested

Failed to identify data leakage 100%
Incorrect metric used 20%
Failed to set up survival problem 20%- × 0.625

PCA use degraded performance 60%

✓ 0.738 (Successful) 80%

Data-
Interpreter

Leakage features excluded × 0.995 Label leakage reintroduced 20%

OpenHands

Failed to identify data leakage 100%- × N/A Incorrect metric reported 100%

Specify Cox model × 0.496 Failed to identify data leakage 100%

Leakage features excluded ✓ 0.500 (Successful) 80%
× N/A Stuck in a loop 20%

LAMBDA - ✓ 0.689 (Successful) 40%
× 0.887 Failed to identify data leakage 60%

CliMB-DC
(No Coordinator
& No Tools)

- × 0.765 Failed to identify data leakage 100%
Failed to solve convergence error 40%

Leakage features excluded ✓ 0.809 (Successful) 80%
× N/A Failed to test on the test file 20%

CliMB-DC (No
Coordinator & With Tools) - × 0.871 Failed to identify data leakage 100%

CliMB-DC - ✓ 0.848 (Successful) 100%

21

Saveliev*, Liu*, Seedat*, Boyd, van der Schaar

Table 6: Results on cross cancer mortality prediction (SEER from the USA to CUTRACT
from the UK), where the primary data challenges are addressing data quality/hard-
ness and data drifts. The prediction task in this case is classification, a common
task in general machine learning fields. The whole processing procedure of the
proposed CliMB-DC is shown in Figure 10.

Method Human Assistance Results Valid Accuracy AUC-ROC Failure Modes % runs tested

Data-Interpreter - ✓ 66.5 0.727 (Successful) 80%
× N/A N/A Failed in preprocessing 20%

OpenHands - ✓ 67.5 0.729 (Successful) 100%

LAMBDA - ✓ 67.1 0.726 (Successful) 100%

CliMB-DC (No
Coordinator& Tool Set) - ✓ 67.8 0.749 (Successful) 80%

× 68.3 0.683 Failed to compute AUC-ROC 20%

CliMB-DC (No
Coordinator & With Tools) - ✓ 69.4 0.765 (Successful) 100%

CliMB-DC - ✓ 69.9 0.771 (Successful) 100%

6.2 Why does it work?

To provide a deeper understanding of how CliMB-DC can excel in specific, data-centric
challenges, we describe various facets of using CliMB-DC in comparison to other co-pilots.
These case studies illustrate how our multi-agent architecture, reasoning processes and
human-in-the-loop feedback can provide specific advantages, and where problems when
using other co-pilots arise. Figures 8 and 9 illustrate the specific reasoning and planning
mechanisms through which CliMB-DC reasons, adapts the plan, engages with the domain
expert and then resolves these challenges.

Case study 1: In many datasets from healthcare settings, multiple measurements are
recorded for each patient over time, leading to unaggregated data. Baseline co-pilots treat
each row as an independent patient observation, creating two issues: (1) data leakage between
training and test sets when measurements from the same patient appear in both, and (2) an
ill-posed modeling setup that violates the independence assumptions of survival analysis.

In contrast, as shown in Figure 8, CliMB-DC identifies the structure of the dataset,
leveraging its state observation and human-guided feedback mechanisms to aggregate mea-
surements correctly. This ensures that the modeling process aligns with the true data
generation process, avoiding leakage.

Case study 2: Survival analysis tasks are particularly vulnerable to label leakage from
other features or covariates that can compromise model validity. Specifically, time-dependent
variables like “time_to_lung_cancer” inherently leak information about the outcome. Other
co-pilots fail to account for such features, resulting in inflated performance metrics and
compromising the model’s real-world applicability and generalization.

In contrast, as shown in Figure 9, CliMB-DC’s dynamic reasoning and iterative planning
allows detection and mitigation of label leakage. Through domain expert feedback, the
system removes problematic features like “time_to_lung_cancer”. This ensures that the
resulting models are valid and generalizable.

22

Towards Human-Guided, Data-Centric LLM Co-Pilots

Q1: It appears that the column name for patient identification is not "patient_id".

Could you please provide the correct column name for patient identification?

Plan: (next-3 steps)

0: load the file

1: check hardware info

2: ask user for information

Worker:

0: Done

1: Done

Plan: (next-3 steps)

2: ask user for dataset information

3: ask user for problem setting & research question

4: assess data suitability and tool support

T=2~3

Q1: How is the dataset structured? Can you give some background

information?

Q2: Can you please describe the experiment setup and the research

question you wish to investigate?

Plan: (next-3 steps)

5: drop duplicate rows for each patient

6: perform exploratory data analysis (EDA)

7: generate descriptive statistics

T=5

Worker:

5: Failed! key error: ‘patient_id’

Plan: (next-3 steps)

6-a: ask user for the right column name

6-b: drop duplicate rows for each patient

7: perform exploratory data analysis (EDA)

8: generate descriptive statistics

Worker:

6-b: Done

T=6a

A1: Yes, that would be id.

T=6b

Plan: (next-3 steps)

7: perform exploratory data analysis (EDA)

8: generate descriptive statistics

9: show Kaplan-Meier plot

T=7~9

Worker:

7: Done

8: Done

9: Done

Tools: Descriptive
Statistics, EDA,
KaplanMeierFitter

T=10

Plan: (next-3 steps)

10: ask user for column names

11: check column NaNs

12: drop column with NaNs

Q1: Can you please confirm if above descriptions

are correct? If not, please provide the correct

information.

Additionally, I will need your input on the

remaining columns: …

A1: OCA: obeticholic acid, UDCA:

ursodeoxycholic acid. I do not have the data

sheet for the rest of the features at this time.

Plan: (next-3 steps)

11: check column NaNs

12: drop column with NaNs

13: check row NaNs

Worker:

11: Done by listing the

missingness ratio of each

feature

T=11

Plan: (next-3 steps)

12-a: ask user for the threshold

12-b: drop columns according to threshold

13: check row NaNs

Q1: What is your acceptable threshold for including a

column in the analysis? The default threshold is 80%. Are

you happy to drop the columns that exceed this threshold?

If not, which columns would you like to keep?

A1: OK, remove those

T=12-aT=12-b

Worker:

12-b: Done

Plan: (next-3 steps)

13: check row NaNs

14: drop row with NaNs

15: feature selection

Worker:

13: Done

T=13

Plan: (next-3 steps)

14: impute row with NaNs

15: feature selection

16: confirm ML problem type

Worker:

14: Done

15: Done

replanning due to key error

replanning due

to high row

missing rate

(69.08%)

T=14~15

Tools: HyperImpute,
feature selection

Plan: (next-3 steps)

16: confirm ML problem type

17: check data leakage

18: ML-classification

Q1: Based on the previous interactions, your target is

"Event_status" and the time variable is "Years_to_event".

This indicates that your task is a survival analysis. Can you

please confirm if this is correct?

A1: Yes, correct.

Plan: (next-3 steps)

17: check & deal with data leakage

18: check irrelevant columns

19: ML-survival analysis

replanning due

to problem

type change Q1: I suspect the following features will lead

to label leakage: Alive_status,

Event_categoty, Time_bio. Reasons are …

Please double-check.

A1: Based on my knowledge of the dataset, we

should definitely remove "Event_Category".

We can keep the others.

Worker:

17: Done

…

T=16 T=17

Plan: (next-3 steps)

19: ML-survival analysis

20: feature importance

Worker:

19: Done
Tools: AutoPrognosis 2.0

T=19

Plan: (next-3 steps)

20: feature importance

Worker:

20: Done

Tools: permutation
explainer

Output:
• C-Index 0.988±0.004

• Top features are Time_bio,

CCI_score, Ratio.ALP

• Prediction Model

• Report

T=1

…

A1: Each row is patient's information at different follow up points. The columns are

variables. The dataset is on Primary Biliary Cholangitis.

A2: I want to predict the Event_status variable (0/1). The time variable is

Years_to_event.

Start

End

Coordinator Agent

Worker Agent

User

Tool Used Tools

Replanning

Addressed data issues

solve multi-

measurements

solve NaNs

solve label

leakage

use domain-

specific model

T=20

Figure 8: End-to-end session trace of CliMB-DC on the PBC dataset. Shows how the
coordinator, worker, and user interact to detect and resolve real-world issues like
missingness, multi-measurements, and label leakage, culminating in a survival
analysis model. The agent successfully replans upon encountering and identifying:
(i) multiple measurements, (ii) NaNs, (iii) label leakage and (iv) the need for a
domain-specific model.

Case study 3: Data from healthcare settings can often have data quality challenges such
as hard examples (mislabeled, heterogenous outcomes etc). These observations can affect
model training (Seedat et al., 2022a) and can be sculpting or filtered from the dataset to
improve generalization. In addition, when models are used across countries, as is the case in
the two prostate cancer datasets from SEER and CUTRACT, distribution shift could occur.

As shown in Figure 10, CliMB-DC’s dynamic reasoning and data-centric tool usage allow
it to understand that data quality is a challenge, run a method for data characterization (e.g.
Data-IQ (Seedat et al., 2022a)) and based on the output, engage with the human expert to
remove ambiguous observations that may cause downstream problems during modeling. We
show that this improves model generalization cross-domain (i.e. in different countries).

23

Saveliev*, Liu*, Seedat*, Boyd, van der Schaar

Q1: Is the above information correct? If not, please provide the correct

information for any columns that need clarification.

Plan: (next-3 steps)

0: load the file

1: check hardware info

2: ask user for information

Worker:

0: Done

1: Done

Plan: (next-3 steps)

2: ask user for dataset information

3: ask user for problem setting & research question

4: assess data suitability and tool support

T=2~3

Q1: How is the dataset structured? Can you give some background

information?

Q2: Can you please describe the experiment setup and the research

question you wish to investigate?

Plan: (next-3 steps)

5: perform exploratory data analysis

6: generate descriptive statistics

7: show Kaplan-Meier plot

T=5~7

Worker:

5: Done

6: Done

7: Done

T=8

A1: Yes, that is acceptable.

T=9T=10

A1: No, let us keep those values as is, they do

not represent NaNs.

Plan: (next-3 steps)

9: check column NaNs

10: drop column with NaNs

11: check row NaNs

Worker:

9: Done by listing the

missingness ratio of each

feature

Plan: (next-3 steps)

10: ask for non-standard NaN placeholders

11: drop columns with NaNs

12: check row NaNs

T=11

T=12 T=13

Plan: (next-3 steps)

12: confirm ML problem type

13: check data leakage

14: ML-classification

Q1: Based on the information provided and the previous interactions, it seems

that your task involves performing a survival analysis with the target variable

being lung_cancer and the time variable being time_to_event_develop.

Could you please confirm if this is correct?

A1: Yes, correct.

Plan: (next-3 steps)

13: check & deal with data leakage

14: check irrelevant columns

15: ML-survival analysis

replanning due to problem

type (survival analysis)

Q1:

• time_to_death_lung_cancer: This column is likely to reveal the target variable lung_cancer.

• time_to_lung_cancer: This column is likely to reveal the target variable lung_cancer.

Do you agree with the identified columns for potential data leakage? If there are any other

columns you suspect might cause data leakage, please let me know.

A1: Yes, those two are data

leakage. Remove them please

Worker:

14: Done

T=14

Plan: (next-3 steps)

15: ML-survival analysis

16: feature importance

Worker:

15: Done
Tools: AutoPrognosis 2.0

T=15

Plan: (next-3 steps)

16: feature importance

Worker:

16: Done

Tools: permutation
explainer

Output:
• C-Index 0.925±0.029

• Top features are age_at_recruitment,

copd_emphysema_bronchitis,

packyears

• Prediction Model

• Report

T=1

…

A1: The dataset is about lung cancer. Each row represents a patient and columns are

patient variables.

A2: The goal is to perform survival analysis for lung_cancer event. The event

variable is lung_cancer, and time is time_to_event_develop.

Start

End

Coordinator Agent

Worker Agent

User

Tool Used Tools

Replanning

Addressed data issues

solve irrelevant

features

use domain-

specific model

Tools: Descriptive
Statistics, EDA,
KaplanMeierFitter

Plan: (next-3 steps)

8: ask user for column names

9: check column NaNs

10: drop column with NaNs

replanning due to

potential non-standard

NaN placeholders

Q1: There are no missing values in the dataset. However, there are some potential non-

standard NaN placeholders that we might need to address. Specifically, the values -1 and 0 in

certain contexts might be used to represent missing data. Could you please confirm if these

values are indeed used to represent missing data? If there are any other values or columns that

should be considered, please let me know.

Plan: (next-3 steps)

11: feature selection

12: confirm ML problem type

13: check data leakage

replanning due to no

NaNs in data

Worker:

11: Done

Tools: feature
selection

Plan: (next-3 steps)

14: check irrelevant columns

15: ML-survival analysis

16: feature importance
Q1:

• index: This column is likely an identifier and does not contain any

useful information for the analysis.

Do you agree with removing the index column? Are there any other

columns you suspect might be irrelevant?

A1: Yes, remove "index" column only.solve label

leakage

Worker:

13: Done

solve NaNs

T=16

Figure 9: End-to-end session trace of CliMB-DC on the lung cancer dataset. Demonstrates
the detection of label leakage from time-related features, resolution via expert
feedback, the detection and resolution of irrelevant features and final model
training using an appropriate survival analysis model. The example highlights the
importance of domain-guided/expert-guided data curation.

7 Conclusion

In this work, we introduced CliMB-DC, a human-guided, data-centric framework for LLM-
based co-pilots. Importantly, this framework addresses a critical gap in current LLM co-pilots:
their inability to effectively handle real-world data challenges while incorporating domain
expertise. Our contributions span multiple dimensions, from a taxonomy of data-centric
challenges to developing a novel multi-agent architecture enabling sophisticated reasoning
about data quality and processing workflows.

Our empirical evaluations highlight several key advantages of CliMB-DC when handling
key data challenges, allowing it to achieve robust ML outcomes where existing co-pilots
may come across problems. Beyond these technical contributions, the open-source nature of
CliMB-DC encourages the broader research community to extend its capabilities, ensuring
its relevance across diverse data structures and modeling applications.

By highlighting the importance of data-centric aspects to AI co-pilots, CliMB-DC rep-
resents a critical step towards democratizing ML for non-technical domain experts (in a
variety of fields), ensuring that data quality and contextual understanding are central to ML
workflows. We envision this framework as a foundational tool for democratizing the adoption
of ML across a variety of problem settings and domains.

24

Towards Human-Guided, Data-Centric LLM Co-Pilots

Q1: Is the above information correct? If not, please

provide the correct information for any columns that

need clarification.

Plan: (next-3 steps)

0: load the file

1: check hardware info

2: ask user for information

Worker:

0: Done

1: Done

Plan: (next-3 steps)

2: ask user for dataset information

3: ask user for problem setting & research question

4: assess data suitability and tool support

T=2~3

Q1: How is the dataset structured? Can you give some background

information?

Q2: Can you please describe the experiment setup and the research

question you wish to investigate?

Plan: (next-3 steps)

5: perform exploratory data analysis

6: generate descriptive statistics

7: show Kaplan-Meier plot

T=5~6

Worker:

5: Done

6: Done

T=7

A1: Yes, this is broadly correct.

T=8T=9

A1: No, let us keep those values as is, they do

not represent NaNs.

Plan: (next-3 steps)

8: check column NaNs

9: drop column with NaNs

10: check row NaNs

Worker:

8: Done by listing the

missingness ratio of each

feature

Plan: (next-3 steps)

9: ask for non-standard NaN placeholders

10: drop columns with NaNs

11: check row NaNs

T=10

T=11 T=12～14

Plan: (next-3 steps)

11: confirm ML problem type

12: check data leakage

13: ML-classification

Q1: Based on the information provided, it seems that your target variable is

“mortCancer” and you are interested in predicting patient mortality. Given this,

the task appears to be a classification problem, where the goal is to classify

patients into categories based on their mortality status. Could you please

confirm if this is correct and if you are aiming to perform a classification task?

A1: Yes, exactly.

Plan: (next-3 steps)

12: check & deal with data leakage

13: check irrelevant columns

14: ML-classification

Plan: (next-3 steps)

16: act on ambiguous/hard samples

17: iterate with user

Worker:

16: Done
Tools: Data-IQ

T=17

Plan: (next-3 steps)

17: iterate with user

Output:
• Model 1:

• Accuracy: 69.2

• AUCROC: 0.76

• Model 2 (after improving):

• Accuracy: 70.0

• AUCROC: 0.77

• Prediction Model

• Report

T=1

…

A1: Rows represent patients. Columns are their variables. It is a prostate cancer

patient dataset.

A2: I want to do a classification study is to predict patient mortality ("mortCancer"

variable).

Start

End

Coordinator Agent

Worker Agent

User

Tool Used Tools

Replanning

Addressed data issues

access data quality

Tools: Descriptive
Statistics, EDA

Plan: (next-3 steps)

7: ask user for column names

8: check column NaNs

9: drop column with NaNs

replanning due to

potential non-standard

NaN placeholders

Q1: it appears that there are no missing values reported.

Do you suspect there are any non-standard NaN values (e.g., specific placeholders like -999,

"NA", "None", etc.) used in your dataset to represent missing data?

Plan: (next-3 steps)

10: feature selection

11: confirm ML problem type

12: check data leakage

replanning due to no

NaNs in data

Worker:

10: Done

Tools: feature
selection

Worker:

12: Done

13: Done

14: Done

solve NaNs

T=18~19

replanning due to problem

type (classification), KM-

plot not suitable

Tools: AutoPrognosis 2.0

Plan: (next-3 steps)

15: feature importance

16: act on ambiguous/hard samples

17: iterate with user

Worker:

15: Done Tools: ShapExplainer

T=15 T=16

Q1: Would you like to remove some percentage of

ambiguous and hard samples from the dataset?

A1: Yes, let us try removing 80% of each of those.

Plan: (next-3 steps)

18: drop samples

19: ML-classification

Worker:

18: Done

19: Done
Tools: AutoPrognosis 2.0

improve data quality

replanning to improve

data quality

Figure 10: End-to-end session trace of CliMB-DC on cross-cohort cancer mortality task
(SEER to CUTRACT). Illustrates how CliMB-DC maintains robust performance
across cohorts by handling data drift and quality issues (i.e. via reasoning and tool
invocation) leading to better downstream generalization on the curated datasets.

Broader Impact Statement

CliMB-DC has significant potential implications, both positive and negative. On the benefi-
cial side, by democratizing machine learning for non-technical domain experts (such as clinical
researchers, biostatisticians, epidemiologists, social scientists, business analysts, environmen-
tal scientists, education researchers and more etc), it could accelerate the development and
deployment of ML-based predictive and decision support tools. Our framework’s emphasis
on data-centric challenges (which is both impactful and consumes significant time), coupled
with the integration of domain expertise helps ensure that resulting ML models are more
reliable and relevant within a problem domain, which is crucial for safety and trust in AI.

From an ML perspective the impact is: (1) giving a platform to the data-centric ML
research community to integrate their tools into our open source framework and (2) our
novel multi-agent reasoning process to adapt co-pilots more dynamically and account for
human feedback.

However, this democratization of ML tools also carries risks. Even with built-in safeguards,
there is potential for misuse if users do not fully understand the limitations of the models or
overlook important domain-specific nuances of their data. The framework could inadvertently

25

Saveliev*, Liu*, Seedat*, Boyd, van der Schaar

amplify existing biases in data if users do not carefully consider data issues. Additionally,
while the human-in-the-loop approach helps mitigate risks, it relies on user expertise.

Related to the risks are also issues around privacy preservation. CliMB-DC addresses
these as follows: (1) Local storage of data: All datasets used by CliMB-DC remain local to
the user’s machine. No dataset (raw or transformed) is uploaded to any external server. (2)
Local code execution: All code execution, whether through generated Python or integrated
tools, occurs locally. Hence, the actual data does not leave the user’s machine. Rather, just
the project state is the only thing sent to the LLM. This ensures that CliMB-DC remains
compliant with common data protection regulations such as HIPAA in the United States
and GDPR in the European Union, assuming appropriate local data governance.

That said, in terms of broad applicability, the CliMB-DC framework while instantiated
for healthcare tasks, is applicable to non-technical domain experts in other domains such as
finance, social sciences, education etc.

Finally, to maximize positive impact while minimizing risks it is important that users
understand their roles and what the framework can and cannot do when using the co-pilot.

Acknowledgments and Disclosure of Funding

We thank Robert Davis for his help with the software and Changhee Lee, Thomas Pouplin and
Mikkel Werling for their helpful discussions. This work was supported by Azure sponsorship
credits granted by Microsoft’s AI for Good Research Lab, with special thanks to Dr. Bill
Weeks, Director of AI for Health Research at Microsoft, for his support. This work was
additionally supported by Microsoft’s Accelerate Foundation Models Academic Research
initiative. NS is funded by the Cystic Fibrosis Trust. ES is funded by Dinwoodie Charitable
Company and University Hospital Southampton NHS Foundation Trust.

26

Towards Human-Guided, Data-Centric LLM Co-Pilots

References

Andrea Apicella, Francesco Isgrò, and Roberto Prevete. Don’t push the button! Ex-
ploring data leakage risks in machine learning and transfer learning. arXiv preprint
arXiv:2401.13796 [cs.LG], 2024.

Anand Avati, Martin Seneviratne, Emily Xue, Zhen Xu, Balaji Lakshminarayanan, and
Andrew M Dai. BEDS-Bench: Behavior of EHR-models under distributional shift–a
benchmark. arXiv preprint arXiv:2107.08189 [cs.LG], 2021.

Aparna Balagopalan, Ioana Baldini, Leo Anthony Celi, Judy Gichoya, Liam G McCoy,
Tristan Naumann, Uri Shalit, Mihaela van der Schaar, and Kiri L Wagstaff. Machine
learning for healthcare that matters: Reorienting from technical novelty to equitable
impact. PLOS Digit. Health, 3(4):e0000474, April 2024.

Xiao-Yuan Bao, Wan-Jing Huang, Kai Zhang, Meng Jin, Yan Li, and Cheng-Zhi Niu. A
customized method for information extraction from unstructured text data in the electronic
medical records. Beijing Da Xue Xue Bao Yi Xue Ban = Journal of Peking University.
Health Sciences, 50(2):256–263, 2018.

Brett K Beaulieu-Jones, Jason H Moore, and POOLED RESOURCE OPEN-ACCESS ALS
CLINICAL TRIALS CONSORTIUM. Missing data imputation in the electronic health
record using deeply learned autoencoders. In Pacific symposium on biocomputing 2017,
pages 207–218. World Scientific, 2017.

Louise Bloch, Christoph M Friedrich, and Alzheimer’s Disease Neuroimaging Initiative. Data
analysis with shapley values for automatic subject selection in Alzheimer’s disease data
sets using interpretable machine learning. Alzheimer’s Research & Therapy, 13:1–30, 2021.

Sabri Boughorbel, Fethi Jarray, Neethu Venugopal, and Haithum Elhadi. Alternating loss
correction for preterm-birth prediction from EHR data with noisy labels. arXiv preprint
arXiv:1811.09782 [stat.ML], 2018.

Leo Breiman. Random forests. Machine learning, 45:5–32, 2001.

Angel Alexander Cabrera, Minsuk Kahng, Fred Hohman, Jamie Morgenstern, and Duen Horng
Chau. Discovery of intersectional bias in machine learning using automatic subgroup
generation. In ICLR Debugging Machine Learning Models Workshop, 2019.

Tiffany Tianhui Cai, Hongseok Namkoong, and Steve Yadlowsky. Diagnosing model perfor-
mance under distribution shift. arXiv preprint arXiv:2303.02011 [stat.ML], 2023.

Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer. SMOTE:
synthetic minority over-sampling technique. Journal of artificial intelligence research, 16:
321–357, 2002.

Zui Chen, Lei Cao, Sam Madden, Tim Kraska, Zeyuan Shang, Ju Fan, Nan Tang, Zihui Gu,
Chunwei Liu, and Michael Cafarella. SEED: Domain-specific data curation with large
language models. arXiv preprint arXiv:2310.00749 [cs.DB], 2023.

27

Saveliev*, Liu*, Seedat*, Boyd, van der Schaar

Yizhou Chi, Yizhang Lin, Sirui Hong, Duyi Pan, Yaying Fei, Guanghao Mei, Bangbang Liu,
Tianqi Pang, Jacky Kwok, Ceyao Zhang, et al. SELA: Tree-search enhanced LLM agents
for automated machine learning. arXiv preprint arXiv:2410.17238 [cs.AI], 2024.

Davide Chicco, Luca Oneto, and Erica Tavazzi. Eleven quick tips for data cleaning and
feature engineering. PLOS Computational Biology, 18(12):e1010718, 2022.

Rémi Coulom. Efficient selectivity and backup operators in Monte-Carlo tree search. In
International conference on computers and games, pages 72–83. Springer, 2006.

Nastaran Enshaei, Moezedin Javad Rafiee, Arash Mohammadi, and Farnoosh Naderkhani.
Data shapley value for handling noisy labels: An application in screening COVID-19
pneumonia from chest CT scans. In ICASSP 2022-2022 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pages 1381–1385. IEEE, 2022.

Hossein Estiri and Shawn N Murphy. Semi-supervised encoding for outlier detection in
clinical observation data. Computer methods and programs in biomedicine, 181:104830,
2019.

Pablo Ferri, Nekane Romero-Garcia, Rafael Badenes, David Lora-Pablos, Teresa García
Morales, Agustín Gómez de la Cámara, Juan M García-Gómez, and Carlos Sáez. Extremely
missing numerical data in electronic health records for machine learning can be managed
through simple imputation methods considering informative missingness: A comparative
of solutions in a COVID-19 mortality case study. Computer Methods and Programs in
Biomedicine, 242:107803, 2023.

Freddie Mac. Single-family loan-level dataset. https://www.freddiemac.com/research/
datasets/sf-loanlevel-dataset, 2025. Accessed 2025-07-23.

Marzyeh Ghassemi, Tristan Naumann, Peter Schulam, Andrew L Beam, Irene Y Chen, and
Rajesh Ranganath. A review of challenges and opportunities in machine learning for health.
AMIA Summits on Translational Science Proceedings, 2020:191, 2020.

Karan Goel, Albert Gu, Yixuan Li, and Christopher Re. Model patching: Closing the
subgroup performance gap with data augmentation. In International Conference on
Learning Representations, 2020.

Lea Goetz, Nabeel Seedat, Robert Vandersluis, and Mihaela van der Schaar. Generalization—a
key challenge for responsible AI in patient-facing clinical applications. npj Digital Medicine,
7(1):126, 2024.

Ken Gu, Ruoxi Shang, Ruien Jiang, Keying Kuang, Richard-John Lin, Donghe Lyu, Yue
Mao, Youran Pan, Teng Wu, Jiaqian Yu, et al. BLADE: Benchmarking language model
agents for data-driven science. arXiv preprint arXiv:2408.09667 [cs.CL], 2024.

Siyuan Guo, Cheng Deng, Ying Wen, Hechang Chen, Yi Chang, and Jun Wang. DS-Agent:
Automated data science by empowering large language models with case-based reasoning.
arXiv preprint arXiv:2402.17453 [cs.LG], 2024.

28

https://www.freddiemac.com/research/datasets/sf-loanlevel-dataset
https://www.freddiemac.com/research/datasets/sf-loanlevel-dataset

Towards Human-Guided, Data-Centric LLM Co-Pilots

Udo Hahn and Michel Oleynik. Medical information extraction in the age of deep learning.
Yearbook of medical informatics, 29(01):208–220, 2020.

Sebastien Haneuse, David Arterburn, and Michael J Daniels. Assessing missing data assump-
tions in EHR-based studies: a complex and underappreciated task. JAMA Network Open,
4(2):e210184–e210184, 2021.

Md Mahadi Hassan, Alex Knipper, and Shubhra Kanti Karmaker Santu. ChatGPT as your
personal data scientist. arXiv preprint arXiv:2305.13657 [cs.CL], 2023.

Noah Hollmann, Samuel Müller, and Frank Hutter. Large language models for automated data
science: Introducing CAAFE for context-aware automated feature engineering. Advances
in Neural Information Processing Systems, 36, 2024.

Sirui Hong, Yizhang Lin, Bang Liu, Bangbang Liu, Binhao Wu, Ceyao Zhang, Chenxing
Wei, Danyang Li, Jiaqi Chen, Jiayi Zhang, et al. Data interpreter: An LLM agent for data
science. arXiv preprint arXiv:2402.18679 [cs.AI], 2024.

Fergus Imrie, Bogdan Cebere, Eoin F McKinney, and Mihaela van der Schaar. AutoPrognosis
2.0: Democratizing diagnostic and prognostic modeling in healthcare with automated
machine learning. PLOS Digit. Health, 2(6):e0000276, June 2023.

Daniel Jarrett, Bogdan C Cebere, Tennison Liu, Alicia Curth, and Mihaela van der Schaar.
Hyperimpute: Generalized iterative imputation with automatic model selection. In
International Conference on Machine Learning, pages 9916–9937. PMLR, 2022.

Ruoxi Jia, David Dao, Boxin Wang, Frances Ann Hubis, Nezihe Merve Gurel, Bo Li, Ce Zhang,
Costas Spanos, and Dawn Song. Efficient task-specific data valuation for nearest neighbor
algorithms. Proceedings of the VLDB Endowment, 12(11):1610–1623, 2019.

Pang Wei Koh, Shiori Sagawa, Henrik Marklund, Sang Michael Xie, Marvin Zhang, Akshay
Balsubramani, Weihua Hu, Michihiro Yasunaga, Richard Lanas Phillips, Irena Gao, Tony
Lee, Etienne David, Ian Stavness, Wei Guo, Berton A. Earnshaw, Imran S. Haque, Sara
Beery, Jure Leskovec, Anshul Kundaje, Emma Pierson, Sergey Levine, Chelsea Finn, and
Percy Liang. WILDS: A benchmark of in-the-wild distribution shifts. In International
Conference on Machine Learning, pages 5637–5664. PMLR, 2021.

Moritz Lehne, Julian Sass, Andrea Essenwanger, Josef Schepers, and Sylvia Thun. Why
digital medicine depends on interoperability. NPJ digital medicine, 2(1):79, 2019.

Ziming Li, Qianbo Zang, David Ma, Jiawei Guo, Tianyu Zheng, Minghao Liu, Xinyao Niu,
Yue Wang, Jian Yang, Jiaheng Liu, et al. AutoKaggle: A multi-agent framework for
autonomous data science competitions. In ICLR 2025 Third Workshop on Deep Learning
for Code, 2025.

Weixin Liang, Girmaw Abebe Tadesse, Daniel Ho, Li Fei-Fei, Matei Zaharia, Ce Zhang, and
James Zou. Advances, challenges and opportunities in creating data for trustworthy AI.
Nature Machine Intelligence, 4(8):669–677, 2022.

29

Saveliev*, Liu*, Seedat*, Boyd, van der Schaar

Jiashuo Liu, Jiayun Wu, Renjie Pi, Renzhe Xu, Xingxuan Zhang, Bo Li, and Peng Cui.
Measure the predictive heterogeneity. In The Eleventh International Conference on Learning
Representations, 2022.

Jiashuo Liu, Tianyu Wang, Peng Cui, and Hongseok Namkoong. On the need for a language
describing distribution shifts: Illustrations on tabular datasets. Advances in Neural
Information Processing Systems, 36, 2023.

Tianyang Liu, Fei Wang, and Muhao Chen. Rethinking tabular data understanding with
large language models. In Proceedings of the 2024 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies
(Volume 1: Long Papers), pages 450–482, 2024.

Andrew Low and Z Yasemin Kalender. Data dialogue with ChatGPT: Using code interpreter
to simulate and analyse experimental data. arXiv preprint arXiv:2311.12415 [physics.ed-ph],
2023.

Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predictions.
Advances in Neural Information Processing Systems, 30, 2017.

Daqin Luo, Chengjian Feng, Yuxuan Nong, and Yiqing Shen. Autom3l: An automated
multimodal machine learning framework with large language models. In Proceedings of the
32nd ACM International Conference on Multimedia, pages 8586–8594, 2024.

Chuizheng Meng, Loc Trinh, Nan Xu, James Enouen, and Yan Liu. Interpretability and
fairness evaluation of deep learning models on MIMIC-IV dataset. Scientific Reports, 12
(1):7166, 2022.

Margaret Mitchell, Simone Wu, Andrew Zaldivar, Parker Barnes, Lucy Vasserman, Ben
Hutchinson, Elena Spitzer, Inioluwa Deborah Raji, and Timnit Gebru. Model cards
for model reporting. In Proceedings of the conference on fairness, accountability, and
transparency, pages 220–229, 2019.

Aída Muñoz Monjas, David Rubio Ruiz, David Pérez Del Rey, and Matvey B Palchuk.
Enhancing real world data interoperability in healthcare: A methodological approach to
laboratory unit harmonization. International Journal of Medical Informatics, 193:105665,
2025.

Yang Nan, Javier Del Ser, Simon Walsh, Carola Schönlieb, Michael Roberts, Ian Selby, Kit
Howard, John Owen, Jon Neville, Julien Guiot, et al. Data harmonisation for information
fusion in digital healthcare: A state-of-the-art systematic review, meta-analysis and future
research directions. Information Fusion, 82:99–122, 2022.

Curtis Northcutt, Lu Jiang, and Isaac Chuang. Confident learning: Estimating uncertainty
in dataset labels. Journal of Artificial Intelligence Research, 70:1373–1411, 2021a.

Curtis G Northcutt, Anish Athalye, and Jonas Mueller. Pervasive label errors in test sets
destabilize machine learning benchmarks. In Thirty-fifth Conference on Neural Information
Processing Systems Datasets and Benchmarks Track (Round 1), 2021b.

30

Towards Human-Guided, Data-Centric LLM Co-Pilots

Luke Oakden-Rayner, Jared Dunnmon, Gustavo Carneiro, and Christopher Ré. Hidden
stratification causes clinically meaningful failures in machine learning for medical imaging.
In Proceedings of the ACM Conference on Health, Inference, and Learning, pages 151–159,
2020.

OpenAI. Function calling. https://platform.openai.com/docs/guides/
function-calling?api-mode=responses, 2023. Accessed: 2025-7-23.

Nassim Oufattole, Teya Bergamaschi, Aleksia Kolo, Hyewon Jeong, Hanna Gaggin, Collin M
Stultz, and Matthew McDermott. MEDS-Tab: Automated tabularization and baseline
methods for MEDS datasets. arXiv preprint arXiv:2411.00200 [cs.LG], 2024.

Konstantin D Pandl, Fabian Feiland, Scott Thiebes, and Ali Sunyaev. Trustworthy machine
learning for health care: scalable data valuation with the shapley value. In Proceedings of
the Conference on Health, Inference, and Learning, pages 47–57, 2021.

Kayur Patel, James Fogarty, James A Landay, and Beverly Harrison. Investigating statistical
machine learning as a tool for software development. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, pages 667–676, 2008.

Florian Pfisterer, Janek Thomas, and Bernd Bischl. Towards human centered AutoML.
arXiv preprint arXiv:1911.02391 [cs.HC], 2019.

Oleg S Pianykh, Georg Langs, Marc Dewey, Dieter R Enzmann, Christian J Herold, Stefan O
Schoenberg, and James A Brink. Continuous learning AI in radiology: implementation
principles and early applications. Radiology, 297(1):6–14, 2020.

Geoff Pleiss, Tianyi Zhang, Ethan Elenberg, and Kilian Q Weinberger. Identifying mislabeled
data using the area under the margin ranking. Advances in Neural Information Processing
Systems, 33:17044–17056, 2020.

Danrui Qi, Zhengjie Miao, and Jiannan Wang. Cleanagent: Automating data standardization
with LLM-based agents. arXiv preprint arXiv:2403.08291 [cs.LG], 2024.

Herilalaina Rakotoarison, Marc Schoenauer, and Michèle Sebag. Automated machine learning
with Monte-Carlo tree search. In IJCAI-19-28th International Joint Conference on Artificial
Intelligence, pages 3296–3303. International Joint Conferences on Artificial Intelligence
Organization, 2019.

Paulius Rauba, Nabeel Seedat, Max Ruiz Luyten, and Mihaela van der Schaar. Context-
aware testing: A new paradigm for model testing with large language models. In The
Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024.

Beatriz Remeseiro and Veronica Bolon-Canedo. A review of feature selection methods in
medical applications. Computers in Biology and Medicine, 112:103375, 2019.

Jenna Rychert. In support of interoperability: A laboratory perspective. International
Journal of Laboratory Hematology, 45(4):436–441, 2023.

31

https://platform.openai.com/docs/guides/function-calling?api-mode=responses
https://platform.openai.com/docs/guides/function-calling?api-mode=responses

Saveliev*, Liu*, Seedat*, Boyd, van der Schaar

Nithya Sambasivan, Shivani Kapania, Hannah Highfill, Diana Akrong, Praveen Paritosh,
and Lora M Aroyo. “everyone wants to do the model work, not the data work”: Data
cascades in high-stakes AI. In Proceedings of the 2021 CHI Conference on Human Factors
in Computing Systems, New York, NY, USA, May 2021. ACM.

Leonard Sasse, Eliana Nicolaisen-Sobesky, Juergen Dukart, Simon B Eickhoff, Michael Götz,
Sami Hamdan, Vera Komeyer, Abhijit Kulkarni, Juha Lahnakoski, Bradley C Love, et al.
On leakage in machine learning pipelines. arXiv preprint arXiv:2311.04179 [cs.LG], 2023.

Evgeny Saveliev, Tim Schubert, Thomas Pouplin, Vasilis Kosmoliaptsis, and Mihaela van der
Schaar. CliMB: An AI-enabled partner for clinical predictive modeling. arXiv preprint
arXiv:2410.03736 [cs.HC], 2024.

Bey-Marrié Schmidt, Christopher J Colvin, Ameer Hohlfeld, and Natalie Leon. Definitions,
components and processes of data harmonisation in healthcare: a scoping review. BMC
Medical Informatics and Decision Making, 20:1–19, 2020.

Nabeel Seedat, Jonathan Crabbé, Ioana Bica, and Mihaela van der Schaar. Data-IQ:
Characterizing subgroups with heterogeneous outcomes in tabular data. Advances in
Neural Information Processing Systems, 35:23660–23674, 2022a.

Nabeel Seedat, Jonathan Crabbé, and Mihaela van der Schaar. Data-SUITE: Data-centric
identification of in-distribution incongruous examples. In International Conference on
Machine Learning, pages 19467–19496. PMLR, 2022b.

Nabeel Seedat, Jonathan Crabbé, Zhaozhi Qian, and Mihaela van der Schaar. Triage:
Characterizing and auditing training data for improved regression. Advances in Neural
Information Processing Systems, 36:74995–75008, 2023a.

Nabeel Seedat, Fergus Imrie, and Mihaela van der Schaar. Dissecting sample hardness:
Fine-grained analysis of hardness characterization methods. In The Twelfth International
Conference on Learning Representations, 2023b.

Nabeel Seedat, Fergus Imrie, and Mihaela van der Schaar. Navigating data-centric artificial
intelligence with DC-check: Advances, challenges, and opportunities. IEEE Trans. Artif.
Intell., 5(6):2589–2603, June 2024.

Arindam Sett, Somaye Hashemifar, Mrunal Yadav, Yogesh Pandit, and Mohsen Hejrati.
Speaking the same language: Leveraging LLMs in standardizing clinical data for AI. arXiv
preprint arXiv:2408.11861 [cs.CL], 2024.

Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li, Weiming Lu, and Yueting Zhuang.
HuggingGPT: Solving AI tasks with ChatGPT and its friends in hugging face. Advances
in Neural Information Processing Systems, 36:38154–38180, 2023.

Janmajay Singh, Masahiro Sato, Tomoko Ohkuma, et al. On missingness features in machine
learning models for critical care: observational study. JMIR Medical Informatics, 9(12):
e25022, 2021.

32

Towards Human-Guided, Data-Centric LLM Co-Pilots

Streamlit Team Snowflake Inc. Streamlit • a faster way to build and share data apps.
https://streamlit.io/, 2024. Accessed: 2025-7-23.

Irene Solaiman, Zeerak Talat, William Agnew, Lama Ahmad, Dylan Baker, Su Lin Blodgett,
Canyu Chen, Hal Daumé III, Jesse Dodge, Isabella Duan, et al. Evaluating the social
impact of generative AI systems in systems and society. arXiv preprint arXiv:2306.05949
[cs.CY], 2023.

Daniel J Stekhoven and Peter Bühlmann. MissForest—non-parametric missing value imputa-
tion for mixed-type data. Bioinformatics, 28(1):112–118, 2012.

Maojun Sun, Ruijian Han, Binyan Jiang, Houduo Qi, Defeng Sun, Yancheng Yuan, and Jian
Huang. LAMBDA: A large model based data agent. Journal of the American Statistical
Association, pages 1–13, 2025.

Harini Suresh, Jen J Gong, and John V Guttag. Learning tasks for multitask learning:
Heterogenous patient populations in the ICU. In Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, pages 802–810, 2018.

Ana Szarfman, Jonathan G Levine, Joseph M Tonning, Frank Weichold, John C Bloom,
Janice M Soreth, Mark Geanacopoulos, Lawrence Callahan, Matthew Spotnitz, Qin Ryan,
et al. Recommendations for achieving interoperable and shareable medical data in the
USA. Communications Medicine, 2(1):86, 2022.

Siyi Tang, Amirata Ghorbani, Rikiya Yamashita, Sameer Rehman, Jared A Dunnmon, James
Zou, and Daniel L Rubin. Data valuation for medical imaging using shapley value and
application to a large-scale chest X-ray dataset. Scientific reports, 11(1):8366, 2021.

Nenad Tomašev, Xavier Glorot, Jack W Rae, Michal Zielinski, Harry Askham, Andre Saraiva,
Anne Mottram, Clemens Meyer, Suman Ravuri, Ivan Protsyuk, et al. A clinically applicable
approach to continuous prediction of future acute kidney injury. Nature, 572(7767):116–119,
2019.

Patara Trirat, Wonyong Jeong, and Sung Ju Hwang. AutoML-Agent: A multi-agent LLM
framework for full-pipeline automl. arXiv preprint arXiv:2410.02958 [cs.LG], 2024.

Andrej Tschalzev, Sascha Marton, Stefan Lüdtke, Christian Bartelt, and Heiner Stucken-
schmidt. A data-centric perspective on evaluating machine learning models for tabular
data. Advances in Neural Information Processing Systems, 37:95896–95930, 2024.

Xin (Xinming) Tu, James Zou, Weijie J. Su, and Linjun Zhang. What should data science
education do with large language models? Harvard Data Science Review, 6(1), 2024.

Boris van Breugel, Nabeel Seedat, Fergus Imrie, and Mihaela van der Schaar. Can you rely
on your model evaluation? Improving model evaluation with synthetic test data. Advances
in Neural Information Processing Systems, 36, 2024.

Xingyao Wang, Boxuan Li, Yufan Song, Frank F Xu, Xiangru Tang, Mingchen Zhuge, Jiayi
Pan, Yueqi Song, Bowen Li, Jaskirat Singh, et al. OpenHands: An open platform for ai
software developers as generalist agents. arXiv preprint arXiv:2407.16741 [cs.SE], 2024.

33

https://streamlit.io/

Saveliev*, Liu*, Seedat*, Boyd, van der Schaar

Yishu Wei, Yu Deng, Cong Sun, Mingquan Lin, Hongmei Jiang, and Yifan Peng. Deep
learning with noisy labels in medical prediction problems: a scoping review. Journal of
the American Medical Informatics Association, page ocae108, 2024.

Steven Euijong Whang, Yuji Roh, Hwanjun Song, and Jae-Gil Lee. Data collection and
quality challenges in deep learning: A data-centric AI perspective. The VLDB Journal, 32
(4):791–813, 2023.

Liwenhan Xie, Chengbo Zheng, Haijun Xia, Huamin Qu, and Chen Zhu-Tian. WaitGPT:
Monitoring and steering conversational LLM agent in data analysis with on-the-fly code
visualization. In Proceedings of the 37th Annual ACM Symposium on User Interface
Software and Technology, pages 1–14, 2024.

Jenny Yang, Hagen Triendl, Andrew AS Soltan, Mangal Prakash, and David A Clifton.
Addressing label noise for electronic health records: Insights from computer vision for
tabular data. medRxiv, pages 2023–10, 2023.

Jingkang Yang, Pengyun Wang, Dejian Zou, Zitang Zhou, Kunyuan Ding, Wenxuan Peng,
Haoqi Wang, Guangyao Chen, Bo Li, Yiyou Sun, et al. OpenOOD: Benchmarking
generalized out-of-distribution detection. Advances in Neural Information Processing
Systems, 35:32598–32611, 2022.

Zhiyu Yang, Zihan Zhou, Shuo Wang, Xin Cong, Xu Han, Yukun Yan, Zhenghao Liu, Zhixing
Tan, Pengyuan Liu, Dong Yu, et al. MatPlotAgent: Method and evaluation for LLM-based
agentic scientific data visualization. In Findings of the Association for Computational
Linguistics ACL 2024, pages 11789–11804, 2024.

Karina Zadorozhny, Patrick Thoral, Paul Elbers, and Giovanni Cinà. Out-of-distribution
detection for medical applications: Guidelines for practical evaluation. In Multimodal AI
in healthcare: A paradigm shift in health intelligence, pages 137–153. Springer, 2022.

Daochen Zha, Zaid Pervaiz Bhat, Kwei-Herng Lai, Fan Yang, and Xia Hu. Data-centric AI:
Perspectives and challenges. In Proceedings of the 2023 SIAM International Conference
on Data Mining (SDM), pages 945–948. SIAM, 2023.

Lei Zhang, Yuge Zhang, Kan Ren, Dongsheng Li, and Yuqing Yang. MLCopilot: Unleashing
the power of large language models in solving machine learning tasks. In Proceedings of the
18th Conference of the European Chapter of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 2931–2959, 2024.

Boyang Zhao. Clinical data extraction and normalization of cyrillic electronic health records
via deep-learning natural language processing. JCO Clinical Cancer Informatics, 3:1–9,
2019.

Yue Zhao, Zain Nasrullah, and Zheng Li. PyOD: A python toolbox for scalable outlier
detection. Journal of machine learning research, 20(96):1–7, 2019.

34

Towards Human-Guided, Data-Centric LLM Co-Pilots

Appendix: Towards Human-Guided,
Data-Centric LLM Co-Pilots

Table of Contents
A Extended related work 36

A.1 LLM-Based Code Interpreters . 36
A.2 Limitations Across Approaches . 38
A.3 Terminology differences between Machine Learning (ML) and Biostatistic-

s/Epidemiology . 39

B Dataset Descriptions 40
B.1 Lung Cancer Dataset . 40
B.2 Primary Biliary Cholangitis (PBC) Dataset 40
B.3 Prostate Cancer Prediction: SEER and CUTRACT datasets 41

C Interaction Examples 42
C.1 Data-Interpreter . 42

C.1.1 Example: Incorrect metric used . 42
C.1.2 Example: Fail to setup survival analysis 43
C.1.3 Example: Fail to address label leakage 44

C.2 OpenHands . 46
C.3 Successful Cases with CliMB-DC . 47

C.3.1 Example: Address label leakage . 47
C.3.2 Example: Identify irrelevant features 49
C.3.3 Example: Setup domain-specific model & metric 50

C.4 Example: Model Evaluation & Feature Importance 52

D More CliMB-DC Interaction Examples 54
D.1 Example: Data Exploration . 54
D.2 Example: Data Aggregation . 61
D.3 Example: Joining Multiple Files . 63

E Additional details and experiments 68
E.1 Failure modes . 68
E.2 Computing Resources and Implementation Details 68
E.3 API Details and Extensibility . 68
E.4 Experiment in a Non-medical Domain . 72

F Social impact 74

Code: https://github.com/vanderschaarlab/climb/tree/climb-dc-canonical

35

https://github.com/vanderschaarlab/climb/tree/climb-dc-canonical

Saveliev*, Liu*, Seedat*, Boyd, van der Schaar

Appendix A. Extended related work

Below we provide a further assessment of LLM-based code interpreters.

A.1 LLM-Based Code Interpreters

• GPT-Code Interpreter 4: Aimed at simplifying tasks such as data visualization,
basic modeling, and statistical analysis, this tool allows users to query and interact
with datasets dynamically. However, its design is limited to single-step tasks and lacks
support for multi-stage workflows, iterative refinement, or complex reasoning across
interdependent tasks. Its applicability to real-world datasets with evolving requirements
is minimal due to its static nature.

• AutoGPT 5: AutoGPT generalizes task execution by chaining multiple steps through
autonomous prompts. It explores iterative workflows but relies heavily on predefined
task templates. This rigidity makes it ill-suited for dynamic, data-centric environments
where task dependencies evolve unpredictably. Moreover, AutoGPT lacks mechanisms
to diagnose or correct data quality issues during execution.

• BLADE (Gu et al., 2024): Designed primarily as a benchmarking framework,
BLADE evaluates LLM agents on open-ended scientific analyses and decision-making
tasks. It provides insights into flexibility and task accuracy but does not address
robustness or the ability to adapt workflows based on intermediate results. Furthermore,
its scope is confined to task execution, neglecting data-centric challenges such as feature
leakage or outlier handling.

• DS-Agent (Guo et al., 2024): Integrating case-based reasoning (CBR) with LLMs,
DS-Agent automates ML workflows by leveraging prior knowledge from human-curated
cases (e.g., Kaggle). It iteratively refines workflows by incorporating execution feedback.
However, its dependency on retrieved cases limits its adaptability to novel or unstruc-
tured problems. DS-Agent’s reliance on historical cases also makes it less effective for
workflows requiring real-time adaptability or dynamic reasoning about data.

• OpenHands (Wang et al., 2024): OpenHands introduces a modular architecture
for multi-agent collaboration and secure task execution in sandboxed environments. Its
strengths lie in its flexibility and support for multi-step workflows, including software
engineering tasks and web interaction. However, it lacks built-in tools for diagnosing
and resolving data-centric issues, such as missing data or noise, and offers limited
support for domain-specific reasoning, which is critical for high-stakes domains like
healthcare.

• Data Interpreter (Hong et al., 2024): Data Interpreter employs hierarchical graph-
based reasoning to model workflows as interdependent tasks, allowing for iterative
refinement and robust task decomposition. This makes it highly effective for structured
ML pipelines. However, its reliance on predefined task graphs limits its generalization

4. https://platform.openai.com/docs/assistants/tools/code-interpreter
5. https://github.com/Significant-Gravitas/Auto-GPT

36

Towards Human-Guided, Data-Centric LLM Co-Pilots

to exploratory workflows or tasks with undefined dependencies. Additionally, it lacks
direct integration of domain-specific insights, such as clinical knowledge for healthcare
datasets.

There are also additional LLM-based data cleaning tools or other agent based systems
which have been proposed in the literature. In Table 7 we highlight these and why they are
not suitable for comparison with CliMB-DC.

Table 7: Summary of alternative data cleaning frameworks or other agent-based frameworks
and reasons for not comparing with CliMB-DC.

Framework Reason Not Used

CleanAgent (Qi
et al., 2024)

Designed specifically for dataset cleaning, not a complete pipeline
for data modeling. Reported metrics focus on cell-level matching
rates, making it unsuitable as a baseline.

MatPlotAgent
(Yang et al., 2024)

Primarily designed for data visualization, irrelevant to our data
modeling approach.

WaitGPT (Xie
et al., 2024)

Intended for transforming code into user interfaces for verifying
execution. Goals are fundamentally different from ours.

SEED (Chen
et al., 2023)

Focuses on domain-specific data curation (imputation, annotation,
discovery), but goals do not align with Climb-DC. No code released.

AutoM3L (Luo
et al., 2024)

Designed for multi-modal data analysis. Code is not available,
making comparison infeasible.

HuggingGPT
(Shen et al., 2023)

Geared towards general AI tasks, not designed for tabular data
analysis or modeling.

MLCopilot
(Zhang et al.,
2024)

Lacks a planning mechanism and requires user-specified actions,
functioning more as a copilot than an autonomous agent.

SELA (Chi et al.,
2024)

Requires significant pre-processing and is not adaptable to all use
cases (e.g., multiple data files). Limited applicability.

AutoML-Agent
(Trirat et al.,
2024)

Comparison relevant, but requires GPUs to run. Uploading our
data to GPU-supported servers is not feasible.

AutoKaggle (Li
et al., 2025)

Designed for Kaggle competitions, requiring train/test splits and
submission templates, incompatible with our goals.

LAMBDA (Sun
et al., 2025)

We include a comparison and show Climb-DC outperforms it; strug-
gles with issues like label leakage.

37

Saveliev*, Liu*, Seedat*, Boyd, van der Schaar

A.2 Limitations Across Approaches

Despite their individual strengths, these systems share several overarching limitations that
hinder their applicability to real-world, data-centric workflows:

• Static Pipeline Architectures: Most interpreters rely on predefined templates or
fixed task hierarchies, which restrict their ability to adapt to evolving requirements. For
example, AutoGPT and DS-Agent struggle with workflows where task dependencies
are contingent on intermediate results.

• Insufficient Data Reasoning: While these tools excel at executing predefined
workflows, they lack higher-level data-centric reasoning capabilities, such as identifying
feature correlations, addressing data drift, or diagnosing feature leakage. For instance,
GPT-Code Interpreter and OpenHands fail to contextualize data preprocessing steps
to account for domain-specific nuances.

• Healthcare-Specific Challenges: Healthcare datasets present unique challenges,
including heterogeneity, noise, and biases. Generic preprocessing approaches risk
introducing errors or obscuring critical clinical information. For example, extreme lab
values might appear as statistical outliers but could signify a critical medical condition.
Current systems fail to incorporate the domain expertise required to navigate such
complexities.

• Limited Adaptability to Data Evolution: Real-world datasets often exhibit
evolving distributions, feature sets, or objectives. Most interpreters, including BLADE
and Data Interpreter, are designed for static workflows and do not account for the
dynamic nature of these datasets.

• Lack of Control in Open-Ended Scenarios: Systems with open-ended prompting,
such as AutoGPT and DS-Agent, can generate uncontrolled outputs when used by
non-experts. This is particularly problematic in sensitive domains like healthcare,
where errors can lead to significant consequences.

38

Towards Human-Guided, Data-Centric LLM Co-Pilots

A.3 Terminology differences between Machine Learning (ML) and
Biostatistics/Epidemiology

Table 8 demonstrates the different terminologies between communities that it is useful for a
co-pilot to handle.

Table 8: Comparison of terminology in Machine Learning (ML) and Biostatistics/Epidemiol-
ogy, which is considered in the design of CliMB-DC.

Machine Learning (ML) Biostatistics/Epidemiology
Model/Algorithm Statistical/Predictive Model
Features Covariates/Covariables
Targets Outcomes/Endpoints
Training Model Fitting/Estimation
Test Set Validation Data
Overfitting Overparameterization
Hyperparameters Tuning Parameters
Performance Metrics Goodness-of-Fit Measures
Cross-Validation Internal Validation
Bias-Variance Tradeoff Model Complexity
Generalization External Validity
Feature Selection Variable Selection

39

Saveliev*, Liu*, Seedat*, Boyd, van der Schaar

Appendix B. Dataset Descriptions

Dataset availability: The Lung Cancer Dataset, Primary Biliary Cholangitis (PBC)
Dataset and CUTRACT datasets are confidential medical datasets and cannot be released.
The underlying data for the SEER dataset may be requested from SEER (see https:
//seer.cancer.gov/data/). The SFLD dataset used in Appendix E.4 can be obtained from
Freddie Mac (2025).

B.1 Lung Cancer Dataset

The dataset consists of 216714 records, capturing baseline and follow-up data related to lung
cancer risk factors, smoking history, and demographic attributes. It includes 31 features,
broadly categorized as follows:

• Demographic and Administrative: This category includes age at recruitment, sex,
ethnicity, and highest qualifications attained.

• Smoking History: Features include the number of cigarettes smoked per day, age
at which smoking started and stopped, smoking duration, years since quitting, and
pack-years (a cumulative measure of smoking exposure).

• Respiratory and Comorbid Conditions: This includes self-reported history of
respiratory diseases such as asbestosis, pneumonia, chronic obstructive pulmonary
disease (COPD), emphysema, chronic bronchitis, asthma, and allergic conditions
(eczema, allergic rhinitis, hay fever).

• Cancer History: The dataset captures both personal and family history of lung
cancer, including lung cancer diagnoses in parents (mother and father) and siblings, as
well as the number of self-reported cancers and prior personal history of cancer.

• Occupational and Environmental Exposure: Presence of asbestos exposure is
recorded as a binary indicator.

• Lung Cancer Outcomes and Time-to-Event Data: The dataset includes indicators
for lung cancer diagnosis and related outcomes, along with survival-related features
such as time to lung cancer diagnosis, time to death from lung cancer, and time to
event development.

Task. Lung cancer risk prediction and survival analysis

B.2 Primary Biliary Cholangitis (PBC) Dataset

The dataset consists of 43,834 records across 2181 patients, capturing baseline and follow-up
data for individuals diagnosed with Primary Biliary Cholangitis (PBC). It includes 33
features, broadly categorized as follows:

• Demographic and Administrative: This category includes patient ID, sex, age,
visit type, and time-related variables, which provide essential context for each recorded
observation.

40

https://seer.cancer.gov/data/
https://seer.cancer.gov/data/

Towards Human-Guided, Data-Centric LLM Co-Pilots

• Clinical Outcomes: Features in this category capture event status, survival status,
and liver transplantation (LT) status, allowing for disease progression analysis.

• Clinical Complications: These features focus on manifestations of liver dysfunction,
including decompensation (Decomp), variceal hemorrhage (VH), ascites, and hepatic
encephalopathy (HE).

• Treatment Variables: This category records the use of Ursodeoxycholic Acid (UDCA),
Obeticholic Acid (OCA), and Bezafibrate (BZF), which are commonly used interventions
in PBC management.

• Laboratory Measurements: Example biomarkers include Albumin, Bilirubin, ALP,
ALT, Platelets, Hemoglobin, White Cell Count, Urea, Creatinine, Sodium, Potassium,
IgM, IgG, IgA

• Comorbidity Assessment: The Charlson Comorbidity Index (CCI) score is included
as a prognostic measure for patient risk stratification.

Note the PBC dataset has repeat measurements for each patient that need to be aggregated
before modelling.

Task. Time-to-event modeling and survival analysis.

B.3 Prostate Cancer Prediction: SEER and CUTRACT datasets

This task focuses on 10-year prostate cancer mortality prediction using two datasets:
SEER (Surveillance, Epidemiology, and End Results) from the United States and CU-
TRACT from the United Kingdom. The goal is to assess how models trained in one
country generalize when deployed in another, particularly in handling distribution shifts
across different healthcare systems.

Both datasets are balanced to 2000 patient records each, with 10 features related to
patient demographics, cancer severity, treatment, and outcomes. The features are categorized
as follows:

• Demographic and Clinical Characteristics: Age at diagnosis (age), baseline
Prostate-Specific Antigen (psa), and presence of comorbidities (comorbidities).

• Treatment Variables: Indicators of different treatment modalities, including conser-
vative management (treatment_CM), primary hormone therapy (treatment_Primary
hormone therapy), radical radiotherapy (treatment_Radical Therapy-RDx), and rad-
ical surgery (treatment_Radical therapy-Sx).

• Tumor Characteristics: Cancer grade (grade) and stage (stage), which define
disease severity.

• Outcome Variable: The binary label mortCancer represents 10-year mortality
due to prostate cancer, serving as the prediction target.

Task. 10-year prostate cancer prediction (binary classification). Given the multi-country
for train and test it serves as an example of cross-national deployment of prediction models
and their robustness to distribution shift.

41

Saveliev*, Liu*, Seedat*, Boyd, van der Schaar

Appendix C. Interaction Examples

In this section, we present execution logs from both the baselines and CliMB-DC to illustrate
two key points: (1) why the baselines fail to address data issues effectively, and (2) how
CliMB-DC successfully tackles these challenges in healthcare. We first show examples
of baselines, i.e. Data-Interpreter and OpenHands, and then provide the corresponding
successful examples of CliMB-DC.

C.1 Data-Interpreter

C.1.1 Example: Incorrect metric used

In the following example (lung cancer dataset), we observe a failure case with Data-Interpreter,
where it used the ROC-AUC score as a proxy for the C-index score. This issue arises due
to the absence of Python packages for survival analysis. Since Data-Interpreter lacks user
interaction capabilities, the system failed to detect and address this error.

Summary of work up to this point: The datasets have been successfully loaded and
initially preprocessed. However, despite multiple attempts to utilize Python packages for
survival analysis, such as lifelines and sksurv, the installation process has not been
triggered.
...
Generated code:

1 import xgboost as xgb
2 from sklearn.model_selection import train_test_split
3 from sklearn.metrics import roc_auc_score
4 import numpy as np
5 # Prepare the data for survival analysis
6 X_train = train_df_copy.drop(columns =[’time_to_event_develop ’, ’

lung_cancer ’])
7 y_train = train_df_copy [[’time_to_event_develop ’, ’lung_cancer ’]]
8 X_eval = eval_df_copy.drop(columns =[’time_to_event_develop ’, ’

lung_cancer ’])
9 y_eval = eval_df_copy [[’time_to_event_develop ’, ’lung_cancer ’]]

10 # Convert the target to a structured array for xgboost
11 y_train_structured = np.array ([(time , event) for time , event in zip(

y_train[’time_to_event_develop ’], y_train[’lung_cancer ’])],
12 dtype =[(’time’, ’float’), (’event ’, ’

bool’)])
13 y_eval_structured = np.array ([(time , event) for time , event in zip(

y_eval[’time_to_event_develop ’], y_eval[’lung_cancer ’])],
14 dtype =[(’time’, ’float’), (’event ’, ’bool

’)])
15 # Create DMatrix for xgboost
16 dtrain = xgb.DMatrix(X_train , label=y_train[’lung_cancer ’])
17 deval = xgb.DMatrix(X_eval , label=y_eval[’lung_cancer ’])
18 # Set up parameters for xgboost
19 params = {
20 ’objective ’: ’binary:logistic ’,
21 ’eval_metric ’: ’auc’,
22 ’max_depth ’: 3,
23 ’eta’: 0.1,

42

Towards Human-Guided, Data-Centric LLM Co-Pilots

24 ’subsample ’: 0.8,
25 ’colsample_bytree ’: 0.8,
26 ’seed’: 42
27 }
28 # Train the xgboost model
29 bst = xgb.train(params , dtrain , num_boost_round =100)
30 # Predict the risk scores for the evaluation set
31 risk_scores = bst.predict(deval)
32 # Calculate the concordance index
33 c_index = roc_auc_score(y_eval[’lung_cancer ’], risk_scores)
34 print(f"C-index: {c_index :.4f}")

Code execution output:
Code execution finished successfully ✓

1 C-index: 0.5337

Reason behind this. Data-Interpreter lacks the ability to interact with users, making
it difficult to trigger the installation of required Python packages when they are missing.
Additionally, since survival analysis is not as common as standard machine learning tasks
like classification and regression, the system fails to recognize how to compute the C-index
score. As a result, it incorrectly applies an inappropriate metric without detecting the issue.

C.1.2 Example: Fail to setup survival analysis

In the following example (lung cancer dataset), we observe a failure case with Data-Interpreter,
where it failed to setup the survival analysis. The system “auto-degraded” to XGBoost and
failed to address this error.

Summary of work up to this point: The datasets have been successfully loaded and ini-
tially preprocessed. Python packages for survival analysis, such as lifelines and sksurv, are
manually installed. However, it encountered “Convergence error” when fitting CoxPHFitter
due to the high collinearity.
...
Generated code:

1 from xgboost import XGBRegressor
2 from lifelines.utils import concordance_index
3 import pandas as pd
4 # Prepare the data
5 X_train = train_data_var.drop(columns =[’time_to_event_develop ’, ’

lung_cancer ’])
6 y_train = train_data_var [[’time_to_event_develop ’, ’lung_cancer ’]]
7 X_eval = eval_data_var.drop(columns =[’time_to_event_develop ’, ’

lung_cancer ’])
8 y_eval = eval_data_var [[’time_to_event_develop ’, ’lung_cancer ’]]
9 # Train the XGBoost model

10 xgb_model = XGBRegressor(objective=’survival:cox’, n_estimators =100,
learning_rate =0.1, max_depth=3, subsample =0.8, colsample_bytree
=0.8)

11 xgb_model.fit(X_train , y_train[’time_to_event_develop ’])

43

Saveliev*, Liu*, Seedat*, Boyd, van der Schaar

12 # Predict risk scores
13 eval_data_combined[’risk_score ’] = xgb_model.predict(X_eval)
14

15 # Calculate the C-index
16 c_index = concordance_index(y_eval[’time_to_event_develop ’], -

eval_data_combined[’risk_score ’], y_eval[’lung_cancer ’])
17 print(f"C-index: {c_index}")

Code execution output:
Code execution finished successfully ✓

1 C-index: 0.5000

Reason behind this. Data-Interpreter lacks both data-centric tools and sufficient knowl-
edge of data preprocessing to address collinearity effectively. As a result, even when provided
with the appropriate survival analysis package (lifelines), it repeatedly encounters “Conver-
gence errors.” Eventually, it abandons the use of lifelines and reverts to using XGBoost.

C.1.3 Example: Fail to address label leakage

In the following example (PBC dataset), we observe a failure case with Data-Interpreter,
where it failed to address the data aggregation as well as the label leakage. The system did
not recognize such issues.

Summary of work up to this point: The datasets have been successfully loaded and
initially preprocessed. Python packages for survival analysis, such as lifelines and sksurv,
are manually installed.
Generated code:

1 # Evaluate the model using 5-fold cross -validation and report the C-
index

2 import pandas as pd
3 from metagpt.tools.libs.data_preprocess import FillMissingValue
4 from sklearn.model_selection import KFold
5 from sklearn.preprocessing import LabelEncoder , StandardScaler
6 from lifelines import CoxPHFitter
7 from lifelines.utils import concordance_index
8 import numpy as np
9 # Load and preprocess the data

10 data_path = ’/shared/share_mala/jiashuo/MetaGPT/data/di_dataset/
copilot/PBCData.csv’

11 df = pd.read_csv(data_path , encoding=’ISO -8859 -1’)
12

13 # Fill missing values
14 df_copy = df.copy()
15 numeric_features = df_copy.select_dtypes(include =[’float64 ’, ’int64 ’])

.columns.tolist ()
16 fill_missing_numeric = FillMissingValue(features=numeric_features ,

strategy=’mean’)
17 df_copy = fill_missing_numeric.fit_transform(df_copy)
18 categorical_features = df_copy.select_dtypes(include =[’object ’]).

columns.tolist ()

44

Towards Human-Guided, Data-Centric LLM Co-Pilots

19 fill_missing_categorical = FillMissingValue(features=
categorical_features , strategy=’most_frequent ’)

20 df_copy = fill_missing_categorical.fit_transform(df_copy)
21 # Encode categorical features
22 label_encoders = {}
23 for col in [’Visit_Type ’, ’Sex’, ’Event_Category ’, ’Alive_status ’, ’LT

’, ’Decomp ’, ’VH’, ’Ascites ’, ’HE’]:
24 le = LabelEncoder ()
25 df_copy[col] = le.fit_transform(df_copy[col]. astype(str))
26 label_encoders[col] = le
27 # Fill remaining missing values
28 df_copy.fillna(df_copy.mean(numeric_only=True), inplace=True)
29 for col in [’Visit_Type ’, ’Sex’, ’Event_Category ’, ’Alive_status ’, ’LT

’, ’Decomp ’, ’VH’, ’Ascites ’, ’HE’]:
30 df_copy[col]. fillna(df_copy[col].mode()[0], inplace=True)
31

32 # Drop low variance columns
33 low_variance_cols = [col for col in df_copy.columns if df_copy[col].

var() < 1e-5]
34 df_copy.drop(columns=low_variance_cols , inplace=True)
35

36 # Prepare features and target
37 X = df_copy.drop(columns =[’Event_status ’, ’Years_to_event ’])
38 y = df_copy [[’Event_status ’, ’Years_to_event ’]]
39 # Standardize features
40 scaler = StandardScaler ()
41 X_scaled = scaler.fit_transform(X)
42 X_scaled = pd.DataFrame(X_scaled , columns=X.columns)
43

44 # Perform 5-fold cross -validation
45 kf = KFold(n_splits=5, shuffle=True , random_state =42)
46 c_indices = []
47

48 for train_index , test_index in kf.split(X_scaled):
49 X_train , X_test = X_scaled.iloc[train_index], X_scaled.iloc[

test_index]
50 y_train , y_test = y.iloc[train_index], y.iloc[test_index]
51

52 train_data = X_train.copy()
53 train_data[’Event_status ’] = y_train[’Event_status ’]
54 train_data[’Years_to_event ’] = y_train[’Years_to_event ’]
55 test_data = X_test.copy()
56 test_data[’Event_status ’] = y_test[’Event_status ’]
57 test_data[’Years_to_event ’] = y_test[’Years_to_event ’]
58

59 cph = CoxPHFitter(penalizer =0.1)
60 cph.fit(train_data , duration_col=’Years_to_event ’, event_col=’

Event_status ’)
61

62 test_predictions = cph.predict_partial_hazard(test_data)
63 c_index = concordance_index(test_data[’Years_to_event ’], -

test_predictions , test_data[’Event_status ’])
64 c_indices.append(c_index)
65 mean_c_index = np.mean(c_indices)
66 print(f’Mean C-index from 5-fold cross -validation: {mean_c_index}’)

45

Saveliev*, Liu*, Seedat*, Boyd, van der Schaar

Code execution output:
Code execution finished successfully ✓

1 Mean C-index from 5-fold cross -validation: 0.7750170186750802

Reason behind this. Although Data-Interpreter successfully fitted a Cox regression model
for survival analysis, it failed to address key data issues in the PBC dataset. Specifically,
the PBC data contains multiple observations per patient ID, requiring aggregation prior to
analysis. Additionally, besides the “Event_status” and “Years_to_event” features, there are
“Event_Category” and “Alive_status” features that are highly correlated with the target
variable, leading to label leakage. However, Data-Interpreter did not account for these issues,
resulting in flawed analysis.

C.2 OpenHands

In the following example (lung cancer dataset), we observe a failure case with OpenHands,
where it (1) failed to appropriately preprocess the data and (2) failed to deal with label leakage.
The system did not recognize or deal with such issues.

Summary of work up to this point: The datasets have been successfully loaded and
initially preprocessed.

1 import pandas as pd
2 from lifelines import CoxPHFitter
3 from lifelines.utils import concordance_index
4

5 # Load the training and testing datasets
6 train_data = pd.read_csv(’/workspace/copilot/lung_train.csv’)
7 test_data = pd.read_csv(’/workspace/copilot/lung_test.csv’)
8

9 # Prepare the data for survival analysis
10 X_train = train_data.drop(columns =[’time_to_event_develop ’, ’lung_cancer ’

])
11 y_train = train_data [[’time_to_event_develop ’, ’lung_cancer ’]]
12

13 # Fit the Cox Proportional Hazards model
14 cph = CoxPHFitter ()
15 cph.fit(y_train , duration_col=’time_to_event_develop ’, event_col=’

lung_cancer ’)
16

17 # Prepare the test data
18 X_test = test_data.drop(columns =[’time_to_event_develop ’, ’lung_cancer ’])
19 y_test = test_data [[’time_to_event_develop ’, ’lung_cancer ’]]
20

21 # Predict the risk scores for the test data
22 risk_scores = cph.predict_partial_hazard(X_test)
23

24 # Calculate the C-index
25 c_index = concordance_index(y_test[’time_to_event_develop ’], -risk_scores

, y_test[’lung_cancer ’])
26

27 c_index

46

Towards Human-Guided, Data-Centric LLM Co-Pilots

Code execution output:
Code execution finished successfully ✓

1 np.float64 (0.5)

Assistant: The survival prediction model for lung cancer has been built using the Cox
Proportional Hazards model. The C-index reported on the test dataset is 0.5. However,
the model summary is empty, which may indicate that the model did not find any
significant predictors in the training data. If you need further analysis or adjustments,
please let me know!

Reason behind this. The prediction model developed by OpenHands demonstrates subpar
performance. This is primarily due to the lack of any data preprocessing, resulting in an ineffec-
tive and meaningless survival model. Besides, OpenHands did not recognize the label leakage
problem caused by feature “time_to_death_lung_cancer” and “time_to_lung_cancer”.
Moreover, OpenHands failed to identify the label leakage issue caused by the features
“time_to_death_lung_cancer” and ”time_to_lung_cancer”. The failure scenarios closely
resemble those observed with Data-Interpreter.

C.3 Successful Cases with CliMB-DC

Here, we demonstrate how CliMB-DC effectively addresses the previously discussed failure
cases, using the lung cancer dataset as an example.

C.3.1 Example: Address label leakage

This example demonstrates how CliMB-DC effectively addresses label leakage issues via
advanced reasoning and human interaction.

Summary of Progress to Date: The datasets have been successfully loaded and appropri-
ately preprocessed, including steps such as imputation, normalization, and other necessary
adjustments. Before initiating experiments, CliMB-DC ensures alignment with the user by
confirming the problem setup, while also checking for potential label leakage.
...

Assistant: I will now consult the message history to check the meaning and details of
each of these columns and identify any potential data leakage.

Suspected Data Leakage Columns:

• “time_to_death_lung_cancer”: This column is likely to reveal the target variable
“lung_cancer”.

• “time_to_lung_cancer”: This column is likely to reveal the target variable
“lung_cancer”.

47

Saveliev*, Liu*, Seedat*, Boyd, van der Schaar

Data leakage is a problem because it can lead to overly optimistic results and a model
that cannot be used in practice. By including information that would not be available
at the time of prediction, the model can learn patterns that are not generalizable to new
data.

Assistant: Do you agree with the identified columns for potential data leakage? If there
are any other columns you suspect might cause data leakage, please let me know.

User: Yes, those two are data leakage. Remove them please

Assistant: I will now generate the code to remove the identified columns
(“time_to_death_lung_cancer” and “time_to_lung_cancer”) from both the
training and test datasets.

Generated code:

1 import pandas as pd
2

3 # Load the training dataset
4 train_df = pd.read_csv("lung_train.csv")
5

6 # Drop the identified columns
7 train_df = train_df.drop(columns =["time_to_death_lung_cancer", "

time_to_lung_cancer"])
8

9 # Save the modified training dataset
10 train_df.to_csv("lung_train_no_leakage.csv", index=False)
11

12 # Load the test dataset
13 test_df = pd.read_csv("lung_test.csv")
14

15 # Drop the identified columns
16 test_df = test_df.drop(columns =["time_to_death_lung_cancer", "

time_to_lung_cancer"])
17

18 # Save the modified test dataset
19 test_df.to_csv("lung_test_no_leakage.csv", index=False)
20

21 print("Columns ’time_to_death_lung_cancer ’ and ’time_to_lung_cancer ’
have been removed from both datasets.")

Code execution output:
Code execution finished successfully ✓

1 Columns ‘‘time_to_death_lung_cancer’’ and ‘‘time_to_lung_cancer’’
have been removed from both datasets.

...

48

Towards Human-Guided, Data-Centric LLM Co-Pilots

Summary of Subsequent Work: CliMB-DC then went on to identifying irrelevant features
to remove. An illustrative example is provided below.

C.3.2 Example: Identify irrelevant features

This example demonstrates how CliMB-DC identified irrelevant features and interacted with
the user to remove them.

Summary of Progress to Date: The datasets have been appropriately preprocessed and
the label leakage issue has been addressed based on expert human feedback. Moving forward,
CliMB-DC focuses on identifying and addressing irrelevant features.
...

Assistant: I will now check if there are any meaningless/irrelevant columns still left in
the dataset.

Suspected Irrelevant Columns:

• “index”: This column is likely an identifier and does not contain any useful
information for the analysis.

Including irrelevant columns can lead to overfitting and misleading feature importance.
It is important to remove them before continuing with the machine learning study.

Assistant: Do you agree with removing the “index” column? Are there any other
columns you suspect might be irrelevant?

User: Yes, remove "index" column only.

Assistant: I will now generate the code to remove the “index” column from both the
training and test datasets.
Generated code:

1 import pandas as pd
2

3 # Load the training dataset
4 train_df = pd.read_csv("lung_train_no_leakage.csv")
5

6 # Drop the identified irrelevant column
7 train_df = train_df.drop(columns =["index"])
8

9 # Save the modified training dataset
10 train_df.to_csv("lung_train_no_leakage_no_index.csv", index=False)
11

12 # Load the test dataset
13 test_df = pd.read_csv("lung_test_no_leakage.csv")
14

15 # Drop the identified irrelevant column

49

Saveliev*, Liu*, Seedat*, Boyd, van der Schaar

16 test_df = test_df.drop(columns =["index"])
17

18 # Save the modified test dataset
19 test_df.to_csv("lung_test_no_leakage_no_index.csv", index=False)
20

21 print("Column ’index’ has been removed from both datasets.")

Code execution output:
Code execution finished successfully ✓

1 Column ‘‘index’’ has been removed from both datasets.

Assistant: The index column has been removed from both the training and test datasets.
The modified datasets have been saved as lung_train_no_leakage_no_index.csv and
lung_test_no_leakage_no_index.csv.

Feature Columns Left: Here are the feature columns that are left in the dataset:

• age_at_recruitment

• sex

• body_mass_index

• n_cig_per_day

• ...

Are you happy to use all of these features in the machine learning study?

User: Yes

...

Summary of Subsequent Work: CliMB-DC then went on to utilizing domain-specific
models tailored for survival analysis. An illustrative example is provided below.

C.3.3 Example: Setup domain-specific model & metric

Following the above examples, this example shows how CliMB-DC leveraged domain-specific
tools to build survival models effectively.

Summary of Progress to Date: The datasets have been appropriately preprocessed
and the label leakage issue has been addressed based on expert human feedback. Irrelevant
features are removed.
...

50

Towards Human-Guided, Data-Centric LLM Co-Pilots

Assistant: Tool autoprognosis_survival_train_test completed successfully ✓
Tool logs:
1 Trying models:
2 [
3 "cox_ph",
4 "deephit"
5]
6 Running the survival analysis study , this may take several minutes ...
7 AutoPrognosis 2.0: Duration of this iteration: 15.6s
8 AutoPrognosis 2.0: Investigating model: data_cleanup ->cox_ph
9 AutoPrognosis 2.0: C-index achieved: 0.917

10 AutoPrognosis 2.0: Brier score achieved: 0.003
11 AutoPrognosis 2.0: Duration of this iteration: 4.1s
12 AutoPrognosis 2.0: Investigating model: nop ->feature_normalizer ->

data_cleanup ->cox_ph
13 AutoPrognosis 2.0: C-index achieved: 0.896
14 AutoPrognosis 2.0: Brier score achieved: 0.003
15 AutoPrognosis 2.0: Duration of this iteration: 3.7s
16 AutoPrognosis 2.0: Investigating model: nop ->normal_transform ->

data_cleanup ->cox_ph
17 AutoPrognosis 2.0: C-index achieved: 0.892
18 AutoPrognosis 2.0: Brier score achieved: 0.003
19 AutoPrognosis 2.0: Duration of this iteration: 3.4s
20 AutoPrognosis 2.0: Investigating model: data_cleanup ->cox_ph
21 AutoPrognosis 2.0: C-index achieved: 0.898
22 AutoPrognosis 2.0: Brier score achieved: 0.007
23 AutoPrognosis 2.0: Duration of this iteration: 3.7s
24 AutoPrognosis 2.0: Investigating model: nop ->feature_normalizer ->

data_cleanup ->cox_ph
25 AutoPrognosis 2.0: C-index achieved: 0.862
26 AutoPrognosis 2.0: Brier score achieved: 0.007
27 AutoPrognosis 2.0: Duration of this iteration: 3.4s
28 AutoPrognosis 2.0: Investigating model: nop ->normal_transform ->

data_cleanup ->cox_ph
29 AutoPrognosis 2.0: C-index achieved: 0.876
30 AutoPrognosis 2.0: Brier score achieved: 0.007
31 AutoPrognosis 2.0: Duration of this iteration: 2.9s
32 AutoPrognosis 2.0: Investigating model: data_cleanup ->cox_ph
33 AutoPrognosis 2.0: C-index achieved: 0.843
34 AutoPrognosis 2.0: Brier score achieved: 0.012
35 AutoPrognosis 2.0: Duration of this iteration: 3.2s
36 AutoPrognosis 2.0: Investigating model: nop ->feature_normalizer ->

data_cleanup ->cox_ph
37 AutoPrognosis 2.0: C-index achieved: 0.803
38 AutoPrognosis 2.0: Brier score achieved: 0.012
39 AutoPrognosis 2.0: Duration of this iteration: 3.0s
40 AutoPrognosis 2.0: Investigating model: nop ->normal_transform ->

data_cleanup ->cox_ph
41 AutoPrognosis 2.0: C-index achieved: 0.830
42 AutoPrognosis 2.0: Brier score achieved: 0.012
43 AutoPrognosis 2.0: Duration of this iteration: 7.6s
44 AutoPrognosis 2.0: Duration of this iteration: 7.6s
45 AutoPrognosis 2.0: Investigating model: [’1.0 * data_cleanup ->cox_ph ’]

51

Saveliev*, Liu*, Seedat*, Boyd, van der Schaar

46 AutoPrognosis 2.0: C-index achieved: 0.952 +/- 0.0
47 AutoPrognosis 2.0: Brier score achieved: 0.003 +/- 0.0
48 AutoPrognosis 2.0: Investigating model:
49 [’1.0 * data_cleanup ->cox_ph ’]
50 AutoPrognosis 2.0: C-index achieved: 0.952 +/- 0.0
51 AutoPrognosis 2.0: Brier score achieved: 0.003 +/- 0.0
52 AutoPrognosis 2.0: Duration of this iteration: 7.6s
53 AutoPrognosis 2.0: Duration of this iteration: 7.6s
54 AutoPrognosis 2.0: Investigating model: [’1.0 * data_cleanup ->cox_ph ’]
55 AutoPrognosis 2.0: C-index achieved: 0.936 +/- 0.0
56 AutoPrognosis 2.0: Brier score achieved: 0.007 +/- 0.0
57 AutoPrognosis 2.0: Investigating model:
58 [’1.0 * data_cleanup ->cox_ph ’]
59 AutoPrognosis 2.0: C-index achieved: 0.936 +/- 0.0
60 AutoPrognosis 2.0: Brier score achieved: 0.007 +/- 0.0
61 AutoPrognosis 2.0: Duration of this iteration: 7.1s
62 AutoPrognosis 2.0: Duration of this iteration: 7.1s
63 AutoPrognosis 2.0: Investigating model: [’1.0 * data_cleanup ->cox_ph ’]
64 AutoPrognosis 2.0: C-index achieved: 0.87 +/- 0.0
65 AutoPrognosis 2.0: Brier score achieved: 0.012 +/- 0.0
66 AutoPrognosis 2.0: Investigating model:
67 [’1.0 * data_cleanup ->cox_ph ’]
68 AutoPrognosis 2.0: C-index achieved: 0.87 +/- 0.0
69 AutoPrognosis 2.0: Brier score achieved: 0.012 +/- 0.0
70 AutoPrognosis 2.0: Duration of this iteration: 609.3s
71 AutoPrognosis 2.0: Duration of this iteration: 609.3s
72 AutoPrognosis 2.0: Investigating model: ["1.0 * data_cleanup ->cox_ph

({’cox_ph ’: {}})", "1.0 * data_cleanup ->cox_ph({’cox_ph ’: {}})", "
1.0 * data_cleanup ->cox_ph({’cox_ph ’: {}})"]

73 AutoPrognosis 2.0: C-index achieved: 0.903
74 AutoPrognosis 2.0: Brier score achieved: 0.007
75 AutoPrognosis 2.0: Investigating model:
76 AutoPrognosis 2.0: Study finished.
77 ["1.0 * data_cleanup ->cox_ph({’cox_ph ’: {}})", "1.0 * data_cleanup ->

cox_ph({’cox_ph ’: {}})", "1.0 * data_cleanup ->cox_ph({’cox_ph ’:
{}})"]

78 AutoPrognosis 2.0: C-index achieved: 0.903
79 AutoPrognosis 2.0: Brier score achieved: 0.007
80 AutoPrognosis 2.0: Study finished.
81 Survival analysis study completed!
82 Final model summary:
83 Metrics (train data): "c_index": "0.925 +/- 0.029",
84 Metrics (test data): "c_index": "0.848 +/- 0.005"

C.4 Example: Model Evaluation & Feature Importance

Based on the results, CliMB-DC will provide feature importance explanations for the users
to better understand the prediction model, ensuring the interpretability in healthcare.

Summary of Progress to Date: CliMB-DC has fitted a survival model for the given
dataset and the task.
...

52

Towards Human-Guided, Data-Centric LLM Co-Pilots

Assistant: Would you like to see feature importance plots for your survival analysis
task?

User: Yes, please

Assistant: Tool permutation_explainer completed successfully ✓
Tool logs:
1 Loading the data ...
2 Data loaded with shape: 4800 rows and 28 columns.
3 Loading model from file: path/model_all.p
4 Running the permutation explainer , this can take a while ...
5

6 This tool takes approximately 1 minute per column. If this is
too slow , consider reducing the number of columns.

7 Reducing the number of column can be done with the feature
selection tool. You can cancel this tool with the

8 ‘Restart from last reasoning step ‘ button. Then use the
feature selection tool to reduce the number of columns.

9 Permutation explainer completed!
10 importances_mean importances_std
11 age_at_recruitment 0.088055 0.019220
12 copd_emphysema_bronchitis 0.018188 0.004543
13 packyears 0.018143 0.007201
14 pneumonia_self_reported 0.017176 0.000252
15 age_started_smoking 0.015429 0.002090
16 personal_hx_cancer 0.010980 0.003070
17 ...

Assistant: The feature importance plot is herea:

53

Saveliev*, Liu*, Seedat*, Boyd, van der Schaar

a. We omit the feature names in the figure.

Appendix D. More CliMB-DC Interaction Examples

In this section, we present more examples highlighting the advantages of CliMB-DC in
executing effective data preprocessing.

D.1 Example: Data Exploration

For the input data, CliMB-DC provides users with a detailed data analysis as well as visual-
ization using tools EDA, descriptive statistics, and lifelines.KaplanMeierFitter.

Summary of Progress to Date: The data file has been uploaded.
...

Assistant: Tool EDA completed successfully ✓

Tool logs:
1 Getting dataset basic info ...
2 Getting descriptive statistics for numerical features ...
3 Getting detailed information on categorical variables ...
4 Performing missing values analysis ...
5 Identified numeric columns that should be considered categorical:

54

Towards Human-Guided, Data-Centric LLM Co-Pilots

6 [’asbestosis_self_reported ’, ’pneumonia_self_reported ’, ’
chronic_obstructive_airways_disease_copd_self_reported ’, ’
emphysema_chronic_bronchitis ’, ’copd_emphysema_bronchitis ’, ’
emphysema ’, ’asthma ’, ’eczema_allergicrhinitis_hayfever ’, ’
number_of_self_reported_cancers ’, ’personal_hx_cancer ’, ’
family_hx_lung_cancer_mother ’, ’family_hx_lung_cancer_father ’, ’
family_hx_lung_cancer_siblings ’, ’asbestos ’, ’lung_cancer ’]

7 Performing correlation analysis ...
8 Performing potential outliers identification ...
9 Performing duplicate records analysis ...

Tool output:
1 Dataset Shape: 4800 rows and 31 columns
2 Column Names and Types:
3 index int64
4 age_at_recruitment float64
5 sex object
6 body_mass_index float64
7 n_cig_per_day float64
8 age_started_smoking float64
9 age_stopped_smoking float64

10 ...
11

12 Descriptive Statistics for Numerical Features:
13 index age_at_recruitment body_mass_index ...
14 count 4800.000000 4800.000000 4800.000000 ...
15 mean 87406.250417 57.417163 27.676107 ...
16 std 49908.726761 8.084722 4.621542 ...
17 min 129.000000 40.000000 16.024943 ...
18 25% 44130.250000 51.167603 24.473217 ...
19 50% 88896.000000 59.135000 27.116986 ...
20 75% 130874.500000 63.719537 30.425950 ...
21 max 173314.000000 72.000000 53.565422 ...
22 skew -0.033166 -0.447521 0.579946 ...
23 kurt -1.179482 -0.848562 0.532072 ...
24

25 Identified numeric value columns that should most likely be considered
categoricals:

26 [’asbestosis_self_reported ’, ’pneumonia_self_reported ’, ’asbestos ’, ’
lung_cancer ’, ...].

27 This is done by checking whether the column contains only integers and
has a low number of unique values (<20 or <5% of total examples).

28

29 Detailed Information on Categorical Variables:
30 smoking_status - Unique Values: 2
31 Top 5 Values:
32 smoking_status
33 Previous 3603
34 Current 1197
35 ...
36

37 Missing Values Analysis:
38 No missing values found.
39

55

Saveliev*, Liu*, Seedat*, Boyd, van der Schaar

40 Correlation Analysis: ...
41

42 Outlier Identification for Numerical Features:
43 index - Outliers Count: 0
44 [Lower Bound: -1.08e+05, Upper Bound: 2.83e+05]
45 ...
46

47 Duplicate Records: 0

Assistant: Here is a correlation gram showing the correlation between featuresa:

a. We omit the feature names in the figure.

Assistant: Would you like to generate descriptive statistics for the training dataset
(lung_train.csv)?

User: Yes

56

Towards Human-Guided, Data-Centric LLM Co-Pilots

Assistant: Tool descriptive_statistics completed successfully ✓

Tool logs:
1 Creating the descriptive statistics table ...
2 Saving the summary table to:
3 /mnt/data -fourtb/Dropbox/Programming/wsl_repos/climb_versions/

climb_cot/climb/wd/session_2025 -01 -08_14 -33 -29/ lung_train.
csv__descriptive_stats.csv

4 Identified numeric columns that should be considered categorical:
5 [’asbestos ’, ’lung_cancer ’, ...]
6 Creating plots for the data ...
7 Normally distributed features:
8 []
9 Not normally distributed features:

10 [’age_at_recruitment ’, ’age_started_smoking ’, ’age_stopped_smoking ’, ’
body_mass_index ’, ’index’, ...]

11 Plotted a bar plot for: ’sex’
12 Plotted a bar plot for: ’smoking_status ’
13 Plotted a histogram and box plot for: ’age_at_recruitment ’
14 ...
15 Plotting of ’years_since_stopped_smoking ’ took too long and was

skipped.

Tool output:
1 Variable Summary
2 index 88896 (44130 -

130874)
3 age_at_recruitment 59.1 (51.2

- 63.7)
4 sex
5 Male 2483/4800

(51.7)
6 Female 2317/4800

(48.3)
7 ...

Assistant: The descriptive statistics have been generated successfully. Here is a
summary of the key findings:

Summary of Descriptive Statistics:
Numerical Variables:

• age_at_recruitment: Median = 59.1 (Q1-Q3: 51.2 - 63.7)

• body_mass_index: Median = 27.1 (Q1-Q3: 24.5 - 30.4)

• ...

Categorical Variables:

• sex: Male = 51.7%, Female = 48.3%

57

Saveliev*, Liu*, Seedat*, Boyd, van der Schaar

• smoking_status: Previous = 75.1%, Current = 24.9%

• ...

Key Figures: Here are some important figures generated during the analysis:

• Distribution of age_at_recruitment:

• Distribution of age_started_smoking:

• Distribution of age_stopped_smoking:

58

Towards Human-Guided, Data-Centric LLM Co-Pilots

• Distribution of body_mass_index:

• Distribution of number_of_cigarettes_per_day::

• Distribution of packyears:

• ...

Assistant: Would you like to see a Kaplan-Meier plot for the survival analysis?

59

Saveliev*, Liu*, Seedat*, Boyd, van der Schaar

User: Yes

Assistant: I will generate the Kaplan-Meier plot for the training dataset using the
lifelines library.

Generated code:

1 import pandas as pd
2 import matplotlib.pyplot as plt
3 from lifelines import KaplanMeierFitter
4

5 # Load the training dataset
6 df = pd.read_csv("lung_train.csv")
7

8 # Define the event and time columns
9 event_col = "lung_cancer"

10 time_col = "time_to_event_develop"
11

12 # Initialize the Kaplan -Meier fitter
13 kmf = KaplanMeierFitter ()
14

15 # Fit the data
16 kmf.fit(durations=df[time_col], event_observed=df[event_col])
17

18 # Plot the Kaplan -Meier curve
19 plt.figure(figsize =(10, 6))
20 kmf.plot_survival_function ()
21 plt.title("Kaplan -Meier Survival Curve")
22 plt.xlabel("Time to Event (days)")
23 plt.ylabel("Survival Probability")
24 plt.grid(True)
25

26 # Save the plot
27 plt.savefig("km_plot_training.png")
28 plt.close ()
29 print("Kaplan -Meier plot for the training dataset has been saved as ’

km_plot_training.png ’.")

Code execution output:
Code execution finished successfully ✓

1 Kaplan -Meier plot for the training dataset has been saved as ’
km_plot_training.png’.

Assistant: Here is the Kaplan-Meier plot for the training dataset:

60

Towards Human-Guided, Data-Centric LLM Co-Pilots

D.2 Example: Data Aggregation

When input data contains multiple measurements, CliMB-DC will auto-check such issue and
interact with users to address it.

Summary of Progress to Date The data file has been uploaded, and relevant background
information has been provided to CliMB-DC.
...

Let’s assess the suitability of your data for the task and whether the AutoPrognosis
tools support it.
Q1: Is the data suitable for the task?

• The data is structured with each row representing a patient’s information at
different follow-up points.

• We need to predict the “Event_status” variable using the “Years_to_event” as the
time variable, which indicates a survival analysis problem.

Potential issue: The data has multiple rows per patient, which might not be directly
suitable for the AutoPrognosis tools that expect one row per patient.
Q2: Does the AutoPrognosis set of tools support the task?

• AutoPrognosis supports survival analysis through the
autoprognosis_survival_train_test tool.

• This tool requires the target (event) variable and the time variable, which we have
(“Event_status” and “Years_to_event”).

61

Saveliev*, Liu*, Seedat*, Boyd, van der Schaar

Conclusion:

• The task can be performed using AutoPrognosis, but the data needs to be trans-
formed to have one row per patient.

To transform the data, we can aggregate the follow-up points for each patient. This
could involve taking the last follow-up point for each patient or aggregating information
in a meaningful way.
Would you like to proceed with transforming the data to fit the task requirements?

User: I would like to take the last follow up point.

Assistant: Let’s proceed with transforming the data to have one row per patient, taking
the last follow-up point for each patient.

Generated code:

1 import pandas as pd
2

3 # Load the data
4 file_path = "PBC_Data_corrected_v2.csv"
5 data = pd.read_csv(file_path)
6

7 # Sort the data by patient ID and follow -up time (assuming columns are
’patient_id ’ and ’Years_to_event ’)

8 # Replace ’patient_id ’ with the actual column name for patient
identification if different

9 data_sorted = data.sort_values(by=[’patient_id ’, ’Years_to_event ’])
10

11 # Take the last follow -up point for each patient
12 data_last_followup = data_sorted.drop_duplicates(subset =[’patient_id ’

], keep=’last’)
13

14 # Save the transformed data
15 output_file_path = "PBC_Data_last_followup.csv"
16 data_last_followup.to_csv(output_file_path , index=False)
17

18 print(f"Transformed data saved to {output_file_path}")

Code execution output:
Code execution failed ×

1 KeyError: ’patient_id ’

Assistant: It appears that the column name for patient identification is not “patient_id”.
Could you please provide the correct column name for patient identification?

User: Yes, that would be “id”

62

Towards Human-Guided, Data-Centric LLM Co-Pilots

Assistant: Let’s proceed with transforming the data using the correct column name “id”
for patient identification.
Generated code:

1 import pandas as pd
2

3 # Load the data
4 file_path = "PBC_Data_corrected_v2.csv"
5 data = pd.read_csv(file_path)
6

7 # Sort the data by patient ID and follow -up time
8 data_sorted = data.sort_values(by=[’id’, ’Years_to_event ’])
9

10 # Take the last follow -up point for each patient
11 data_last_followup = data_sorted.drop_duplicates(subset =[’id’], keep=’

last’)
12

13 # Save the transformed data
14 output_file_path = "PBC_Data_last_followup.csv"
15 data_last_followup.to_csv(output_file_path , index=False)
16

17 print(f"Transformed data saved to {output_file_path}")

Code execution output:
Code execution finished successfully ✓

1 Transformed data saved to PBC_Data_last_followup.csv

Assistant: The data has been successfully transformed to have one row per patient,
taking the last follow-up point for each patient. The transformed data has been saved as
PBC_Data_last_followup.csv.
Based on the assessment:

• The data is now suitable for the task.

• The AutoPrognosis tools support survival analysis, which is the type of study you
want to perform.

You can proceed with the survival analysis using the
autoprognosis_survival_train_test tool.

D.3 Example: Joining Multiple Files

Here, we show an example of CliMB-DC handling a complex case of data file merging. The
Single Family Loan-Level Dataset (Freddie Mac (2025)) is split across 25 years, each year
containing two files – requiring the stacking of the annual data followed by the merging of
the origination and monthly data files by a key. In addition, here, the user has requested to
use a subset of the years as the test set.

63

Saveliev*, Liu*, Seedat*, Boyd, van der Schaar

Summary of Progress to Date All the files have been uploaded, the files have been
inspected and the missing headings added; the user has specified that they wish to use years
2018-2023 as the test set.
...

Assistant: To proceed, I’ll help merge the provided datasets into single training and
test files.

Step I: Understanding the situation
You have multiple files for both the training and test datasets:

1. Training set: Years prior to 2018.

2. Test set: Years 2018-2023.

Questions:

1. Do all the files within each group (training or test) contain the same kind of data
and can be stacked directly, or do they differ and need to be merged by a unique
key?

2. Is there a unique key or a combination of columns that can be used to merge the
files, if needed? If you’re unsure, I can assist in identifying one.

Let me know how you’d like to proceed!

User:

• The files for different years should be stacked into a single file.

• The origination and surv files should be joined on "LOAN SEQUENCE NUMBER".

• We will use years 2018-2023 (inclusive) as the test set.

Assistant: Understood. I will first stack the files for the training and test datasets
separately, then merge the stacked "orig" and "surv" files using the "LOAN SEQUENCE
NUMBER" column.

Step II: Stacking Files I will start by stacking the "orig" files for the training and
test datasets.

Let me first stack the training "orig" files (years prior to 2018).
I’ll now stack the "orig" files for years prior to 2018 (training dataset). These include
the following files:

• sample_orig_1999_fixed.txt

• ...

64

Towards Human-Guided, Data-Centric LLM Co-Pilots

• sample_orig_2017_fixed.txt

Generated code:

1 import pandas as pd
2 import glob
3

4 # List of training "orig" files (years prior to 2018)
5 training_orig_files = [
6 "sample_orig_1999_fixed.txt", "sample_orig_2000_fixed.txt", "

sample_orig_2001_fixed.txt",
7 "sample_orig_2002_fixed.txt", "sample_orig_2003_fixed.txt", "

sample_orig_2004_fixed.txt",
8 "sample_orig_2005_fixed.txt", "sample_orig_2006_fixed.txt", "

sample_orig_2007_fixed.txt",
9 "sample_orig_2008_fixed.txt", "sample_orig_2009_fixed.txt", "

sample_orig_2010_fixed.txt",
10 "sample_orig_2011_fixed.txt", "sample_orig_2012_fixed.txt", "

sample_orig_2013_fixed.txt",
11 "sample_orig_2014_fixed.txt", "sample_orig_2015_fixed.txt", "

sample_orig_2016_fixed.txt",
12 "sample_orig_2017_fixed.txt"
13]
14

15 # Initialize an empty list to hold dataframes
16 dataframes = []
17

18 # Read and append each file
19 for file in training_orig_files:
20 df = pd.read_csv(file , delimiter=",") # Assuming comma delimiter
21 print(f"Loaded {file} with shape: {df.shape}")
22 dataframes.append(df)
23

24 # Concatenate all dataframes
25 stacked_training_orig = pd.concat(dataframes , ignore_index=True)
26

27 # Save the stacked file
28 output_file = "training_orig_stacked.csv"
29 stacked_training_orig.to_csv(output_file , index=False)
30 print(f"Stacked training ’orig’ files saved as {output_file} with

shape: {stacked_training_orig.shape}")

Code execution output:
Code execution finished successfully ✓

1 Loaded sample_orig_1999_fixed.txt with shape: (50000 , 32)
2 ...
3 Loaded sample_orig_2017_fixed.txt with shape: (50000 , 32)
4 Stacked training ’orig’ files saved as training_orig_stacked.csv

with shape: (950000 , 32)

65

Saveliev*, Liu*, Seedat*, Boyd, van der Schaar

...The analogous stacking steps were then carried out for the origination files test set,
and then for the monthly data files training and test sets. The system then moved on to the
merging step. ...

Assistant: Next Step: Merging Files I will now merge the stacked "orig" and "surv"
files for both the training and test datasets using the "LOAN SEQUENCE NUMBER"
column as the unique key.
Let me start with merging the training datasets: training_orig_stacked.csv and
training_surv_stacked.csv.
Here is the code to merge the stacked training datasets (training_orig_stacked.csv
and training_surv_stacked.csv) using the "LOAN SEQUENCE NUMBER" column:
Generated code:

1 import pandas as pd
2

3 # Load the stacked training datasets
4 orig_data = pd.read_csv("training_orig_stacked.csv")
5 surv_data = pd.read_csv("training_surv_stacked.csv")
6

7 # Merge the datasets on "LOAN SEQUENCE NUMBER" using an inner join
8 merged_training_data = pd.merge(orig_data , surv_data , on="LOAN

SEQUENCE NUMBER", how="inner")
9

10 # Save the merged dataset
11 output_file = "training_merged.csv"
12 merged_training_data.to_csv(output_file , index=False)
13

14 # Sense check: Number of rows lost and NaN values introduced
15 rows_lost = max(len(orig_data), len(surv_data)) - len(

merged_training_data)
16 nan_values = merged_training_data.isna().sum().sum()
17

18 print(f"Merged training dataset saved as {output_file} with shape: {
merged_training_data.shape}")

19 print(f"Number of rows lost in the merge: {rows_lost}")
20 print(f"Number of NaN values introduced in the merge: {nan_values}")

Code execution output:
Code execution finished successfully ✓

1 Merged training dataset saved as training_merged.csv with shape:
(950000 , 34)

2 Number of rows lost in the merge: 0
3 Number of NaN values introduced in the merge: 2915132

The training dataset has been successfully merged into training_merged.csv with 950,000
rows and 34 columns. There were no rows lost in the merge, but 2,915,132 NaN values were
introduced. This could be due to missing data in either the "orig" or "surv" files.
Next, I will merge the stacked test datasets: test_orig_stacked.csv and
test_surv_stacked.csv using the "LOAN SEQUENCE NUMBER" column. Let me
proceed.

66

Towards Human-Guided, Data-Centric LLM Co-Pilots

The analogous merging step was then performed for the test set files, finalizing the data
preprocessing.

67

Saveliev*, Liu*, Seedat*, Boyd, van der Schaar

Appendix E. Additional details and experiments

E.1 Failure modes

Like all LLM-based systems, CliMB-DC can face failures, for instance:

• Ambiguous data structures: When dataset features have ambiguous semantics that even
domain experts struggle to interpret, the Coordinator may make incorrect assumptions.

• Novel data-centric issues: For novel data issues not represented in our taxonomy, initial
planning may be suboptimal until expert guidance is provided.

• Computational resource limitations: For extremely large datasets or complex transfor-
mations, tool execution time can become prohibitive.

• Potential hallucinations: For example, when tools are unavailable and code generation
is needed.

Mitigations: To mitigate these challenges: (i) we log all intermediate states and
transformations for post-hoc auditing, (ii) we maintain checkpointed states for possible
recovery, (iii) backtracking logic is triggered automatically when transformations reduce
data quality (e.g., size < threshold, missing columns), (iv) for known tools we provide the
API structure to the LLM and allow the LLM to call them as tools, rather than producing
hallucinated code.

E.2 Computing Resources and Implementation Details

The CliMB-DC framework was implemented in Python 3.9, with the user interface (UI)
built using Streamlit 1.40 (Snowflake Inc. (2024)). For all experiments, the LLM backbone
used for both CliMB-DC and the baseline co-pilots was gpt-4o-2024-05-13 to ensure a
fair comparison of reasoning capabilities. All experiments were conducted on a workstation
equipped with a 10-core Intel Core i9-10900K CPU, 64 GB of RAM, and a single NVIDIA
GeForce RTX 3090 GPU with 24 GB of VRAM and CUDA version 12.4. The wall clock run
time of each CliMB-DC run ranges from several minutes to no more than 2 hours, depending
on the dataset size and complexity.

E.3 API Details and Extensibility

CliMB-DC is designed with a modular and extensible architecture to facilitate community
contributions and ensure the framework can evolve alongside advances in data-centric AI.
The core design philosophy centers on a clear separation between the reasoning engine and
the executable tools. This section details the API structure, focusing on how new data-centric
tools can be seamlessly integrated into the framework.

Engine. The system’s backbone is the ‘Engine’ (located in src/climb/engine), which
orchestrates the entire workflow. It manages sessions, agent interactions with the LLM
backend (e.g., OpenAI, Azure), and the overall state of the data analysis pipeline. The
‘Engine‘ takes user specifications and the dataset as input, consults the coordinator agent to
generate a plan, and directs the worker agent to execute tasks.

68

Towards Human-Guided, Data-Centric LLM Co-Pilots

Tools. The worker agent’s more complex actions are primarily performed through a
library of ‘Tools’ (located in src/climb/tool). Each tool is a self-contained module that
executes a predefined function, such as data imputation or quality assessment. Tools are
wrapped in a ToolBase class and are executed asynchronously in a separate ToolThread.
This design prevents the user interface from blocking during long-running data operations.
A ToolCommunicator object handles logging and streams output from the tool back to the
user, ensuring transparency and real-time feedback.

A key goal of CliMB-DC is to serve as a platform for the data-centric AI research
community. To this end, we have designed a straightforward process for integrating new
tools. A developer can add a new tool by following these steps:

1. Define the Tool Function: First, create a standard Python function that implements
the tool’s logic. This function must accept a ToolCommunicator instance as its first
argument to handle all output (e.g., printing progress or returning results).

2. Create a Tool Wrapper Class: Next, define a new class that inherits from the
ToolBase abstract class. This class acts as a wrapper, connecting the tool’s logic to
the CliMB-DC engine.

3. Implement the Execution Method: Inside the wrapper class, implement the
_execute method. This method is responsible for calling the tool function using our
execute_tool helper, which manages the multi-threaded execution.

4. Provide a Specification: Finally, define the tool’s metadata by implementing the
name, description, and specification properties. The specification is crucial;
it’s a JSON-like schema (following OpenAI’s function-calling schema OpenAI (2023))
that describes the function’s signature, including its parameters, types, and descriptions.
This schema is exposed to the LLM-based agents, allowing them to understand how to
call the tool and what arguments to provide.

The following code (Listing 1) demonstrates how to create a simple tool that calculates
the maximum value of a specified column in a CSV file.

1 # NB: data_file_path and target_column will need to be defined in
specification

2 def get_col_max(tc: ToolCommunicator , data_file_path: str , target_column:
str):

3 """ Example tool function to get the max value of a column within a
dataframe """

4

5 # Instead of printing to console , we print via the ToolCommunicator
6 tc.print(f"Getting max value in column {target_column} from {

data_file_path}")
7

8 df = pd.read_csv(data_file_path)
9

10 output_str = "Column max: " + str(df[target_column].max())
11

12 tc.set_returns(output_str)
13

69

Saveliev*, Liu*, Seedat*, Boyd, van der Schaar

14 class ColumnMax(ToolBase):
15 def _execute(self , ** kwargs: Any) -\> ToolReturnIter:
16 # NOTE: In general tools work on a separate directory
17 data_file_path = os.path.join(self.working_directory , kwargs["

data_file_path"])
18

19 thrd , out_stream = execute_tool(
20 get_col_max , # Our tool function defined above
21 data_file_path=data_file_path ,
22 target_column=kwargs["target_column"],
23)
24

25 self.tool_thread = thrd
26 return out_stream
27

28 # Other properties we want to define for reasoning / action units.
29 @property
30 def name(self) -> str:
31 return "column_max"
32

33 @property
34 def description(self) -> str:
35 return "This returns the value of a column within a dataframe"
36

37 # Specification defines the parameters for the underlying tool
function

38 @property
39 def specification(self) -> Dict[str , Any]:
40 return {
41 "type": "function",
42 "function": {
43 "name": self.name ,
44 "description": self.description ,
45 "parameters": {
46 "type": "object",
47 "properties": {
48 "data_file_path": {"type": "string", "

description": "Path to the data file."},
49 "target_column": {"type": "string", "

description": "Target column"},
50 },
51 "required": ["data_file_path", "target_column"],
52 },
53 },
54 }

Listing 1: Example of extending CliMB-DC with a new tool. This involves defining a
core function (get_col_max) and a wrapper class (ColumnMax) that inherits from
ToolBase and provides metadata for the LLM agent.

Extending the project plan The reasoning and planning capabilities of CliMB-DC are
guided by a dynamic project plan, which is constructed by the coordinator agent as a sequence
of modular steps called episodes. The system maintains a library of these predefined episodes,

70

Towards Human-Guided, Data-Centric LLM Co-Pilots

each representing a specific data-centric or modeling task. The coordinator can select, reorder,
and adapt episodes from this library to build a tailored workflow that addresses the user’s
goals and the specific challenges of the dataset. This modular design allows the framework’s
capabilities to be easily expanded by adding new episodes to the library.

Each episode is defined in a JSON-like format with several key fields that provide
structured guidance to the multi-agent system:

• episode_id: A unique string that serves as the primary identifier for the episode.

• episode_name: An optional, human-readable title for the episode.

• episode_details: The primary set of instructions for the worker agent. This field
contains a detailed natural language description of the tasks to be performed, including
conditional logic, user interaction points, and the specific tools to be invoked.

• coordinator_guidance: Optional high-level strategic advice for the coordinator agent.
This helps the coordinator determine the episode’s relevance and optimal placement
within the overall project plan. For instance, it might suggest when the episode is most
useful or what prerequisites must be met.

• worker_guidance: Optional low-level implementation details for the worker agent.
This can include tips on handling specific data formats, managing edge cases, or
clarifying tool usage to ensure robust execution.

• tools: A list of string names corresponding to the tools from the tool registry required
for the episode. This allows the system to verify that the necessary components are
available.

Adding a new episode is as simple as defining a new dictionary entry in the episode
library. The following minimal example (Listing 2) illustrates how to add a new episode for
generating a basic statistical summary of the dataset.

1 {
2 "episode_id": "DATA_SUMMARY",
3 "episode_name": "Generate Data Summary",
4 "episode_details": """
5 - Use the ‘data_summary ‘ tool to generate a statistical summary of the

dataset.
6 - Display this summary to the user for their review.
7 """,
8 "coordinator_guidance": """
9 This is a good initial exploratory step to help the user understand the

basic
10 statistical properties of their data , like mean , median , and variance.
11 """,
12 "worker_guidance": """
13 The ‘data_summary ‘ tool takes the data file path as input and returns a
14 pandas DataFrame. Ensure the output is formatted clearly for the user.
15 """,
16 "tools": ["data_summary"],
17 }

71

Saveliev*, Liu*, Seedat*, Boyd, van der Schaar

Listing 2: A minimal example of a new episode definition for the episode library. This
episode instructs the agent to generate and display a statistical summary of the
data.

E.4 Experiment in a Non-medical Domain

To further evaluate the robustness and generalizability of our framework, we extend our
case studies beyond the healthcare domain. This next experiment investigates CliMB-DC’s
performance in a financial context, specifically mortgage default prediction, which introduces
a distinct set of data-centric challenges. This scenario allows us to assess the co-pilot’s
capabilities across three critical dimensions:

• Scalability and Performance: The experiment uses a dataset significantly larger
than our previous examples, testing the framework’s ability to operate efficiently at
scale.

• Complex Data-Centric Workflow: The problem requires processing and merging
multiple raw data files and performing non-trivial, context-dependent feature engineer-
ing to construct the final analytical dataset. This tests the coordinator’s multi-step
reasoning and planning capabilities.

• Domain Adaptability: The co-pilot must interpret and reason about domain-specific
terminology and rules unique to the financial industry to correctly define the prediction
task, thereby testing its adaptability to novel domains with different expert knowledge
nuances.

The task is a time-to-event (survival) analysis using the Freddie Mac Single-Family
Loan-Level Dataset (SFLD), Freddie Mac (2025). This publicly available dataset contains
information on approximately 54 million U.S. mortgages and is a standard benchmark for
credit risk modeling. For this experiment, we use a representative sample of approximately 1
million loan records.

The dataset is provided in two separate sets of annual (or quarterly) files:

1. Origination File: Contains static, time-invariant features for each loan at the time
of its creation, such as the borrower’s credit score, the original loan amount (UPB),
loan-to-value (LTV) ratio, interest rate, and property details.

2. Performance File: Provides a longitudinal record of each loan’s performance, with
monthly updates on its balance, delinquency status, and final termination status.

A key data-centric challenge in this task is to correctly formulate the survival analysis
problem by merging these two data sources and engineering the outcome variables. This
involves:

72

Towards Human-Guided, Data-Centric LLM Co-Pilots

• Linking Records: Joining the origination data with the final performance record
for each unique loan using the LOAN SEQUENCE NUMBER after having combined multiple
annual data files.

• Correctly Handling Per-column Missingness: The dataset contains column-
dependent non-standard missing value indicators (e.g. ‘9’ in PROPERTY VALUATION
METHOD, ‘00’ in the last two digits of the POSTAL CODE, etc.), which makes appropriate
handling of these values additionally challenging.

• Defining the Event and Censoring Status: Correctly mapping the ZERO BALANCE
CODE in the performance data to determine the loan’s outcome. A loan is considered to
have experienced the event (default) if it terminates due to a Third Party Sale (Code
02), Short Sale or Charge Off (Code 03), or REO Disposition (Code 09) Freddie Mac
(2025) and is considered right-censored otherwise.

• Calculating Time-to-Event: The survival time must be calculated as the number of
months between the FIRST PAYMENT DATE and the ZERO BALANCE EFFECTIVE DATE.

In this experiment, we use 25 annual origination files (1999-2023) and 25 corresponding
performance files (with some initial preprocessing: only keeping the final month’s rows and
keeping only the zero-balance related columns). The information necessary to define the
event and time variables, as well as the different missing indicator definitions (as well as the
dataset overview and the research question description) were given to CliMB-DC and all
baselines.

This setup tests whether CliMB-DC can reason through a multi-step data preparation
pipeline, and construct a valid, ML-ready dataset for a complex modeling task in a new
domain. The results can be found in Table 9.

Table 9: Results on the Freddie Mac Single-Family Loan-Level Dataset (SFLD). Note that
for Data-Interpreter, a single training file and a test file are required, hence file
merging was pre-executed by human assistance, significantly simplifying the task.

Method Human Assistance Results Valid C-Index Failure Modes % runs tested

Data-
Interpreter Files already merged × Failed to execute project pipeline 100%

OpenHands - × Failed to combine data files 40%
✓ 0.592 (Successful) 60%

CliMB-DC
(No Coordinator
& No Tools)

- × Failed to combine data files 100%

CliMB-DC (No
Coordinator & With Tools) - × Failed to combine data files 40%

Incomplete preprocessing leading to tool failure 60%

CliMB-DC - × Failed to combine data files 40%
✓ 0.816 (Successful) 60%

The results in Table 9 underscore the heightened complexity of this financial prediction
task. The multi-step process of merging numerous files and performing context-dependent
feature engineering proved challenging for all co-pilots. We find that for the gpt-4o backbone
(as used in all experiments): Data-Interpreter failed entirely, while OpenHands and the

73

Saveliev*, Liu*, Seedat*, Boyd, van der Schaar

ablated versions of CliMB-DC struggled with the initial data aggregation step, leading to
high failure rates. In contrast, the complete CliMB-DC framework successfully navigated the
complex pipeline in the majority of runs, achieving a robust predictive performance (C-Index
of 0.816). However, the 40% failure rate, primarily at the file combination stage, indicates
that large-scale, multi-file data wrangling remains a challenge for LLM-based agents.

Appendix F. Social impact

An important dimension to consider for Generative co-pilots like Climb-DC is their social
impact and ethical considerations, especially in high-stakes domains like healthcare.

We follow Solaiman et al. (2023), which offers a comprehensive framework for evaluating
the societal implications of generative AI systems.

CliMB-DC aligns strongly with the context-aware evaluation emphasized by Solaiman
et al. (2023). In contrast to evaluations conducted solely at the base system level, CliMB-DC
is explicitly designed for deployment in context—operating as a human-guided system that
integrates expert feedback during data curation and modeling. This enables our system to
account for domain-specific feedback, norms, constraints, and potential harms (e.g., label
leakage, underrepresented populations).

Furthermore, CliMB-DC directly addresses several categories from the Solaiman et al.
(2023) framework :

• Disparate Performance: Our multi-agent reasoning system helps identify and mitigate
healthcare data issues that can lead to performance disparities across demographic
groups, while enabling domain experts to evaluate disaggregated performance metrics.

• Privacy and Data Protection: Our system is able to execute tools locally, with no
patient-level data shared with the LLM, thereby protecting privacy and data.

• Trustworthiness and Autonomy: By making data-centric challenges explicit and address-
ing them with established data-centric tools, we establish trustworthiness. Moreover,
by incorporating human guidance, we ensure that transformations remain clinically
relevant. Finally, all reasoning and tool selections made by CliMB-DC are logged
and auditable. This supports interpretability and provides a concrete mechanism for
building user trust.

• Overreliance on automation: By requiring expert feedback loops, our system mitigates
the risks of automation bias and blind trust in LLM outputs. This is especially
important in healthcare, where hallucinated transformations could have downstream
clinical implications.

• Inequality and Marginalization: Our framework specifically highlights how data issues
if not addressed by co-pilots can amplify healthcare disparities or be harmful (i.e.
current model-centric approaches). Not addressing such challenges and applying such
co-pilots in clinical settings can lead to inequality of healthcare outcomes due to the
subsequent harms. Hence, our work highlights the importance of a data-centric lens to
mitigate this.

74

	Introduction
	Taxonomy of Data-centric Issues Facing Co-pilots
	Related Work
	CliMB-DC: An LLM Co-Pilot from a Data-Centric Perspective
	Overall Architecture
	Details of CliMB-DC's Reasoning Process
	Worker Agent

	CliMB-DC: Open-source software toolkit
	Extensibility to New Tools
	Human Integration Through UI and Feedback
	Support for Diverse Predictive Tasks

	Case Studies
	Does it work?
	Why does it work?

	Conclusion
	 Appendix: Towards Human-Guided, Data-Centric LLM Co-Pilots
	Extended related work
	LLM-Based Code Interpreters
	Limitations Across Approaches
	Terminology differences between Machine Learning (ML) and Biostatistics/Epidemiology

	Dataset Descriptions
	Lung Cancer Dataset
	Primary Biliary Cholangitis (PBC) Dataset
	Prostate Cancer Prediction: SEER and CUTRACT datasets

	Interaction Examples
	Data-Interpreter
	Example: Incorrect metric used
	Example: Fail to setup survival analysis
	Example: Fail to address label leakage

	OpenHands
	Successful Cases with CliMB-DC
	Example: Address label leakage
	Example: Identify irrelevant features
	Example: Setup domain-specific model & metric

	Example: Model Evaluation & Feature Importance

	More CliMB-DC Interaction Examples
	Example: Data Exploration
	Example: Data Aggregation
	Example: Joining Multiple Files

	Additional details and experiments
	Failure modes
	Computing Resources and Implementation Details
	API Details and Extensibility
	Experiment in a Non-medical Domain

	Social impact

