Under review as a conference paper at ICLR 2022

GENERATIVE NEGATIVE REPLAY FOR CONTINUAL
LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Learning continually is a key aspect of intelligence and a necessary ability to
solve many real-world problems. One of the most effective strategies to control
catastrophic forgetting, the Achilles’ heel of continual learning, is storing part of
the old data and replay them interleaved with new experiences (also known as the
replay approach). Generative replay, that is using generative models to provide
replay patterns on demand, is particularly intriguing, however, it was shown to
be effective mainly under simplified assumptions, such as simple scenarios and
low-dimensional benchmarks. In this paper, we show that, while the generated
data are usually not able to improve the classification accuracy for the old classes,
they can be effective as negative examples (or antagonists) to learn the new classes,
especially when the learning experiences are small and contain examples of just one
or few classes. The proposed approach is validated on complex class-incremental
and data-incremental continual learning scenarios (CORe50 and ImageNet-1000)
composed of high-dimensional data and a large number of training experiences: a
setup where existing generative replay approaches usually fail.

1 INTRODUCTION

The majority of neural networks training approaches assume that is feasible to build a set of indepen-
dent and identically distributed (i.i.d.) samples to train the model. This assumption is in contrast with
biological learning since intelligent beings observe the world as an ordered sequence of highly corre-
lated data. When state-of-the-art deep neural networks are trained continually, and the whole data
cannot be accessed at once, the model suffers from the catastrophic forgetting problem (McCloskey
& Cohenl 1989), and the knowledge about old data (old experiences) tend to be overwritten by new
examples.

Storing part of past data and replaying them interleaved with new data proved to be an effective
approach to mitigate forgetting (see |[Hayes et al.| (2021) for a comprehensive survey). However,
in some applications, the storage overhead together with privacy issues make replay techniques
unfeasible. Therefore, generative replay has been recently explored, where a generative model
is trained to produce data from past experiences (see |[Lesort et al.|(2018) and |Shin et al.| (2017)).
Besides solving the replay memory issue, generative replay can theoretically be capable of generating
more general and novel examples not included in past experiences, thus potentially overcoming
replay methods. Unfortunately, generative replay introduces much complexity due to the need for an
interleaved incremental training of both a classifier and a generator. Moreover, generative models are
usually complex and unstable to train, especially in incremental scenarios. Several researchers have
shown that generative replay fails in complex CL scenarios with high-dimensional data (see[Aljundi
et al.|(2019); |Lesort et al.|(2018)) and |van de Ven et al.|(2020)) mainly due to the inaccuracies in the
data generation that progressively grows across the experiences if a single generator is incrementally
updated (see related works in[section 5|for more details). The photocopy example helps to understand
why. Let us consider a high-quality photocopy machine: when a picture is initially copied the output
looks very similar to the original, but if the process is repeated several times by using as input the
output of the previous step, some artifacts will soon appear and, after many iterations, the result will
be highly compromised. Hence, even if some state-of-the-art models have been proved to be effective
in generating also high dimensional data (Huang et al.| (2018) Karras et al.| (2019)), the continual
training of such generators remains a challenging problem.

Under review as a conference paper at ICLR 2022

CORe50 NC ImageNet-1000
0.8 0.9
- 08 | === Generative positive replay
0. 0.7 \ Generative negaive replay
. \
0.6 \
> > 0.6 \‘
@ 0.5 @ 0.5 \
= 2 > — =} “
é((‘; 04 G § 04 \
————— \
03 = 03 .
" 0 i 0.2 e
Lam" —-=— Generative positive replay e T ———
02 =~) o g i —
Generative negaive replay L0
0.1 0.0
0 1 2 3 4 5 6 7 8 0 5 10 15 20
Experience Experience

Figure 1: The proposed generative negative replay is compared with classical generative replay on
two complex class incremental CL benchmarks (details in[section 4.2). In both the benchmarks, using
the same classifier, generator, and training procedure, negative replay performs significantly better.

Although generative models are a hot research topics and we can expect improved methods in the
future, as of today we must deal with imperfect generated data and try to exploit them at best when a
classifier is incrementally trained. The proposed approach, denoted as Generative Negative Replay,
does not attempt to improve the knowledge of old classes using the generated data because it assumes
that the data quality is not enough for this purpose. Nevertheless, it makes use of generated (latent)
data as negative examples to better learn the classes of current experience, especially when the
number of classes per experience is small and we incur in the “learning in isolation” problem.

We experimentally demonstrate, on complex benchmarks such as CORe50 and ImageNet-1000,
where (positive) generative replay fails, that negative replay is effective to contrast the learning in
isolation problem, allowing to train a classifier incrementally across a high number of experiences
(see|Figure 1). We also investigate the impact of data quality on negative replay with an ablation
study where negative examples are sampled from original past patterns (upper bound)
and randomly generated.

2 PROBLEM FORMULATION

A continual learning (CL) problem consists of a number Ng of experiences, each containing a subset
of data that is only accessible during the corresponding experience:

CL:{€1,62,...,€NE}, (1)
each of them is composed of several data points and the corresponding labels:
er = (X, Vi), X = {af, 25,2k}, Ve = {u7, 95, Uk, } 2)

where ¥ and y/ are the data points and the associated labels contained in the k-th experience and
N, is the number of samples in the k-th experience.

Let D = (X,)) be the entire dataset, then X = Uf\fl X,and Y = Uf\LEl Vi

We can define three different scenarios for supervised continual learning (Maltoni & Lomonaco,
20195 van de Ven & Tolias, 2018)): New Instances (NI), New Classes (NC), and New Instances and
Classes (NIC). In NI (also known as domain incremental) all the classes are introduced in the first
experience, and only new examples of the same classes are included in the following experiences. In
NC (also known as class incremental) each experience contains only examples from classes never
seen before. NIC is the combination of NI and NC, so each experience can be composed of new
examples of already seen classes and/or examples from new classes. A formal definition of the above

scenarios can be found in[Appendix Al

Given the above definitions, our goal is to fit a function f, parametrized by O, to the sequence of
experiences. A naive approach is finding the best parameters ©* that minimizes:

0" = argmin L(fo(X;),);) fori ={1,...,Ng}, 3)
e

Under review as a conference paper at ICLR 2022

where L(-) is a loss function (e.g. cross entropy loss).

As first pointed out by [McCloskey & Cohen|(1989), this simple approach is prone to catastrophic
forgetting, thus the model fg is not able to learn the experiences {e1, ea, ..., en, } sequentially.

2.1 CONTINUAL LEARNING WITH GENERATIVE REPLAY

Generative replay requires to train simultaneously and incrementally a classifier and a genera-
tive model (Shin et al., 2017; Wu et al., [2018; [Thandiackal et al., 2021) The generative model g,
parametrized by () provides surrogate data similar to the past experiences’ data. In the case of a
conditional generative model (in which we can control the class of the generated data), the optimal
parameters of the classifier can be derived using a replay memory as follows:

O* = argmin L(fo (X; UM, Vi UMY) fori ={1,..., Ng}, 4)
S)

where M¥ and M are the datapoints and labels contained in the replay memory during the training
on experience ¢ when the replay memory is populated as:

1—1
M galzjle;); MY 5 cj€ | Pn, §=1{1,... R}, (5)

k=1

where R is the number of generated replay patterns (size of memory), 2 is a latent random input
vector to the generative model, c is a label sampled from the set of labels encountered in the past
experiences, and “+—” indicates the insertion of an element in the memory.

The same generated data fed to the classifier can be used to control forgetting in the generative
model as well. Instead of a generic generative model, suppose we have a conditional generative
model composed of an encoder ¢, parametrized by -y and a decoder p¢ parametrized by £, such that
9o = D¢ © ¢y, 2= (7,§). The optimal parameters of the generative model can be obtained requiring
that the generated data are similar (L2 loss) to the original ones:

& = argrgﬂn”pf(q,y(?(i UMDV UMY — XU ./\/lf||§ fori ={1,...,Ng}, (6)
7,

where ¢, (X;) is forced to follow a target distribution, typically A(0, 1).

3 GENERATIVE NEGATIVE REPLAY

As discussed before, generative replay is an appealing strategy for continual learning, but, to exploit it
in complex scenarios with many experiences, we need to overcome the data degradation issue. Since
this problem is not easily addressable on the generator side, we propose to circumvent it by changing
the way the classifier makes use of generated data.

Let us suppose the classifier fo can be divided into a feature extractor fy, parametrized by ¢ and a
classification head c,, parametrized by 1, so that fg = ¢y o fy, © = (¢,v). The parameters 1) of
the classification head can be divided into C' groups, where C' is the number of classes. The groups,
denoted as (1/11, w2, ey ¢C) represents the parameters associated to the connections between the
features extracted by f4 and the output neuron of the corresponding class.

For simplicity, let us assume that the feature extraction weights ¢ are frozen (after an initial pre-
training) and, across the experiences, we only learn the classification head weights . As explained
in Section this assumption is not necessary and our experiments were carried out by
learning both ¢ and .

3.1 LEARNING CLASSES IN ISOLATION

Learning in isolation is one of the main causes of catastrophic forgetting, especially in the NC
or NIC scenarios where only a limited number of classes are present in a single experience, and
the parameters of the classification head are learned without negative examples that counteract the
“ereediness” of the optimization. As an example, let us consider an NC scenario where only one
class is present in each experience. Suppose that c is the only class in the experience k, then the

Under review as a conference paper at ICLR 2022

best way to optimize the model is to change the parameters ¢° to maximize the output of the output
neuron c for every input and change the rest of 1)/, j # c to minimize the output for remaining
classes. This still holds if in the experience are present only a few classes, since the model is only
optimized to discriminate between the present classes and has no interest in maintaining the past
acquired knowledge.

3.2 POSITIVE AND NEGATIVE REPLAY

Replay can be used to counteract the learning in isolation problem, however, when the replay data
comes from a generative model, the data quality degradation has a negative impact on the classifier
training. The aforementioned problem is typical of the standard generative replay approach (hereafter
denoted as generative positive replay), where replay data is used by the classifier in the same manner
of the current experience’s data, and therefore the classification head’s weights associated to the
replay classes are optimized based on the replay data.

On the contrary, in the proposed generative negative replay approach the replay patterns are used
to counteract the detrimental effects of the training in isolation but they are not used to modify the
parameters v associated with the replay classes. The key idea (validated experimentally) is that the
generated patterns are valid antagonists to mitigate the learning in isolation problem, but their quality
is not enough to improve the knowledge of classes originally learned on real data. It is well known
that one class learning approaches are in general less effective than discriminative learning because
the presence of both positive and negative examples allows to better characterize the classification
boundaries (Hempstalk & Frankl 2008). Therefore, the proposed approach exploits generated data to
constrain the classification boundary and to avoid that the real data in the current experience pull it
too much in their direction.

3.3 TRAINING A CLASSIFIER WITH GENERATIVE NEGATIVE REPLAY

The idea of generative negative replay is quite general can be used in conjunction with different
continual learning classification approaches and scenarios (NI, NC, NIC). To avoid replay data (i.e.
negative examples) alter the knowledge of the already learned classes, the gradient accumulation
can be selectively blocked during the backward pass. The general idea is illustrated in
While the original examples (&) normally flows forward and backward throughout the model, the
replay examples (M7) are passed forward, but, before the backward pass, the loss tensor is masked
at the class level by resetting the gradient components corresponding to the classes in M?. The

negative replay implementation illustrated in is discussed in more details in

where preliminary tests on Core50 NC are also included.

Hereafter, we provide an alternative implementation embedded in AR1 algorithm (Maltoni &
Lomonaco, [2019), whose update mechanism for the classification head weights allows very simple
and efficient integration of negative replay. AR1 is a flexible continual learning approach that can
achieve state-of-the-art accuracy on complex CL benchmarks. In ARI1 is shown to
outperform several recent CL algorithms of the difficult ImageNet-1000 benchmark proposed by
Masana et al.| (2020).

ARI uses different mechanisms to learn the classification head and the feature extractor weights. The
feature extraction weights ¢ are protected against forgetting: i) through the Synaptic Intelligence
regularization technique (Zenke et al., [2017) or ii) using a replay memory with a small learning rate
(denoted as AR1free in |Pellegrini et al.|(2020)). The classification head weights 1) are managed by
CWR. CWR is a simple method aimed at addressing the score bias problem produced by imbalance
learning during continual learning (Belouadah et al.| [2020). CWR (Maltoni & Lomonacol [2019)
maintains a copy of the weights of the classification head of the previous experience (1)) and at the
start of each experience the classification head is reset and only weights of classes of the current
experience are loaded from v’. At the end of the experience, a weight consolidation phase takes
place, where the weights 1) learned in the current experience are consolidated with the weights .
This is the point where positive and negative replay behaves differently.

In particular, during the consolidation phase, for each parameter group ¢ associated to a class ¢
belonging to the current experience (¢ € V), U MY), the mean of all the parameter group p(1)°) is
calculated, and subtracted to all the parameters in the group, in order to force zero mean: ¢ =

Under review as a conference paper at ICLR 2022

Replay

Forward
Backward
Backward

Replay

|:| / Feature extractor , Feature extractor \ / Feature extractor

(a) (b) (©)

Figure 2: Graphical representation of the negative replay idea. Green output neurons represent
the classes present in the current experience, while red output neurons represent the replay classes.
During forward (a) both the replay data and the original data from the current experience flow through
the network. During backward, the original data flow through all the neurons of the classification
head (b), while the replay data contribution is masked and data only flows through the neurons of
classes belonging to the current experience (c).

¢ — p(1°). This prevents class bias problems due to the different magnitudes of the weights. Then,
there are three possibilities, based on c:

: k—1 L . .
1. cis anew class never seen before (¢ € Vi A c ¢ (J;_; Vs): in this case 1€ is maintained as
is.

2. cis a class seen before (c € Vi Ac € Uf;ll YV;): the consolidation step is applied, so

_ "plc'w as C-H/JC . . .
P© = wpfitfﬂ where w5, 1s a parameter that balances the contribution of the past

w.r.t. the present, calculated as follows:

[past.
Wpast, = - ; @)
current,.

where past. is the number of data points of class c encountered in past experiences, while
current,. is the number of data points of class ¢ present in the current experience.

3. cis not in the current experience but is a replay example (¢ ¢ Vi A c € MY):
* in case of positive replay apply consolidation (step 2).

* in case of negative replay ¢ is substituted with ¢/’ (no contribution to the parameters
1 from replay examples).

The pseudo-code of the above weigh consolidation algorithms is reported in It is worth
noting, that in the proposed embedding of negative replay in AR1, the replay pattern can alter the
feature extraction weights since CWR weight consolidation only “protects” the classification head
However, in our experiments, we found that a more complex embedding of negative replay in AR1
where we block the gradient propagation for negative patterns throughout the feature extraction layers
performs very similarly, and therefore we opted for simplicity.

4 EXPERIMENTS AND RESULTS

In this section, we describe the experimental setup used to validate the proposed negative replay. We
focus on difficult continual learning scenarios, where data is high-dimensional, non-i.i.d. and the
number of experiences is very large. Negative replay is compared with alternative strategies (e.g.
positive replay) and the role of quality of generated data is investigated by also using, as negative
replay patterns, real and random data.

4.1 EXPERIMENTAL SETUP

Datasets We performed our experiments on the CORe50 dataset (Lomonaco & Maltonil 2017) and
ImageNet-1000 dataset (Deng et al., 2009). CORe50 dataset was specifically collected for continual
learning (NI, NC, and NIC scenarios) and is composed of small video sessions (about 300 frames)
of 50 objects taken from the point of view of a person that handles them in the hand. Every class
has 11 video sessions (a total of about 3,300 images) with different backgrounds and illuminations.
Eight video sessions for each class are used for training, and 3 for testing. Images have size 128 x 128

Under review as a conference paper at ICLR 2022

pixels. ImageNet is composed of 1,000 classes with about 1,000 patterns per class for training and
100,000 images for testing. All images are resized to 224 x224 pixels.

Classifier architecture ARI1 algorithm was used with Synaptic Intelligence (SI) regularization
when trained without replay, and without protection on the feature extraction weights (AR 1free) in
case of positive and negative replay. In the experiments with CORe50 dataset we follow Maltoni
& Lomonaco|(2019) and |Lomonaco et al.|(2020) by employing a MobileNetV1 network (Howard
et al., 2017). As in|Pellegrini et al.|(2020) and |van de Ven et al.|(2020), we opted for latent replay,
that is replaying latent activations instead of input data. As described in |Pellegrini et al.|(2020), the
choice of the latent replay layer is related to a tradeoff between accuracy and efficiency. For CORe50
experiments, as in |[Pellegrini et al.| (2020), we used the conv5_4 layer as latent replay layer, and the
classifier was pretrained on ImageNet-1000. We also substituted all the batch normalization layers of
the network with batch renormalization (Ioffe, |2017). For ImageNet-1000 we use a ResNet-18 (He
et al.} 2016) architecture. Following the benchmark proposed by |[Masana et al.[(2020) the model was
not pretrained. To maintain compatibility with the experiments on CORe50, even on ImageNet-1000
we use latent replay, setting the replay layer on the fourth residual block of the network (after
conv4 _x using He et al.| (2016) nomenclature).

Generative model architecture For the choice of a generative model we initially focused on two
state-of-the-art approaches whose implementations are open source (van de Ven et al., [2020; [Shin
et al., 2017; /Ayub & Wagner, [2021). However, since they were designed to work in simpler settings
(with a lower data dimensionality and a smaller number of experiences), we were not able to port
and scale them to our complex setups. Therefore, we implemented a generative model by trying
to combine the most promising techniques and ideas from different sources and control its overall
memory/computation complexity. In particular, taking inspiration from jvan de Ven et al.| (2020)
we use a Variational Autoencoder (VAE) Kingma & Welling|(2014)) model, but unlike van de Ven
et al.[(2020) we opted for a conditional VAE (cVAE) configuration [Sohn et al.| (2015). Moreover,
we partially blend the generator (encoder) with the classifier model: both the networks share the
same feature extractor fy. Finally, instead of generating raw data, we generate activations at an
intermediate “latent” level as suggested by [van de Ven et al.| (2020). A detailed discussion on the
architecture of the generator is provided in[Appendix D} including a pseudo-code that highlights the
details of the interleaved training of the generator and the classifier.

4.2 EXPERIMENTS ON THE NC SCENARIO

The first round of experiments has been performed on the NC scenario using CORe50 and ImageNet-
1000. For CORe50 the benchmark is composed of 9 experiences: the first one contains 10 classes
while the following contains five classes each. We used a replay memory of 1,500 patterns, and
(for generative replay) we inserted in each minibatch, of size 128, 14 replay patterns, and 114
patterns from the current experience. We train both the classifier and the generator for 4 epochs for
each experience. Hyper-parameters of the classifier and generator are reported in and

respectively.

For ImageNet-1000 the benchmark follows the one proposed by Masana et al.| (2020): the dataset is
divided into 25 experiences of 40 classes each. We used a replay memory of 20,000 patterns, and
(for generative replay) we inserted in each minibatch, of size 128, 36 replay patterns, and 92 patterns
from the current experience. We did not expect negative replay to perform well in this setup, because
each experience already contains 40 classes and, therefore, the learning-in-isolation problem is here
marginal. Nevertheless, we were interested in understanding if, in this setup, negative replay hurts
the learning process or still provides minor benefits.

The results are shown in[Figure 3|and [Table 1| In CORe50 the baseline with no replay (using the
ARI algorithm) reaches a final accuracy of about 60% while using replay raises the accuracy to
more than 70% (Positive Replay Original Data - PR-OD). These were expected to be the lower and
upper bounds of this experiment, respectively. However, because of the data degradation problem,
performing positive replay with generated data (Positive Replay Generated Data - PR-GD) performed
significantly worse than the case with no replay. Using replay in a negative manner with generated
data, as proposed in this work (NR-GD), only slightly decreases the final accuracy with respect to the
upper bound PR-OD.

Under review as a conference paper at ICLR 2022

------ No replay —-- PR-GD (Positive Replay Generated Data)
PR-OD (Positive Replay Original Data) —— NR-GD (Negative Replay Generated Data)

CORe50 Imagenet-1000

Accuracy

Experience Experience

Figure 3: Overall accuracy on CORe50 NC scenario, using the whole test set (even at intermediate
experiences) as defined in the CORe50 protocol (Lomonaco & Maltoni, |2017) (left), and on ImageNet-
1000 using a growing test set as defined by Masana et al.| (2020) (right). For a direct comparison of
the two benchmarks, a plot of the experiments on CORe50 NC using a growing test set is included in
Every experiment is averaged over 3 runs using different seeds and class order. The
standard deviation is reported in light colors. Better viewed on a computer monitor.

Method CORe50 ImageNet-1000
No Replay 41.68 + 0.62 31.91 +0.17
PR-OD (upper bound) 47.02 +0.45 38.02 £ 0.08
PR-GD 34.05+0.29 18.29 £+ 0.07
NR-GD 44.63+0.77 32.744+0.17

Table 1: Average accuracy on all the experiences for the CORe50 and ImageNet-1000 NC scenarios.

For ImageNet-1000, due to the complexity of the experiment and the fact that the network is fully
trained only during the first experience (blocked after conv4_x in the following experiences) the final
accuracy are quite similar for all the methods (except PR-GD that performed far worse). However, in
the first 10 experiences some differences can be appreciated: see the insect view in [Figure 3}right.
The impact of the generated data quality on negative replay is more evident in[Table I} using negative
replay with generated data (in this case highly degraded) improve the average accuracy (calculated
as the mean of the accuracy after each experience) of more than 24 points and the final accuracy of
more than 10 points w.r.t. using replay data in a positive manner. Furthermore, even if in this scenario
the advantage of negative generative replay is little with respect to the no replay case, we note that
negative replay is not hurting the training process even in scenarios where learning in isolation is not
an issue.

4.3 EXPERIMENTS ON THE NIC BENCHMARK

CORe50 NIC-391 protocol is composed of 391 learning experiences, each containing examples of
a single class (300 frames of a short video). This scenario is particularly challenging and prone
to learn-in isolation issues, hence we may expect the role of replay to be more important here. In
this scenario, we used a replay memory of only 300 patterns. The minibatch size is 128, and when
generative replay is employed, we generate 64 patterns for every mini-batch (plus 64 from the
current experience). Hyper-parameters of the classifier and generator are reported in and

respectively.

The results are shown in |Figure 4]and they are quite in line with the previous experiment, but here the
accuracy gaps grow and the benefit of replay is more evident. The proposed negative replay with
generated data (NR-GD) performs quite well, about 10 points better than with no replay and just less
than 5 points worse than positive replay with real data, the upper bound. Using generated data in
a positive manner (PR-GD) is here even worse than in the NC case, because the data degradation

Under review as a conference paper at ICLR 2022

------ No replay —-- PR-GD (Positive Replay Generated Data)
PR-OD (Positive Replay Original Data) —— NR-GD (Negative Replay Generated Data)

o
©

o
3

o
o

o
«»

Accuracy

1
~

o
w

- \ WA N, / G S o
,,,,,,,, PR AN ATV e Mo, My r Vonvenz T
p Yo an N\ w2 (PN h’m,\“,/\/“ EVRVTY ARV
u

o
N

Lemet'n
GRPITY

0.1
0 50 100 150 200 250 300 350
Experience

Figure 4: Overall accuracy on CORe50 NIC391 scenario, using the whole test set as defined in the
CORe50 protocol (Lomonaco & Maltoni, [2017)). Every experiment is averaged over 3 runs using
different seeds and class order. The standard deviation is reported in light colors. better viewed on a
computer monitor.

is amplified with so many iterations: PR-GD is losing 30 points w.r.t. not using replay at all, and
performs about 40 points worse than using the same replay data with the proposed generative negative
replay approach.

4.4 ABLATION STUDY

The effect of generated data quality on negative replay is investigated by performing two further
experiments: NR-OD uses original data (max. quality) for negative replay, while NR-RD uses
randomly generated replay data, obtained by uniform random sampling in the latent replay layer
and assigning to each data point a random class label. Since in our experiments we replay hidden
features, in order to produce reasonable replay data we first calculated the range of latent activations
on a sample dataset, and then we set our random generator to produce values in the range: 0 (since
we use RelLU activation functions) - 90tk percentile of the real activation values. We used CORe50
NC and CORe50 NIC in these experiments.

The results are reported in Surprisingly, even with random replay data (that we assume
to be the worst degradation possible), negative replay is still able to perform better than no replay.
Furthermore, the difference between original and generated data is minimal, thus proving that negative
replay is tolerant in terms of data quality. Note that in both the experiment using random data with
negative replay performs way better than using generated data in a classical (positive) manner (PR-GD
in previous figures). Comparisons in all the benchmarks of all the experiments (positive and negative

replay with original, generated, and random data) are reported in

Method COReS0 NC CORe50 NIC

No Replay 60.99 +£0.49 52.71+£1.02
NR-OG 68.60 £1.38 67.93+0.31
NR-GD 68.87 £0.88 61.46 +0.67
NR-RD 64.06 £0.71 58.85+0.58

Table 2: Final accuracy on CORe50 NC and NIC using original (NR-OD), generated (NR-GD), and
random (NR-RD) data with negative replay. The results with no replay are reported as references.
Every experiment is averaged over 3 runs using different seeds and class order.

Under review as a conference paper at ICLR 2022

5 RELATED WORKS

The use of negative examples to learn more discriminative class boundaries can be traced back to
one-class support vector machines (SVM) (Chen et al.,2001), where the data points belonging to the
other classes in the training set are used as negative examples. [Malisiewicz et al.| (2011) proposed
using an ensemble of one-class SVMs instead of a single multi-class classifier. This approach operates
in a scenario which is similar to the experiments on the CORe50 NIC benchmark, whose experiences
contains only one class and all the replay data points (possibly belonging to many past encountered
classes) are used as negative examples. The use of negative examples can also be seen as a kind of
contrastive learning (Khosla et al.,|2020), where negative examples are used to cluster embeddings
of data points of the same class while moving away embeddings of data from different classes.

Masking parts of a neural network has been experimented before in continual learning. Wortsman et al.
(2020) masked the weights of a randomly initialized neural network in order to find a sub-network
that yields good performance for a particular task. The loss masking proposed for standalone negative
replay introduced in [section 3.3|and [Appendix C|(without using any continual learning strategy) is
similar to the masking method proposed by Masana et al.| (2021)). In that work, each feature can
be used normally, masked (not used), or used only during forward (no modification of the related
parameters during network update).

Generative replay for continual learning was first introduced by [Shin et al.| (2017) who proposed
Deep Generative Replay (DGR), using a generative adversarial network (GAN) (Goodfellow et al.|
2014). Many works on generative replay (Wu et al.l 2018} (Ostapenko et al., 2019) use GANs
as generative models, but GANs are usually slow and complex to train, even in non-incremental
scenarios. |Ayub & Wagner| (2020) proposed to use autoencoders, however that approach requires
maintaining a generative model for every experience, making it not scalable to long incremental
sequences. |[Kemker & Kanan| (2018)) and [van de Ven et al. (2020) proposed continual learning
framework inspired to biological brain functionalities and memories. In particular, (van de Ven et al.|
2020) showed significant results in continual learning scenarios with dozens of experiences. However,
this approach was not tested on high-dimensional data and in much bigger scenarios.

6 CONCLUSION

In this paper, we addressed the problem of continual learning with generative replay, focusing on
the obstacles of generative replay in complex scenarios. Our experience confirms that incrementally
training a generator over a long number of experiences with high dimensional data is a very challeng-
ing problem and remains an open issue. Therefore, instead of trying to design a better generative
model, we focused on classifier training. We found that even inaccurate replay data can be useful
to contrast the learning in isolation problem, especially in scenarios where only a limited number
of classes is present in each experience. We called this approach negative replay since the replay
data is used as negative examples when the model is trained with data from the current experience.
We validated negative replay using complex continual learning scenarios, with high dimensional
data and hundreds of incremental experiences. The results show that using negative replay largely
improves classification performances w.r.t. using the generated data in a traditional fashion. We also
investigated the impact of generated data quality, by considering the two extremes of using original
data and random data for negative replay, and, surprisingly, we found that negative replay is effective
even using random replay data.

Since negative replay can be easily applied to other continual learning strategies (besides AR1), we
believe that many other CL approaches may benefit from our proposal, especially when complex
scenarios are employed. Moreover, negative replay could be used in the pre-training phase of large
models, possibly making them more robust to noise or degraded data. Finally, is worth noting that
dealing with imprecise replay data can be viewed as a biological feature since human’s memory is far
from being accurate, but is thought to be essential to consolidate learning (van de Ven et al.|[2020)),
therefore investigating the role of negative replay-like mechanisms in biological learning could be an
interesting research direction for computer scientists and neuroscientists.

Under review as a conference paper at ICLR 2022

REPRODUCIBILITY STATEMENT

The source code of the project, alongside configuration files for the reproducibility of experiments, is
included in the additional materials. A public version of the code, based on the Avalanche framework
(Lomonaco et al.,[2021) will be released upon publication. The datasets used are publicly available
and can be downloaded from the respective official websites''2. Both the datasets are preprocessed
normalizing them using statistics derived from ImageNet-1000. Images from ImageNet-1000 were
randomly cropped and resized to the final dimension of 224 x 224, then horizontally flipped with a
probability of 50%.

REFERENCES

Rahaf Aljundi, Min Lin, Baptiste Goujaud, and Yoshua Bengio. Gradient based sample selection
for online continual learning. In H Wallach, H Larochelle, A Beygelzimer, F dAlché—Buc, E Fox,
and R Garnett (eds.), Advances in Neural Information Processing Systems 32, pp. 11816—-11825.
Curran Associates, Inc., 2019.

A. Ayub and A. R. Wagner. Cognitively-Inspired Model for Incremental Learning Using a Few Ex-
amples. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
Workshops, 2020.

Ali Ayub and Alan R. Wagner. EEC: Learning to encode and regenerate images for continual learning.
In International Conference on Learning Representations, 2021.

Eden Belouadah and Adrian Popescu. I12m: Class incremental learning with dual memory. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 583-592, 2019.

Eden Belouadah, Adrian Popescu, and Ioannis Kanellos. A comprehensive study of class incremental
learning algorithms for visual tasks. Neural Networks, 2020.

Francisco M Castro, Manuel J] Marin-Jiménez, Nicolads Guil, Cordelia Schmid, and Karteek Alahari.

End-to-end incremental learning. In Proceedings of the European conference on computer vision
(ECCV), pp. 233-248, 2018.

Arslan Chaudhry, Puneet K. Dokania, Thalaiyasingam Ajanthan, and Philip H. S. Torr. Riemannian
Walk for Incremental Learning: Understanding Forgetting and Intransigence. In Proceedings of
the European Conference on Computer Vision (ECCV), pp. 532-547, 2018.

Yungiang Chen, Xiang Sean Zhou, and Thomas S Huang. One-class svm for learning in image re-
trieval. In Proceedings 2001 International Conference on Image Processing (Cat. No. 01 CH37205),
volume 1, pp. 34-37. IEEE, 2001.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hier-
archical image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition,
pp- 248-255, 2009. doi: 10.1109/CVPR.2009.5206848.

Prithviraj Dhar, Rajat Vikram Singh, Kuan-Chuan Peng, Ziyan Wu, and Rama Chellappa. Learning
without Memorizing. In CVPR, 2019.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural information
processing systems, 27, 2014.

Tyler L Hayes, Giri P Krishnan, Maxim Bazhenov, Hava T Siegelmann, Terrence J Sejnowski, and
Christopher Kanan. Replay in deep learning: Current approaches and missing biological elements.
arXiv preprint arXiv:2104.04132, 2021.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770-778, 2016.

"https://vlomonaco.github.io/core50
https://www.image-net.org

10

https://vlomonaco.github.io/core50
https://www.image-net.org

Under review as a conference paper at ICLR 2022

Kathryn Hempstalk and Eibe Frank. Discriminating against new classes: One-class versus multi-class
classification. In Wayne Wobcke and Mengjie Zhang (eds.), AI 2008: Advances in Artificial
Intelligence, pp. 325-336, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg. ISBN 978-3-540-
89378-3.

I. Higgins, L. Matthey, A. Pal, Christopher P. Burgess, Xavier Glorot, M. Botvinick, S. Mohamed,
and Alexander Lerchner. beta-vae: Learning basic visual concepts with a constrained variational
framework. In Proceedings of the S5th International Conference on Learning Representations,
2017.

Saihui Hou, Xinyu Pan, Chen Change Loy, Zilei Wang, and Dahua Lin. Learning a unified classifier
incrementally via rebalancing. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 831-839, 2019.

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,
Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for
mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

Huaibo Huang, Zhihang Li, Ran He, Zhenan Sun, and Tieniu Tan. Introvae: Introspective variational
autoencoders for photographic image synthesis. arXiv preprint arXiv:1807.06358, 2018.

Sergey loffe. Batch renormalization: Towards reducing minibatch dependence in batch-normalized
models. arXiv preprint arXiv:1702.03275, 2017.

Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative
adversarial networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 4401-4410, 2019.

Ronald Kemker and Christopher Kanan. FearNet: Brain-Inspired Model for Incremental Learning.
In ICLR, 2018.

Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian, Phillip Isola, Aaron
Maschinot, Ce Liu, and Dilip Krishnan. Supervised contrastive learning. arXiv preprint
arXiv:2004.11362, 2020.

Diederik P. Kingma and Max Welling. Auto-Encoding Variational Bayes. In 2nd International
Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014,
Conference Track Proceedings, 2014.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, Demis Hassabis,
Claudia Clopath, Dharshan Kumaran, and Raia Hadsell. Overcoming catastrophic forgetting in
neural networks. PNAS, 114(13):3521-3526, 2017.

Timothée Lesort, Hugo Caselles-Dupré, Michael Garcia-Ortiz, Andrei Stoian, and David Filliat.
Generative Models from the perspective of Continual Learning. Proceedings of the International
Joint Conference on Neural Networks, 2018. doi: 10.1109/IJCNN.2019.8851986.

Zhizhong Li and Derek Hoiem. Learning without Forgetting. In European Conference on Computer
Vision, Springer, pp. 614-629, 2016.

Vincenzo Lomonaco and Davide Maltoni. CORe50: A New Dataset and Benchmark for Continuous
Object Recognition. CoRL, 2017.

Vincenzo Lomonaco, Davide Maltoni, and Lorenzo Pellegrini. Rehearsal-Free Continual Learning
over Small Non-L.I.D. Batches. CVPR Workshop on Continual Learning for Computer Vision,
2020.

Vincenzo Lomonaco, Lorenzo Pellegrini, Andrea Cossu, Antonio Carta, Gabriele Graffieti, Tyler L.
Hayes, Matthias De Lange, Marc Masana, Jary Pomponi, Gido van de Ven, Martin Mundt, Qi She,
Keiland Cooper, Jeremy Forest, Eden Belouadah, Simone Calderara, German I. Parisi, Fabio
Cuzzolin, Andreas Tolias, Simone Scardapane, Luca Antiga, Subutai Amhad, Adrian Popescu,
Christopher Kanan, Joost van de Weijer, Tinne Tuytelaars, Davide Bacciu, and Davide Maltoni.
Avalanche: An End-to-End Library for Continual Learning. CLVision Workshop at CVPR 2021,
2021.

11

Under review as a conference paper at ICLR 2022

Tomasz Malisiewicz, Abhinav Gupta, and Alexei A Efros. Ensemble of exemplar-svms for object
detection and beyond. In 2011 International conference on computer vision, pp. 89—96. IEEE,
2011.

Davide Maltoni and Vincenzo Lomonaco. Continuous Learning in Single-Incremental-Task Scenarios.
Neural Networks, 116:56-73, 2019.

Marc Masana, Xialei Liu, Bartlomiej Twardowski, Mikel Menta, Andrew D Bagdanov, and Joost
van de Weijer. Class-incremental learning: survey and performance evaluation. arXiv preprint
arXiv:2010.15277, 2020.

Marc Masana, Tinne Tuytelaars, and Joost van de Weijer. Ternary feature masks: zero-forgetting for
task-incremental learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Fattern Recognition, pp. 3570-3579, 2021.

Michael McCloskey and Neal J. Cohen. Catastrophic interference in connectionist networks: The
sequential learning problem. Psychology of Learning and Motivation. Academic Press, 1989. doi:
https://doi.org/10.1016/S0079-7421(08)60536-8.

Augustus Odena, Christopher Olah, and Jonathon Shlens. Conditional image synthesis with auxiliary
classifier gans. In International conference on machine learning, pp. 2642-2651. PMLR, 2017.

Oleksiy Ostapenko, Mihai Puscas, Tassilo Klein, Patrick Jahnichen, and Moin Nabi. Learning to
remember: A synaptic plasticity driven framework for continual learning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11321-11329, 2019.

Lorenzo Pellegrini, Gabriele Graffieti, Vincenzo Lomonaco, and Davide Maltoni. Latent replay for
real-time continual learning. IROS, 2020.

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. iCaRL:
Incremental Classifier and Representation Learning. In The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2017.

Hanul Shin, Jung Kwon Lee, Jachong Kim, and Jiwon Kim. Continual Learning with Deep Generative
Replay. In I Guyon, U V Luxburg, S Bengio, H Wallach, R Fergus, S Vishwanathan, and R Garnett
(eds.), Advances in Neural Information Processing Systems 30, pp. 2990-2999. Curran Associates,
Inc., 2017.

Kihyuk Sohn, Honglak Lee, and Xinchen Yan. Learning structured output representation using deep
conditional generative models. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett
(eds.), Advances in Neural Information Processing Systems, volume 28. Curran Associates, Inc.,
2015.

Kevin Thandiackal, Tiziano Portenier, Andrea Giovannini, Maria Gabrani, and Orcun Goksel.
Match what matters: Generative implicit feature replay for continual learning. arXiv preprint
arXiv:2106.05350, 2021.

Gido M van de Ven and Andreas S Tolias. Three scenarios for continual learning. In Continual
Learning Workshop NeurIPS, 2018.

Gido M. van de Ven, Hava T. Siegelmann, and Andreas S. Tolias. Brain-inspired replay for continual
learning with artificial neural networks. Nature Communications, 11, 2020. doi: 10.1038/
s41467-020-17866-2.

Mitchell Wortsman, Vivek Ramanujan, Rosanne Liu, Aniruddha Kembhavi, Mohammad Rastegari,
Jason Yosinski, and Ali Farhadi. Supermasks in superposition. In H. Larochelle, M. Ranzato,
R. Hadsell, M. F. Balcan, and H. Lin (eds.), Advances in Neural Information Processing Systems,
volume 33, pp. 15173-15184. Curran Associates, Inc., 2020.

Chenshen Wu, Luis Herranz, Xialei Liu, Joost van de Weijer, Bogdan Raducanu, et al. Memory replay

gans: Learning to generate new categories without forgetting. Advances in Neural Information
Processing Systems, 31:5962-5972, 2018.

12

Under review as a conference paper at ICLR 2022

Yue Wu, Yinpeng Chen, Lijuan Wang, Yuancheng Ye, Zicheng Liu, Yandong Guo, and Yun Fu. Large
scale incremental learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 374-382, 2019.

Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual Learning Through Synaptic Intelligence.
In International Conference on Machine Learning, pp. 3987-3995, 2017.

A NI, NC, AND NIC DEFINITIONS

Given the definitions of the NI (New Instances), NC (New Classes), and NIC (New
Instances and Classes) continual learning scenarios can be defined based on the labels), contained
in the experiences (k € {1, ..., Ng} with N the total number of experiences) as follows:

New instances (NI) also known as domain-incremental learning, where all the labels are known
from the first experience, and the successive experiences, only new instances of the same
classes are included. Formally, we could define the NI scenario as:

yl myk::yk fork:{17"'7NE}7 (8)
meaning that every possible label of the entire dataset must be present in the first experience.
New classes (NC) also known as class-incremental learning, where each experience includes data of
classes not present in any other experience. Formally, we can define the NC scenario as:
k—1
Ve N U Vi=0 fork=1{2,...Ng}.)
i=1
New instances and classes (NIC) where a new experience can contain already seen classes, new

classes, or a mix of the two. This is the most natural scenario since in the real world an agent
may sense both known and unknown objects. Formally the NIC scenario can be defined as:
k—1
V0| JVi£0and 35) NY; £V (10)
i=1
Meaning that there is at least one experience that contains classes already seen in the past
(left part) and at least one experience that contains classes not present in the first experience
(right part).

B PSEUDO-CODE OF THE WEIGHT CONSOLIDATION PHASE

Algorithm 1 Weight consolidation
Require: ¢, 9/, V., MY
1: for each class ¢ € Y. U MY do
2 U= — p(e)
3 ifceY.AcelJZ, Y then
4 =
5 end if
6: ifc¢ Ve Ace MY then
7
8

if positive replay then
,¢c _ ’l/)/c'wpastc"rwu

! Wpaste+1
9: end if
10: if negative replay then
11 Ye =’
12: end if
13: end if
14: end for
15: ' =

13

Under review as a conference paper at ICLR 2022

C STANDALONE NEGATIVE REPLAY IMPLEMENTATION

To validate the proposed negative replay approach, we implemented a version of negative replay that
does not depend on any specific continual learning strategy. As discussed in the main text, the main
idea behind negative replay is to avoid replay data altering the knowledge of the already learned
classes. In other words, the replay data cannot change the weights of the already learned classes.

This behavior can be obtained by selectively blocking the gradient accumulation during the backward
pass. The original examples (X)) flow normally through the network, accumulating the gradient in
all the feature extractor weights (). On the other hand, the replay data points (M?) participate in
the loss calculation, but their backward contribution is limited to the weights associated with the
output neurons of the original data classes. The loss tensor associated to replay data is thus masked
at class level, resetting the gradient contribution to zero for all the classes in MY. The procedure is

graphically explained in[Figure 3]

Note that the proposed standalone negative replay implementation does not provide any specific
mechanism to counteract catastrophic forgetting problem, and since it applies negative replay on top
of the naive CL strategy we denote the resulting strategy as naive negative replay.

In line with the experiments included in the main text, we compared naive negative replay (NR-GD)
against naive with no replay (lower bound), naive with positive generative replay (PR-GD), and naive
with positive replay with original data (PR-OD, upper bound). We used the CORe50 NC benchmark
to perform this experiment.

The results are shown in As expected, the overall accuracy with naive is lower than with
ARI1, but the relative ranking of the different replay approaches in maintained. In particular, negative
replay performs better w.r.t. no replay (naive) or using the generated data in a positive manner (naive
PR-GD). In this scenario the gap between negative replay with generated data and positive replay
with real data is larger than when using AR1, because replay is the only methods to contrast forgetting
and the replay data quality is more relevant.

Loss original data Loss replay data

FRRKIN

VPN

Feature extractor

ol1]1]ofo]

Feature extractor

(@) (b)

Figure 5: Graphical representation of the naive negative replay. The output neurons are depicted in
green for neurons associated with original data, and in red for output neurons associated to replay
data. The loss vector of original data is backpropagated through all the weights of the network (yellow
arrows), so the gradient is accumulated by every weight. On the other hand, the loss vector of replay
data is masked, and the loss is only backpropagated through the output neurons corresponding to the
original classes. Thus, the gradient is accumulated only on the classification head weights associated
with the classes present in the current experience.

D DETAILS OF THE GENERATIVE MODEL IMPLEMENTATION

We designed our generative model using different insights from previous works in the fields, bringing
together different ideas and proposals. We extensively tested the generative model alone to find the
better combination of building blocks that yield the best performance. Our design choices have been
also influenced by the computation complexity since our aim is to develop a (near) real-time system.

14

Under review as a conference paper at ICLR 2022

------ Naive Naive PR-GD —-=- Naive PR-OD —— Naive NR-GD

Accuracy
o o o o =] o
w £ (¢} o ~ oo

o
N}

o
-

0.0

Experience

Figure 6: Overall accuracy on CORe50 NC scenario of the naive negative replay, using the whole test
set as defined in the CORe50 protocol [Lomonaco & Maltoni| (2017). Every experiment is averaged
over 3 runs using different seeds and class order. The standard deviation is reported in light colors.
Better viewed on a computer monitor.

This is a particularly hard constraint since many incremental generative replay methods are based on
generative adversarial networks (GANSs) (Goodfellow et al.,[2014), which notably have long training
phases and often suffer from instabilities due to the adversarial nature of the training procedure.

As discussed in the main text, we took inspiration from some state-of-the-art methods, trying to
combine promising techniques and ideas from different sources. Taking inspiration from [van de
'Ven et al.[(2020) we use a Variational Autoencoder (VAE) Kingma & Welling (2014) model, but
unlike van de Ven et al.[(2020) we opted for a conditional VAE (cVAE) configuration |Sohn et al.
(2015). So, while in|van de Ven et al.| (2020) a mixture of Gaussian is used to sample latent vectors
and soft labels are provided to the classifier itself, in our approach the latent vector is sampled from
the normal distribution (0, 1) and conditioned to the desired class. This results in a faster and less
complicated sampling of a replay pattern. Moreover, as in|van de Ven et al.| (2020) we partially blend
the encoder part of the generative model with the classifier model: in fact both the network share the
same feature extractor fy. For the classifier, this branch is connected with the classification head ¢,
while, for the generator, it is connected with some other layers that transform the feature into a latent
vector z. The bifurcation is located in the latent replay layer. The resulting on-the-loop training of
the generative model is consistent with brain structures and neuroscience’s findings (van de Ven et al.|
2020).

Since we use a cVAE, the objective for the generative model can be expressed as:

V€ = arg r?in[—lEZqu(zu;s) log pe(21y;)] + Drcr. (a4 (2 2)Ip(2)], (1
7,

where (x¥, y¥) are the data point and the label of the i-th pattern of the k-th experience, and the Dx,
term represents the Kullback-Leibler divergence between the latent space distribution and the target
distribution p(z) = N(0,1).

The two terms of determine two losses:
‘Crecon = ||$i€ _p§(q7(‘ri€>)”g (12)
L1, = Dxu(g,(2})|IN(0,1)) (13)

We also add another loss term, denoted as classification loss, which is similar to the classifier loss
adopted in the AC-GAN model (Odena et al.,|2017). The rationale is to guide the generative model to
produce data that are not only visually similar to the original ones (L2 loss) but that is also classified

15

Under review as a conference paper at ICLR 2022

Encoder (gy) Decoder (pe) v

=9 —

"Cat" '

Lclass

Classifier (fp)

Predicted 4_5
label

€

A

Figure 7: A visual schema of the generative model training. Losses are represented by dashed arrows.
The shared branch of the classifier and the encoder are depicted using the same color (yellow). The
encoder and the classifier’s additional layers are drawn in red and blue respectively.

by the current classifier in the same way. Hence, we use fg as “auxiliary” classifier, adding the
following term to the generator’s loss:

Eclass - - IOg f@(yf|p5(q’y(l’f)|yf))’ (14)

which represents a typical negative log-likelihood classification loss. Note that the parameters O of
the classifier are not trained in this phase, since only the generative model is updated. Overall, the
generative model is trained using the following loss function:

Lam = Lrecon + BLKL + nﬁclasm (15)

where [is a hyper-parameter inspired to the 3-VAE framework (Higgins et al.,[2017), and n is a
hyper-parameters that weights the importance of the classification loss.

A visual representation of generative model training is shown in|Figure 7,

To keep notation light, in the equations above the replay memory is not used, but it is trivial to
include patterns from the replay memory, since there is no distinction in the generative model training
procedure between current and replay data.

Note that the utilization of raw images is not mandatory for the method, and any intermediate (or latent
representation) can be used, making our proposal compatible with latent replay methods (Pellegrini
et al.} 2020; ivan de Ven et al., 2020). In fact, in the case of latent replay, the data points ch in the
above equations can be simply substituted with fy (x¥), where fe s the set of feature extraction
layers before the latent replay layer.

The blending of a part of the generative model into the classifier poses some difficulties in the training,
especially regarding the balancing of the two models and how to train each of them without destructive
inference on the other. After some initial experiments, we opted for blocking model parameters when
the other model is trained. Detailed pseudo-code for the proposed negative generative replay strategy

i provided inATgorthm 3

16

Under review as a conference paper at ICLR 2022

Algorithm 2 Generative negative replay

1: fo + RANDINIT or PRETRAINED

2: g RANDINIT or PRETRAINED

3 ME 0, MY <0

4: R = memory size

5: for each k from 1 tp N do

6: if £ > 1 then

7: SAMPLE {z1, ..., 2r} ~ N(0,1)

8: SAMPLE {cy,...,cR} ~ f:_ll Vi

9: BLOCK generator parameters (7, &)
10: POPULATE M} = pe(zjlej)), j ={1,..., R}
11: POPULATE M} = {¢1,...,cr}
12: end if
13: # classifier training

14: Y =1
15: BLOCK generator parameters (7, &)

16: UNLOCK classifier parameters (¢, 1)
17 ¢*,¢* = OPTIMIZE(fo, X) U ME, V) U MY) using
18: WEIGHTCONSOLIDATION(¢), ¥, Vi, M7) (see Algorithm|I)

19: # generator training

20: BLOCK classifier parameters (¢, 1)

21: UNLOCK generator parameters (7, &)

22: 4%, = OPTIMIZE(gq, Xy UM, Vi, U M) using
23: end for

E VALIDATION OF AR1 ON IMAGENET-1000

To validate the chosen AR1 algorithm we performed a test on a competitive benchmark on ImageNet-
1000, following the NC benchmark proposed by Masana et al.| (2020), which is composed of 25
experiences, each of them containing 40 classes. The benchmark is particularly challenging due to a
large number of classes (1,000), the incremental nature of the task (with 25 experiences), and the
data dimensionality of 224 x 224 (as with ImageNet protocol).

With this experiment we want to assess the performance of AR1 in a complex continual learning
scenario, validating the choice of AR1 as the baseline algorithm on which the tests on negative replay
are conducted. In this experiment, we tested AR1 against both regularization-based methods (Dhar
et al.| [2019; |[Kirkpatrick et al., 2017;|Li & Hoiem), 2016)) and replay-based approaches (Belouadah &
Popescu, [2019; (Castro et al.,[2018}; |Chaudhry et al., 2018}, |[Hou et al.} 2019} Rebutffi et al.,|2017; |Wu
et al.,2019). We use the same classifier (ResNet-18 (He et al.,|2016)) and the same memory size for
all the tested methods (20,000 patterns, 20 per class); for the regularization-based approaches, the
replay is added as an additional mechanism.

For AR1, we trained the model with an SGD optimizer. For the first experience, we used an aggressive
learning rate of 0.1 with momentum 0.9 and weight decay of 10~%. We multiply the initial learning
rate by 0.1 every 15 epochs. We trained the model for a total of 45 epochs, using a batch size of
128. For all the subsequent experiences we used SGD with a learning rate of 5 - 10~2 for the feature
extractor’s parameters ¢ and 5 - 10~2 for the classifier’s parameters 1. We trained the model for 32
epochs for each experience, employing a learning rate scheduler that decreases the learning rate as the
number of experiences progresses. This was done to protect old knowledge against new knowledge
when the former is more abundant than the latter. As in the first experience, the batch size was set
to 128, composed of 92 patterns from the current experience and 36 randomly sampled (without
replacement) from the replay memory.

The results are shown in[Table 3] Replay-based methods exhibit the best performance, with iCaRL and
BiC exceeding a final accuracy of 30%. ARI1 outperforms all the baselines (33.1%), demonstrating
the validity of this approach also in difficult continual learning benchmarks. However, considering

17

Under review as a conference paper at ICLR 2022

Method Final Accuracy
Fine Tuning (Naive) 274
EWC-E (Kirkpatrick et al., 2017) 28.4
RWalk (Chaudhry et al., 2018) 24.9
LwM (Dhar et al.,[2019) 17.7
LwF (L1 & Hoiem, |2016J) 19.8
iCaRL (Rebuffi et al.,[2017) 30.2
EEIL (Castro et al.,[2018) 25.1
LUCIR (Hou et al., 2019) 20.1
IL2M (Belouadah & Popescu, |[2019) 29.7
BiC (Wu et al., [2019) 32.4
AR1 (Maltoni & Lomonaco, [2019) 33.1

Table 3: Final accuracy on ImageNet-1000 following the benchmark of Masana et al.| (2020) with
25 experiences composed of 40 classes each. For each method, a replay memory of 20,000 patterns
is used (20 per class at the end of training). Results for other methods reported from |Masana et al.
(2020).

that top-1 ImageNet accuracy for a ResNet-18 when trained on the entire dataset is 69.76%?, even
for the best methods the accuracy gap in the continual learning setup is very large. This suggests
that continual learning, especially in complex scenarios with a large number of classes and high
dimensional data, is far to be solved, and further research should be devoted to this field.

3 Accuracy taken from the torchvision official page: https://pytorch.org/vision/stable/
models.html

18

https://pytorch.org/vision/stable/models.html
https://pytorch.org/vision/stable/models.html

Under review as a conference paper at ICLR 2022

F CLASSIFIER HYPER-PARAMETERS

F.1 CORES50NC

\ Hyper-parameter Value
optimizer SGD
momentum 0.9
weight decay 10~4
Common minibatch size 128
SI (Synaptic Intelligence) A~ 8- 10°
SI Fisher matrix clip value 1073
SI Fisher matrix multiplier 1076
nr. epochs 4
Ist experience Ir ¢ (feature extractor) 3-1074
Ir v (classification head) 3.-107*
nr. epochs 4
Following experiences Ir ¢ (feature extractor) 3-107*
Ir ¢ (classification head) ~ 3-107%

Table 4: Hyper-parameters of the model trained with no replay. Common hyper-parameters are
the same for each experience, 1st experience hyper-parameters are used in the first experience, the
following experience hyper-parameters are used in all the following experiences.

\ Hyper-parameter Value
optimizer SGD
momentum 0.9
Common weight decay 10~4
minibatch size 128
SI (Synaptic Intelligence) disabled
nr. epochs 4
1st experience Ir ¢ (feature extractor) 31072
Ir 1 (classification head) 3-1072
nr. epochs 4
Ir ¢ (feature extractor) 5-107°
. . 74
Following experiences Ir v (clas51ﬁcat19n head) 5-10
memory size 1,500
replay pattern in the minibatch 14
latent replay layer conv5_4

Table 5: Hyper-parameters of the model trained with replay (generative replay, random data, and real
data). Common hyper-parameters are the same for each experience, 1st experience hyper-parameters
are used in the first experience, the following experience hyper-parameters are used in all the following
experiences.

19

Under review as a conference paper at ICLR 2022

F.2 IMAGENET-1000 NC

| Hyper-parameter Value
optimizer SGD
momentum 0.9
Common weight decay 10~*
minibatch size 128
SI (Synaptic Intelligence) disabled
nr. epochs 45
1st experience Ir ¢ (feature extractor) 107t
Ir 9 (classification head) 1071
Ir scheduler Ir - 0.1 every 15 epochs
nr. epochs 32
Following experiences Ir ¢ (feature extractor) 5.1073
Ir 9 (classification head) 5-1072
Ir scheduler see [Equation 16

Table 6: Hyper-parameters of the model trained with no replay. Common hyper-parameters are
the same for each experience, 1st experience hyper-parameters are used in the first experience, the
following experience hyper-parameters are used in all the following experiences.

\ Hyper-parameter Value
optimizer SGD
momentum 0.9
Common weight decay 10~4
minibatch size 128
SI (Synaptic Intelligence) disabled
nr. epochs 45
15t experience Ir ¢ (feature extractor) 107!
Ir v (classification head) 1071
Ir scheduler Ir - 0.1 every 15 epochs
nr. epochs 32
Ir ¢ (feature extractor) 5-1073
Ir 9 (classification head) 5-10~2
Following experiences Ir scheduler see
memory size 0,000
replay pattern in the minibatch 36
latent replay layer layer4 (4th resnet block)

Table 7: Hyper-parameters of the model trained with replay (generative replay and real data).
Common hyper-parameters are the same for each experience, 1st experience hyper-parameters are
used in the first experience, the following experience hyper-parameters are used in all the following
experiences.

Due to the complexity of the ImageNet-1000 scenario, we found it useful to use a learning rate
scheduler that decreases the learning rate as the number of experiences progresses. The scheduler can

be formalized as:
0.9
Ir = Irgpge - (1—}—6_1'5“'8 + 1)) (16)

where ¢ indicates the index of the current experience.

20

Under review as a conference paper at ICLR 2022

F.3 CORES0 NIC

\ Hyper-parameter Value
optimizer SGD
momentum 0.9
weight decay 1074
Common minibatch size 128
SI (Synaptic Intelligence) A 2.3 - 10°
SI Fisher matrix clip value 1073
SI Fisher matrix multiplier ~ 2-107°
nr. epochs 4
Ist experience Ir ¢ (feature extractor) 1073
Ir v (classification head) 1073
nr. epochs 4
Following experiences Ir ¢ (feature extractor) 1074

Ir 9 (classification head) 1073

Table 8: Hyper-parameters of the model trained with no replay. Common hyper-parameters are
the same for each experience, 1st experience hyper-parameters are used in the first experience, the
following experience hyper-parameters are used in all the following experiences.

\ Hyper-parameter Value
optimizer SGD
momentum 0.9
Common weight decay 10~4
minibatch size 128
SI (Synaptic Intelligence) disabled
nr. epochs 4
Ist experience Ir ¢ (feature extractor) 1073
Ir ¢ (classification head) 1073
nr. epochs 4
Ir ¢ (feature extractor) 10~4
. . Ir v (classification head) 1073
Foll .
orlowmg experiences memory size 300 (N/A for random data)
replay pattern in the minibatch 64 (21 for random data)
latent replay layer conv5_4

Table 9: Hyper-parameters of the model trained with replay (generative replay, random data, and real
data). Common hyper-parameters are the same for each experience, 1st experience hyper-parameters
are used in the first experience, the following experience hyper-parameters are used in all the following
experiences.

F.4 ON THE AMOUNT OF REPLAY DATA IN THE MINIBATCH

The amount of replay data included in each minibatch has a direct impact on the performance of the
continual learning strategy adopted. We observed that the optimal value changes with the quality
of the replay data, and that a large amount of degraded replay data in each minibatch may decrease
disruptively the performance of the model.

We compared different original/replay proportions, finding that when using real replay data, the
model is not much sensitive to the amount of replay data in the minibatch and different proportions
work well: we empirically noticed a peak of performance around a 50-50 split. Using generated
(degraded) or random data is quite different. We noticed that if the data used is highly degraded the

21

Under review as a conference paper at ICLR 2022

maximum gain in performance is when 10-30% replay data are added. Exceeding 30% usually leads
to a degradation of performance, and if the amount of replay data is still higher (depending on the
replay data quality) the accuracy of the model can be lower than not using replay data.

G GENERATIVE MODEL HYPER-PARAMETERS

G.1 CORE50NC

\ Hyper-parameter Value
optimizer Adam
betas 0.9 - 0.999
weight decay 0
minibatch size 128
C latent space dim. 100
ommon 3 01
7 0.01
Ir 21073
Ir scheduler None
nr. epochs 4
Following experiences | replay patterns in the minibatch 27

Table 10: Hyper-parameters of the generative model trained on CORe50 NC. Common hyper-

parameters are the same for each experience, while following experience hyper-parameters are used
in all the experiences except the first one.

G.2 IMAGENET-1000 NC

\ Hyper-parameter Value
optimizer SGD
momentum 0
weight decay 0
minibatch size 128
C latent space dim. 100
ommon 3 025
n 0.01
Ir 1
Ir scheduler see|Equation 16
nr. epochs
Following experiences | replay patterns in the minibatch 36

Table 11: Hyper-parameters of the generative model trained on ImageNet-1000 NC. Common hyper-
parameters are the same for each experience, while following experience hyper-parameters are used
in all the experiences except the first one.

22

Under review as a conference paper at ICLR 2022

G.3 CORES0 NIC

Hyper-parameter

Value

Common

optimizer
betas
weight decay
minibatch size
latent space dim.
g

n
Ir

Ir scheduler
nr. epochs

Adam
0.9 -0.999
0
128
100
0.1
0.01
2.1073
None
4

Following experiences | replay patterns in the minibatch

64

Table 12: Hyper-parameters of the generative model trained on CORe50 NIC. Common hyper-
parameters are the same for each experience, while following experience hyper-parameters are used

in all the experiences except the first one.

H ADDITIONAL PLOTS

------ No replay ===+ R-GD (Positive Replay Generated Data)
PR-OD (Positive Replay Original Data) —— NR-GD (Negative Replay Generated Data)
1.0
0.9
0.8

Accuracy
o
~

o
o

0.5

0.4

Experience

Figure 8: Overall accuracy on the CORe50 NC scenario, using a growing test set. After each
experience, the model was evaluated using a test composed of only data belonging to the classes seen
so far, similar to the benchmark proposed by Masana et al. (2020). Every experiment is averaged
over 3 runs, with different seeds and class order. The standard deviation is reported in light colors.
Better viewed if zoomed on a computer monitor.

23

Under review as a conference paper at ICLR 2022

------ No replay —— NR-GD (Negative Replay Generated Data)
~ == PR-OD (Positive Replay Original Data) —— NR-OD (Negative Replay Original Data)
—-== PR-GD (Positive Replay Generated Data) —— NR-RD (Negative Replay Random Data)
0.8
0.7
0.6
3 0.5
o
3
3
< 04

e
w

0.2

0.1

Experience

Figure 9: Overall accuracy on the CORe50 NC scenario for all the experiments performed in this
work (included random data and negative replay with original data). After each experience, the model
was evaluated using the cumulative test set as proposed by [Lomonaco & Maltoni| (2017). Every
experiment is averaged over 3 runs, with different seeds and class order. The standard deviation is
reported in light colors. better viewed if zoomed on a computer monitor.

------ No replay —— NR-GD (Negative Replay Generated Data)
~ -~ PR-OD (Positive Replay Original Data) ——— NR-OD (Negative Replay Original Data)
-== PR-GD (Positive Replay Generated Data) ——— NR-RD (Negative Replay Random Data)
0.9 0.400
0.37
0.8
0.350
0.7 0\ .325
\
RN 0.300
06 AW N
i N 0.275
505 5 6 7 8 9 10
o
3
Q
Q
< 04
03 N e e
02 0 oESssL . EEseg
04 e
0.0
0 5 10 15 20
Experience

Figure 10: Overall accuracy on the ImageNet-1000 NC scenario for all the experiments performed in
this work (included random data and negative replay with original data). After each experience, the
model was evaluated using the whole test set as proposed by Masana et al.| (2020). Every experiment
is averaged over 3 runs, with different seeds and class order. The standard deviation is reported in
light colors. better viewed if zoomed on a computer monitor.

24

Under review as a conference paper at ICLR 2022

------ No replay —— NR-GD (Negative Replay Generated Data)
~ =~ PR-OD (Positive Replay Original Data) —— NR-OD (Negative Replay Original Data)
-== PR-GD (Positive Replay Generated Data) —— NR-RD (Negative Replay Random Data)
0.8
0.7
0.6
05 s] g et
T | el A
S
3
< 0.4
0.3
2 -, PP Vs L /',\ AR LV Nos s X AP
02 Sy, _";.',4 "‘4' _‘, \V, A A SYAV VN “",\I, ‘\'\\\,\“,I‘/"' IANY \“\f/ \onew ~
0.1
0 50 100 150 200 250 300 350
Experience

Figure 11: Overall accuracy on the CORe50 NIC scenario for all the experiments performed in this
work (included random data and negative replay with original data). After each experience, the model
was evaluated using the cumulative test set as proposed by [Lomonaco & Maltoni| (2017). Every
experiment is averaged over 3 runs, with different seeds and class order. The standard deviation is
reported in light colors. better viewed if zoomed on a computer monitor.

25

	Introduction
	Problem Formulation
	Continual learning with generative replay

	Generative negative replay
	Learning classes in isolation
	Positive and negative replay
	Training a classifier with generative negative replay

	Experiments and results
	Experimental setup
	Experiments on the NC scenario
	Experiments on the NIC benchmark
	Ablation study

	Related works
	Conclusion
	NI, NC, and NIC definitions
	Pseudo-code of the weight consolidation phase
	Standalone negative replay implementation
	Details of the generative model implementation
	Validation of AR1 on ImageNet-1000
	Classifier hyper-parameters
	CORe50 NC
	ImageNet-1000 NC
	CORe50 NIC
	On the amount of replay data in the minibatch

	Generative model hyper-parameters
	CORe50 NC
	ImageNet-1000 NC
	CORe50 NIC

	Additional plots

