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ABSTRACT

Learning continually is a key aspect of intelligence and a necessary ability to
solve many real-world problems. One of the most effective strategies to control
catastrophic forgetting, the Achilles’ heel of continual learning, is storing part of
the old data and replay them interleaved with new experiences (also known as the
replay approach). Generative replay, that is using generative models to provide
replay patterns on demand, is particularly intriguing, however, it was shown to
be effective mainly under simplified assumptions, such as simple scenarios and
low-dimensional benchmarks. In this paper, we show that, while the generated
data are usually not able to improve the classification accuracy for the old classes,
they can be effective as negative examples (or antagonists) to learn the new classes,
especially when the learning experiences are small and contain examples of just one
or few classes. The proposed approach is validated on complex class-incremental
and data-incremental continual learning scenarios (CORe50 and ImageNet-1000)
composed of high-dimensional data and a large number of training experiences: a
setup where existing generative replay approaches usually fail.

1 INTRODUCTION

The majority of neural networks training approaches assume that is feasible to build a set of indepen-
dent and identically distributed (i.i.d.) samples to train the model. This assumption is in contrast with
biological learning since intelligent beings observe the world as an ordered sequence of highly corre-
lated data. When state-of-the-art deep neural networks are trained continually, and the whole data
cannot be accessed at once, the model suffers from the catastrophic forgetting problem (McCloskey
& Cohen, 1989), and the knowledge about old data (old experiences) tend to be overwritten by new
examples.

Storing part of past data and replaying them interleaved with new data proved to be an effective
approach to mitigate forgetting (see Hayes et al. (2021) for a comprehensive survey). However,
in some applications, the storage overhead together with privacy issues make replay techniques
unfeasible. Therefore, generative replay has been recently explored, where a generative model
is trained to produce data from past experiences (see Lesort et al. (2018) and Shin et al. (2017)).
Besides solving the replay memory issue, generative replay can theoretically be capable of generating
more general and novel examples not included in past experiences, thus potentially overcoming
replay methods. Unfortunately, generative replay introduces much complexity due to the need for an
interleaved incremental training of both a classifier and a generator. Moreover, generative models are
usually complex and unstable to train, especially in incremental scenarios. Several researchers have
shown that generative replay fails in complex CL scenarios with high-dimensional data (see Aljundi
et al. (2019); Lesort et al. (2018) and van de Ven et al. (2020)) mainly due to the inaccuracies in the
data generation that progressively grows across the experiences if a single generator is incrementally
updated (see related works in section 5 for more details). The photocopy example helps to understand
why. Let us consider a high-quality photocopy machine: when a picture is initially copied the output
looks very similar to the original, but if the process is repeated several times by using as input the
output of the previous step, some artifacts will soon appear and, after many iterations, the result will
be highly compromised. Hence, even if some state-of-the-art models have been proved to be effective
in generating also high dimensional data (Huang et al. (2018) Karras et al. (2019)), the continual
training of such generators remains a challenging problem.
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Figure 1: The proposed generative negative replay is compared with classical generative replay on
two complex class incremental CL benchmarks (details in section 4.2). In both the benchmarks, using
the same classifier, generator, and training procedure, negative replay performs significantly better.

Although generative models are a hot research topics and we can expect improved methods in the
future, as of today we must deal with imperfect generated data and try to exploit them at best when a
classifier is incrementally trained. The proposed approach, denoted as Generative Negative Replay,
does not attempt to improve the knowledge of old classes using the generated data because it assumes
that the data quality is not enough for this purpose. Nevertheless, it makes use of generated (latent)
data as negative examples to better learn the classes of current experience, especially when the
number of classes per experience is small and we incur in the “learning in isolation” problem.

We experimentally demonstrate, on complex benchmarks such as CORe50 and ImageNet-1000,
where (positive) generative replay fails, that negative replay is effective to contrast the learning in
isolation problem, allowing to train a classifier incrementally across a high number of experiences
(see Figure 1). We also investigate the impact of data quality on negative replay with an ablation
study (section 4.4) where negative examples are sampled from original past patterns (upper bound)
and randomly generated.

2 PROBLEM FORMULATION

A continual learning (CL) problem consists of a number NE of experiences, each containing a subset
of data that is only accessible during the corresponding experience:

CL = {e1, e2, ..., eNE}, (1)

each of them is composed of several data points and the corresponding labels:

ek = (Xk,Yk), Xk = {xk1 , xk2 , ..., xkNk}, Yk = {yk1 , yk2 , ..., ykNk} (2)

where xki and yki are the data points and the associated labels contained in the k-th experience and
Nk is the number of samples in the k-th experience.

Let D = (X ,Y) be the entire dataset, then X =
⋃NE
i=1 Xi and Y =

⋃NE
i=1 Yi.

We can define three different scenarios for supervised continual learning (Maltoni & Lomonaco,
2019; van de Ven & Tolias, 2018): New Instances (NI), New Classes (NC), and New Instances and
Classes (NIC). In NI (also known as domain incremental) all the classes are introduced in the first
experience, and only new examples of the same classes are included in the following experiences. In
NC (also known as class incremental) each experience contains only examples from classes never
seen before. NIC is the combination of NI and NC, so each experience can be composed of new
examples of already seen classes and/or examples from new classes. A formal definition of the above
scenarios can be found in Appendix A.

Given the above definitions, our goal is to fit a function f , parametrized by Θ, to the sequence of
experiences. A naive approach is finding the best parameters Θ∗ that minimizes:

Θ∗ = arg min
Θ

L(fΘ(Xi),Yi) for i = {1, ..., NE}, (3)
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where L(·) is a loss function (e.g. cross entropy loss).

As first pointed out by McCloskey & Cohen (1989), this simple approach is prone to catastrophic
forgetting, thus the model fΘ is not able to learn the experiences {e1, e2, ..., eNE} sequentially.

2.1 CONTINUAL LEARNING WITH GENERATIVE REPLAY

Generative replay requires to train simultaneously and incrementally a classifier and a genera-
tive model (Shin et al., 2017; Wu et al., 2018; Thandiackal et al., 2021) The generative model g,
parametrized by Ω provides surrogate data similar to the past experiences’ data. In the case of a
conditional generative model (in which we can control the class of the generated data), the optimal
parameters of the classifier can be derived using a replay memory as follows:

Θ∗ = arg min
Θ

L(fΘ(Xi ∪Mx
i ,Yi ∪M

y
i ) for i = {1, ..., NE}, (4)

whereMx
i andMy

i are the datapoints and labels contained in the replay memory during the training
on experience i when the replay memory is populated as:

Mx
i ← gΩ(zj |cj); My

i ← cj ; cj ∈
i−1⋃
k=1

Yk, j = {1, ..., R}, (5)

where R is the number of generated replay patterns (size of memory), z is a latent random input
vector to the generative model, c is a label sampled from the set of labels encountered in the past
experiences, and “←” indicates the insertion of an element in the memory.

The same generated data fed to the classifier can be used to control forgetting in the generative
model as well. Instead of a generic generative model, suppose we have a conditional generative
model composed of an encoder qγ parametrized by γ and a decoder pξ parametrized by ξ, such that
gΩ = pξ ◦ qγ , Ω = (γ, ξ). The optimal parameters of the generative model can be obtained requiring
that the generated data are similar (L2 loss) to the original ones:

γ∗, ξ∗ = arg min
γ,ξ

‖pξ(qγ(Xi ∪Mx
i )|Yi ∪My

i )−Xi ∪Mx
i ‖22 for i = {1, ..., NE}, (6)

where qγ(Xi) is forced to follow a target distribution, typically N (0, 1).

3 GENERATIVE NEGATIVE REPLAY

As discussed before, generative replay is an appealing strategy for continual learning, but, to exploit it
in complex scenarios with many experiences, we need to overcome the data degradation issue. Since
this problem is not easily addressable on the generator side, we propose to circumvent it by changing
the way the classifier makes use of generated data.

Let us suppose the classifier fΘ can be divided into a feature extractor fφ, parametrized by φ and a
classification head cψ parametrized by ψ, so that fΘ = cψ ◦ fφ, Θ = (φ, ψ). The parameters ψ of
the classification head can be divided into C groups, where C is the number of classes. The groups,
denoted as (ψ1, ψ2, ..., ψC) represents the parameters associated to the connections between the
features extracted by fφ and the output neuron of the corresponding class.

For simplicity, let us assume that the feature extraction weights φ are frozen (after an initial pre-
training) and, across the experiences, we only learn the classification head weights ψ. As explained
in Section section 3.3, this assumption is not necessary and our experiments were carried out by
learning both φ and ψ.

3.1 LEARNING CLASSES IN ISOLATION

Learning in isolation is one of the main causes of catastrophic forgetting, especially in the NC
or NIC scenarios where only a limited number of classes are present in a single experience, and
the parameters of the classification head are learned without negative examples that counteract the
“greediness” of the optimization. As an example, let us consider an NC scenario where only one
class is present in each experience. Suppose that c is the only class in the experience k, then the
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best way to optimize the model is to change the parameters ψc to maximize the output of the output
neuron c for every input and change the rest of ψj , j 6= c to minimize the output for remaining
classes. This still holds if in the experience are present only a few classes, since the model is only
optimized to discriminate between the present classes and has no interest in maintaining the past
acquired knowledge.

3.2 POSITIVE AND NEGATIVE REPLAY

Replay can be used to counteract the learning in isolation problem, however, when the replay data
comes from a generative model, the data quality degradation has a negative impact on the classifier
training. The aforementioned problem is typical of the standard generative replay approach (hereafter
denoted as generative positive replay), where replay data is used by the classifier in the same manner
of the current experience’s data, and therefore the classification head’s weights associated to the
replay classes are optimized based on the replay data.

On the contrary, in the proposed generative negative replay approach the replay patterns are used
to counteract the detrimental effects of the training in isolation but they are not used to modify the
parameters ψ associated with the replay classes. The key idea (validated experimentally) is that the
generated patterns are valid antagonists to mitigate the learning in isolation problem, but their quality
is not enough to improve the knowledge of classes originally learned on real data. It is well known
that one class learning approaches are in general less effective than discriminative learning because
the presence of both positive and negative examples allows to better characterize the classification
boundaries (Hempstalk & Frank, 2008). Therefore, the proposed approach exploits generated data to
constrain the classification boundary and to avoid that the real data in the current experience pull it
too much in their direction.

3.3 TRAINING A CLASSIFIER WITH GENERATIVE NEGATIVE REPLAY

The idea of generative negative replay is quite general can be used in conjunction with different
continual learning classification approaches and scenarios (NI, NC, NIC). To avoid replay data (i.e.
negative examples) alter the knowledge of the already learned classes, the gradient accumulation
can be selectively blocked during the backward pass. The general idea is illustrated in Figure 2.
While the original examples (Xi) normally flows forward and backward throughout the model, the
replay examples (Mx

i ) are passed forward, but, before the backward pass, the loss tensor is masked
at the class level by resetting the gradient components corresponding to the classes inMy

i . The
negative replay implementation illustrated in Figure 2 is discussed in more details in Appendix C
where preliminary tests on Core50 NC are also included.

Hereafter, we provide an alternative implementation embedded in AR1 algorithm (Maltoni &
Lomonaco, 2019), whose update mechanism for the classification head weights allows very simple
and efficient integration of negative replay. AR1 is a flexible continual learning approach that can
achieve state-of-the-art accuracy on complex CL benchmarks. In Appendix E, AR1 is shown to
outperform several recent CL algorithms of the difficult ImageNet-1000 benchmark proposed by
Masana et al. (2020).

AR1 uses different mechanisms to learn the classification head and the feature extractor weights. The
feature extraction weights φ are protected against forgetting: i) through the Synaptic Intelligence
regularization technique (Zenke et al., 2017) or ii) using a replay memory with a small learning rate
(denoted as AR1free in Pellegrini et al. (2020)). The classification head weights ψ are managed by
CWR. CWR is a simple method aimed at addressing the score bias problem produced by imbalance
learning during continual learning (Belouadah et al., 2020). CWR (Maltoni & Lomonaco, 2019)
maintains a copy of the weights of the classification head of the previous experience (ψ′) and at the
start of each experience the classification head is reset and only weights of classes of the current
experience are loaded from ψ′. At the end of the experience, a weight consolidation phase takes
place, where the weights ψ learned in the current experience are consolidated with the weights ψ′.
This is the point where positive and negative replay behaves differently.

In particular, during the consolidation phase, for each parameter group ψc associated to a class c
belonging to the current experience (c ∈ Yk ∪My

k), the mean of all the parameter group µ(ψc) is
calculated, and subtracted to all the parameters in the group, in order to force zero mean: ψc =
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Figure 2: Graphical representation of the negative replay idea. Green output neurons represent
the classes present in the current experience, while red output neurons represent the replay classes.
During forward (a) both the replay data and the original data from the current experience flow through
the network. During backward, the original data flow through all the neurons of the classification
head (b), while the replay data contribution is masked and data only flows through the neurons of
classes belonging to the current experience (c).

ψc − µ(ψc). This prevents class bias problems due to the different magnitudes of the weights. Then,
there are three possibilities, based on c:

1. c is a new class never seen before (c ∈ Yk ∧ c /∈
⋃k−1
i=1 Yi): in this case ψc is maintained as

is.
2. c is a class seen before (c ∈ Yk ∧ c ∈

⋃k−1
i=1 Yi): the consolidation step is applied, so

ψc =
ψ′c·wpastc+ψc

wpastc+1 where wpastc is a parameter that balances the contribution of the past
w.r.t. the present, calculated as follows:

wpastc =

√
pastc

currentc
, (7)

where pastc is the number of data points of class c encountered in past experiences, while
currentc is the number of data points of class c present in the current experience.

3. c is not in the current experience but is a replay example (c /∈ Yk ∧ c ∈My
k):

• in case of positive replay apply consolidation (step 2).
• in case of negative replay ψc is substituted with ψ′c (no contribution to the parameters
ψc from replay examples).

The pseudo-code of the above weigh consolidation algorithms is reported in Appendix B. It is worth
noting, that in the proposed embedding of negative replay in AR1, the replay pattern can alter the
feature extraction weights since CWR weight consolidation only “protects” the classification head
However, in our experiments, we found that a more complex embedding of negative replay in AR1
where we block the gradient propagation for negative patterns throughout the feature extraction layers
performs very similarly, and therefore we opted for simplicity.

4 EXPERIMENTS AND RESULTS

In this section, we describe the experimental setup used to validate the proposed negative replay. We
focus on difficult continual learning scenarios, where data is high-dimensional, non-i.i.d. and the
number of experiences is very large. Negative replay is compared with alternative strategies (e.g.
positive replay) and the role of quality of generated data is investigated by also using, as negative
replay patterns, real and random data.

4.1 EXPERIMENTAL SETUP

Datasets We performed our experiments on the CORe50 dataset (Lomonaco & Maltoni, 2017) and
ImageNet-1000 dataset (Deng et al., 2009). CORe50 dataset was specifically collected for continual
learning (NI, NC, and NIC scenarios) and is composed of small video sessions (about 300 frames)
of 50 objects taken from the point of view of a person that handles them in the hand. Every class
has 11 video sessions (a total of about 3,300 images) with different backgrounds and illuminations.
Eight video sessions for each class are used for training, and 3 for testing. Images have size 128×128
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pixels. ImageNet is composed of 1,000 classes with about 1,000 patterns per class for training and
100,000 images for testing. All images are resized to 224×224 pixels.

Classifier architecture AR1 algorithm was used with Synaptic Intelligence (SI) regularization
when trained without replay, and without protection on the feature extraction weights (AR1free) in
case of positive and negative replay. In the experiments with CORe50 dataset we follow Maltoni
& Lomonaco (2019) and Lomonaco et al. (2020) by employing a MobileNetV1 network (Howard
et al., 2017). As in Pellegrini et al. (2020) and van de Ven et al. (2020), we opted for latent replay,
that is replaying latent activations instead of input data. As described in Pellegrini et al. (2020), the
choice of the latent replay layer is related to a tradeoff between accuracy and efficiency. For CORe50
experiments, as in Pellegrini et al. (2020), we used the conv5 4 layer as latent replay layer, and the
classifier was pretrained on ImageNet-1000. We also substituted all the batch normalization layers of
the network with batch renormalization (Ioffe, 2017). For ImageNet-1000 we use a ResNet-18 (He
et al., 2016) architecture. Following the benchmark proposed by Masana et al. (2020) the model was
not pretrained. To maintain compatibility with the experiments on CORe50, even on ImageNet-1000
we use latent replay, setting the replay layer on the fourth residual block of the network (after
conv4 x using He et al. (2016) nomenclature).

Generative model architecture For the choice of a generative model we initially focused on two
state-of-the-art approaches whose implementations are open source (van de Ven et al., 2020; Shin
et al., 2017; Ayub & Wagner, 2021). However, since they were designed to work in simpler settings
(with a lower data dimensionality and a smaller number of experiences), we were not able to port
and scale them to our complex setups. Therefore, we implemented a generative model by trying
to combine the most promising techniques and ideas from different sources and control its overall
memory/computation complexity. In particular, taking inspiration from van de Ven et al. (2020)
we use a Variational Autoencoder (VAE) Kingma & Welling (2014) model, but unlike van de Ven
et al. (2020) we opted for a conditional VAE (cVAE) configuration Sohn et al. (2015). Moreover,
we partially blend the generator (encoder) with the classifier model: both the networks share the
same feature extractor fφ. Finally, instead of generating raw data, we generate activations at an
intermediate “latent” level as suggested by van de Ven et al. (2020). A detailed discussion on the
architecture of the generator is provided in Appendix D, including a pseudo-code that highlights the
details of the interleaved training of the generator and the classifier.

4.2 EXPERIMENTS ON THE NC SCENARIO

The first round of experiments has been performed on the NC scenario using CORe50 and ImageNet-
1000. For CORe50 the benchmark is composed of 9 experiences: the first one contains 10 classes
while the following contains five classes each. We used a replay memory of 1,500 patterns, and
(for generative replay) we inserted in each minibatch, of size 128, 14 replay patterns, and 114
patterns from the current experience. We train both the classifier and the generator for 4 epochs for
each experience. Hyper-parameters of the classifier and generator are reported in Appendix F and
Appendix G respectively.

For ImageNet-1000 the benchmark follows the one proposed by Masana et al. (2020): the dataset is
divided into 25 experiences of 40 classes each. We used a replay memory of 20,000 patterns, and
(for generative replay) we inserted in each minibatch, of size 128, 36 replay patterns, and 92 patterns
from the current experience. We did not expect negative replay to perform well in this setup, because
each experience already contains 40 classes and, therefore, the learning-in-isolation problem is here
marginal. Nevertheless, we were interested in understanding if, in this setup, negative replay hurts
the learning process or still provides minor benefits.

The results are shown in Figure 3 and Table 1. In CORe50 the baseline with no replay (using the
AR1 algorithm) reaches a final accuracy of about 60% while using replay raises the accuracy to
more than 70% (Positive Replay Original Data - PR-OD). These were expected to be the lower and
upper bounds of this experiment, respectively. However, because of the data degradation problem,
performing positive replay with generated data (Positive Replay Generated Data - PR-GD) performed
significantly worse than the case with no replay. Using replay in a negative manner with generated
data, as proposed in this work (NR-GD), only slightly decreases the final accuracy with respect to the
upper bound PR-OD.
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Figure 3: Overall accuracy on CORe50 NC scenario, using the whole test set (even at intermediate
experiences) as defined in the CORe50 protocol (Lomonaco & Maltoni, 2017) (left), and on ImageNet-
1000 using a growing test set as defined by Masana et al. (2020) (right). For a direct comparison of
the two benchmarks, a plot of the experiments on CORe50 NC using a growing test set is included in
Appendix H. Every experiment is averaged over 3 runs using different seeds and class order. The
standard deviation is reported in light colors. Better viewed on a computer monitor.

Method CORe50 ImageNet-1000
No Replay 41.68± 0.62 31.91± 0.17

PR-OD (upper bound) 47.02± 0.45 38.02± 0.08
PR-GD 34.05± 0.29 18.29± 0.07
NR-GD 44.63± 0.77 32.74± 0.17

Table 1: Average accuracy on all the experiences for the CORe50 and ImageNet-1000 NC scenarios.

For ImageNet-1000, due to the complexity of the experiment and the fact that the network is fully
trained only during the first experience (blocked after conv4 x in the following experiences) the final
accuracy are quite similar for all the methods (except PR-GD that performed far worse). However, in
the first 10 experiences some differences can be appreciated: see the insect view in Figure 3-right.
The impact of the generated data quality on negative replay is more evident in Table 1: using negative
replay with generated data (in this case highly degraded) improve the average accuracy (calculated
as the mean of the accuracy after each experience) of more than 24 points and the final accuracy of
more than 10 points w.r.t. using replay data in a positive manner. Furthermore, even if in this scenario
the advantage of negative generative replay is little with respect to the no replay case, we note that
negative replay is not hurting the training process even in scenarios where learning in isolation is not
an issue.

4.3 EXPERIMENTS ON THE NIC BENCHMARK

CORe50 NIC-391 protocol is composed of 391 learning experiences, each containing examples of
a single class (300 frames of a short video). This scenario is particularly challenging and prone
to learn-in isolation issues, hence we may expect the role of replay to be more important here. In
this scenario, we used a replay memory of only 300 patterns. The minibatch size is 128, and when
generative replay is employed, we generate 64 patterns for every mini-batch (plus 64 from the
current experience). Hyper-parameters of the classifier and generator are reported in Appendix F and
Appendix G respectively.

The results are shown in Figure 4 and they are quite in line with the previous experiment, but here the
accuracy gaps grow and the benefit of replay is more evident. The proposed negative replay with
generated data (NR-GD) performs quite well, about 10 points better than with no replay and just less
than 5 points worse than positive replay with real data, the upper bound. Using generated data in
a positive manner (PR-GD) is here even worse than in the NC case, because the data degradation
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Figure 4: Overall accuracy on CORe50 NIC391 scenario, using the whole test set as defined in the
CORe50 protocol (Lomonaco & Maltoni, 2017). Every experiment is averaged over 3 runs using
different seeds and class order. The standard deviation is reported in light colors. better viewed on a
computer monitor.

is amplified with so many iterations: PR-GD is losing 30 points w.r.t. not using replay at all, and
performs about 40 points worse than using the same replay data with the proposed generative negative
replay approach.

4.4 ABLATION STUDY

The effect of generated data quality on negative replay is investigated by performing two further
experiments: NR-OD uses original data (max. quality) for negative replay, while NR-RD uses
randomly generated replay data, obtained by uniform random sampling in the latent replay layer
and assigning to each data point a random class label. Since in our experiments we replay hidden
features, in order to produce reasonable replay data we first calculated the range of latent activations
on a sample dataset, and then we set our random generator to produce values in the range: 0 (since
we use ReLU activation functions) - 90th percentile of the real activation values. We used CORe50
NC and CORe50 NIC in these experiments.

The results are reported in Table 2. Surprisingly, even with random replay data (that we assume
to be the worst degradation possible), negative replay is still able to perform better than no replay.
Furthermore, the difference between original and generated data is minimal, thus proving that negative
replay is tolerant in terms of data quality. Note that in both the experiment using random data with
negative replay performs way better than using generated data in a classical (positive) manner (PR-GD
in previous figures). Comparisons in all the benchmarks of all the experiments (positive and negative
replay with original, generated, and random data) are reported in Appendix H.

Method CORe50 NC CORe50 NIC
No Replay 60.99± 0.49 52.71± 1.02

NR-OG 68.60± 1.38 67.93± 0.31
NR-GD 68.87± 0.88 61.46± 0.67
NR-RD 64.05± 0.71 58.85± 0.58

Table 2: Final accuracy on CORe50 NC and NIC using original (NR-OD), generated (NR-GD), and
random (NR-RD) data with negative replay. The results with no replay are reported as references.
Every experiment is averaged over 3 runs using different seeds and class order.
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5 RELATED WORKS

The use of negative examples to learn more discriminative class boundaries can be traced back to
one-class support vector machines (SVM) (Chen et al., 2001), where the data points belonging to the
other classes in the training set are used as negative examples. Malisiewicz et al. (2011) proposed
using an ensemble of one-class SVMs instead of a single multi-class classifier. This approach operates
in a scenario which is similar to the experiments on the CORe50 NIC benchmark, whose experiences
contains only one class and all the replay data points (possibly belonging to many past encountered
classes) are used as negative examples. The use of negative examples can also be seen as a kind of
contrastive learning (Khosla et al., 2020), where negative examples are used to cluster embeddings
of data points of the same class while moving away embeddings of data from different classes.

Masking parts of a neural network has been experimented before in continual learning. Wortsman et al.
(2020) masked the weights of a randomly initialized neural network in order to find a sub-network
that yields good performance for a particular task. The loss masking proposed for standalone negative
replay introduced in section 3.3 and Appendix C (without using any continual learning strategy) is
similar to the masking method proposed by Masana et al. (2021). In that work, each feature can
be used normally, masked (not used), or used only during forward (no modification of the related
parameters during network update).

Generative replay for continual learning was first introduced by Shin et al. (2017) who proposed
Deep Generative Replay (DGR), using a generative adversarial network (GAN) (Goodfellow et al.,
2014). Many works on generative replay (Wu et al., 2018; Ostapenko et al., 2019) use GANs
as generative models, but GANs are usually slow and complex to train, even in non-incremental
scenarios. Ayub & Wagner (2020) proposed to use autoencoders, however that approach requires
maintaining a generative model for every experience, making it not scalable to long incremental
sequences. Kemker & Kanan (2018) and van de Ven et al. (2020) proposed continual learning
framework inspired to biological brain functionalities and memories. In particular, (van de Ven et al.,
2020) showed significant results in continual learning scenarios with dozens of experiences. However,
this approach was not tested on high-dimensional data and in much bigger scenarios.

6 CONCLUSION

In this paper, we addressed the problem of continual learning with generative replay, focusing on
the obstacles of generative replay in complex scenarios. Our experience confirms that incrementally
training a generator over a long number of experiences with high dimensional data is a very challeng-
ing problem and remains an open issue. Therefore, instead of trying to design a better generative
model, we focused on classifier training. We found that even inaccurate replay data can be useful
to contrast the learning in isolation problem, especially in scenarios where only a limited number
of classes is present in each experience. We called this approach negative replay since the replay
data is used as negative examples when the model is trained with data from the current experience.
We validated negative replay using complex continual learning scenarios, with high dimensional
data and hundreds of incremental experiences. The results show that using negative replay largely
improves classification performances w.r.t. using the generated data in a traditional fashion. We also
investigated the impact of generated data quality, by considering the two extremes of using original
data and random data for negative replay, and, surprisingly, we found that negative replay is effective
even using random replay data.

Since negative replay can be easily applied to other continual learning strategies (besides AR1), we
believe that many other CL approaches may benefit from our proposal, especially when complex
scenarios are employed. Moreover, negative replay could be used in the pre-training phase of large
models, possibly making them more robust to noise or degraded data. Finally, is worth noting that
dealing with imprecise replay data can be viewed as a biological feature since human’s memory is far
from being accurate, but is thought to be essential to consolidate learning (van de Ven et al., 2020),
therefore investigating the role of negative replay-like mechanisms in biological learning could be an
interesting research direction for computer scientists and neuroscientists.
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REPRODUCIBILITY STATEMENT

The source code of the project, alongside configuration files for the reproducibility of experiments, is
included in the additional materials. A public version of the code, based on the Avalanche framework
(Lomonaco et al., 2021) will be released upon publication. The datasets used are publicly available
and can be downloaded from the respective official websites1,2. Both the datasets are preprocessed
normalizing them using statistics derived from ImageNet-1000. Images from ImageNet-1000 were
randomly cropped and resized to the final dimension of 224× 224, then horizontally flipped with a
probability of 50%.
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A NI, NC, AND NIC DEFINITIONS

Given the definitions of section 2, the NI (New Instances), NC (New Classes), and NIC (New
Instances and Classes) continual learning scenarios can be defined based on the labels Yk contained
in the experiences (k ∈ {1, ..., NE} with NE the total number of experiences) as follows:

New instances (NI) also known as domain-incremental learning, where all the labels are known
from the first experience, and the successive experiences, only new instances of the same
classes are included. Formally, we could define the NI scenario as:

Y1 ∩ Yk = Yk for k = {1, ..., NE}, (8)
meaning that every possible label of the entire dataset must be present in the first experience.

New classes (NC) also known as class-incremental learning, where each experience includes data of
classes not present in any other experience. Formally, we can define the NC scenario as:

Yk ∩
k−1⋃
i=1

Yi = ∅ for k = {2, ..., NE}. (9)

New instances and classes (NIC) where a new experience can contain already seen classes, new
classes, or a mix of the two. This is the most natural scenario since in the real world an agent
may sense both known and unknown objects. Formally the NIC scenario can be defined as:

∃k : Yk ∩
k−1⋃
i=1

Yi 6= ∅ and ∃j : Y1 ∩ Yj 6= Yj . (10)

Meaning that there is at least one experience that contains classes already seen in the past
(left part) and at least one experience that contains classes not present in the first experience
(right part).

B PSEUDO-CODE OF THE WEIGHT CONSOLIDATION PHASE

Algorithm 1 Weight consolidation

Require: ψ, ψ′, Ye, My
e

1: for each class c ∈ Ye ∪My
e do

2: ψc = ψc − µ(ψc)

3: if c ∈ Ye ∧ c ∈
⋃e−1
i=1 Yi then

4: ψc =
ψ′c·wpastc+ψc

wpastc+1

5: end if
6: if c /∈ Ye ∧ c ∈My

e then
7: if positive replay then
8: ψc =

ψ′c·wpastc+ψc

wpastc+1

9: end if
10: if negative replay then
11: ψc = ψ′c

12: end if
13: end if
14: end for
15: ψ′ = ψ
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C STANDALONE NEGATIVE REPLAY IMPLEMENTATION

To validate the proposed negative replay approach, we implemented a version of negative replay that
does not depend on any specific continual learning strategy. As discussed in the main text, the main
idea behind negative replay is to avoid replay data altering the knowledge of the already learned
classes. In other words, the replay data cannot change the weights of the already learned classes.

This behavior can be obtained by selectively blocking the gradient accumulation during the backward
pass. The original examples (Xi) flow normally through the network, accumulating the gradient in
all the feature extractor weights (ψ). On the other hand, the replay data points (Mx

i ) participate in
the loss calculation, but their backward contribution is limited to the weights associated with the
output neurons of the original data classes. The loss tensor associated to replay data is thus masked
at class level, resetting the gradient contribution to zero for all the classes inMy

i . The procedure is
graphically explained in Figure 5.

Note that the proposed standalone negative replay implementation does not provide any specific
mechanism to counteract catastrophic forgetting problem, and since it applies negative replay on top
of the naive CL strategy we denote the resulting strategy as naive negative replay.

In line with the experiments included in the main text, we compared naive negative replay (NR-GD)
against naive with no replay (lower bound), naive with positive generative replay (PR-GD), and naive
with positive replay with original data (PR-OD, upper bound). We used the CORe50 NC benchmark
to perform this experiment.

The results are shown in Figure 6. As expected, the overall accuracy with naive is lower than with
AR1, but the relative ranking of the different replay approaches in maintained. In particular, negative
replay performs better w.r.t. no replay (naive) or using the generated data in a positive manner (naive
PR-GD). In this scenario the gap between negative replay with generated data and positive replay
with real data is larger than when using AR1, because replay is the only methods to contrast forgetting
and the replay data quality is more relevant.

Feature extractor

Loss original data

(a)

Feature extractor

Loss replay data

0 1 1 0 0

(b)

Figure 5: Graphical representation of the naive negative replay. The output neurons are depicted in
green for neurons associated with original data, and in red for output neurons associated to replay
data. The loss vector of original data is backpropagated through all the weights of the network (yellow
arrows), so the gradient is accumulated by every weight. On the other hand, the loss vector of replay
data is masked, and the loss is only backpropagated through the output neurons corresponding to the
original classes. Thus, the gradient is accumulated only on the classification head weights associated
with the classes present in the current experience.

D DETAILS OF THE GENERATIVE MODEL IMPLEMENTATION

We designed our generative model using different insights from previous works in the fields, bringing
together different ideas and proposals. We extensively tested the generative model alone to find the
better combination of building blocks that yield the best performance. Our design choices have been
also influenced by the computation complexity since our aim is to develop a (near) real-time system.
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Figure 6: Overall accuracy on CORe50 NC scenario of the naive negative replay, using the whole test
set as defined in the CORe50 protocol Lomonaco & Maltoni (2017). Every experiment is averaged
over 3 runs using different seeds and class order. The standard deviation is reported in light colors.
Better viewed on a computer monitor.

This is a particularly hard constraint since many incremental generative replay methods are based on
generative adversarial networks (GANs) (Goodfellow et al., 2014), which notably have long training
phases and often suffer from instabilities due to the adversarial nature of the training procedure.

As discussed in the main text, we took inspiration from some state-of-the-art methods, trying to
combine promising techniques and ideas from different sources. Taking inspiration from van de
Ven et al. (2020) we use a Variational Autoencoder (VAE) Kingma & Welling (2014) model, but
unlike van de Ven et al. (2020) we opted for a conditional VAE (cVAE) configuration Sohn et al.
(2015). So, while in van de Ven et al. (2020) a mixture of Gaussian is used to sample latent vectors
and soft labels are provided to the classifier itself, in our approach the latent vector is sampled from
the normal distribution N (0, 1) and conditioned to the desired class. This results in a faster and less
complicated sampling of a replay pattern. Moreover, as in van de Ven et al. (2020) we partially blend
the encoder part of the generative model with the classifier model: in fact both the network share the
same feature extractor fφ. For the classifier, this branch is connected with the classification head cψ ,
while, for the generator, it is connected with some other layers that transform the feature into a latent
vector z. The bifurcation is located in the latent replay layer. The resulting on-the-loop training of
the generative model is consistent with brain structures and neuroscience’s findings (van de Ven et al.,
2020).

Since we use a cVAE, the objective for the generative model can be expressed as:

γ∗, ξ∗ = arg min
γ,ξ

[−Ez∼qγ(z|xki )[log pξ(z|yki )] +DKL(qγ(z|xki )||p(z))], (11)

where (xki , y
k
i ) are the data point and the label of the i-th pattern of the k-th experience, and the DKL

term represents the Kullback-Leibler divergence between the latent space distribution and the target
distribution p(z) = N (0, 1).

The two terms of Equation 11 determine two losses:

Lrecon = ‖xki − pξ(qγ(xki ))‖22 (12)

LKL = DKL(qγ(xki )||N (0, 1)) (13)

We also add another loss term, denoted as classification loss, which is similar to the classifier loss
adopted in the AC-GAN model (Odena et al., 2017). The rationale is to guide the generative model to
produce data that are not only visually similar to the original ones (L2 loss) but that is also classified
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"Cat"

X

+

Predicted
label

Figure 7: A visual schema of the generative model training. Losses are represented by dashed arrows.
The shared branch of the classifier and the encoder are depicted using the same color (yellow). The
encoder and the classifier’s additional layers are drawn in red and blue respectively.

by the current classifier in the same way. Hence, we use fΘ as “auxiliary” classifier, adding the
following term to the generator’s loss:

Lclass = − log fΘ(yki |pξ(qγ(xki )|yki )), (14)

which represents a typical negative log-likelihood classification loss. Note that the parameters Θ of
the classifier are not trained in this phase, since only the generative model is updated. Overall, the
generative model is trained using the following loss function:

LGM = Lrecon + βLKL + ηLclass, (15)

where β is a hyper-parameter inspired to the β-VAE framework (Higgins et al., 2017), and η is a
hyper-parameters that weights the importance of the classification loss.

A visual representation of generative model training is shown in Figure 7.

To keep notation light, in the equations above the replay memory is not used, but it is trivial to
include patterns from the replay memory, since there is no distinction in the generative model training
procedure between current and replay data.

Note that the utilization of raw images is not mandatory for the method, and any intermediate (or latent
representation) can be used, making our proposal compatible with latent replay methods (Pellegrini
et al., 2020; van de Ven et al., 2020). In fact, in the case of latent replay, the data points xki in the
above equations can be simply substituted with fφ′(xki ), where fφ′ is the set of feature extraction
layers before the latent replay layer.

The blending of a part of the generative model into the classifier poses some difficulties in the training,
especially regarding the balancing of the two models and how to train each of them without destructive
inference on the other. After some initial experiments, we opted for blocking model parameters when
the other model is trained. Detailed pseudo-code for the proposed negative generative replay strategy
is provided in Algorithm 2.

16



Under review as a conference paper at ICLR 2022

Algorithm 2 Generative negative replay

1: fΘ ← RANDINIT or PRETRAINED
2: gΩ ← RANDINIT or PRETRAINED
3: Mx ← ∅, My ← ∅
4: R = memory size
5: for each k from 1 tp NE do
6: if k > 1 then
7: SAMPLE {z1, ..., zR} ∼ N (0, 1)

8: SAMPLE {c1, ..., cR} ∼
⋃k−1
t=1 Yt

9: BLOCK generator parameters (γ, ξ)
10: POPULATE Mx

k = pξ(zj |cj)), j = {1, ..., R}
11: POPULATE My

k = {c1, ..., cR}
12: end if
13: # classifier training
14: ψ′ = ψ
15: BLOCK generator parameters (γ, ξ)
16: UNLOCK classifier parameters (φ, ψ)
17: φ∗, ψ∗ = OPTIMIZE(fΘ,Xk ∪Mx

k,Yk ∪M
y
k) using Equation 4

18: WEIGHTCONSOLIDATION(ψ,ψ′,Yk,My
k) (see Algorithm 1)

19: # generator training
20: BLOCK classifier parameters (φ, ψ)
21: UNLOCK generator parameters (γ, ξ)
22: γ∗, ξ∗ = OPTIMIZE(gΩ,Xk ∪Mx

k,Yk ∪M
y
k) using Equation 15

23: end for

E VALIDATION OF AR1 ON IMAGENET-1000

To validate the chosen AR1 algorithm we performed a test on a competitive benchmark on ImageNet-
1000, following the NC benchmark proposed by Masana et al. (2020), which is composed of 25
experiences, each of them containing 40 classes. The benchmark is particularly challenging due to a
large number of classes (1,000), the incremental nature of the task (with 25 experiences), and the
data dimensionality of 224× 224 (as with ImageNet protocol).

With this experiment we want to assess the performance of AR1 in a complex continual learning
scenario, validating the choice of AR1 as the baseline algorithm on which the tests on negative replay
are conducted. In this experiment, we tested AR1 against both regularization-based methods (Dhar
et al., 2019; Kirkpatrick et al., 2017; Li & Hoiem, 2016) and replay-based approaches (Belouadah &
Popescu, 2019; Castro et al., 2018; Chaudhry et al., 2018; Hou et al., 2019; Rebuffi et al., 2017; Wu
et al., 2019). We use the same classifier (ResNet-18 (He et al., 2016)) and the same memory size for
all the tested methods (20,000 patterns, 20 per class); for the regularization-based approaches, the
replay is added as an additional mechanism.

For AR1, we trained the model with an SGD optimizer. For the first experience, we used an aggressive
learning rate of 0.1 with momentum 0.9 and weight decay of 10−4. We multiply the initial learning
rate by 0.1 every 15 epochs. We trained the model for a total of 45 epochs, using a batch size of
128. For all the subsequent experiences we used SGD with a learning rate of 5 · 10−3 for the feature
extractor’s parameters φ and 5 · 10−2 for the classifier’s parameters ψ. We trained the model for 32
epochs for each experience, employing a learning rate scheduler that decreases the learning rate as the
number of experiences progresses. This was done to protect old knowledge against new knowledge
when the former is more abundant than the latter. As in the first experience, the batch size was set
to 128, composed of 92 patterns from the current experience and 36 randomly sampled (without
replacement) from the replay memory.

The results are shown in Table 3. Replay-based methods exhibit the best performance, with iCaRL and
BiC exceeding a final accuracy of 30%. AR1 outperforms all the baselines (33.1%), demonstrating
the validity of this approach also in difficult continual learning benchmarks. However, considering
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Method Final Accuracy
Fine Tuning (Naive) 27.4

EWC-E (Kirkpatrick et al., 2017) 28.4
RWalk (Chaudhry et al., 2018) 24.9

LwM (Dhar et al., 2019) 17.7
LwF (Li & Hoiem, 2016) 19.8

iCaRL (Rebuffi et al., 2017) 30.2
EEIL (Castro et al., 2018) 25.1
LUCIR (Hou et al., 2019) 20.1

IL2M (Belouadah & Popescu, 2019) 29.7
BiC (Wu et al., 2019) 32.4

AR1 (Maltoni & Lomonaco, 2019) 33.1

Table 3: Final accuracy on ImageNet-1000 following the benchmark of Masana et al. (2020) with
25 experiences composed of 40 classes each. For each method, a replay memory of 20,000 patterns
is used (20 per class at the end of training). Results for other methods reported from Masana et al.
(2020).

that top-1 ImageNet accuracy for a ResNet-18 when trained on the entire dataset is 69.76%3, even
for the best methods the accuracy gap in the continual learning setup is very large. This suggests
that continual learning, especially in complex scenarios with a large number of classes and high
dimensional data, is far to be solved, and further research should be devoted to this field.

3Accuracy taken from the torchvision official page: https://pytorch.org/vision/stable/
models.html
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F CLASSIFIER HYPER-PARAMETERS

F.1 CORE50 NC

Hyper-parameter Value

Common

optimizer SGD
momentum 0.9

weight decay 10−4

minibatch size 128
SI (Synaptic Intelligence) λ 8 · 105

SI Fisher matrix clip value 10−3

SI Fisher matrix multiplier 10−6

1st experience
nr. epochs 4

lr φ (feature extractor) 3 · 10−4

lr ψ (classification head) 3 · 10−4

Following experiences
nr. epochs 4

lr φ (feature extractor) 3 · 10−4

lr ψ (classification head) 3 · 10−4

Table 4: Hyper-parameters of the model trained with no replay. Common hyper-parameters are
the same for each experience, 1st experience hyper-parameters are used in the first experience, the
following experience hyper-parameters are used in all the following experiences.

Hyper-parameter Value

Common

optimizer SGD
momentum 0.9

weight decay 10−4

minibatch size 128
SI (Synaptic Intelligence) disabled

1st experience
nr. epochs 4

lr φ (feature extractor) 3 · 10−2

lr ψ (classification head) 3 · 10−2

Following experiences

nr. epochs 4
lr φ (feature extractor) 5 · 10−5

lr ψ (classification head) 5 · 10−4

memory size 1,500
replay pattern in the minibatch 14

latent replay layer conv5 4

Table 5: Hyper-parameters of the model trained with replay (generative replay, random data, and real
data). Common hyper-parameters are the same for each experience, 1st experience hyper-parameters
are used in the first experience, the following experience hyper-parameters are used in all the following
experiences.
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F.2 IMAGENET-1000 NC

Hyper-parameter Value

Common

optimizer SGD
momentum 0.9

weight decay 10−4

minibatch size 128
SI (Synaptic Intelligence) disabled

1st experience

nr. epochs 45
lr φ (feature extractor) 10−1

lr ψ (classification head) 10−1

lr scheduler lr · 0.1 every 15 epochs

Following experiences

nr. epochs 32
lr φ (feature extractor) 5 · 10−3

lr ψ (classification head) 5 · 10−2

lr scheduler see Equation 16

Table 6: Hyper-parameters of the model trained with no replay. Common hyper-parameters are
the same for each experience, 1st experience hyper-parameters are used in the first experience, the
following experience hyper-parameters are used in all the following experiences.

Hyper-parameter Value

Common

optimizer SGD
momentum 0.9

weight decay 10−4

minibatch size 128
SI (Synaptic Intelligence) disabled

1st experience

nr. epochs 45
lr φ (feature extractor) 10−1

lr ψ (classification head) 10−1

lr scheduler lr · 0.1 every 15 epochs

Following experiences

nr. epochs 32
lr φ (feature extractor) 5 · 10−3

lr ψ (classification head) 5 · 10−2

lr scheduler see Equation 16
memory size 20,000

replay pattern in the minibatch 36
latent replay layer layer4 (4th resnet block)

Table 7: Hyper-parameters of the model trained with replay (generative replay and real data).
Common hyper-parameters are the same for each experience, 1st experience hyper-parameters are
used in the first experience, the following experience hyper-parameters are used in all the following
experiences.

Due to the complexity of the ImageNet-1000 scenario, we found it useful to use a learning rate
scheduler that decreases the learning rate as the number of experiences progresses. The scheduler can
be formalized as:

lr = lrinit ·
(
− 0.9

1 + e−1.5i+8
+ 1

)
, (16)

where i indicates the index of the current experience.
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F.3 CORE50 NIC

Hyper-parameter Value

Common

optimizer SGD
momentum 0.9

weight decay 10−4

minibatch size 128
SI (Synaptic Intelligence) λ 2.3 · 106

SI Fisher matrix clip value 10−3

SI Fisher matrix multiplier 2 · 10−5

1st experience
nr. epochs 4

lr φ (feature extractor) 10−3

lr ψ (classification head) 10−3

Following experiences
nr. epochs 4

lr φ (feature extractor) 10−4

lr ψ (classification head) 10−3

Table 8: Hyper-parameters of the model trained with no replay. Common hyper-parameters are
the same for each experience, 1st experience hyper-parameters are used in the first experience, the
following experience hyper-parameters are used in all the following experiences.

Hyper-parameter Value

Common

optimizer SGD
momentum 0.9

weight decay 10−4

minibatch size 128
SI (Synaptic Intelligence) disabled

1st experience
nr. epochs 4

lr φ (feature extractor) 10−3

lr ψ (classification head) 10−3

Following experiences

nr. epochs 4
lr φ (feature extractor) 10−4

lr ψ (classification head) 10−3

memory size 300 (N/A for random data)
replay pattern in the minibatch 64 (21 for random data)

latent replay layer conv5 4

Table 9: Hyper-parameters of the model trained with replay (generative replay, random data, and real
data). Common hyper-parameters are the same for each experience, 1st experience hyper-parameters
are used in the first experience, the following experience hyper-parameters are used in all the following
experiences.

F.4 ON THE AMOUNT OF REPLAY DATA IN THE MINIBATCH

The amount of replay data included in each minibatch has a direct impact on the performance of the
continual learning strategy adopted. We observed that the optimal value changes with the quality
of the replay data, and that a large amount of degraded replay data in each minibatch may decrease
disruptively the performance of the model.

We compared different original/replay proportions, finding that when using real replay data, the
model is not much sensitive to the amount of replay data in the minibatch and different proportions
work well: we empirically noticed a peak of performance around a 50-50 split. Using generated
(degraded) or random data is quite different. We noticed that if the data used is highly degraded the
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maximum gain in performance is when 10-30% replay data are added. Exceeding 30% usually leads
to a degradation of performance, and if the amount of replay data is still higher (depending on the
replay data quality) the accuracy of the model can be lower than not using replay data.

G GENERATIVE MODEL HYPER-PARAMETERS

G.1 CORE50 NC

Hyper-parameter Value

Common

optimizer Adam
betas 0.9 - 0.999

weight decay 0
minibatch size 128

latent space dim. 100
β 0.1
η 0.01
lr 2 · 10−3

lr scheduler None
nr. epochs 4

Following experiences replay patterns in the minibatch 27

Table 10: Hyper-parameters of the generative model trained on CORe50 NC. Common hyper-
parameters are the same for each experience, while following experience hyper-parameters are used
in all the experiences except the first one.

G.2 IMAGENET-1000 NC

Hyper-parameter Value

Common

optimizer SGD
momentum 0

weight decay 0
minibatch size 128

latent space dim. 100
β 0.25
η 0.01
lr 1

lr scheduler see Equation 16
nr. epochs 32

Following experiences replay patterns in the minibatch 36

Table 11: Hyper-parameters of the generative model trained on ImageNet-1000 NC. Common hyper-
parameters are the same for each experience, while following experience hyper-parameters are used
in all the experiences except the first one.
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G.3 CORE50 NIC

Hyper-parameter Value

Common

optimizer Adam
betas 0.9 - 0.999

weight decay 0
minibatch size 128

latent space dim. 100
β 0.1
η 0.01
lr 2 · 10−3

lr scheduler None
nr. epochs 4

Following experiences replay patterns in the minibatch 64

Table 12: Hyper-parameters of the generative model trained on CORe50 NIC. Common hyper-
parameters are the same for each experience, while following experience hyper-parameters are used
in all the experiences except the first one.
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Figure 8: Overall accuracy on the CORe50 NC scenario, using a growing test set. After each
experience, the model was evaluated using a test composed of only data belonging to the classes seen
so far, similar to the benchmark proposed by Masana et al. (2020). Every experiment is averaged
over 3 runs, with different seeds and class order. The standard deviation is reported in light colors.
Better viewed if zoomed on a computer monitor.

23



Under review as a conference paper at ICLR 2022

0 1 2 3 4 5 6 7 8
Experience

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

No replay
PR-OD (Positive Replay Original Data)
PR-GD (Positive Replay Generated Data)

NR-GD (Negative Replay Generated Data)
NR-OD (Negative Replay Original Data)
NR-RD (Negative Replay Random Data)

Figure 9: Overall accuracy on the CORe50 NC scenario for all the experiments performed in this
work (included random data and negative replay with original data). After each experience, the model
was evaluated using the cumulative test set as proposed by Lomonaco & Maltoni (2017). Every
experiment is averaged over 3 runs, with different seeds and class order. The standard deviation is
reported in light colors. better viewed if zoomed on a computer monitor.
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Figure 10: Overall accuracy on the ImageNet-1000 NC scenario for all the experiments performed in
this work (included random data and negative replay with original data). After each experience, the
model was evaluated using the whole test set as proposed by Masana et al. (2020). Every experiment
is averaged over 3 runs, with different seeds and class order. The standard deviation is reported in
light colors. better viewed if zoomed on a computer monitor.
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Figure 11: Overall accuracy on the CORe50 NIC scenario for all the experiments performed in this
work (included random data and negative replay with original data). After each experience, the model
was evaluated using the cumulative test set as proposed by Lomonaco & Maltoni (2017). Every
experiment is averaged over 3 runs, with different seeds and class order. The standard deviation is
reported in light colors. better viewed if zoomed on a computer monitor.
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