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Abstract. Abdominal multi-organ segmentation is of great significant
for preoperative treatment planning. At present, there are many public
abdominal datasets and deep learning based segmentatiomethods have
been proposed. However, the problem of polycentric and spatio-temporal
inefficiency still remain unsolved. Meanwhile, expensive costs of labeling
and lack of labeled data are also serious problems of this field. In this
work, with a small amount of labeled CT images and large number of
unlabeled data, we propose a novel Cross Pseudo based semi-supervision
method, whose two branches can generate pseudo-labels to supervise each
other. For quantitative evaluation on the FLARE2022 validation cases,
this method achieves the DSC of 0.80, NSD of 0.75 within merely 20s for
inference per image.It demonstrates the robustness and generalization of
our method.

Keywords: Multi-organ Segmentation · Cross Pseudo Supervision · Semi-
supervised Learning.

1 Introduction

The emergence of more and more difficult diseases in the world has become
the driving force for the rapid development of the medical field. The invention
of medical imaging techniques, such as X-ray imaging, computed tomography
(CT) and magnetic resonance imaging (MR), has greatly promoted clinical work,
especially the study of abdominal organs.

Medical image semantic segmentation is an important tool in clinical prac-
tice. It is used for accurately delineating tumors and treating certain cancers
in radiotherapy, and for morphological analysis of organs to infer information
such as the volume and shape of liver. It is well known that the segmentation of
human organs on CT images is a very difficult task. Artificial organ contour ren-
dering not only has a large number of internal and inter-observer differences, but
also needs to bear the risk of complex organ contour and prone to pathological
changes. Therefore, it is not practical to draw the contour of the organ by hand.
This has led to an increased demand for automated methods for medical image
segmentation. Accurate semantic segmentation of abdominal organs in clinical
research has become a key research topic in the field of intelligent medicine in re-
cent years. Nowadays, many semantic segmentation methods[1][3][5][8] based on
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deep learning have been proposed, and they have achieved great success in heart
image segmentation and brain tumor segmentation. Many of the methods are
based on the well-known U-Net[13][15] architecture, which works well on many
datasets. However, these methods still have the following three disadvantages at
present.

First of all, most methods are primarily aimed at maximizing the accuracy
of predictions without considering the efficiency of models, which often leads to
increased complexity of models and thus reduces their applicability in clinical
practice. Second, many organ segmentation data contain only images from a
single center or scanner, or only cases of a single disease, so the generalization
properties of models trained on these data are not always very good. Finally,
most of the existing well-performing semantic segmentation monitoring methods
rely on large scale annotated data[6][16]. However, due to the particularity of
medical images, the cost of obtaining a large number of marked data is too high
to be realistic. In order to avoid the dilemma of large amount of labeled data, a
semi supervised semantic segmentation method was proposed, which proposed
the idea of learning models from a few labeled images and a large number of
unlabeled images.

In recent years, two main methods of semi-supervised learning, namely, con-
sistent regularization[19] and entropy minimization[9], have been proposed. Con-
sistent regularization facilitates the model to produce stable and consistent pre-
dictions for the same unlabeled data under various perturbations, such as shape
and color. On the other hand. Entropy minimization uses unlabeled data in an
explicit bootstrap manner, that is, assigning false labels to unlabeled data and
training them jointly with manual label data. Unlike previous work, MixMatch[2]
leverages the best of both approaches and presents a hybrid framework that lever-
ages unlabeled data from both perspectives. FixMatch[18] inherits the spirit of
MixMatch, but simplifies unnecessary mechanics.

Semi-supervised semantic segmentation tend to utilize the Generative Adver-
sarial Networks[7] (GANs) as an auxiliary supervision signal for the unlabeled
data. However,GANs are not easy to optimize and may suffer the problem of
mode collapse.As an extension of FixMatch, PseudoSeg[21] adapts the weak-to-
strong consistency to segmentation scenario and further applies a calibration
module to refine the pseudo masks. Based on the above research, we propose
a novel cross pseudo supervision method, which has two branches to generate
pseudo labels to supervise each other. Our contributions are as follows:

· We propose a novel semi-supervised method for Abdominal Organ Segmen-
tation, which uses cross-pseudo-label supervision.

· We leverage a combination of cross-entropy loss and the cross pseudo super-
vision loss, which is verified compatible and efficient.

· Experiments show the robustness and generalization of our method.
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2 Method

In this section, we propose a novel cross pseudo supervision based method for ab-
dominal organ segmentation with the SOTA segmentation network deeplabv3+.
A detail description of the method is as follows.

2.1 Preprocessing

Our proposed method includes the following preprocessing strategies:

· Reorientation image to target direction. According to the format of
SimpleITK, the directions of the z-axis, y-axis, and x-axis are respectively
adjusted to [1 -1 -1].

· Convert 3D image to 2D. We unroll the 3D image along the Z axis,
turning it into slices.

· Data Augmentation. First, the image is clipped to the range [-100, 1000]
after organ-intensity jitter. Then a random rotation is applied followed by
z-score normalization based on the mean and standard deviation of the in-
tensity values. Besides, Cutmix[20] is also employed.

2.2 Proposed Method

The proposed cross pseudo method consists of two branches with the same ar-
chitecture. Each branch generates pseudo-labels to supervise the other branch,
thereby improving the robustness and generalization of the model. The experi-
ment uses the current state-of-the-art segmentation network deeplabv3+.

Network Architecture. Figure 1 illustrates the utilized segmentation network
Deeplabv3+ [4]. When it comes to the backbone network, we select ResNet18[10]
with relatively small amount of parameters to prevent overfitting. Note that the
provided annotations are too limited to be used for deeper architecture, and
the competition prohibits any pretrained weights. DeepLabv3+ also use dilated
convolutions and atrous spatial pyramid pooling (ASPP) to obtain multi-scale
contextual features, as shown in Figure 2, which can capture organ features of
different sizes. DeepLabv3+ also employs a decoder module that concatenates
low-level high-resolution features and high-level semantic features to refine seg-
mentation boundaries. Specifically, the high-level semantic features generated by
ASPP are 4× upsampled, while the shallow features pass through a 1×1 convo-
lutional layer before combination. Then the final prediction can be obtained by
a 3×3 convolutional layer and 4× upsampling.

Semi-Supervised Strategies. We propose a novel semi-supervised method
based on cross pseudo supervision (CPS)[5] to leverage unlabeled data and op-
timize the parameters. The main idea is illustrated in Figure 3.
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Fig. 1. Illustration of the network architecture.

Fig. 2. Dilated convolution and ASPP.

We have two branches of networks with the same architecture initialized
variously. First, the same labeled and unlabeled images are fed into these two
networks respectively, and the segmentation results P can be obtained, which
represent the predicted probability of each class per pixel. Then, we achieve the
pseudo labels Y with a Softmax layer for each branch. For labeled data, we
calculate the supervision loss for each branch, and for unlabeled ones, a cross
pseudo supervision loss is calculated. Multi-branch networks and cross pseudo
supervision boost the generalization and robustness of the whole model.

Fig. 3. Main idea of CPS.

Loss function. For supervision loss, we use the pixel-wise cross-entropy loss
formulated as follows:
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where p1i and p2i are the outputs of the networks, and y2i and y1i represent
the pseudo labels to supervise bidirectionally as shown in Fig. 3. The whole loss
function can be formulated as:

L = Ls + λLcps (3)

In this paper, we set λ as 0.5.

2.3 Post-processing

We add a bias of 0.6 for each class except background before Softmax, which
verifies an improvement in performance. Areas with less than 50 pixels are also
considered as noise and filtered out.

3 Experiments

3.1 Dataset and evaluation measures

The FLARE2022 dataset is curated from more than 20 medical groups under
the license permission, including MSD [17], KiTS [11,12], AbdomenCT-1K [14],
and TCIA [6]. The training set includes 50 labelled CT scans with pancreas
disease and 2000 unlabelled CT scans with liver, kidney, spleen, or pancreas
diseases. The validation set includes 50 CT scans with liver, kidney, spleen, or
pancreas diseases. The testing set includes 200 CT scans where 100 cases has
liver, kidney, spleen, or pancreas diseases and the other 100 cases has uterine
corpus endometrial, urothelial bladder, stomach, sarcomas, or ovarian diseases.
All the CT scans only have image information and the center information is not
available.

The evaluation measures consist of two accuracy measures: Dice Similarity
Coefficient (DSC) and Normalized Surface Dice (NSD), and three running effi-
ciency measures: running time, area under GPU memory-time curve, and area
under CPU utilization-time curve. All measures will be used to compute the
ranking. Moreover, the GPU memory consumption has a 2 GB tolerance.
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3.2 Implementation details

Not that we use ResNet-18 as the backbone of DeepLabv3+ instead of deeper ar-
chitectures to alleviate overfitting as well as improve inference speed and reduce
resource consumption. Other details are illustrated as follows.

Environment settings The environments and requirements are presented in
Table 1.

Table 1. Environments and requirements.

Windows/Ubuntu version Ubuntu 18.04.4 LTS
CPU Intel(R) Xeon(R) CPU E5-2698 v4 @ 2.20GHz
RAM 503GB
GPU (number and type) NVIDIA Tesla V100 32G (×8)

CUDA version 10.2
Programming language Python 3.7
Deep learning framework Pytorch (Torch 1.8.0, torchvision 0.9.0)

Training protocols The training protocols of the proposed method is shown
in Table 2.

Table 2. Training protocols.

Network initialization Kaiming normal initialization
Data augmentation methods Cutmix, Clip, Intensity Jitter, Random Rotation
Patch sampling strategy Slice 3D images along the Z axis
Batch size 96
Patch size 512×512
Total epochs 400
Optimizer SGD with momentum 0.1, weight decay: 0.0001
Loss Cross Entropy Loss, Cross Pseudo Supervision Loss
Initial learning rate (lr) 0.02
Lr strategy WarmUpPoly
Training time 12 hours

4 Results and discussion

4.1 Quantitative results on validation set

Table 3 illustrates the validation performance (DSC) comparisons between with
and without using unlabeled images. It can be seen that there is an obvious
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improvement with using unlabeled data, both for each organ and the mean
value. It demonstrates the effectiveness of our method utilizing a large number
of unlabeled examples.

Table 3. DSC comparisons between with and without using unlabelled images.
Ours(w/ un): with unlabeled data; Ours(w/o un): without unlabeled data

Organ Ours(w/ un) Ours(w/o un)
Liver 0.9559 0.9375
RK 0.9008 0.8296
Spleen 0.9208 0.8784
Pancreas 0.7981 0.6586
Aorta 0.9459 0.9193
IVC 0.8544 0.7809
RAG 0.6302 0.5138
LAG 0.6023 0.4116
Gallbladder 0.6134 0.4643
Esophagus 0.745 0.6815
Stomach 0.7886 0.7879
Duodenum 0.6781 0.5448
LK 0.9118 0.8426
Average 0.7958 0.7116

4.2 Visualized examples of successful and failed cases

Fig. 4 demonstrates the visualized examples of successful and failed cases. It can
be seen that our model still suffers false positive problems,i.e., the background
tends to be predicted as organs.

4.3 Segmentation efficiency results

The average running time is 20.34s per case in validation set, and Maximum
used GPU memory is 1917 MB, which means a full score in this evaluation.
Besides, we obtain an area under GPU memory-time curve and an area under
CPU utilization-time curve of 31508.74 and 405.96.

4.4 Limitations and future work

Our model tends to predict the background pixels as the pixels of the organs,
which significantly degrades the accuracy. Future work will focus on proposing
a suitable post-processing technique and an advanced training strategy.
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Fig. 4. Visualized examples of successful and failed cases.

5 Conclusion

In this work, we propose a novel Cross Pseudo based semi-supervision method,
whose two branches can generate pseudo-labels to supervise bidirectionally. Ex-
periments have verified that our model can leverage a large amount of unlabeled
CT images and greatly improve the performance. Futher work will be performed
on an appropriate post-processing technique and an advanced training strategy.
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