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ABSTRACT

In silico modeling of transcriptional responses to perturbations is crucial for ad-
vancing our understanding of cellular processes and disease mechanisms. We
present PertEval-scFM, a standardized framework designed to evaluate models
for perturbation effect prediction. We apply PertEval-scFM to benchmark zero-
shot single-cell foundation model (scFM) embeddings against simpler baseline
models to assess whether these contextualized representations enhance perturba-
tion effect prediction. Our results show that scFM embeddings do not provide
consistent improvements over baseline models, especially under distribution shift.
Additionally, all models struggle with predicting strong or atypical perturbation
effects. Overall, this study provides a systematic evaluation of zero-shot scFM
embeddings for perturbation effect prediction, highlighting the challenges of this
task and revealing the limitations of current-generation scFMs. Our findings un-
derscore the need for specialized models and high-quality datasets that capture a
broader range of cellular states. Source code and documentation can be found at:
https://anonymous.4open.science/r/PertEval-C674/.

1 INTRODUCTION

Inspired by the success of foundation models in fields such as natural language processing (Devlin
et al., 2019; Brown et al., 2020; OpenAI, 2024) and computer vision (Dosovitskiy et al., 2021),
there has been an increase in the development of biological foundation models. Among these,
single-cell foundation models (scFMs) leverage vast amounts of unlabeled transcriptomic single-cell
RNA sequencing (scRNA-seq) data to learn contextualized representations through self-supervised
pre-training (Ericsson et al., 2022). Fine-tuning the resulting model on labeled data enhances the
performance on downstream applications, such as cell-type classification, gene regulatory network
inference, and the prediction of cellular responses to perturbations (Yang et al., 2022; Kedzierska
et al., 2023; Theodoris et al., 2023; Rosen et al., 2023; Cui et al., 2024; Wen et al., 2023; Hao et al.,
2023).

A perturbation refers to any intervention or event leading to phenotypic alteration of a cell. Per-
turbation response prediction can provide invaluable insights into cellular mechanisms and disease
progression, facilitating the mapping of genotype to phenotype and the identification of potential
drug targets (Lotfollahi et al., 2019). Numerous models, here referred to as narrow perturbation
prediction models (NPPMs), have been developed specifically for this task (Gavriilidis et al., 2024).
However, perturbation response prediction is a challenging task, as demonstrated by the difficulty of
models to improve consistently over simpler baseline methods (Wu et al., 2024; Branson et al., 2024;
Ahlmann-Eltze et al., 2024).

Recently, there has been a concerted effort to evaluate biological foundation models. The Therapeutic
Data Commons is an open science initiative that curates datasets, models and benchmarks related to a
diverse range of therapeutic applications, including perturbation prediction (Velez-Arce et al., 2024).
Additionally, Wu et al. (2024) and Ahlmann-Eltze et al. (2024) show that simple baseline models
perform comparably to scFMs in predicting transcriptomic response to perturbations. However, their
analysis does not account for distribution shift and focuses only on predictions for highly variable
genes, many of which show little to no effect in response to a perturbation (Nadig et al., 2024).
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Yet, distribution shift is a well-documented issue with scRNA-seq data (Boiarsky et al., 2023;
Marklund et al., 2020). This often hinders the deployment of models that appear to perform well
during evaluation. Distribution shift can occur as a consequence of inherent technical and biological
noise, abundant in scRNA-seq data. While scFMs have been proposed to mitigate such problems,
there have been conflicting reports on their ability to improve perturbation response prediction
(Theodoris et al., 2023; Cui et al., 2024; Wu et al., 2024; Ahlmann-Eltze et al., 2024). This highlights
the need for a comprehensive benchmark to evaluate their limitations and failure modes, specifically
against distribution shift.

1.1 CONTRIBUTIONS

Here, we present PertEval-scFM, a framework that addresses this research gap by providing:

• A detailed analysis of zero-shot scFM embeddings for perturbation effect prediction;

• A modular and extensible evaluation framework, with a toolbox of custom metrics designed
to calculate and help interpret results;

• Integration of a spectral graph theory method – SPECTRA (Ektefaie et al., 2024) – that
allows us to assess model generalizability under distribution shift.

We apply PertEval-scFM to investigate any added benefit of using scFM embeddings for perturbation
response prediction. To do so, we use zero-shot embeddings generated from pre-trained scFMs and
train an MLP probe (Jin et al., 2019). This allows for a fair evaluation of the transferability of these
learned representations, without introducing inductive biases from different perturbation prediction
models. The source code and documentation can be found on our GitHub.

2 PERTEVAL-SCFM PIPELINE

In Figure 1 we present an overview of the PertEval-scFM pipeline, composed of three mains parts:
data pre-processing, model training and evaluation. We define each part in the following section.

Figure 1: PertEval-scFM framework (left to right) – data pre-processing, training of MLP probes under different
sparsification conditions; evaluation of trained models with AUSPC, E-distance and contextual alignment
metrics.

2.1 DATA PRE-PROCESSING

To measure perturbation response we use Perturb-seq data, which integrates scRNA-seq with CRISPR-
based perturbations to profile gene expression changes in response to specific genetic modifications
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at the single-cell resolution (Dixit et al., 2016). Perturb-seq data consists of transcriptomic data for
unperturbed control cells C ∈ Rnc×g and perturbed cells P ∈ Rnp×g , where nc and np corresponds
to the number of control and perturbed cells being measured, and g corresponds to the number of
genes in the dataset.

2.1.1 DATA PREPARATION

PertEval-scFM takes as input the control cell matrix C ∈ Rnc×g obtained from Perturb-seq, con-
taining the raw expression count. Briefly, our pre-processing pipeline consists of normalizing and
log-transforming the raw expression count matrix. We then select the top 2,000 highly variable
genes v (HVGs), obtaining a reduced control matrix C ∈ Rnc×v . We also calculate the differentially
expressed genes (DEGs) for all perturbations to use in our evaluations. See Appendix A.2 for further
details.

2.1.2 DATA FEATURIZATION

To generate the input features for our baselines, we randomly select 500 cells from C to form a
pseudo-bulk sample C̃. To combat noise and sparsity issues, we calculate the average expression
across C̃ and repeat this process np times. The resulting basal gene expression vectors can then
be matched to perturbed cells, resulting in control expression feature matrix Xc ∈ Rnp×v. See
Appendix C.1 for further details.

Single-cell foundation model embeddings. To construct the control cell embeddings, we then feed
our input matrix Xc into the scFM:

fscFM(Xc) = Zc, Zc ∈ Rnp×e (1)

where e is the embedding dimension of the scFM. Perturbed cell embeddings Zp ∈ Rnp×e are then
generated by setting the expression of the perturbed genes to zero in all cells where it is expressed,
effectively simulating a perturbation in silico. The control and perturbation embeddings are then
concatenated to form the final input for the MLP probe. See Appendix C.2 for further details.

ZscFM = Zc ⊕ Zp (2)

Gene expression data embeddings. To serve as a baseline against which to compare the perfor-
mance of the scFM embeddings, we use our input matrix Xc ∈ Rnp×v. Here, we model a genetic
perturbation by calculating the gene co-expression matrix Gc ∈ Rnp×v between the perturbed genes
and the highly variable genes in Xc. For two-gene perturbations, we calculate the co-expression
matrices for each individual perturbation, and then average the two to obtain Gc. We then concatenate
the control and perturbation embeddings to form the final input for the MLP probe. See Appendix C.1
for further details.

ZGE = Xc ⊕Gc (3)

2.2 TRAINING

2.2.1 MLP PROBE FOR PERTURBATION EFFECT PREDICTION

A 1-hidden layer MLP was selected as a probe for its flexibility and simplicity in handling various
types of data representations. For each perturbation, the MLP learns the log fold change perturbation
effect δ, defined as:

δ := P −Xc (4)
where P ∈ Rnp×v represents the perturbed gene expression matrix. The MLP probe predicts the
perturbation effect, denoted by δ̂, described by the following equation:

δ̂θ(ZscFM) = ReLU(ZscFMW⊤
1 + b1)W

⊤
2 + b2 (5)

The model parameters θ include the weight matrices W1 ∈ Rh×2e and W2 ∈ Re×h, where h
corresponds to the dimension of the hidden layer, and the bias vectors b1 ∈ Rh and b2 ∈ Re.

MLP parameter count. We train a range of MLPs with increasing parameter count on the log-
normalized gene expression data to verify the effect of parameter count on results. We also include
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additional results using scBERT and scFoundation embeddings as input, with increasing parameter
count. We report our findings in Table D1, where it can be seen the increase in parameters has no
effect on the MSEs obtained. Details on training and hyperparameter optimization are provided in
Appendix D.2.

2.2.2 BASELINE MODELS

We establish baseline models against which to compare the performance of the MLP probes trained
with scFM embeddings.

Mean baseline. The mean baseline assumes that a perturbation has little effect on the perturbed
cell’s gene expression. This reflects the biological reality that most perturbations result in small
changes in gene expression, providing a simple biologically plausible null model highlighting the
challenge inherent in distinguishing meaningful perturbation effects from background variability in
single-cell data. The predicted perturbation effect, δ̂, is then simply computed as the deviation of the
cell’s gene expression, Xc, from the mean gene expression of all cells in the same context, Xc, as
defined by:

δ̂ = Xc −Xc (6)

MLP baseline. The MLP baseline uses log-normalized gene expression data directly as an input.
This approach ensures we can attribute any change in performance compared to the MLP baseline to
the scFM embeddings.

δ̂η(ZGE) = ReLU(ZGEW
⊤
1 + b1)W

⊤
2 + b2, (7)

where dimensions of parameters η correspond to W1 ∈ Rh×2v , W2 ∈ Rv×h, b1 ∈ Rh and b2 ∈ Rv .

GEARS baseline. GEARS is a state-of-the-art method for predicting perturbation effects on gene
expression, integrating gene expression data with gene interaction networks through a graph-based
framework (Roohani et al., 2023). We faithfully reproduced the original implementation, modifying
only the train-test splits to align with the SPECTRA framework and evaluate robustness under
distribution shift. All other training configurations, hyperparameters, and pre-processing steps
followed the defaults provided in the GEARS implementation.

2.2.3 MODELING DISTRIBUTION SHIFT

To assess the robustness of the MLP probes when using either gene expression data or scFM
embeddings, we implement SPECTRA (Ektefaie et al., 2024), a graph-based method that partitions
data into increasingly challenging train-test splits while controlling for cross-split overlap between
the train and test data.

In SPECTRA, edges within the graph represent sample-to-sample similarity. The connectivity of the
similarity graph is controlled by the sparsification probability (s). For each split, this connectivity is
adjusted by stochastically removing edges with sparsification probability s ∈ [0, 1]. We introduce
the constraint s < smax, where smax is empirically chosen to ensure a sufficient number of samples
in both the train and test sets. After sparsification, the train and test sets are sampled from distinct
subgraphs. As the sparsification probability increases, the degree of similarity between the train and
test sets decreases, making it harder for the model to generalize to unseen perturbations effectively.
For further details, see Appendix E.

2.3 EVALUATION

Currently, there is no consensus on how to benchmark perturbation effect prediction models. Here, we
propose a standardized toolkit of three metrics, which aims to enhance model assessment, facilitate
meaningful biological interpretation of results, and enable consistent cross-model comparisons:

• Area Under the SPECTRA Performance Curve (AUSPC)
• E-distance
• Contextual alignment
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To assess model performance, we use the mean squared error (MSE) as our primary evaluation metric,
based on prior work by Ji et al. (2023) demonstrating that the MSE provides a reliable assessment of
perturbation effects reflective of biological reality.

2.3.1 AREA UNDER THE SPECTRA PERFORMANCE CURVE

To evaluate robustness under distribution shift, the AUSPC is adapted for perturbation effect predic-
tion, following the approach introduced by Ektefaie et al. (2024). We formally define the AUSPC
as:

AUSPC =

∫ smax

0

ϕ(s) ds (8)

where ϕ(s) is the MSE as a function of the sparsification probability s used to define each train-test
split. Integrating the MSE across s yields a single performance metric that reflects a model’s ability
to generalize under increasing distribution shift. The integral is approximated with the trapezoidal
rule (see Appendix E.2).

Motivated by the observation that simple baselines often perform surprisingly well in perturbation
prediction, we introduce the ∆AUSPC metric. This metric anchors a model’s robustness to a baseline.
The ∆AUSPC is defined as:

∆AUSPC =

∫ smax

0

[ϕb(s)− ϕm(s)]ds (9)

Here, ϕb represents the MSE of the mean expression baseline, and ϕm is the MSE of the model being
evaluated. A positive ∆AUSPC indicates that the model outperforms the baseline, while a negative
value suggests the opposite. This metric provides a clear measure of a model’s generalizability
improvement over simply predicting the mean perturbation effect.

2.3.2 EVALUATING PERTURBATION STRENGTH USING E-DISTANCE

As introduced by Peidli et al. (2024), we use the E-distance as a metric to quantify the difference
between perturbed and control cell gene expression profiles (Appendix F.1). This metric accounts
for variability within and between the control and perturbed gene expression distributions, providing
a quantitative measure of perturbation effect strength. This helps analyze the characteristics of
perturbations that models succeed or struggle to predict accurately, helping to contextualize model
performance, especially when dealing with outlier perturbations that traditional metrics may not
immediately reveal.

2.3.3 CONTEXTUAL ALIGNMENT AND ITS EFFECT ON MODEL PERFORMANCE

While pre-training dataset size is often linked to improved downstream model performance, recent
research emphasizes the critical role of data quality over dataset size (El-Nouby et al., 2021; Fournier
et al., 2024). We therefore suggest the inclusion of a contextual alignment metric, which quantifies the
similarity between the pre-training and fine-tuning datasets, and its effect on model performance. We
calculate the cross-split overlap between the pre-train and fine-tune datasets using cosine similarity,
to determine how representative the pre-training data is of the fine-tuning data (see Appendix G.1).

2.4 USE CASE

Single-Cell Foundation Models. PertEval-scFM currently includes the following scFMs: scBERT
Yang et al. (2022), Geneformer (Theodoris et al., 2023), scGPT (Cui et al., 2024), scFoundation (Hao
et al., 2023) and UCE (Rosen et al., 2023). In Table 1 we include details of their architecture and
pre-training data. See Appendix B.1 for further details.

2.4.1 DATASETS

Norman. PertEval-scFM is applied to the 105 single-gene perturbations and 91 two-gene perturba-
tions from the Norman et al. (2019) Perturb-seq dataset. This dataset contains high-quality CRISPRa
perturbations in K562 cells, often used in perturbation prediction studies, as well as baseline expres-
sion for unperturbed cells. It allows for the systematic evaluation of model performance in predicting
the effects of genetic perturbations at single-cell resolution.
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Table 1: Overview of the scFMs included in PertEval-scFM.

Model name Architecture Pre-training objective # of cells Organism Emb. dim.
scBERT Performer Masked language modeling (MLM) ∼5 million human & mouse 200

Geneformer Transformer Masked language modeling (MLM) ∼30 million human 256
scGPT Transformer Specialized attention-masking mechanism ∼33 million human 512
UCE Transformer Masked language modeling (MLM) ∼36 million 8 species 1,280

scFoundation Transformer Read-depth-aware (RDA) modeling ∼50 million human 3,072

Replogle. Additionally, we apply the framework to 1,866 single-gene perturbations from the Replogle
et al. (2022) dataset, where CRISPRi has been used investigate knock-out transcriptomic perturbation
response in K562 and RPE1 cells. In our work we focus on K562 cells in agreement with the Norman
dataset. For details on the datasets, see Appendix A.

3 RESULTS

3.1 ZERO-SHOT SCFM EMBEDDINGS DO NOT MEANINGFULLY IMPROVE PERFORMANCE OVER
RUDIMENTARY BASELINES ACROSS 2,000 HVGS

In Figure 2 and Table 2, we show that probes trained with zero-shot scFM embeddings did not
show consistent improvement over the baseline models, with a 3.7% difference in AUSPC between
Geneformer (worst) and the MLP baseline (best) for single-gene perturbations, and a 21.9% difference
in AUSPC between scGPT (worst) and the MLP baseline (best). The performance metrics for single-
gene perturbations showed no statistically significant differences between models, as evidenced by
overlapping confidence intervals. In the case of two-gene perturbations, most models maintained
comparable performance levels, while scGPT exhibited significantly lower performance. As the
sparsification probabilities (s) increased from 0.0 to 0.7, the MSE worsened across all models.
However, the zero-shot embeddings from the scFMs demonstrated a sharper decline in performance
compared to the MLP baseline at higher sparsification probability values.

GEARS outperforms all zero-shot foundation models and baselines by an order of magnitude,
suggesting that its architecture and training paradigm enable it to better capture the underlying
biological processes and generalize more effectively across a wide range of perturbation scenarios.
This superior performance highlights the necessity of strong inductive biases for gene perturbation
prediction tasks, and suggests that representations that rely on a masked pre-training objective are
only able to capture average perturbation effects at best. Overall, these results show that scFM
embeddings do not mitigate problems caused by distribution shift and they do not provide a potent
substrate to learn perturbation effects beyond average signal.
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Figure 2: Perturbation effect predictions evaluated across 2,000 highly variable genes for 8 train-test splits of
increasing difficulty. (a) MSE for all prediction models. Experiments were carried out in triplicate for each
model. The heatmap shows the mean MSE values (↓). (b) Average AUSPC (↓) across sparsification probabilities
for each model with standard error bars.
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Table 2: Perturbation effect prediction evaluation across 2,000 HVGs. Models are listed in order of ∆AUSPC.
Asterisks (*) indicate that inference for these models is running. OOM: out of memory error (working on it).

↓ MSE (10−2)

Model Dataset SP 0.0 SP 0.1 SP 0.2 SP 0.3 SP 0.4 SP 0.5 SP 0.6 SP 0.7 ↓ AUSPC (10−2) ↑ ∆AUSPC (10−2)
GEARS

Norman single-gene

0.550 ± 0.023 0.887 ± 0.202 0.937 ± 0.177 1.120 ± 0.167 1.693 ± 0.328 1.750 ± 0.401 1.0067 ± 0.427 1.000 ± 0.257 0.815 ± 0.039 3.7968
MLP gene expression 5.935 ± 0.213 6.288 ± 0.282 6.410 ± 0.289 6.699 ± 0.705 6.453 ± 0.584 5.984 ± 0.458 6.502 ± 1.277 7.065 ± 1.022 4.484 ± 0.299 0.1280
scGPT 5.940 ± 0.207 6.237 ± 0.218 6.340 ± 0.608 6.765 ± 0.428 6.363 ± 0.345 5.926 ± 0.174 6.400 ± 1.144 8.506 ± 1.020 4.525 ± 0.255 0.0863
scBERT 5.968 ± 0.160 6.301 ± 0.316 6.341 ± 0.356 6.761 ± 0.765 6.363 ± 0.544 5.924 ± 0.418 6.451 ± 1.200 8.488 ± 0.558 4.537 ± 0.268 0.0748
scFoundation 5.989 ± 0.162 6.421 ± 0.317 6.366 ± 0.356 6.793 ± 0.764 6.440 ± 0.538 5.919 ± 0.417 6.705 ± 1.183 8.601 ± 0.537 4.594 ± 0.246 0.0179
Mean baseline 5.916 ± 0.161 6.177 ± 0.204 5.980 ± 0.621 6.497 ± 0.513 6.219 ± 0.308 6.659 ± 0.154 7.413 ± 1.038 8.430 ± 0.540 4.612 ± 0.317 -
UCE 5.937 ± 0.140 6.258 ± 0.311 6.132 ± 0.620 6.565 ± 0.514 6.387 ± 0.307 6.551 ± 0.155 7.370 ± 1.065 8.479 ± 0.601 4.647 ± 0.312 -0.0355
Geneformer 5.938 ± 0.135 6.257 ± 0.049 6.132 ± 0.622 6.565 ± 0.520 6.395 ± 0.300 6.550 ± 0.140 7.382 ± 1.155 8.525 ± 0.494 4.651 ± 0.309 -0.0396

GEARS

Norman two-gene

0.713 ± 0.035 0.783 ± 0.044 0.960 ± 0.050 1.153 ± 0.049 1.230 ± 0.289 1.467 ± 0.351 1.223 ± 0.147 1.810 ± 0.287 0.808 ± 0.028 0.043
MLP gene expression 5.337 ± 0.094 5.261 ± 0.100 5.913 ± 0.255 5.728 ± 0.402 6.635 ± 0.161 7.675 ± 0.953 6.050 ± 0.763 5.198 ± 0.593 4.253 ± 0.073 0.002
Mean baseline 5.337 ± 0.093 5.257 ± 0.102 5.910 ± 0.255 5.722 ± 0.401 6.644 ± 0.167 7.674 ± 0.962 6.071 ± 0.772 5.201 ± 0.594 4.255 ± 0.073 -
scFoundation 5.675 ± 0.106 5.564 ± 0.051 6.173 ± 0.196 6.050 ± 0.462 6.755 ± 0.279 7.944 ± 1.186 6.382 ± 0.876 5.238 ± 0.578 4.432 ± 0.467 -0.177
UCE 5.655 ± 0.091 5.514 ± 0.066 6.145 ± 0.183 6.029 ± 0.460 6.736 ± 0.289 7.939 ± 1.184 6.352 ± 0.831 5.612 ± 0.665 4.435 ± 0.085 -0.180
Geneformer 5.654 ± 0.091 5.514 ± 0.067 6.145 ± 0.182 6.029 ± 0.458 6.742 ± 0.287 7.937 ± 1.187 7.246 ± 0.707 5.179 ± 0.630 4.503 ± 0.081 -0.248
scBERT 5.655 ± 0.092 5.515 ± 0.067 6.159 ± 0.196 6.022 ± 0.465 6.757 ± 0.281 7.999 ± 1.240 6.493 ± 0.736 7.110 ± 0.579 4.533 ± 0.081 -0.278
scGPT 5.654 ± 0.091 5.515 ± 0.067 6.153 ± 0.189 6.023 ± 0.464 6.766 ± 0.287 8.272 ± 1.377 8.826 ± 0.182 14.906 ± 2.154 5.184 ± 0.132 -0.929

GEARS

Replogle

OOM * * * * * * * * *
Geneformer OOM 21.07 22.60 * * 21.10 * * * *
Mean baseline * 21.26 * * * * * * * *
MLP Baseline OOM 21.12 22.70 22.08 21.54 21.20 * * * *
scBERT OOM * * * * * * * * *
scFoundation OOM 21.08 22.60 21.99 21.54 21.11 * * * *
scGPT OOM 21.15 22.60 21.98 21.53 21.10 * * * *
UCE OOM * * * * * * * * *

3.2 ZERO-SHOT SCFM EMBEDDINGS SHOW MINIMAL IMPROVEMENT OVER RUDIMENTARY
BASELINES ACROSS THE TOP 20 DEGS

Perturbations targeting few or even single genes typically alter the expression of a limited subset of
genes within the transcriptome. Hence, models predicting mean gene expression can still achieve
low MSE values across 2,000 HVGs. To better assess the ability of the models to predict meaningful
perturbation effects, we restricted the evaluation to the top 20 DEGs per perturbation. The results are
displayed in Table 3. This evaluation proves more challenging, evidenced by the order of magnitude
increase in MSE (Appendix H.2). Consistent with the pattern observed for the 2,000 HVGs, the
MSE values became worse as the sparsification probability increased, particularly for Geneformer
and scGPT (Appendix H.3). For the single-gene perturbations, scBERT performed best across most
sparsity levels (∆AUSPC = 0.00878), while UCE produced the most robust results (∆AUSPC =
0.0108). This indicates that these models were marginally better at capturing perturbation-specific
expression changes in the top 20 DEGs, compared to the baselines. Conversely, Geneformer,
scFoundation and scGPT showed negative ∆AUSPC values, suggesting limitations in their ability
to capture perturbation-specific expression changes. Despite these trends, the observed differences
in performance were again minimal, with UCE (best) outperforming Geneformer (worst) by only
4.8%. These small differences and overlapping error margins suggest that no method provides
significant performance gains over simpler approaches, even when focusing on the genes most
affected by perturbations. The same pattern is observed for double-gene perturbations, where the
models significantly outperform the mean baseline. However, consistent with our other results, the
scFM embeddings still offer no advantage over the baseline MLP.

However, GEARS significantly outperforms all zero-shot foundation models and baselines (Table 3).
For single-gene perturbations, GEARS achieves an AUSPC of 0.266, compared to 0.334 for UCE
(the best among scFMs) and 0.342 for the MLP baseline, indicating a substantial improvement.

Table 3: Perturbation effect prediction evaluation across the top 20 DEGs per perturbation. Note that for
double-gene perturbations split 0.5, there were not enough perturbations that passed our quality control to
properly define the split.

↓ MSE

Model Perturbation strategy SP 0.0 SP 0.1 SP 0.2 SP 0.3 SP 0.4 SP 0.5 SP 0.6 SP 0.7 ↓ AUSPC ↑ ∆AUSPC (10−2)
GEARS

Single-gene

0.240 ± 0.025 0.284 ± 0.024 0.215 ± 0.037 0.314 ± 0.071 0.256 ± 0.035 0.341 ± 0.014 0.682 ± 0.194 0.888 ± 0.285 0.266 ± 0.018 7.967
UCE 0.355 ± 0.037 0.463 ± 0.048 0.464 ± 0.077 0.482 ± 0.053 0.476 ± 0.042 0.485 ± 0.047 0.484 ± 0.104 0.624 ± 0.162 0.334 ± 0.012 1.078
scBERT 0.381 ± 0.038 0.469 ± 0.050 0.464 ± 0.077 0.481 ± 0.053 0.475 ± 0.042 0.482 ± 0.045 0.499 ± 0.117 0.608 ± 0.149 0.336 ± 0.011 0.878
MLP gene expression 0.379 ± 0.038 0.466 ± 0.051 0.468 ± 0.074 0.456 ± 0.039 0.497 ± 0.042 0.521 ± 0.071 0.513 ± 0.123 0.622 ± 0.172 0.342 ± 0.013 0.312
Mean baseline 0.398 ± 0.043 0.479 ± 0.050 0.474 ± 0.078 0.489 ± 0.053 0.492 ± 0.047 0.492 ± 0.047 0.525 ± 0.126 0.604 ± 0.144 0.345 ± 0.011 -
scGPT 0.402 ± 0.035 0.463 ± 0.048 0.464 ± 0.077 0.482 ± 0.053 0.475 ± 0.042 0.484 ± 0.047 0.485 ± 0.105 0.828 ± 0.249 0.347 ± 0.015 -0.168
scFoundation 0.406 ± 0.041 0.502 ± 0.052 0.466 ± 0.077 0.489 ± 0.056 0.469 ± 0.040 0.486 ± 0.046 0.567 ± 0.090 0.638 ± 0.166 0.350 ± 0.011 -0.486
Geneformer 0.405 ± 0.044 0.464 ± 0.048 0.464 ± 0.077 0.481 ± 0.052 0.475 ± 0.042 0.483 ± 0.046 0.488 ± 0.106 0.902 ± 0.220 0.351 ± 0.014 -0.564

GEARS

Two-gene

0.161 ± 0.008 0.211 ± 0.032 0.200 ± 0.013 0.296 ± 0.052 0.425 ± 0.041 - 0.473 ± 0.109 0.422 ± 0.077 0.223 ± 0.010 29.9
MLP gene expression 0.195 ± 0.121 0.484 ± 0.046 0.538 ± 0.082 0.585 ± 0.061 0.618 ± 0.048 - 0.552 ± 0.049 0.500 ± 0.056 0.371 ± 0.009 15.1
Geneformer 0.489 ± 0.043 0.527 ± 0.055 0.550 ± 0.069 0.603 ± 0.076 0.661 ± 0.045 - 0.623 ± 0.054 0.487 ± 0.048 0.409 ± 0.008 11.3
UCE 0.489 ± 0.043 0.527 ± 0.055 0.550 ± 0.069 0.601 ± 0.072 0.656 ± 0.043 - 0.624 ± 0.053 0.506 ± 0.048 0.410 ± 0.007 11.2
scFoundation 0.493 ± 0.044 0.534 ± 0.057 0.554 ± 0.070 0.606 ± 0.073 0.656 ± 0.045 - 0.621 ± 0.060 0.497 ± 0.051 0.410 ± 0.008 11.2
scBERT 0.490 ± 0.043 0.528 ± 0.056 0.550 ± 0.069 0.596 ± 0.071 0.661 ± 0.041 - 0.622 ± 0.049 0.681 ± 0.086 0.418 ± 0.008 10.4
scGPT 0.489 ± 0.043 0.527 ± 0.056 0.550 ± 0.069 0.597 ± 0.072 0.673 ± 0.044 - 0.724 ± 0.028 1.941 ± 0.329 0.500 ± 0.018 2.2
Mean baseline 2.524 ± 1.054 0.549 ± 0.055 0.580 ± 0.075 0.615 ± 0.074 0.653 ± 0.037 - 0.659 ± 0.047 0.497 ± 0.056 0.522 ± 0.053 -
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The ∆AUSPC for GEARS is 7.967, markedly higher than the minimal gains observed for other
models. This suggests that GEARS is better at capturing perturbation-specific expression changes,
even when focusing on the genes most affected by perturbations. The performance gap widens for
double-gene perturbations, where GEARS achieves an AUSPC of 0.223 and a ∆AUSPC of 29.9,
outperforming the MLP baseline (AUSPC 0.371, ∆AUSPC 15.1) and all scFMs by a considerable
margin. These results highlight the superior capability of GEARS to model complex gene interactions
and perturbation effects, once again underscoring the importance of its architecture and training
paradigm. In contrast, the zero-shot scFM embeddings offer no advantage over the baseline MLP,
reinforcing our earlier conclusion that they do not provide significant performance gains, especially
when focusing on the most affected genes.

3.3 E-DISTANCE ANALYSIS REVEAL FAILURE MODES OF PERTURBATION PREDICTION PROBES

Strong perturbation effects are generally under-represented in Perturb-seq data involving the pertur-
bation of few genes. Hence, we hypothesized that models would struggle with predicting strong or
atypically distributed perturbation effects. In Figure 3a we show the relationship between E-distance
and performance, averaged across scFMs. Our E-distance analysis confirms that models generally
perform worse when predicting the effect of perturbations with higher E-distance (i.e. strong pertur-
bation effects). This trend was evident across all models, supporting the idea that training data with
mild perturbation effects limits a model’s ability to generalize to more extreme cases.
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Figure 3: (a) MSEs for all test perturbations as a function of the E-distance. The predictions displayed are the
averaged across all scFMs. (b) The E-distance of all test perturbations stratified per split as a function of the
sparsification probability. The mean of the E-distance per split is included in red.

Figure 3b further illustrates how perturbation strength is distributed across the different train-test splits
for both single and double-gene perturbations. At higher sparsification probabilities, perturbations
with lower E-distances become less frequent, while those with stronger effects appear more often.
This is consistent with the earlier observation that performance declines as sparsity increases, as the
models are increasingly challenged with stronger perturbations. Two perturbations illustrate this
trend: AHR (Figure 4a), which has a low E-distance, showed a relatively small dynamic range in
the target perturbation effects, ranging from about −0.1 to 0.25. In contrast, CEBPE (Figure 4b)
showed a more pronounced perturbation effect, with a broader dynamic range of −0.5 to 1. The
models performed worse when predicting the effect of CEBPE than that of AHR, aligning with our
hypothesis that models poorly predict strong perturbations. This might be due to strong perturbations
like CEBPE rarely appearing in the training data.

However, there are deviations from this trend. In Figure 4d, we show that CEBPA, which has a strong
perturbation effect, was predicted relatively well by the models. Despite a high overall perturbation
strength, CEBPA strongly modulates relatively few genes, with a longer tail of more mildly impacted
genes. This suggests that the model’s capability to predict perturbation effects depends not only on
the magnitude of the perturbation, but also on its distribution. In Figure 4c, we show that IKZF3
further substantiates this observation: despite eliciting a significantly weaker effect compared to
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CEBPA, it was predicted less accurately, likely due to its atypical effect distribution (Appendix H.4).
This suggests that model performance could be improved by more evenly representing perturbations
across a wider range of effect sizes and distributions. These findings highlight the importance of
exploring perturbation space more thoroughly and ensuring balanced representation during model
training – a challenge that scFM embeddings alone are not equipped to address.
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Figure 4: Predictions of models across the top 20 DEGs for 4 perturbations from different splits. Subcaptions
indicate perturbation name, sparsification probability. The predictions are included as colored dots, and the
target perturbation effect is displayed as a dashed line.

3.4 CONTEXTUAL ALIGNMENT BETWEEN PRE-TRAINING AND FINE-TUNING DATASETS HAS
MINIMAL IMPACT ON INTRA-CELL TYPE PERTURBATION EFFECT PREDICTION

Previous research by Cui et al. (2024) demonstrated that the performance of models trained with
zero-shot scFM embeddings is strongly affected by the overlap between their pre-training datasets
and the downstream task data in cell-type annotation tasks. We sought to determine whether this
reliance on contextual alignment extends to perturbation effect prediction.
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Figure 5: MSE as a function of the pre-train and fine-
tune data cross-split overlap for scGPT and scBERT.

In Figure 5, we calculated the contextual align-
ment between the datasets used to pre-train
scGPT and scBERT, and the Norman dataset
– used to fine-tune the scFM probes. The
alignment scores were 0.606 and 0.718 for
scGPT and scBERT, respectively, indicating that
scBERT’s pre-training corpus is approximately
19% more similar to the Norman dataset than
that of scGPT. While the models show com-
parable MSE across splits, scBERT showed
greater robustness. Notably, scGPT’s pre-
training corpus is an order of magnitude larger
than scBERT’s, underscoring the importance of
contextual alignment over just scaling up the
size of pre-training data.
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However, to fully appreciate the impact of contextual alignment in perturbation effect prediction, the
experimental setup proposed here should be expanded to include a broader range of cell types and
perturbations. We believe that future research should explore how contextual alignment may affect
model performance when pre-training datasets are curated for perturbation effect prediction.

3.5 LIMITATIONS

In this study we focused on applying PertEval-scFM to one well-established high quality dataset.
Ideally, we need to expand to more diverse datasets, including datasets containing chemical perturba-
tions, to ensure the robustness of our framework and verify the findings presented here. Nonetheless,
this is a step towards a unified framework to evaluate models for perturbation effect prediction.

4 CONCLUSION

PertEval-scFM addresses the current lack of consensus in benchmarking models for perturbation
effect prediction by introducing a modular evaluation toolkit with diverse metrics designed to assess
and interpret model performance. In particular, our framework allows consideration of distribution
shift, often overlooked in other studies. We apply PertEval-scFM to evaluate the added benefit of
using zero-shot scFM embeddings for perturbation prediction, instead of raw gene expression data.
This study showed that current generation zero-shot scFM embeddings offer no improvement in
perturbation effect prediction performance compared to rudimentary baselines when evaluated across
2,000 HVGs and 20 DEGs for single and double-gene perturbations. The AUSPC metric suggests
that scFMs were less robust to distribution shift. Analysis using the E-distance metric revealed
that the models particularly struggle to predict strong and atypically distributed perturbation effects.
Finally, the contextual alignment metric points to the necessity of including a broader range of cell
types and perturbations to better understand its impact on perturbation effect prediction. We plan to
maintain and expand PertEval-scFM, developing a comprehensive benchmarking suite to facilitate
the evaluation of perturbation models, and expect it to become a valuable community resource.

Future work. While our findings do not support the use of current-generation scFMs for reliable
perturbation effect prediction, we recognize their potential. We expect that to make progress towards
the accurate prediction of perturbation effects, scFMs must be customized for this task. Key questions,
such as how to represent perturbations in silico, and how to fully leverage vast pre-training data, need
to be addressed. Existing cell atlases only capture a tiny fraction of the human phenoscape – the
full range of states possibly occupied by a cell (Fleck et al., 2023) – and often exclude perturbation-
induced states. We think two key elements are required to improve the use of scFMs for perturbation
effect prediction: higher-quality data that spans a wider range of the human phenoscape, covering
multiple modalities, and consisting of clinically relevant cell types; and second, the development
of specialized models, including scFMs, designed to fully leverage large-scale datasets to predict
transcriptomic responses to perturbations – as exemplified by the superior performance of GEARS
which includes inductive biases relevant to perturbation prediction.

COMPUTATIONAL REQUIREMENTS

A single MLP probe was trained using 12 NVIDIA A100-PCIE-40GB GPU cores. Runtime depends
on the hidden dimension of the probe, which is around 5 to 30 minutes for the smallest to biggest
probes, respectively.
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APPENDIX

A SINGLE-CELL DATA

The advent of single-cell RNA sequencing technology (scRNA-seq) has revolutionized our under-
standing of cellular heterogeneity and dynamic biological processes (Chen et al., 2019). Unlike
traditional bulk sequencing methods, which average signals across large populations of cells, scRNA-
seq technologies enable the study of gene expression at single-cell resolution. This granularity
provides unprecedented insights into complex mechanisms of development, differentiation, and
disease progression (Trapnell, 2015; Svensson et al., 2018; Fleck et al., 2023). The broad-scale
application potential of scRNA-seq technology has led to the generation of large-scale datasets, such
as the Human Cell Atlas (Regev et al., 2017) and the CellxGene Census (Program et al., 2023), which
collectively span millions of cells and most sources of primary tissue.

A.1 PERTURB-SEQ DATA

Perturb-seq integrates scRNA-seq with CRISPR-based perturbations to profile gene expression
changes in response to specific genetic modifications at the single-cell resolution (Dixit et al., 2016).
By systematically perturbing genes and measuring the resulting transcriptomic changes, Perturb-seq
data provides a detailed map of cellular responses to specific genetic modifications. These datasets,
such as those generated by Norman et al. (2019) and Replogle et al. (2022), allow researchers to
explore the relationships between gene perturbations and cellular phenotypes in a high-dimensional
space, providing invaluable insights into gene regulatory networks and cellular behavior and allowing
the identification of potential drug targets (Wenteler et al., 2024).

A.1.1 THE NORMAN DATASET

The dataset from Norman et al. (2019) represents one of the most comprehensive Perturb-seq resources
available. It profiles transcriptional responses to over 100 single-gene perturbations in the human
K562 leukemia cell line, using pooled CRISPR screening and scRNA-seq. This dataset captures gene
expression data from thousands of individual cells, each subjected to either a control or a perturbation,
providing an ideal testing ground for models designed to predict perturbation effects. The Norman
dataset includes both perturbed and unperturbed cells, allowing for systematic evaluation of model
performance in predicting the effects of genetic perturbations at single-cell resolution.

Table A1: Overview of the Norman dataset

Characteristic Description

Cell type K562 (human leukemia cells)

Total number of perturbations 196

Number of single-gene perturbations 105

Perturbation method CRISPRa

Number of control cells ∼12,000

Number of cells ∼110,000

Sequencing platform 10x Genomics Chromium

Gene expression data Single-cell RNA-seq

Number of genes measured 20,000+

Reference Norman et al. (2019)
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A.2 SINGLE-CELL DATA PRE-PROCESSING AND QUALITY CONTROL FUNCTIONS AND
SETTINGS

The dataset was downloaded and pre-processed using ScPerturb (Peidli et al., 2024), PertPy
(Heumos et al., 2024), and ScanPy (Wolf et al., 2018). As scFMs utilize raw gene expression counts,
two versions of the dataset are stored internally: an AnnData object containing raw expression
counts, used to generate embeddings with scFMs, and an AnnData object with pre-processed gene
expression values, used to train the baseline models.

Pre-processing involved normalizing the raw gene expression counts by the total number of
counts for each gene to account for differences in sequencing depth and ensure comparability
across samples. This was performed using the scanpy.pp.normalize_total(adata)
method with default settings. Next, the normalized counts were log-transformed with
scanpy.pp.log1p(adata) to stabilize variance and make the data more amenable to down-
stream analysis. Finally, the top 2,000 highly variable genes were selected for training, us-
ing the scanpy.pp.highly_variable_genes(pert_adata, n_top_genes=2000)
function.

A.3 QUALITY CONTROL PLOTS
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Figure A1: Quality control plots for the Norman dataset. (a) The number of cells per gene. This indicates how
often an individual gene is measured across cells. Genes that are present in many cells might be housekeeping
genes or essential genes. Because many genes were present in only a few cells, only genes present in minimum
5 cells were considered. (b) The number of genes detected per cell across all datasets. This offers insights
into the distribution of genes among cells and indicates how representative the measurements are of single-cell
transcriptomes.
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B MODELS

B.1 SINGLE-CELL FOUNDATION MODELS (SCFMS)

Single-cell foundation models (scFMs) are trained on broad single-cell data using large-scale self-
supervision, allowing them to be adapted (i.e., fine-tuned) for a wide range of downstream tasks.
Most scFMs use variants of the Transformer (Vaswani et al., 2017) architecture to process embedded
representations of input gene expression data. However, they differ in input data representation,
model architecture, and training procedures. Here, we provide a brief overview of the scFMs included
in PertEval-scFM.

Geneformer. Geneformer (Theodoris et al., 2023) employs six transformer units, each consisting
of a self-attention layer and an MLP layer. The model is pre-trained on Genecorpus-30M, which
comprises 29.9 million human single-cell transcriptomes from a broad range of tissues obtained from
publicly available data. Before feeding the data into the model, gene expression values are converted
into rank value encodings. This method provides a non-parametric representation of each single-cell
transcriptome by ranking genes based on their expression levels in each cell and normalizing these
ranks within the entire dataset. Consequently, housekeeping genes, which are ubiquitously highly
expressed, are normalized to lower ranks, reducing their influence. Rank value encodings for each
single-cell transcriptome are then tokenized, allowing genes to be stored as ranked tokens instead
of their exact transcript values. Only genes detected within each cell are stored, thus reducing the
sparsity of the data. When input into the model, genes from each single-cell transcriptome are
embedded into a 256-dimensional space. Cell embeddings can also be generated by averaging the
embeddings of each detected gene in the cell, resulting in a 256-dimensional embedding for each
cell. The model is pre-trained using a masked learning objective, masking a portion of the genes and
predicting the masked genes, which is intended to allow the model to learn gene network dynamics.

scBERT. scBERT (Yang et al., 2022) adapts the BERT architecture (Devlin et al., 2019) for single-
cell data analysis. A transformer is used as the model’s backbone. The input data is represented as a
sequence of gene expression values for each cell, where cells are constructed from gene expression
value tokens. Gene embeddings are generated from the sum of two embeddings, where the first
represents the gene’s binned log-scale expression level, and the second is generated with gene2vec
(Du et al., 2019) and specifies the gene’s identity. The model is pre-trained via imputation on 5
million cells using a masked learning objective – masked gene expression values are predicted as a
function of the other gene embeddings in the cell. In the paper, scBERT is fine-tuned for cell type
annotation.

scFoundation. scFoundation (Hao et al., 2023) employs xTrimogene as a backbone model, a
scalable transformer-based architecture that includes an embedding module and an asymmetric
encoder-decoder. The embedding module converts continuous gene expression scalars into high-
dimensional vectors, allowing the model to fully retain the information from raw expression values,
rather than discretizing them like other methods. The encoder is designed to only process nonzero
and nonmasked gene expression embeddings, reducing computational load and thus enabling the
application of “vanilla transformer blocks to capture gene dependency without any kernel of low-rank
approximation”. These encoded embeddings are then recombined with the zero-expressed gene
embeddings at the decoder stage to establish transcriptome-wide embedded representations. This
backbone approach can then be built upon additional architectures which are specialized for specific
tasks - i.e., GEARS (Roohani et al., 2023) for perturbation response prediction. scFoundation is
pre-trained using read-depth-aware (RDA) modeling, an extension of masked language modeling
developed to take the high variance in read depth of the data into account. The raw gene expression
values are pre-processed using hierarchical Bayesian downsampling in order to generate the input
vectors, which can either be the unchanged gene expression profile or where downsampling has
resulted in a variant of the data with lower total gene expression counts. After gene expression has
been normalized, raw and input gene expression count indicators are represented as tokens which
are concatenated with the model input, allowing the model to learn relationships between cells with
different read depths. Pre-training used data from over 50 million single cells sourced from a wide
range of organs and tissues originating from both healthy and donors with a variety of diseases and
cancer types.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

scGPT. scGPT (Cui et al., 2024) follows a similar architectural and pre-training paradigm to
scBERT. However, scGPT bins genes according to their expression, ensuring an even distribution
across each bin. It uses random gene identity embeddings and incorporates an additional “condition
embedding” to store meta-information and differentiate each gene. Along with gene embeddings,
scGPT trains a cell token to summarize each cell. Instead of the long-range Performer architecture,
scGPT processes embeddings via Flash-Attention (Dao et al., 2022) blocks. The model implements a
generative masked pre-training using a causal masking strategy inspired by OpenAI’s GPT series
(Radford et al., 2018). scGPT is pre-trained on 33 million human cells and fine-tuned on a wide suite
of downstream tasks, including cell type annotation, genetic perturbation response prediction, batch
correction, and multi-omic integration.

Universal Cell Embeddings (UCE). Universal Cell Embeddings (UCE) (Rosen et al., 2023) is
trained on a large compendium of single-cell RNA-seq datasets from multiple species, including
human, mouse, mouse lemur, zebrafish, pig, rhesus macaque, crab-eating macaque, and western
clawed frog, to create a universal embedding space for cells. The model converts the transcriptome of
a single cell into an expression-weighted sample of its corresponding genes and then represents these
genes by their protein products using a large protein language model. This representation is then fed
into a transformer model. UCE is pre-trained in a self-supervised manner with a contrastive learning
objective, where similar cells are mapped to nearby points in the embedding space, and dissimilar
cells are mapped to distant points. This training paradigm enables UCE to provide high-quality
embeddings that facilitate various downstream analyses. Benchmarks carried out by Rosen et al.
(2023) in a zero-shot framework shown that UCE outperforms Geneformer (Theodoris et al., 2023)
and scGPT (Cui et al., 2024), as well as cell annotation models such as scVI and scArches, in cell
representation tasks.

B.2 SCFM EMBEDDING GENERATION

In this section, we detail the process of generating embeddings for each foundation model in a zero-
shot context using pre-trained models with frozen weights. For some models, pre-trained checkpoints
are available and can be directly utilized, while others require initial pre-training. By freezing model
weights, we ensure that the embeddings represent the learned features from the initial training phase,
without further adaptation to the specific perturbation prediction task. This approach allows us to
evaluate the inherent quality and utility of the pre-trained representations for downstream applications
in biological research.

Geneformer. To generate embeddings for Geneformer (Theodoris et al., 2023), we downloaded
the repository, including pre-trained model checkpoints, from Hugging Face. For control cells, we
pre-processed the raw expression files to ensure the correct naming of columns and then fed them into
the Geneformer tokenizer (TranscriptomeTokenizer). Once the dataset had been tokenized,
we extracted embeddings using the pre-trained checkpoint (6-layer model) with the EmbExtractor
method. For the perturbation data, we loaded the data and iterated through it in order to remove
perturbed genes, simulating their deletion. The perturbed cells were then tokenized, and embeddings
were extracted for each perturbed cell using the same functions.

scBERT. To generate emeddings for scBERT (Yang et al., 2022), we first downloaded the check-
point and data shared in the scBERT GitHub repository. The environment was set up using the
scBERT-reusability GitHub repository. For the raw expression counts, the genes were aligned using
Ensembl Homo sapiens gene information. Log-normalization was performed and cells with less than
200 expressed genes were filtered out. For the perturbation data, the gene expression value was set to
0 to simulate perturbation, and embeddings were generated using the predict.py script.

scFoundation. To generate scFoundation embeddings (Hao et al., 2023), we initialized the sc-
Foundation class shared at the official scFoundation GitHub repository. The 01B-resolution
pre-trained model checkpoint was loaded and the embeddings were generated while setting
the input_type = singlecell and tgthighres = f1 to indicate no read depth differ-
ences between unperturbed and perturbed cells. The embeddings were then generated using the
get_embeddings function.
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scGPT. To generate embeddings for scGPT (Cui et al., 2024) we installed the scGPT python
package. We downloaded and used the whole-human scGPT model for embedding. For control cells,
we used the scGPT embed_data function to generate the embeddings from the raw expression
values. This function tokenises the data before feeding it through the model. For the perturbation
data, we removed the perturbed genes, to simulate their deletion. The embeddings for the perturbed
cells were then generated using the scGPT embed_data function.

Universal Cell Embeddings (UCE). To generate cell embeddings for UCE (Rosen et al., 2023),
we ran the eval_single_anndata.py script provided in the UCE GitHub repository. Model
weights for the 33-layer model and the pre-computed protein embeddings were downloaded separately
from figshare. The script takes as input an h5ad raw expression file with variable names set as
gene_symbols. The script was run with default parameters, except for the filter argument which was
set to False, in order to skip an additional gene and cell filtering step. No further pre-processing
was required to generate embeddings for control cells. For in vitro perturbed cells, the raw count
value of the perturbed gene was explicitly set to zero for each condition prior to model inference,
and saved as a h5ad file. The output of the script was an identical h5ad file with the input, except for
cell-level embeddings that are stored in the Anndata.obsm[‘X_uce’] slot.
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C FEATURIZATION

C.1 SINGLE-CELL EXPRESSION DATA FEATURIZATION

To generate the input features for raw single-cell expression data, we begin with the control matrix
C ∈ Rnc×v, consisting of nc unperturbed single-cell transcriptomes across v highly variable genes
(see Appendix A.2). From this matrix, we form a pseudo-bulk sample C̃, which aggregates expression
values from groups of cells within the same sample, in order to reduce sparsity and noise. Formally,
let C̃ = {ci}500i=1 denote the set of randomly sampled cells from C. The average expression value Cj

for each cell j is then calculated by averaging the expression across the pseudo-bulked cells:

Cj =
1

|C̃|
∑
ci∈C̃

ci,j ∀ j ∈ {1, . . . , np} (C1)

Using this basal expression, we construct the input matrix Xc ∈ Rnp×v, which has the same
dimensions of the perturbed transcriptomic matrix P ∈ Rnp×v (i.e. what we want to predict), where
np is the number of perturbed cells. The input matrix Xc is generated by sub-sampling from Cj ,
ensuring that the dimensions are consistent between the input and the target output.

This approach ensures that input-target pairs are consistently defined for all training examples, as the
dimensions of Xc ∈ Rnp×v align with the target matrix P . Representing input expression at pseudo-
bulked basal levels helps mitigate sparsity issues caused by limited gene coverage in individual
single-cell measurements from the original dataset. However, this method introduces a trade-off by
reducing the heterogeneity of the input gene expression. As a result, some salient single-cell signals,
such as those related to its initial state, may be diminished. However, inferring cellular states based
solely on gene expression data is inherently challenging, given the many confounding factors and
technical noise present in single-cell datasets (Fleming et al., 2023). Therefore, conventional machine
learning models should not be expected to perform this task with high fidelity to begin with.

C.1.1 MLP BASELINE

To generate the full set of input features for the MLP, we must encode the identity of each perturbation
alongside capturing basal gene expression. Let P = {p1, . . . , pk} denote the set of perturbable
genes, and let D = {d1, . . . , dv} represent all highly variable genes.

To evaluate the models’ ability to generalize to unseen perturbations, it is important to incorporate
information about gene interactions within a specific cell type. This allows the models to learn gene
interaction networks, helping to extrapolate effects from known perturbations to novel ones.

To achieve this, we construct a v-dimensional correlation vector for each perturbable gene by
calculating the Pearson correlation between its basal expression and that of all other genes, including
itself. By including the auto-correlation of the perturbable gene, we explicitly encode the identity of
the gene to be perturbed. The resulting feature vector for each perturbable gene, gc ∈ Rv, captures
the correlations between its basal expression and the basal expression of all highly variable genes.
Aggregating these correlation vectors for all perturbable genes produces the matrix Gc ∈ Rnp×v,
where the perturbation in each row corresponds to the transcriptomic state observed in T .

Finally, the control gene expression matrix Xc is concatenated with the perturbation correlation
matrix Gc to construct the complete input feature matrix:

ZGE = Xc ⊕Gc (C2)

Here, ZGE ∈ Rn×2v represents the input feature matrix, where each row gi combines the log-
normalized basal expression values of a cell with the corresponding perturbation correlation features.
This procedure is applied to both the training and testing sets, to generate ZGEtrain and ZGEtest .
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C.2 SINGLE-CELL FOUNDATION MODEL EMBEDDING FEATURIZATION

To generate embeddings from a pre-trained single-cell foundation model (scFM) with frozen weights,
we begin by mapping raw gene expression counts to transcriptomic embeddings. Let fscFM : Rl →
Rec represent the function that transforms raw expression data into an embedding for each cell.

To construct the control cell embedding, we feed the raw expression vector xc
i for each of the nc

control cells into the scFM:
fscFM(Xc) = Zc (C3)

The embedding vectors are then subsampled to create Zc ∈ Rnp×ec , where np matches the number
of perturbed cells and the dimension of Zc aligns with the target output matrix.

An in silico perturbation embedding is then generated by nullifying the expression of the perturbed
genes across all control cells in which it is expressed, up to a maximum of 500 cells. The nullification
process, denoted by N(xc

i , pi), adjusts the gene expression vector according to the requirements of
the scFM model in use. The nullification function can be defined as N : Rv × Nv → Rl, where Rv

represents the space of the gene expression vector, and Nv denotes the set of natural numbers from 1
to v, corresponding to the indices of genes in xc

i . If the scFM requires setting the perturbed gene’s
expression to zero, l = v. However, some scFMs filter out non-expressed genes during tokenization
(scGPT), or train on ranked gene token representations instead of expression values (Geneformer). In
these cases, the perturbed gene must be removed from the control gene expression vector, resulting in
l = v − 1. Nonetheless, the perturbation embedding xp

i is constructed as follows:

fscFM(N(xc
i , pi)) = zpi (C4)

The perturbation embeddings for all cells form the matrix Zp ∈ Rnp×ec . It is trivial to extend the
above framework to combinatorial perturbations, where the nullification function accepts multiple
perturbations and nullifies the associated gene expression values.

The final cell embedding is then obtained by concatenating the control embedding Zc with the
perturbation embedding Zp:

ZscFM = Zc ⊕ Zp (C5)

This approach differs from raw expression featurization, where co-expression patterns are explicitly
encoded to model perturbations. In the scFM embedding featurization, in silico perturbation simulates
the changes caused by gene perturbation. We hypothesize that the embeddings generated by scFMs
inherently encode co-expression relationships, aligning with their pre-training objective based on
masked language modeling.

In this study, zero-shot embeddings are generated using five different scFMs (Table 1). Inference for
each scFM is tailored to the specific idiosyncrasies of the model in question. Detailed information on
all the scFMs used can be found in Appendix B.1.
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D MLP

D.1 MLP PARAMATER COUNT

Table D1: Train and Test set results with MLPs of increasing parameter count

Trainable parameters (million) Training data train/MSE val/MSE
1.6 Raw gene expression 0.057067 0.057642
3.2 Raw gene expression 0.058670 0.057493
6.3 Raw gene expression 0.056748 0.057424
12.7 Raw gene expression 0.056724 0.057428
1.6 scFoundation embeddings 0.060780 0.060260
3.2 scFoundation embeddings 0.060440 0.059910
12.6 scFoundation embeddings 0.059570 0.059050
0.2 scBERT embeddings 0.061040 0.061426
1.0 scBERT embeddings 0.061046 0.061428
8.0 scBERT embeddings 0.061040 0.061421

D.2 HYPERPARAMETER OPTIMIZATION

To optimize the MLP probes, we used root mean square error (RMSE) as the objective function and
the Adam optimizer (Kingma & Ba, 2017). Model performance was evaluated on an independent test
set comprising unseen perturbations. The objective function to be minimized is:

L(θ) =

√√√√ 1

nb

nb∑
j=1

(
(T −Xc)j − δ̂θ(X)j

)2

(D1)

where j indexes each cell and nb denotes the batch size.

Hyperparameters were selected using the tree-structured Parzen estimator (TPE) tuning algorithm
(Bergstra et al., 2011). This optimization was performed on the first train-test split, which contains the
largest training set. Given the computational demands of exhaustive parameter sweeps, we focused
on optimizing the hyperparameters using the gene expression data as a reference.

An initial search across different numbers of hidden layers revealed that this parameter had no
substantial effect on model performance. Therefore, a single hidden layer was used throughout the
experiments to maintain model simplicity. The learning rate, however, was found to significantly
influence performance and was thus adjusted for the models trained using the scFM embeddings.
Following the manifold hypothesis, we set the hidden dimension to half of the input dimension
(Bengio et al., 2013). A comprehensive list of the final hyperparameters for each model is provided
in Table D2.
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Table D2: TPE hyperparameter optimization results for all the datasets and probes considered.

Hyperparameter
Dataset Model Type Type Name Value

Norman MLP

Adam Optimizer
Starting Learning Rate 5 · 10−5

Gene expression

Max. Epochs 100

ReduceLROnPlateau Scheduler

Reduction Factor 0.1
Patience 15

Threshold 1 · 10−4

Min. Learning Rate 5 · 10−9

Model Hidden Layers 1
Hidden Dimension 1, 024

Data Batch Size 64

Norman MLP

Adam Optimizer Starting Learning Rate 3 · 10−4

Geneformer

Max. Epochs 100

ReduceLROnPlateau Scheduler

Reduction Factor 0.1
Patience 10

Threshold 1 · 10−4

Min. Learning Rate 5 · 10−9

Model Hidden Layers 1
Hidden Dimension 128

Data Batch Size 64
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Table D3: TPE hyperparameter optimization results, continued.

Hyperparameter
Dataset Model Type Type Name Value

Norman MLP

Adam Optimizer Starting Learning Rate 5 · 10−6

scBERT

Max. Epochs 100

ReduceLROnPlateau Scheduler

Reduction Factor 0.1
Patience 10

Threshold 1 · 10−4

Min. Learning Rate 5 · 10−9

Model Hidden Layers 1
Hidden Dimension 100

Data Batch Size 64

Norman MLP

Adam Optimizer Starting Learning Rate 3 · 10−4

scGPT

Max. Epochs 100

ReduceLROnPlateau Scheduler

Reduction Factor 0.1
Patience 10

Threshold 1 · 10−4

Min. Learning Rate 5 · 10−9

Model Hidden Layers 1
Hidden Dimension 256

Data Batch Size 64

Norman MLP

Adam Optimizer Starting Learning Rate 3 · 10−4

UCE

Max. Epochs 100

ReduceLROnPlateau Scheduler

Reduction Factor 0.1
Patience 10

Threshold 1 · 10−4

Min. Learning Rate 5 · 10−9

Model Hidden Layers 1
Hidden Dimension 640

Data Batch Size 64

Norman MLP

Adam Optimizer Starting Learning Rate 3 · 10−4

scFoundation

Max. Epochs 100

ReduceLROnPlateau Scheduler

Reduction Factor 0.1
Patience 10

Threshold 1 · 10−4

Min. Learning Rate 5 · 10−9

Model Hidden Layers 1
Hidden Dimension 1, 536

Data Batch Size 64
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E SPECTRA

E.1 EVALUATING MODEL ROBUSTNESS UNDER DISTRIBUTION SHIFT IN SINGLE-CELL DATA
WITH SPECTRA

Sample-to-sample similarity must be calculated to construct the spectral graph for single-cell data.
If two samples are sufficiently similar, an edge will be inserted in the spectral graph. To quantify
sample-to-sample similarity between distributions, the L2 norm, denoted by ∥ · ∥, of the log 1p-fold
change between the mean perturbation expression vector, pi, and the mean control gene expression
vector, c, is calculated:

S(pi, c) = ∥ log(pi + 1)− log(c+ 1)∥ (E1)

Using this definition, a series of train-test splits are generated by sparsifying the initial graph. Train
and test instances are samples from distinct subgraphs for each split, with decreasing mean pairwise
similarity between the two sets. The sparsification of the initial graph is attenuated by a sparsification
probability (s), which is the probability that an edge between two samples will be be dropped.
Mathematically, SPECTRA employs a graph sparsification technique similar to what is described in
Spielman & Teng (2010). A practical limitation of the current implementation of SPECTRA lies in
its tendency to unevenly distribute perturbations of similar magnitudes across the training and test
splits while minimizing cross-split overlap. This uneven distribution engenders class imbalances that
become increasingly pronounced at higher sparsification probabilities. Consequently, this imposes a
trade-off between induced class imbalance and simulated distribution shift. Empirical observations
on the Norman data indicate that the sparsification probability threshold at which the class imbalance
remains manageable is approximately 0.7. Beyond this threshold, the deleterious effects of class
imbalance as well as low sample numbers begin to outweigh the benefits of reduced cross-split
overlap.

For the Norman dataset, Appendix E1a illustrates a rapid decrease in the number of training and
testing samples as the sparsification probability increases. This is expected, as a higher sparsification
probability leads to increasingly disconnected subgraphs to draw samples from. Furthermore,
appendix E1 confirms that SPECTRA can simulate distribution shift by showing a corresponding
decrease in similarity between the samples as sparsification probability rises. Subsequently, we train
and test models on each SPECTRA split and plot the MSE as a function of the decreasing cross-split
overlap. The area under this curve is defined as the AUSPC, which serves as a measure of model
generalizability under distribution shift.

Similarly to the within-dataset case outlined above, the cross-split overlap can be used to measure the
similarity between-datasets, in this case between the scFM pre-train and our fine-tune datasets for
scBERT and scGPT. This approach allows us to investigate the impact of pre-training data on the
quality of scFM embeddings. Further details are provided in Section G.1.
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Figure E1: (a) Number of samples in train and test as a function of the sparsification probability. (b) Cross-split
overlap as a function of the sparsification probability.
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E.2 IMPLEMENTATION DETAILS OF THE AUSPC

The AUSPC is defined by Equation 8. For numerical evaluation, the integral is approximated using
the trapezoidal rule with sparsification probabilities si ∈ {0.0, 0.1, ..., 0.7}:

AUSPC = f(ϕ) =

∫ smax

0

ϕ(s) ds

≈ d

2

n−1∑
i=0

[ϕ(si) + ϕ(si+1)]

(E2)

where d denotes the step size of the sparsification probability (0.1 in this case) and ϕ represents the
metric of interest, (MSE). The ∆AUSPC is subsequently derived by calculating this value for both
the baseline and the model independently, and then subtracting the AUSPC of the model from that of
the baseline. For simplicity, we use the notation ϕi = ϕ(si).

To quantify the uncertainty associated with the AUSPC, uncertainty propagation is utilised, wherein
the AUSPC is assumed to be a non-linear function of the metric of interest, ϕ(s). For uncertainty
propagation in this context, the following equation is employed:

σ2 =

n−1∑
i=1

(
∂f

∂ϕi
σϕi

)2

(E3)

where σ represents the total error associated with the AUSPC and σϕi
denotes the error associated

with the MSE for split i.

The partial derivative ∂f
∂ϕi

is calculated using the definition of f given in Equation E2:

∂f

∂ϕi
=

d

2

∑
i

(
∂

∂ϕi
ϕi +

∂

∂ϕi
ϕi+1

)
∂f

∂ϕi
=

d

2

(E4)

Substituting this result into Equation E3 yields:

σ2 =
∑
i

(
d

2
σϕi

)2

σ =

√√√√∑
i

(
d

2
σϕi

)2
(E5)

The algorithmic implementation is given in Algorithm 1.
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Algorithm 1 Calculate AUSPC and its associated error

1: function TRAPEZOIDALAUSPC(ϕ, s)
2: AUSPC← np.trapz(ϕ, s)
3: return AUSPC
4: end function
5: function CALCULATEDELTAAUSPC(ϕb, ϕm, σb, σm, s)
6: AUSPCb ← TRAPEZOIDALAUSPC(ϕb, s)
7: AUSPCm ← TRAPEZOIDALAUSPC(ϕm, s)
8: d← s[1]− s[0] ▷ Assuming uniform step size

9: σb ←
√∑

i(
d
2σϕb,i)

2

10: σm ←
√∑

i(
d
2σϕm,i)2

11: ∆AUSPC← AUSPCb − AUSPCm

12: return ∆AUSPC, σb, σm

13: end function
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F E-STATISTICS

F.1 USING E-DISTANCE AND DIFFERENTIAL GENE EXPRESSION TO EVALUATE SIGNIFICANT
PERTURBATIONS

While examining transcriptome-wide, aggregated perturbation effects provides valuable insights, it
lacks the granularity needed to assess a model’s ability to reconstruct perturbation effects at the gene
level. To address this limitation, energy statistics (E-statistics) are employed to evaluate and select
significant perturbations in single-cell expression profiles. Subsequently, differential gene expression
analysis is carried out to identify the top 20 differentially expressed genes which are then used to
evaluate individual perturbations.

Perturbation effects are quantified using the E-distance, which compares mean pairwise distances
between perturbed and control cells. Let X ∈ {x1, . . . ,xna

} and Y ∈ {y1, . . . ,ynb
} be two

distributions of cells in different conditions with na and nb cells respectively, where xi, yi ∈ Rm

refer to the transcriptomes for cell i. Now the between-distribution distance δXY and the within-
distribution distances σX and σY can be defined as:

δXY =
1

na · nb

na∑
i=1

nb∑
j=1

d(xi,yj)

σX =
1

n2
a

na∑
i=1

na∑
j=1

d(xi,xj)

σY =
1

n2
b

nb∑
i=1

nb∑
j=1

d(yi,yj)

(F1)

where d(·, ·) is the squared Euclidean distance. The E-distance, E, is then defined as:

E(X ,Y) := 2δXY − σX − σY (F2)

The E-test, a Monte Carlo permutation test, is used to assess the statistical significance of observed
E-distances. This test generates a null distribution by randomly permuting perturbation labels 10,000
times, comparing the observed E-distance against this distribution to yield an adjusted p-value
that was calculated using the Holm-Sidak method. This p-value can then be used to select which
perturbations result in a perturbation effect that is significantly different from the control.

Before E-statistics are calculated, the data is pre-processed. The number of cells per perturbation is
subsampled to 300, following the 200-500 range proposed by Peidli et al. (2024). Perturbations with
fewer than 300 cells are excluded from downstream analysis. This threshold excludes 20 perturbations,
leaving 84 single-gene perturbations. One additional perturbation (BCL2L11) is excluded by the
E-test as not significant.

For significant perturbations, the top 20 differentially expressed genes between perturbation and
control are selected for evaluation. This approach is based on the observation that genetic perturbations
tend to significantly affect only a fraction of the full transcriptome, while the remainder remains
close to control expression (Nadig et al., 2024). This allows us to evaluate whether the predicted
perturbation effect aligns with the experimental observations specifically for individual perturbations.
The data is pre-processed for differential gene expression testing as described in Appendix A.2.
Differential gene expression calculation is performed using the Wilcoxon rank sum test implemented
in scanpy.tl.rank_gene_groups.
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G CONTEXTUAL ALIGNMENT

G.1 CALCULATING CONTEXTUAL ALIGNMENT BETWEEN PRE-TRAIN AND FINE-TUNE
DATASETS

To evaluate the influence of pre-training on the efficacy of scFM embeddings, we estimate the
contextual alignment between the datasets used for pre-training and those used for fine-tuning. We
expect that enhanced model performance correlates with a greater overlap between these datasets.
Following the instructions outlined on the scGPT GitHub, we obtained the complete pre-training cell
corpus for scGPT from the CellXGene Census. As for scBERT, the pre-training dataset is derived
from PanglaoDB and provided by the authors. The scBERT and scGPT datasets contain 1.4 million
and 33 million cells, and 16,906 and 60,664 features respectively.

To carry out the contextual alignment experiment, we first ensure alignment between the paired
datasets based on common genes. We normalize the fine-tuning dataset to a total read count of 10,000
over all genes and apply log1p-transformation. Additionally, we filter the data to include the same set
of 2,061 highly variable genes that are used in the fine-tuning process (see Appendix A.2). Following
these steps, we obtain two pre-training/fine-tuning common gene sets, 1,408 for scBERT + Norman
and 2,044 for scGPT + Norman.

To quantify the alignment, we compare gene expression profiles between the fine-tuning and pre-
training datasets by computing cosine similarity scores, which are advantageous due to their insen-
sitivity to expression magnitude. This comparison generates a dense score matrix of dimensions
Nfinetune × Npre-train. For a subset of Npre-train, used in at least one train-test split, an aggregate
cross-split overlap is calculated to evaluate the impact of different pre-training/fine-tuning dataset
configurations on model performance.

Initially, a matrix S ∈ RNfinetune×Npre-train is constructed, where each element sij represents the cosine
similarity between the i-th cell in the fine-tuning dataset and the j-th cell in the pre-training dataset.
From this, we derive a binary similarity matrix B of the same dimensions with entries bij . The matrix
is constructed as follows:

bij =

{
1 if sij ≥ µ+ 2σ,

0 otherwise,
(G1)

where µ and σ are the mean and standard deviation of the cosine similarities computed across
100,000 randomly sampled cell pairs. Based on this established threshold, B represents whether each
fine-tuning cell significantly overlaps with each pre-training cell.

To quantify the alignment for each fine-tuning cell, we aggregate over the pre-training dimension of
matrix B for each fine-tuning cell, resulting in a vector f where each component fi is given by:

fi =
1

Npre-train

Npre-train∑
j=1

Bij (G2)

Here, fi ∈ RNfinetune represents the fraction of the pre-training dataset that is similar to the i-th
fine-tuning cell.

To conduct the sensitivity analysis, we define a threshold τ , which represents the minimum fraction of
the pre-training dataset that a fine-tuning cell must be similar to in order to be considered significantly
aligned. τ is varied within the range of 0 to 0.1% of Npre-train. For each value of τ , we calculate the
proportion of fine-tuning cells that meet or exceed this threshold, thus generating a series of values:

p(τ) =
1

Nfinetune

Nfinetune∑
i=1

1{fi>τ} (G3)

where 1 is the indicator function that evaluates to 1 if the condition is true and 0 otherwise.
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The sensitivity curve is then plotted as p(τ) versus τ . The area under this curve reflects the overall
cross-split overlap of the fine-tuning dataset relative to the pre-training dataset, as visualized in
Figure G1.
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p(
)

scBERT
scGPT

Figure G1: Plot of the probability that a cell from the pre-train dataset is similar to a cell from the fine-tune
dataset as a function of τ , the similarity threshold at which two cells are considered similar based on their cosine
similarity.
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H SUPPLEMENTARY FIGURES

H.1 SPECTRA PERFORMANCE CURVES
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(a) Baseline MLP
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(b) scBERT
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(c) scGPT

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Sparsification Probability

0.060

0.065

0.070

0.075

0.080

0.085

M
SE

(d) Geneformer
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Figure H1: MSE as a function of the sparsification probability for the different models. These functions are used
to calculate to calculate the AUSPC, which is here shaded in blue.
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H.2 PERTURBATION EFFECT PREDICTION RESULTS ACROSS TOP 20 DEGS
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Figure H2: Comparison of the mean baseline across different sparsification probability train-test splits.

H.3 MSE FOR ALL MODELS COMPARED TO MEAN BASELINE ACROSS TOP 20 DEGS
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Figure H3: MSE as a function of the sparsification probability for the different models. This is a depiction of the
curves that are used to calculate the ∆AUSPC.
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H.4 MEAN POST-PERTURBATION EXPRESSION PROFILES FOR IKZF3 AND CEBPA
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Figure H4: Post-perturbation mean expression profiles for IKZF3 and CEBPA. The y-axis has been log-
transformed for visual clarity.
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