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ABSTRACT

Large Language Models (LLMs) exhibit strong reasoning capabilities, which can
be further enhanced through multi-agent frameworks. However, existing multi-
agent methods often suffer from high computational costs and lack theoretical
convergence guarantees. To address these limitations, we introduce an incomplete
information perspective to enhance the scalability of multiple LLMs by modeling
them with Bayesian Nash Equilibrium (BNE) and propose Efficient Coordination
via Nash Equilibrium (EcoNash), a hierarchical reinforcement learning frame-
work. EcoNash guides multiple LLMs to achieve BNE by integrating distributed
reasoning and centralized commitment, ensuring that each LLM independently
generates optimal answers based on its own beliefs without the need for ex-
tensive inter-agent communication. Theoretically, we prove that our framework
achieves a regret bound of O (NVT/1-~), which grows sublinearly with 7', while
multi-agent frameworks that do not attain BNE can at best achieve O (0maxT/1—~).
Empirically, our method outperforms single-LLM approaches by 10.9% and sur-
passes existing multi-LLLM methods by 11.2% over six benchmark tests covering
complex reasoning and planning tasks on average. Additionally, scalability exper-
iments show that our approach efficiently integrates more models, confirming its
flexibility and scalability, potentially leading to larger multi-LLM ensembles.

1 INTRODUCTION

Large Language Models (LLMs) (Brown et al., 2020) have demonstrated exceptional reasoning ca-
pabilities across various tasks, including natural language understanding, generation, and complex
problem-solving. Recent research enhances their reasoning abilities by exploring multi-agent frame-
works (Du et al., 2024; Chan et al., 2024; Liang et al., 2023; Chen et al., 2023; Hong et al., 2023)
where multiple LLMs collaborate. These frameworks simulate human-like discussions, boosting
diversity and creativity and potentially yielding more robust solutions in real-world applications.

However, existing multi-agent frameworks are computationally expensive, as they require multiple
model instances and repeated rounds of interaction (Wu et al., 2023). Agents must read and process
one another’s outputs, increasing communication overhead and latency. Adding components such as
judges or verifiers further compounds the problem by introducing more computational layers (Zheng
et al., 2023). What’s more, the current multi-agent debate (MAD) systems lack theoretical guaran-
tees for convergence(Du et al., 2024), while MAD between LLMs can be viewed as games that need
to converge to a single, stable solution. While empirical results may demonstrate convergence in
certain cases, the introduction of a judge can further guide the debate direction(Lu et al., 2024), the
lack of solid theoretical foundations leaves the reliability and stability of such systems uncertain.

To address the above challenges, we propose a novel framework called EcoNash (Efficient
Coordination via Nash Equilibrium), which introduces a Bayesian Nash Equilibrium (BNE) per-
spective to multi-LLM systems. Inspired by reinforcement learning, our framework constructs a
hierarchical coordination mechanism. Each Execution LLM operates independently with its own
belief network, receiving only the question and strategy from the Coordinator LLM. This enables
multiple Execution LLLMs to engage in distributed reasoning, guided by the Coordinator LLM, to
achieve BNE by optimizing the belief network and belief encoder. Optimization employs adaptive
rewards and an early stopping criterion. When the outputs of the Execution LLMs consistently meet
convergence metrics, the system is considered to have reached an approximate BNE, and further iter-
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ations are halted. This approach not only reduces unnecessary computations but also minimizes the
input tokens required by the Coordinator LLM, enhancing overall efficiency. Unlike existing meth-
ods, Execution LLMs can generate outputs in parallel without the need for extensive inter-agent
communication in EcoNash, reducing both communication costs and computational overhead.

Theoretically, we demonstrate that EcoNash achieves a regret bound of O (N vT/ 17«/) , which grows
sublinearly with 7'. In contrast, multi-agent frameworks that do not attain BNE can at best achieve a
regret bound of O (9maxT/1—~). Our framework’s convergence toward BNE provides strong theoret-
ical guarantees for efficiency, while inference incurs lower consumption costs than existing multi-
LLM systems, providing significant insights for scaling up multi-LLM systems. Based on it we
verify whether EcoNash can address scalability, a challenge often overlooked in prior works (Wu
et al., 2024; Yin et al., 2023; Lan et al., 2024; Yuan et al., 2024a). By constructing a Coordinator-
Execution subsystem based on local Nash equilibria, we scale EcoNash to a larger LLMs ensemble
framework (Central-Coordinator-Execution) in global Nash, resulted in enhanced performance.

Through extensive experiments on six benchmarks, including complex reasoning and planning tasks,
our method outperforms single-agent approaches by 10.9% and surpasses the performance of ex-
isting multi-agent methods by 11.2% in average, confirming the robustness and efficiency of our
framework. Scalability experiments further demonstrate that EcoNash effectively integrates numer-
ous models, showcasing its applicability in large-scale settings. When the number of Execution
LLMs is increased to nine, performance improves by 18.1% compared to three Execution LLMs.

We summarize our major contributions as follows:

¢ We conceptually formalize BNE in multi-LLM systems and technically instantiate it through a
hierarchical optimization framework EcoNash to improve reasoning over collaboration of LLMs.

* We address the non-trivial challenge of scaling up multi-LLM systems with local-global Nash,
facilitated by EcoNash’s low reliance on inter-agent communication and convergence guarantee.

» Extensive experiments on six benchmarks demonstrate that EcoNash outperforms existing single-
and multi-agent methods, while scalability experiments confirm its ability to efficiently integrate
numerous models for large-scale settings, potentially leading to larger multi-LLM ensembles.

2 RELATED WORK

Prompting Large Language Models to Reason. Large language models are significantly more
capable of complex reasoning with the advancement of prompt techniques (Wei et al., 2022; Ko-
jima et al., 2022; Wang et al., 2023; Yao et al., 2023; Chia et al., 2023; Fu et al., 2022; Wan et al.,
2023; Zhang et al., 2023b; Zhou et al., 2022). Wei et al. (2022) introduced Chain-of-Thought (CoT)
prompting, which presents step-by-step reasoning examples within the prompt. This enables the
model to engage in explicit reasoning, enhancing its ability to follow the logical progression that
leads to the correct answer. Various extensions of CoT have been developed to improve reasoning
performance further. Zero-shot CoT (Kojima et al., 2022) eliminates the need for manually con-
structing exemplars, prompting models with phrases like “Let’s think step by step” to encourage
reasoning. Wang et al. (2023) proposed self-consistency (SC) sampling, where multiple reasoning
paths are sampled, and the final answer is determined by majority voting. To enable LLMs to engage
in deliberate decision-making, Tree of Thoughts (ToT) Yao et al. (2023) generates multiple potential
answers at each reasoning step, building a tree of possible solutions. It then applies breadth-first or
depth-first search to navigate the tree, ultimately determining the rationale and final answer.

Multi-agent Debate for Large Language Models Reasoning. Various multi-agent debate strate-
gies(Du et al., 2024; Chan et al., 2024; Liang et al., 2023; Chen et al., 2023; Smit et al., 2024; Zhang
et al., 2023a; Pham et al., 2023) have been developed to strengthen the reasoning ability of LLMs
further. Du et al. (2024) introduced an approach where multiple instances of LLMs propose their
individual reasoning processes, engaging in multiple rounds of debate to reach a consensus on the
final answer. This method not only significantly enhances reasoning performance across a variety
of tasks but also reduces the occurrence of hallucinations. Some studies(Chan et al., 2024; Liang
et al., 2023) incorporate role-playing into multi-agent debate strategies using role-specific prompts,
which foster divergent thinking and enhance the reasoning capabilities of LLMs. However, cur-
rent multi-agent debate strategies face high computational costs and lack theoretical guarantees for
convergence. In this work, we introduce an incomplete information perspective to enhance the scal-
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ability of multiple LLMs to ensure independent reasoning by each Execution LLM while addressing
communication cost. Our framework ensures convergence through rigorous theoretical analysis.

3 METHOD

In this section, we develop a theoretical framework for multi-LLM systems to achieve BNE. We
begin by defining and establishing the implementation of BNE within a multi-LLM system (Sec-
tion 3.1). We conduct a convergence analysis and evaluate regret bounds to demonstrate the ef-
ficiency of our method (Section 3.2). Then, we outline our optimization approach with prompt
embeddings (Section 3.3), integrating both inference and optimization processes in Section 3.3 ,
followed by our scaling-up method to enhance the framework’s scalability in Appendix A.4).

3.1 BAYESIAN NASH EQUILIBRIUM IN THE MULTI-LLM FRAMEWORK
3.1.1 DEFINITION AND IMPLEMENTATION OF BNE

A Bayesian Nash Equilibrium (BNE) is a strategy profile where each agent maximizes its expected
utility based on its beliefs about other agents’ strategies. In the context of incomplete information
games, where each LLM does not have direct access to the outputs of other LLMs, we construct
a hierarchical framework consisting of execution LLMs and a coordinator LLM to establish the
game. The coordinator LLM takes a question as input and outputs corresponding strategy and format
specifications to guide execution LLMs. After receiving answers from execution LLMs, it generates
a final commitment to address the question. Each execution LLM maintains its belief state b; €
R? and receives observations O; = [et, €s, bi]T, where e; encodes the task and e, represents the
coordinator’s strategy. To enable coordination without direct information sharing, we implement
a belief network B;(7;, O;; 0F) that updates each agent’s state based on its history 7; and current
observation, generating prompt embeddings e;. A belief encoder f.({b;}¥_,;6.) then aggregates
these beliefs into group information E, and then the centralized mixing network of coordinator LLM
processes this group information to guide coordination through a commitment C.

To quantify the effectiveness of different belief states, we employ Q-functions Q;(O;, e;; 0F) that
evaluate prompt embeddings generated by the belief network. These value estimates guide the
optimization of belief network parameters §”. A BNE is achieved when each agent’s belief network
parameters generate prompt embeddings that maximize its expected utility:

e:; = arg H}S‘XEENfe({bj}_‘y:ﬁ&) [UZ(OZ,EeZ)] .

To guarantee the existence of BNE, the following conditions need to be established:

* Compactness and Convexity: For each agent 4, the mixed strategy space II; is non-empty, com-
pact, and convex, consisting of all mappings from types ©; to probability distributions.

* Continuity: The payoff function U; (0, a) is continuous in the type profile and the action profile.
* Quasi-Concavity: For each agent ¢, the expected payoff is quasi-concave in a; for fixed 6.

Under these conditions, we can apply Glicksberg’s Fixed Point Theorem (Ahmad et al., 2023) to
guarantee the existence of BNE. Specifically, the best response correspondences BR;(m_;) for each
agent ¢ are non-empty, convex-valued, and upper hemicontinuous.

Theorem 1 (Existence of Bayesian Nash Equilibrium). In the multi-agent LLM framework
with the specified conditions, there exists a Bayesian Nash Equilibrium strategy profile T =
(w3, 75, ..., wN) such that no agent can unilaterally deviate to improve its expected payoff, given
its beliefs about other agents’ types and strategies. For the proof, please refer to Appendix A.1.

Proposition 1 (Convergence to Bayesian Nash Equilibrium). Under appropriate assumptions about
the learning rate, exploration strategy, and Q-network properties, the prompt embedding adjustment
via TD loss converges to a Bayesian Nash Equilibrium The proof is provided in Appendix A.2.

3.2 CONVERGENCE ANALYSIS AND BAYESIAN REGRET BOUND

In this section, we analyze the convergence properties of our EcoNash framework through Bayesian
regret. Our analysis demonstrates that the framework’s belief network structure and coordinated
learning process lead to efficient convergence toward BNE, achieving sublinear regret bound
0 (N vT/ 1—7) in contrast to the linear regret of existing multi-agent debate methods.



Under review as a conference paper at ICLR 2025

. | e~ T Data flows
Q"’ ........ letence
Mix Network
ama
Multi Head 1 n
— 0 [ , “ B .. F
H ‘ Attention b g 1
********************** Ve e e m =
T e g e e I I Concatenate
| Answerl | Answer2 | ¢ Answer3 | " I, ol
e S St St ¢ e/ > Attention — = Wy wy || E'
.0 ol L —— - t
| Belief1 1~ ' Belief2 1~ | Belief3 1 Ny Group Info E'
T 0/(zhe) _|e; Belief Network ,p—,
Execu! Execu? Execu? -
! Belief Encoder
' MLP
: I b b b
R Strategy | Format ' ' '
; rategy b',—> GRU —> D"
t
[ Input }- --o[ Coordinator ] (O',7")— wMLP Belief ! Belief? |-+| Belief®

Figure 1: The EcoNash framework. The inference procedure is shown by green arrows: the coordi-
nator receives the question, provides a strategy to the Execution LLM, which outputs an answer. Af-
terwards, the coordinator forms the final commitment. Simultaneously, the Execution LLM passes
its belief to the belief encoder, embedding agent information. TD Loss updates the belief network,
and SD Loss updates the belief encoder, optimized to achieve BNE, as the red gradient flow.

For each agent ¢, we measure the learning efficiency using Bayesian regret over T steps:R;(T) =
Es, [Zthl (V¥ (se) — V™ (s¢)) |, where V;*(s) represents the optimal value under BNE policies
and V;™*(s) is the value under current policies at time ¢. The expectation accounts for randomness in
both state transitions and policy choices. To analyze the total Bayesian regret R(T') = 211\;1 R;(T),
we make standard assumptions (see Appendix A.3) to propose Lemma 1, and we prove Lemma 1 in

B.1. Using Lemma 1 we bound the Bayesian regret and provide a proof sketch here, with detailed
proofs and comparision with multi-agent debate in Appendix B.2 and B.3.

Lemma 1 (Performance Difference). For joint policies 7 = (7;, w_;) and 7' = (wl, 7’_,), the value
difference for agent i is:
1

Vi (5) = Vi) = T By B Q7 (5:0) = Eann Q7 (s,0)]

where d is the state distribution under 7', and a = (a;, a_;) denotes joint actions.

Applying this lemma to our regret analysis yields (Jin et al., 2020; Fujimoto et al., 2018):

N T
1
R(T) = Z EEst,‘nt Z (EaINW*Q?t (st7 a:) - EatNﬂtQ?t (St7 at))]

i=1 t=1

where 7* represents the BNE policies. Through analysis of estimation error €, and policy subopti-
mality d; , we establish: Eqx o Q7 (5¢, ;) — Ba,mm, Q7 (8¢, a¢) < 2€; + 4. This leads to:

N 1 T 1 N\/T
R(T)<;m(206+05);%20<m>.

3.3 FRAMEWORK OF ECONASH

In this section, we present a framework designed to achieve BNE within a multi-LLMs system, sat-
isfying the assumptions in Appendix A.3 to enable Lemma 1 can be applied to analyze its Bayesian
regret. The framework has two primary phases: Inference and Optimization. The inference phase
involves generating and propagating strategies and responses, while optimization phase focuses on
updating strategies to align with global objectives and optimizes their beliefs to achieve BNE.

3.3.1 INFERENCE PHASE

During the inference phase, a Coordinator LLM generates an informative strategy and a format based
on the input question g. These are then disseminated to the Execution LLMs, which independently
produce their respective answers. Finally, the Coordinator LLM aggregates these answers to form a
final commitment, detailed inference flow as illustrated clearly in Figure 1: the green inference flow.
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3.3.2 OPTIMIZATION PHASE

The optimization phase of EcoNash implements a hierarchical learning framework under the cen-
tralized training with decentralized execution (CTDE) paradigm(Foerster et al., 2018b; Kraemer &
Banerjee, 2016), satisfying our theoretical assumptions while optimizing towards the Bayesian Nash
Equilibrium (BNE). Under Assumption 2, execution LLMs aim to align with posterior distributions
determined by the coordinator LLM, achieved through our belief network architecture. The game
regularity (Assumption 3) ensures stable information gain across timesteps, guiding our design of the
belief encoder. The concentrability condition (Assumption 4) bounds the error in value estimation,
informing our mixing network structure. The optimization procedure is summarized in Algorithm 1.

REWARD SETTING The reward function R is central to the optimization stage, providing feedback
on each agent’s performance. Multiple types of rewards are designed to capture different aspects of
performance. The Action Likelihood Reward evaluates the consistency of an agent’s actions with
the commitment C, inspired by maximum entropy inverse reinforcement learning (Zhu et al., 2023).
Task-specific rewards address correctness in tasks like math problem solving or relevance in plan-
ning (Hao et al., 2023). The Self-Evaluation Reward enables the coordinator to assess the quality
of generated answers, promoting coherence, consistency, and creativity across agents, driving opti-
mization toward BNE (Xie et al., 2024b). More details are provided in Appendix B.4.

INDIVIDUAL BELIEF NETWORK ~Execution i employs a belief network B;(7;, O;; 0F) to update
its belief state b; based on its history trajectory 7; and current observation O;. The belief state b; is
used to adjust the prompt embedding e; = [T;, p;], which defined as:

T = Tinin + <Tmax - Tlnin) : (T(WTbi + bT)7 Pi = Pmin T (pmax - pmin) : U(pri + bp);

with o(+) as the sigmoid activation function. Here, T; adjusts the softmax distribution, and p; sets
the sampling threshold. The belief network outputs the prompt embedding e; and Q-value Q! for
the mixing network, while passing b; to the belief encoder for group-level dynamics. It is optimized
using the TD loss, where r! is the local reward and ¢ denotes the parameters of the Q-value function:

2
Lip(67) =Ep (Tf +ymax QT (7] el ¢f) — Qi(7] el ¢>)> :
€;

BELIEF ENCODER The belief encoder f.(-;0.) aggregates the belief states from all agents

to generate a group-level representation E = f.({b;}Y;6.). using multi head atten-
tion with H attention heads to capture inter-agent relationships. Each head is computed
as head, = Attention(W b, Wb, W)/b), and the final output is obtained by E =

Concat(heady, ..., head ;)W ©, with W}? , Wf , W}Y being learnable parameters, and W€ is the out-
put projection matrix. The belief encoder is optimized as: L. (6.) = L%(¢) + Ae Y, Lip (65).

CENTRALIZED MIXING NETWORK The Centralized Mixing Network is designed to coordinate
belief information from execution LLMs, facilitating optimization towards BNE. Prompt embed-
dings {e!}}Y, are processed via self-attention to capture intra-agent dependencies, producing trans-
formed embeddings {w!}X . These embeddings are concatenated with the group-level representa-
tion E! to generate feature transformations {F}} ,, encoding both local agent-specific and global
group-level information. The feature transformations {F}}¥ | and individual Q-values {Q!},
are then combined via multi-head attention to compute the global value function QY,, capturing
complex local-global interactions. The network is optimized by minimizing the composite loss:
Lunix(¢) = LE(B) + Lsp + A D, QL — QL,||?, where the TD loss aligns Qf, with 7

2
%(6) = Ep (rwv{rr:%}@f;l(ml,{ez“};qb’)—Qfm,{ez};w) ,

i

with 7, = {O!}Y | representing the joint observations, and {e!} , as the agents’ belief embed-
dings. The similarity difference (SD) loss aligns the feature transformations { /! } V| with the coor-
dinator LLM’s commitment C: Lsp = Ay >, (1 —sim(F}, C))%. A consistency term further ensures
Q! aligns with Q! ,. The target parameters ¢’ are updated via a soft update rule: ¢’ <+ 7¢+(1—7)¢’,
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where 7 is the update rate. By synthesizing belief information and aligning with C', the mixing net-
work ensures monotonicity, guaranteeing that improvements in individual agent performance pos-
itively impact global coordination, enabling stable convergence to the equilibrium. The detailed
proof of monotonicity can be found in Appendix A.S.

EARLY STOPPING To ensure efficient optimization and convergence to stable solutions, early stop-
ping is implemented based on three key criteria. First, Commitment Stability is achieved when the
change in the coordinator’s commitment satisfies ||[AC|| = ||Ci41 — Ct|] < ec. Second, Reward
Convergence is monitored such that the average reward across agents reaches a predefined thresh-

old, # Zf\;l r; > Rueshold- Lastly, Loss Convergence is ensured when the total loss stabilizes,

satisfying |Lit" — Lt,| < er, where Ly is the sum of individual agent losses 3_, L;, execution

loss L., and the mixing loss L. These criteria comprehensively monitor the optimization process,
ensuring both strategic alignment and task performance while preventing premature termination.

Algorithm 1 Optimization Phase of EcoNash

Require: Execution LLMs {ExecLLM, }, Coordinator LLM, Networks { fe, fmix }
Require: Thresholds {ec, Rinreshold; €7, }, Maximum episodes Tpax
Ensure: Optimized network parameters

1: while not converged and ¢t < T},,x do

2: /I Parallel execution and local optimization for each agent

3: for each Execution LLM ¢ do

4: Update belief state b; and generate output u; > Run execution LLM
5: Compute rewards: 7; < a1t + agr!® + agrdt > Action likelihood + Task +

. Self-evaluation

6 Store transition (O;, u;, r;, O}) in replay buffer D
7: Update individual belief network parameters > Using TD loss
8: end for
9: /I Global coordination and optimization
10: Update belief encoder f, > Using global TD loss + local TD losses
11: Update mixing network fiix > Using TD + similarity + consistency losses
12: Get new commitment C 7 from Coordinator
13: /I Check convergence conditions
14: if ||Ct+1 — Ct” < ec and Ravg > Rihreshold and ‘th:t_l — Lttot| < €1, then
15: break > Early stopping when all criteria are met
16: end if

17: end while

4 EXPERIMENT

In this section, we present the experiment setup in Section 4.1, demonstrate the performance against
baseline methods in Section 4.2, validate the heterogeneous results of different models in Sec-
tion 4.3, test scale-up capability in Section 4.4, and conduct ablation studies in Section 4.5.

4.1 SETUPS

Models and Datasets. We evaluate 4 newly released opensourced LLMs: LLaMA3.1
8B (Dubey et al., 2024), LLaMA3.1 70B,Mistral-7B (Jiang et al., 2023), LLaMA3.1 405B
across H reasoning tasks, including 4 mathematical tasks (GSM8K (Cobbe et al., 2021), GSM-
Hard (Gao et al., 2023), MATH (Hendrycks et al., 2021), SVAMP (Patel et al., 2021)) and one
commonsense reasoning task (StrategyQA (Geva et al., 2021)). Then, we evaluate the most pow-
erful LLM (GPT4 turbo) in a very challenging planning task (Travelplanner (Xie et al., 2024a)) to
further validate the performance. The details of evaluation tasks can be found in Appendix B.5.

Compared Methods and Evaluation Metrics We compare EcoNash against several strong base-
line types widely adopted: (i) single-round CoT prompting, including zero-shot and few-shot
CoT (Kojima et al., 2022; Wei et al., 2022); (ii) multi-round CoT prompting, Self Consistency
SC (Wang et al., 2023) method, where we sample answers 64 times and employ majority voting
for answer selection; (iii) value-guided search approaches with learned action-value functions, in-
cluding TS-LLM (Feng et al., 2023) which leverages AlphaZero-style value networks for MCTS,
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and PPO-MCTS (Liu et al., 2024) which learns value models to evaluate generation quality in tree
search; (iv) multi-round self-improving approaches, using ToT (Yao et al., 2023), RAP (Hao et al.,
2023) and React(Yao et al., 2022) as baselines, with BFS and MCTS for tree search, respectively,
following their original implementations for answer selection; and (v) multi-LLM reasoning frame-
works, including rStar (Qi et al., 2024) and multi-agent debate (Du et al., 2024).

EcoNash Setups In this section, the EcoNash framework includes one coordinator and three Ex-
ecution LLMs. The hyperparameters for training can be found in Appendix B.6. To ensure a fair
comparison with the baseline, we use four identical models for these LLMs. For heterogeneous
results, we also evaluate EcoNash with different models in Table 3. All evaluations are conducted in
a zero-shot setting, with a general prompt provided in Appendix C. Notably, while we set a 50-token
constraint for the coordinator’s strategy generation, considering that LLMs may not strictly follow
length instructions (Yuan et al., 2024b), who showed that 95% of responses stay within 1.4x and
50% within 1.0x of the specified length, we implement a 70-token hard cutoff with regeneration
mechanism, which effectively controls the token usage as verified in Table 4.

4.2 MAIN RESULT

Table 1 shows a detailed comparison of each method on four mathematical and one commonsense
reasoning dataset. Empirical results demonstrate that EcoNash outperforms most baselines across all
complex reasoning benchmarks. On average, EcoNash outperforms the single-round method Zero-
shot CoT by 25.6%, Few-shot CoT by 6.3%, multi-round CoT prompting SC by 10.9%, multi-round
self-improving approaches ToT by 11.2%, multi-LLM reasoning frameworks rStar by 6.4%.

Furthermore, when evaluated on the very challenging Travelplanner benchmark using GPT-4-Turbo
in Table 2, EcoNash enhanced the final pass rates to 7.2% on the validation set and 9.3% on the test
set, while compared to 2.3% and 3.7% achieved by a three-round multi-agent debate approach.

These results demonstrate that EcoNash effectively leverages the capabilities of more powerful mod-
els and outperforms alternative reasoning optimization methods in complex tasks. Additionally, we
provide a corresponding example for MATH which are available in Appendix D. Note that EcoNash
uses fewer tokens compared to multi-round CoT prompting SC, multi-round self-improving ap-
proaches ToT, and Multi-Agent Debate, meanwhile achieved performance improvements.

4.3 ADDITIONAL RESULT

To evaluate the impact of both the Coordinator LLM and Execution LLM performance on the
EcoNash framework and find whether heterogeneous Execution LLMs can also achieve a BNE, we
conducted two types of experiments: one pairing a strong Coordinator LLM with weaker Execution
LLMs, and another pairing a weak Coordinator LLM with stronger Execution LLMs. These experi-
ments were further divided into homogeneous and heterogeneous execution groups for detailed anal-
ysis. To ensure a fair comparison, the Coordinator LLM was consistently set to L1ama3.1 70b
across all experiments. For the heterogeneous execution group, we used the following configura-
tions: Llama 3.1 8b, Llama 3 8b, and Mixtral 7b, as well as another configuration
consisting of Mixtral 8x22b, Qwenl.5 110b, and Llama3.1 405b. For the homo-
geneous execution group, two configurations were tested: one with three weak modelsLlama 3.1
8Db), and another with three strong models L1lama 3.1 405b. Experimental results indicate that
stronger Execution LLMs improve performance by providing higher-quality answers and achieving
BNE more efficiently. Additionally, heterogeneous model perform worse than homogeneous models
due to increased challenges in reaching BNE, but still outperform baseline method Few-shot CoT .

To assess the cost efficiency of the EcoNash framework, Table 4 presents the average token us-
age of EcoNash, Multi-Agent Debate, RAP, and Self Consistency (SC) across the Math, GSM8K,
and GSM-Hard datasets for three models: Llama 3.1 70B, Mixtral 8x7B, and Mixtral
8x22B. The results demonstrate that EcoNash reduces token consumption by an average of 21.4%
compared to Multi-Agent Debate (3 rounds). Notably, when the Coordinator LLM provides detailed
strategies with answer(as shown in the token consumption data in Table 4), token usage increases an
average of 112% higher token consumption as each Execution LLMs must process the full strategy.

4.4 ScALE UP RESULT

We analyzed the impact of varying the number of agents further to validate EcoNash across a broader
range of LLMs. We conducted three sets of experiments on the MATH, GSM-Hard, SVAMP, and
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Table 1: Empirical results of five reasoning datasets: GSM8K,GSM-Hard, SVAMP, Strategy QA,
MATH. Bold face numbers indicate the best performance, while underline means the second best.

Dataset Method Mistral-8 7B Mistral-8 x22B LLaMA3.1-70B LLaMA3.1-405B Average
Zero-shot CoT 62.06 72.14 78.38 86.40 74.74
Few-shot CoT 74.92 84.05 95.10 96.80 87.71
SC@maj64 71.08 86.24 89.56 92.40 84.82
rStar 75.82 81.92 91.13 94.16 85.76
GSMSK ToT 71.46 82.60 84.52 92.73 82.83
RAP 72.03 76.97 81.33 92.14 80.62
TS-LLM 74.21 84.68 94.82 96.42 87.53
PPO-MCTS 73.45 82.76 92.24 94.85 85.83
EcoNash 76.97 88.20 96.70 98.80 90.17
Zero-shot CoT 21.47 32.24 36.78 42.17 33.17
Few-shot CoT 26.71 41.35 45.21 52.88 41.54
SC@maj64 22.47 44.19 39.76 47.39 38.45
rStar 20.21 37.91 49.82 52.75 40.17
GSM-Hard ToT 24.39 41.71 37.25 46.84 37.58
RAP 22.47 42.79 38.97 46.44 37.67
TS-LLM 26.85 42.92 47.76 55.24 41.69
PPO-MCTS 24.86 40.12 44.53 53.42 40.73
EcoNash 25.76 47.58 51.43 60.10 46.22
Zero-shot CoT 81.57 86.27 85.70 91.40 86.24
Few-shot CoT 86.42 91.73 94.50 96.30 92.24
SC@maj64 83.57 88.37 93.80 95.60 90.34
rStar 84.69 86.40 92.15 95.90 89.79
SVAMP ToT 83.31 89.87 88.60 93.50 88.82
RAP 85.64 91.90 84.50 90.70 88.19
TS-LLM 83.25 89.82 93.92 94.24 90.81
PPO-MCTS 85.24 89.76 93.15 94.82 90.74
EcoNash 87.79 92.27 96.80 97.20 93.52
Zero-shot CoT 55.13 67.91 75.21 78.56 69.20
Few-shot CoT 62.79 82.38 82.57 85.30 78.26
SC@maj64 65.45 81.27 79.33 82.07 77.03
rStar 68.64 86.70 83.45 87.86 81.66
StrategyQA  ToT 71.29 84.49 80.15 84.17 80.03
RAP 69.38 82.27 83.29 87.92 80.72
TS-LLM 68.12 83.82 84.24 90.46 81.65
PPO-MCTS 67.85 82.94 83.76 89.24 80.95
EcoNash 70.21 88.27 87.39 94.30 85.04
Zero-shot CoT 25.17 54.17 68.24 73.82 55.35
Few-shot CoT 33.38 66.45 74.41 80.30 63.64
SC@majo4 31.58 62.21 67.39 78.25 59.86
rStar 37.89 70.28 71.57 83.49 65.81
MATH ToT 34.35 65.22 60.41 82.88 60.72
RAP 33.99 62.53 68.71 80.23 61.37
TS-LLM 34.82 67.85 76.92 83.76 65.84
PPO-MCTS 34.76 65.82 73.45 81.24 63.82
EcoNash 37.02 72.29 81.47 87.50 69.07

StrategyQA datasets, aiming to address three key questions: (1) To what extent can weaker LLMs be
enhanced? (examined on LLaMA 3.1 8B), (2) Can stronger LLMs be further improved? (using
LLaMA 3.1 70B), and (3) Should the number of Coordinator LLMs be increased along with the
number of Execution LLLMs? Starting from three Execution LLLMs (as in the main results), we
gradually increased the number of agents to nine. We used the few-shot CoT as the baseline (in grey
line) as Figure2. The results suggest that beyond four Execution LLMs, performance improvements
were minimal, and in some cases, performance even declined. We attribute this to the challenge
faced by the Coordinator LLM in managing an excessive number of Execution LLMs, making it
difficult to achieve optimal coordination by redundant information from the additional agents.

Instead of simply increasing the number of Execution LLMs, we enhance scalability by forming a
global Nash equilibrium through local Nash equilibria by introducing additional coordinators. This
setup ensures that each Coordinator handles a reasonable amount of data. Specifically, each Co-
ordinator manages up to 4 Execution LLMs, forming commitments and guiding them toward local
Nash equilibria. Furthermore, a central LLM was introduced to coordinate the multiple coordi-
nators, facilitating the transition from local Nash equilibria to a global Nash equilibrium (details
in Appendix 2). We observed significant improvements across all benchmarks, both for weaker
models(Llama 3.1 8B)and stronger models (Llama 3.1 70B). Compared to a system with 3
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Table 2: Empirical results on the TravelPlanner dataset, along with some leaderboard rankings, are
presented. The best performance is highlighted in bold.

Validation (#180) Test (#1,000)
Delivery Commonsense Hard Constraint Final Delivery Commonsense Hard Constraint Final
Rate Pass Rate Pass Rate Pass Rate Rate Pass Rate Pass Rate Pass Rate
Micro Macro Micro  Macro | Micro Macro Micro  Macro |
Greedy Search 100 744 0 60.8 378 | 0 100 72.0 0 524 318 | 0
Two-stage
Mixtral-8x7B-MoE 494 30.0 0 1.2 0.6 0 51.2 322 0.2 0.7 0.4 0
Gemini Pro 28.9 18.9 0 0.5 0.6 0 39.1 24.9 0 0.6 0.1 0
GPT-3.5-Turbo 86.7 54.0 0 0 0 0 91.8 57.9 0 0.5 0.6 0
GPT-4-Turbo 89.4 61.1 2.8 15.2 10.6 0.6 93.1 63.3 2.0 10.5 5.5 0.6
Debate(GPT-4)@3round | 95.2 67.3 6.7 22.7 13.1 2.3 97.8 724 113 174 12.1 3.7
EcoNash(GPT-4) 100 714 156 321 25.7 7.2 100 821 266 324 17.6 93
Sole-planning
DirectGpr3.5-Turbo 100 60.2 44 11.0 2.8 0 100 59.5 2.7 9.5 44 0.6
CoTGPr3.5-Turbo 100 66.3 3.3 11.9 5.0 0 100 64.4 2.3 9.8 3.8 0.4
ReAcCtGpr-3.5-Turbo 82.2 47.6 39 114 6.7 0.6 81.6 459 2.5 10.7 3.1 0.7
Reflexiongpr-3.5-Turbo 93.9 53.8 2.8 11.0 2.8 0 92.1 52.1 22 9.9 3.8 0.6
Directyixiral-8x7B-MoE 100 68.1 5.0 33 1.1 0 99.3 67.0 3.7 39 1.6 0.7
DirectGemini Pro 93.9 65.0 8.3 9.3 4.4 0.6 93.7 64.7 7.9 10.6 4.7 2.1
Directgpra-Turbo 100 804 172 47.1 222 44 100 80.6 152 443 23.1 4.4
Debate(GPT-4) 97.7 789 156 433 20.6 6.7 98.2 79.5 188  41.7 229 7.1
EcoNash(GPT-4) 100 833 222 517 27.8 12.9 100 842 235 498 28.7 15.2

Table 3: Performance of different configurations in Execution LLMs on GSM-Hard and MATH.

Method GSM-Hard MATH
Baselines

EcoNash 5143 81.47

LLaMA 3.1 70b (Few-shot CoT) 42.23 62.71

EcoNash Configurations

Homog. (3x Llama3.1 8b) 48.71 67.70

Homog. (3x Llama3.1 405b) 61.29 89.24

Heterog. (Llama3.1 8b, Llama3 8b, Mixtral 7b) 45.24 74.24

Heterog. (Mixtral 8x22b, Qwenl.5 110b, Llama3.1 405b) 55.73 85.46

Execution LLMs and one coordinator, the scaled-up system with 9 Execution LLMs, 3 coordinators,
and a central LLM achieved 18.1% improvement in Figure3, which has potential to further scale up.

4.5 ABLATION STUDY

In the additional experiments, heterogeneous Execution LLMs experienced a slight performance
decline. An intuitive explanation for this observation is that implementing BNE is more challenging
for heterogeneous Execution LLMs. To verify the actual performance differences of the EcoNash
framework before and after achieving BNE, we conducted experiments on three math reasoning
benchmarks: GSM8K, GSM-Hard, and MATH. Results in Table 5 demonstrate that our framework
achieved an average performance improvement of 14% after implementing BNE.

Table 4: Average token usage and performance comaprison in the Math, GSM8K, and GSM-Hard.

. LLaMA3.1 70B Mixtral 8x7b Mixtral 8x22b
Dataset Inference Strategy
Token Usage Performance Token Usage Performance Token Usage Performance
EcoNash 1629.79 81.47 1128.23 35.02 4270.86 72.29
Multi-Agent Debate (3 rounds) 2154.87 71.58 1462.12 31.28 5345.56 67.41
Math RAP 2653.27 68.71 1737.73 33.99 6668.55 62.53
EcoNash (with detailed strategy) 3270.06 72.38 2150.23 26.18 8054.03 68.23
Self Consistency (64 rounds) 11917.00 67.39 8066.21 31.58 29616.13 62.21
EcoNash 1131.65 92.70 1284.98 76.97 4715.31 88.20
Multi-Agent Debate (3 rounds) 1391.57 86.32 1463.40 70.19 5714.05 81.95
GSM8K RAP 1907.86 81.33 1248.66 72.03 6517.77 76.97
EcoNash (with detailed strategy) 2772.24 85.17 1188.13 65.37 9341.60 81.46
Self Consistency (64 rounds) 9574.25 89.56 6601.34 71.08 24671.91 86.24
EcoNash 1518.76 51.43 1271.53 25.76 7101.62 47.58
Multi-Agent Debate (3 rounds) 3030.73 41.98 1478.14 20.04 9250.78 45.21
GSM-Hard RAP 1768.72 38.97 1036.11 2247 6464.52 42.79
EcoNash (with detailed strategy) 3662.64 44.12 2239.07 18.52 11464.98 41.04
Self Consistency (64 rounds) 16724.69 39.76 11668.19 22.47 74544.25 44.19
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Figure 2: Scaling up our framework with a single coordinator while increasing the number of Exe-
cution LLMs. Experiments were conducted on GSM8K, GSM-Hard, Math, and SVAMP datasets.
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Figure 3: Scaling up our framework involves increasing the number of coordinators in proportion to
the growing number of Execution LLMs, with coordinators scaling accordingly. Experiments were
conducted on the GSM8K, GSM-Hard, MATH, and SVAMP datasets.

) ) ) Table 6: Ablation on reward.
Table 5: Performance comparison of models with and with-

out BNE across different datasets.

R1 Rs R3z EcoNash

v X v 7155
Dataset Model Without BNE (%) With BNE (%) v X X 74.32
LLaMA3.1-8B 7438 80.33 v voox 62l
GSMS8K  LLaMA3.1-70B 82.12 96.61 Random 6271
LLaMA3.1-405B 92.36 100.00
LLaMA3.1-8B 21.73 30.71
GSM-Hard LLaMA3.1-70B 43.58 60.26 Table 7: Ablation on strategy.
LLaMA3.1-405B 51.54 65.91
» Sy EcoNash
LLaMA3.1-8B 55.92 71.45 $1 52 Ss EcoNas
MATH LLaMA3.1-70B 74.47 8731 v X % 7135
LLaMA3.1-405B 8231 94.78 X v x 7231
X X v 81.47

Additionally, we performed ablation studies on various submodules, including the reward design
and the setting where the Coordinator LLM provides a strategy without giving a direct answer, to
ensure the validity of our architecture. All experiments were conducted with Llama 3.1 70B
model, tested on the MATH benchmark. Specifically, R; refers to the action likelihood reward, R5
to the task-specific reward, and R3 to the self-evaluation reward. S; represents the setting where
the coordinator does not provide any strategy, while So represents the setting where the coordinator
provides both a detail strategy, S5 represents EcoNash, with informative strategy as our baseline.

5 CONCLUSION

In this work, we introduce EcoNash, a novel collaborative reasoning framework in multi-LLM
systems. EcoNash constructs a hierarchical coordination mechanism, enabling multiple Execution
LLMs to engage in distributed reasoning guided by a Coordinator LLM. The hierarchical coordina-
tion mechanism allows each Execution LLM to operate independently with its own belief network,
receiving only the question and strategy from the Coordinator LLM. This enables multiple Execution
LLM:s to engage in distributed reasoning, guided by the Coordinator LLM, to achieve BNE. Exper-
imental results across six benchmarks demonstrate EcoNash outperforms single-agent approaches
by 10.9% and surpasses the performance of existing multi-agent methods by 11.2% in average,
confirming the robustness and efficiency of our framework. Moreover, EcoNash demonstrate great
potential to scale up the mulit-LLMs system while maintain relatively reasonable consumption cost.

10
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REPRODUCIBILITY STATEMENT

The experimental setups for training and evaluation are described in detail in Section 4.1, and the
experiments are all conducted using public datasets. We provide the link to our source codes to en-
sure the reproducibility of our experimental results: https://anonymous.4open.science/
status/EcoNash-867A.
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A THEORETICAL PROOF

A.1 PROOF OF THEOREM 1

Proof. We aim to prove the existence of a Bayesian Nash Equilibrium (BNE) in our multi-agent
LLM framework under the specified conditions. The proof proceeds by verifying the conditions of
Glicksberg’s Fixed Point Theorem, which guarantees the existence of a fixed point in continuous
games with infinite-dimensional strategy spaces.

Step 1: Define the Best Response Correspondence
For each agent ¢, define the best response correspondence B R; as:
BR;(m—;) = {m; € II; | m; maximizes U; (6;, m;,m—;)},

where I1; is the set of all admissible strategies for agent ¢, and 7_; denotes the strategies of all other
agents.

Step 2: Verify the Conditions of Glicksberg’s Fixed Point Theorem
To apply Glicksberg’s Fixed Point Theorem, we need to verify the following conditions for each

agent ¢:

1. Strategy Space Compactness and Convexity:

 The strategy space II; is non-empty, convex, and compact in the topology of pointwise
convergence.

2. Continuity of Payoff Functions:
¢ The payoff function U;(6;, m;, m—;) is continuous in (7, 7_;) for each fixed 6;.
3. Quasi-Concavity of Payoff Functions:

¢ The payoff function U;(0;, 7;, m_;) is quasi-concave in 7; for each fixed 6; and 7_;.
Verification:

1. Strategy Space Compactness and Convexity:

The strategy space II; consists of all measurable functions mapping types 6; to actions a;
in A;. Since O, and A; are compact metric spaces, and strategies are measurable functions
from one compact space to another, the space of such functions II; can be endowed with
the topology of pointwise convergence, making it compact by Tychonoff’s Theorem. Con-
vexity follows because the set of mixed (probabilistic) strategies is convex, and any convex
combination of measurable functions is measurable.

2. Continuity of Payoff Functions:

For fixed 0;, the payoff function U;(0;, 7;, 7—;) depends continuously on 7; and 7_; due
to the continuity of U; in actions and types. Specifically, since U; is continuous in a =
(a;, a—;) and the strategies 7;, m_; map continuously from types to actions, the composition
U;(0;,m:(0;), 7—;(6—;)) is continuous in (7;,7_;).

3. Quasi-Concavity of Payoff Functions:

For each 60; and 7_;, the function m; — U;(0;,7;, m_;) is quasi-concave because U; is
quasi-concave in a; and the strategies are linear in the space of mixed strategies. There-
fore, any convex combination of strategies does not decrease the utility, satisfying quasi-
concavity.

Step 3: Establish Upper Hemicontinuity and Non-Empty, Convex-Valuedness of Best Re-
sponse Correspondences

We need to show that BR;(7_;) is upper hemicontinuous with non-empty, convex values.
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1. Non-Empty, Convex Values:

For each 7_;, since II; is compact and convex, and U; is continuous and quasi-concave in
7;, the Weierstrass Theorem ensures that the maximum exists; hence, BR;(7w_;) is non-
empty. Convexity follows from the quasi-concavity of U; in 7;, implying that any convex
combination of best responses is also a best response.

2. Upper Hemicontinuity:

Upper hemicontinuity of BR; means that for any net #*, — 7_;, and any 7; € BR;(7_;),
there exists a net 7 € BR;(7®;) such that 7% — ;. This property holds because the
payoff function U; is continuous in (7;, 7_;), and the strategy spaces are compact.

Step 4: Application of Glicksberg’s Fixed Point Theorem

Having verified all the conditions, we can apply Glicksberg’s Fixed Point Theorem, which states
that if each player’s strategy set is compact and convex, and their payoff functions are continuous
and quasi-concave in their own strategies, then the game has at least one Nash Equilibrium in mixed
strategies.

Step 5: Conclusion

Therefore, there exists a strategy profile 7™ = (77, 75, ..., 7% ) such that for each agent i,
w7 € BR;(m*,),

meaning that no agent can unilaterally deviate to improve their expected payoff, given their beliefs
about other agents’ types and strategies. This strategy profile constitutes a Bayesian Nash Equilib-
rium in our multi-agent LLM framework.

O

A.2 PROOF OF PROPOSITION 1

Proof. We aim to show that, by minimizing the TD loss for each agent’s Q-network, the agents’
strategies converge to a Bayesian Nash Equilibrium (BNE).

Assumptions:

1. The Q-networks Q; (s, a;; 0;) are parameterized by prompt embeddings 6;, and the mapping
from 6; to (Q; is continuously differentiable.

2. The exploration strategy ensures sufficient coverage of the state-action space (e.g., e-greedy
with decaying ¢).

3. The loss function L;(;) is convex or has Lipschitz continuous gradients with respect to 6;.
4. The gradient Vy, L;(6;) is Lipschitz continuous.
5. The learning rate 7, is chosen such that it satisfies the Robbins-Monro conditions:

S m =ocand ) ;2 n? < oo

Step 1: Defining the TD Loss Function The TD loss function for agent i is:

Li (91) = E(S,(L{,,’I‘i,s/)’\‘pi

2
(7'2' +ymax Q;(s’, aj; ;) — Qi(s, as; 92)) 1

This loss measures the discrepancy between the predicted Q-value and the target Q-value based on
the reward and the estimated optimal future Q-value.

Step 2: Gradient Descent Update Agent 7 updates its Q-network parameters according to:

0" = 0 — i Vo, Lu(6)).
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The gradient of the loss function with respect to the parameters is:

Vo, Lz‘(af) = E(s,amms/)ND%

2 (Tz‘ +ymax Qy(s’, aj; 0;) — Qz‘(&%ﬂf)) (=V0,Qi(s, a5 6;))| .

Step 3: Convergence of Gradient Descent with TD Loss Under the assumptions that L;(6;)
has Lipschitz continuous gradients and the learning rate 7, satisfies the Robbins-Monro conditions,
stochastic gradient descent converges to a stationary point 8 of L;(6;):

lim 6! = 6.
t—00

At convergence, the gradient vanishes:
Vo, Li(67) =0,
which implies:
E(s,a;s,ri,8")~D; [(u + ’yn}f}XQi(S’, a;;0;) — Qi(s, ai; 92‘)) -Vo,Qi(s,a:;67)| = 0.
Assuming that the Q-network parameterization is such that the above condition holds only when:
Qi(s,ai;07) =1 + WH}Z?}XQi(S/, ai;0; ),
the Q-network accurately estimates the expected cumulative rewards, aligning the agent’s policy

with the optimal response to other agents’ strategies.

Step 4: Characterizing the Stationary Point At the stationary point 8, the Q-network satisfies
the Bellman optimality condition:

Qi(s,ai;07) = ri +ymax Qy(s’, aj; ;).

This condition ensures that the agent’s policy m;(a; | s;67) is a best response to the current policies
of other agents, as it maximizes the expected cumulative reward.

Step 5: Establishing Bayesian Nash Equilibrium Since each agent’s policy is a best response to
the policies of others, the set of policies {7} constitutes a Bayesian Nash Equilibrium. Each agent
maximizes its expected utility given its beliefs about other agents’ types and strategies, fulfilling the
definition of BNE.

O

A.3  ASSUMPTIONS

Our theoretical analysis relies on four key assumptions that are both common in multi-agent systems
Zhang et al. (2021); Liu et al. (2022) and specifically relevant to our MA-LLM framework.
Definition 1 (System Components). In our MA-LLM framework:

* Each agent i’s observation O; = [ey, €5, bi]T, where e, encodes the task, es represents the
coordinator’s strategy, and b; is the belief state

* Each agent’s action is its prompt embedding e; generated by belief network B;(1;, O;; 0FP)

* The coordinator aggregates beliefs through f.({b;}},;0.) into group information E

Assumption 1 (Bounded Rewards). The rewards from coordinator commitment are uniformly
bounded: |r;(O;,€;,E)| < Ryax, forall O;,e;,E,i.

This assumption is standard in reinforcement learning Sutton & Barto (2018) and critical since it
ensures numerical stability in the learning process of LLMs, preventing reward explosion that could
lead to unstable training.

Definition 2 (Historical Data and Posterior). Given historical data Dy = {(OF,e¥ C*)}t _:

PRI ]
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* Poou(E | Dy, O;,€;) is the posterior distribution over group information determined by the
coordinator
* Puu(E | Dt,0;,€;) is the belief distribution maintained by each execution LLM

Assumption 2 (Approximate Posterior Alignment). Execution LLMs aim to align with the posterior
distributions determined by the Coordinator LLM within an acceptable error margin € > 0:

Dir(Pum(E | Dy, 05, €;) || Ppow(E | Dy, 05, 6;)) < e,
where Dy denotes the Kullback-Leibler divergence.
This approximate alignment acknowledges that perfect alignment is impractical but strives for a
close approximation:
* The Coordinator LLM acts as a centralized distributor of strategic guidance.
» Execution LLMs maintain belief alignment through prompt (detailed in Section 3.3.2).

* Monotonic guarantee in EcoNash mixing optimization network A.5.

* Such alignment has been shown in Foerster et al. (2018a); Jaques et al. (2019) to enhance
coordination.

Definition 3 (Belief Entropy). For a given time t, the belief entropy H, is defined as the Shannon
entropy of the aggregated belief embeddings:

N
H, = — Z Eb,~ 35, [bilogb]

i=1
where B; represents the belief network of agent i.

Assumption 3 (Game Regularity). There exists 1 > 0 such that for any t1 < to, if Hy, — Hp, <
log 2, then
1(67:8(es E) | Dyy) < 4n - 1(07:¢(ei, B) | Dy,),

for all agents i, where OF are the belief network parameters.
This information-theoretic assumption serves multiple purposes in our framework:

* It ensures the stability of belief updates between LLMs over time by bounding the entropy
difference of belief states.

¢ The mutual information term 1(67;&(e;, E)) quantifies how much an LLM’s belief net-
work parameters affect its coordination through prompt embeddings.

* The bound 47 controls the rate at which LLMs can adapt their belief states based on ob-
served interactions and coordinator guidance.

Definition 4 (Value Function and Bellman Operator). For each execution LLM i:

e The value function V;(O;) = E[Y_ 7, Y*ri1x|Of = O;] estimates the expected cumulative
rewards

s The optimal prompt embeddings €;' maximize the Q-function Q;(O;, e;; 0P) at time t

* The Bellman operator By transforms one value function to another: (B:V)(O;) =
maxe, Elr; + 7V (0])|0;, e;]

Assumption 4 (Concentrability). There exists k < oo such that

T N
E Y ((B: - BYW)? (0L, BY)| < #°T,
t=1 i=1

where B* is the true Bellman operator.

This assumption is fundamental to our theoretical guarantees:
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o It ensures that the value function estimates by each LLM converge to their true values at an
appropriate rate.

¢ The constant x bounds the cumulative estimation error across all LLMs, critical for estab-
lishing our regret bounds.

* In our MA-LLM system, this translates to the stability of response quality improvements
during training.

Collective Impact: Together, these assumptions enable us to:

* Establish the existence of BNE in our MA-LLM system (Theorem 1)
* Derive meaningful regret bounds for the learning process (Lemma 1)

* Guarantee the convergence of our iterative training procedure (Proposition 1)

A.4 SCALING UP THE SYSTEM

To extend our framework to larger systems, we implement a hierarchical structure where clusters
of Coordinator LLMs and their associated Execution LLMs form local Nash Equilibria, which are
then coordinated through a global Coordinator LLM to establish a global Nash Equilibrium. This
hierarchical design preserves our theoretical guarantees while enabling efficient scaling. The process
is detailed in Algorithm 2.

Algorithm 2 Scaling-Up Framework for EcoNash

Require: Global Coordinator LLM Coordglobal, Local Coordinator LLMs Coordkk = 1%
Require: System parameters ec, Rthreshold, €1, Learning rates 1, )/, Tglobal
Ensure: Optimized hierarchical Nash Equilibrium

1: Initialize cluster embeddings Ekk = 1% and prompt embeddings ei for all LLMs

2: while not converged do

3: S < Coordglobal(e;) > Global strategy generation
4 for each cluster £ = 1 to K in parallel do
5: Ok < e, S, Ex] T > Cluster observation
6: Local strategy: sk <— Coordk(Oy,)
7: for each Execution LLM i € CY, in parallel do
8: O; < es, sk, bi] T > Agent observation
9: Generate output u; with parameters (7}, p;)
10: Compute rewards:
11: r2L « min(Rmax, sim(u;, cy))
12: rIS <~ min(Rmax, eval(u;, task))
13: r$¢ + min(Rmax, quality (u;, u;j € Cy))
14: i 4— alT?L + agr;rs + agricc
15: Update belief network using loss L;(07)
16: end for
17: ¢ < Coordk(u;i € Cy) > Local commitment
18: Update cluster embedding Ej, using local metrics
19: end forCopy
20: C + Coordgiobar ({cx ;) > Global commitment
21: for each cluster £ = 1 to K do
22: Compute global reward: Ry, < Rygiobal (Sim(cy, C))
23: Update local Coordinator parameters

24: end for

25: Early Stopping Check:

26: if ||Ct+1 — Ct” < ec and % Zszl Ry > Rinreshola then
27: break

28: end if

29: end while
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A.4.1 DETAILED EXPLANATION

Initialization
* Clustering: Execution LLMs are divided into K clusters {C, Cs, ..., Ck} based on task
similarity.
¢ Local Coordinator LLMs: Each cluster CY, is assigned a local Coordinator LLM Coordy
to manage its Execution LLMs.

¢ Global Coordinator LLM: A Central LLM Central oversees all clusters.

* Embeddings: Initialize prompt embeddings e; for Execution LLMs and cluster embed-
dings Ey, for clusters.

Global Strategy Generation The global Coordinator LLM generates a high-level strategy S based
on the question ¢. This strategy provides overall guidance and is distributed to all local Coordinator
LLM:s.

Local Inference and Optimization Each local Coordinator LLM Coord,, generates a local strat-
egy sy using S and the cluster embedding Ej. Execution LLMs within the cluster receive (g, sg, €;)
and generate individual answers a;. The local Coordinator LLM aggregates these answers to form a
local commitment c;,.

Local Optimization Execution LLMs compute local rewards based on the similarity between
their answers and the local commitment. Prompt embeddings e; are updated to maximize expected
rewards. Cluster embeddings Ej, are also updated to improve Coordinator at the cluster level.

Global Commitment Formation The global Coordinator LLM aggregates local commitments
{ck} to form the final global commitment C, representing the system’s overall response.

Global Optimization Each cluster receives a global reward Ry based on the similarity between
its local commitment c;, and the global commitment C. Local Coordinator LLMs are updated based
on the global rewards to improve alignment with the global objective.

Convergence Check The system checks if global convergence criteria are met, such as minimal
changes in the global commitment or reaching a performance threshold. If met, the algorithm ter-
minates; otherwise, it proceeds to the next episode.

A.5 PROOF OF MIXING NETWORK MONOTONICITY

Proposition 2 (Monotonicity of Mixing Network). The mixing network Q,,, is monotonic in each
individual Q-value Q);, ensuring that improvements in Q; lead to improvements in Q.

Proof. The mixing network is designed using positive weights and non-decreasing activation func-
tions. Specifically, let the mixing network be composed of layers where each layer [ computes:

hl — ¢Z(Wlhl_1 +bl)
where:

* W0 =[Q1,Qa, ..., QN]T
W has non-negative entries.

+ ¢! is a non-decreasing activation function (e.g., ReLU).

We proceed by induction to show that each component of A is a non-decreasing function of Q;.

Base Case: At layer [ = 0, hY = Q;, so % =4;; > 0.
J
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-1
Inductive Step: Assume 85’51_ > 0 for all k. Then, for each component h’]'-:

W= (z Wi b.z-)
k

Since WJI . > 0and ¢! is non-decreasing:

8hg- 1l 1 pl—1 | l 6hf€_1
20, = ¢ ijwjkhk + v %:ij o 20
-1
because (b”’ > 0 and a(";(kéi > 0 by the inductive hypothesis. Therefore, ?%j‘ > 0, ensuring
monotonicity. O

This monotonicity property is crucial as it ensures that improvements in individual agent perfor-
mances contribute positively to the overall system performance, aligning local and global objectives
within EcoNash.

B DETAILED PROOFS

B.1 PROOF OF LEMMA 1

Proof. Consider the value functions under policies 7’ and 7:

, V7(s) =E,

3

V7 (s) = B [z Yori(se, ax) | so =
k=0

ZVkTi(Sk:ak) | so = 8] .
k=0

Their difference is:

Viﬂ/(s) —Vi(s) =En lz 'YkTi(Skvak> —Ex
k=0

> i, ak)]
k=0

7 (B, (51, 00)] = Eqymat [ri(s1, an)])

e

x>
I

0

Assuming the difference in state distributions is negligible (justified under Assumption 4), we focus
on action differences. Using the Q-function definition:

Q?(‘% Qs a*i) = 7"7;(87 Qq, a*i) + ’YES’NP [%ﬂ(sl)] )

we can write:
V7 (s) = Vi (s) = DA Eq, wan, [QF (sksaf) = Vi ()]
k=0

Since V7 (sx) = Eqyon(sy) [QF (sk, ar)], we have:

V() = Vi (5) = 3V By, [Bagaron) [QF (58 01) = Bapan(on) [QF (51, a0)]]] -
k=0

Switching the order of expectations and summing over k, we get:
1

V;’T'(S) —V7(s) = EESNdﬂ/ Q7 (s,a;,a”;) — Q7 (s,ai,a—;)] .

21



Under review as a conference paper at ICLR 2025

B.2 BOUNDING THE BAYESIAN REGRET

Starting from the regret definition for agent ¢ over T steps:

Ri - st Tt Z (St))

where the expectation is over the randomness in state transitions and policies.
Applying Lemma 1:
1 t t t t
V;Z* (*51‘) - V;Trt (*sf) = 1_Ea*t,u*‘L aﬁ,aii [Q:’t (Sf (),:‘ ,(L* ) Q:t (Sta (),7,(1,_7)] .

We decompose the Q-value difference:

Qz (gt)a;kt7a*ti) - Q?t(gtaa1§ a't )

= (Q" (s, a;",a™"y) — Qi (s¢,a7",a™)) (Error Term 1)
+(Q; (se, at, a*ty) — Q; (s, a,aly)) (Policy Suboptimality)
+ (Q; (s, af,a";) — QT (s4, al,a’ ) . (Error Term 2)

Define the Q-function estimation error:

e = max [Q7(s,a;,a-;) — Q;(s,ai,a-;)].

S8,a4,a 4
Assumption 5 (Q-function Estimation Error). The estimation error decreases as:
C
6@ < —, witho ==
tOé
This rate is justified by:
* Stochastic approximation theory showing O(t_l/ 2) convergence (Borkar (2009)).
* Minimax optimality in stochastic optimization (Nemirovski et al. (2009)).

* Achievement through proper learning rate scheduling.
Assumption 6 (Policy Suboptimality). The policy suboptimality decreases as:

2
This rate is supported by:
* Regret bounds in online learning (Hazan (2016)).
* Gradient-based methods in convex policy spaces (Shalev-Shwartz (2012)).
e Empirical evidence in cooperative multi-agent RL (Zhang et al. (2021)).
Using these assumptions, we have:

Q?t(st',a:taaiti)_Q (5t>a ) <261‘+6t

Summing over ¢ and all agents:

R(T)

T
Z 2€t +5t
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'MZ
H
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B.3 COMPARISON WITH MULTI-AGENT DEBATE

In multi-agent debate settings, we analyze the regret bound using the same decomposition from
Lemma 1:

Assumption 7 (Persistent Policy Suboptimality in Debate).
(St > 5min >0
Justified by:

* Game-theoretic properties of competitive settings Fudenberg & Levine (1998)
* Information-theoretic limitations Owe & Sims (2013)

* Empirical evidence of non-convergence Lanctot et al. (2017)

Following the same decomposition from earlier:
1

Vz*(st) - Viﬂt (St) = mEaz‘,aﬂ [Q (Stv ajt’ a*ti) - Q:Tt (5t7 a?a aii)}

The Q-value difference still decomposes into three terms:
Q <5t7 ajf'/ a*jl) - Q?t (Stv a;‘:’ aiz)
= (Q (31‘7 jtv a'*ti) - Q;k (Str a:t'/ a*—ti))
<er
+ (Q (9t7 a:t7 a*ti) - Q;‘(St’ (lﬁ, at—z))

>

Omin
+ (Q:(St’ aga at—q) - Q?t (Stv alz?a at—i>)

<et

In the debate setting:

Ce
NG

* The policy suboptimality term is lower bounded by §,,;, (Assumption 7)

* The estimation error terms are still bounded by €, =

Therefore, for each agent i:

Ri(T) =

T
EY (V; *(St))]

t=1

T
S Z 2et + 51{1111
-7 t=1
T
1
= (2 € 6minT>
- t
< — 2 2(VT — 1) + Sin T
<1 7 Ce - (\/_ ) + OminT)

Summing over all agents and noting that the §,,;,7" term dominates:

N(SminT )

Rdebate(T) =0 < 1_ ~

This linear growth contrasts with our framework’s sublinear O(N+/T) bound, demonstrating
EcoNash’s superior efficiency through coordinated learning toward BNE.
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B.4 DETAILED REWARD SETTING

The reward function R provides feedback on each agent’s performance while respecting Assump-
tion 1, ensuring all reward components are uniformly bounded by R,,,x. Drawing inspiration from
maximum entropy inverse reinforcement learning (Zhu et al., 2023), we define the Action Likelihood
Reward 7 = min(R,ax, sim(u;, C')), where sim(u;, C) = ﬁﬁ measures the consistency be-
tween an agent’s output u; and the coordinator’s commitment C'. Following Hao et al. (2023),
the Task-Specific Reward 7> = min(Rpax, eval(u;, task)) evaluates domain-specific objectives
through the coordinator’s assessment, where eval computes normalized scores considering solution
correctness in mathematical problems or response relevance in planning tasks. Building upon Xie
et al. (2024b), the Collaborative Contribution Reward 7€ = min(Ruyax, quality (u;, {u;};.:)) en-
ables the coordinator to assess each agent’s output quality within the multi-agent context, where
quality evaluates the response’s coherence and creativity while considering its contribution to the
collective solution. The total reward combines these components as 7; = a172L + agr!® + azr¢C,
where the weights a; + as + a3 = 1 ensure the total reward is bounded by R.x. To enhance
adaptability and learning efficiency, we introduce a dynamic mechanism to adjusts these weights
using gradient-based updates oy, < i — 7o - OLar/Oy, where Ly, = Zf\i | (racwal — r:xPeCted)Q
measures the discrepancy between actual and expected rewards.

B.5 TASK SETUPS

GSMB&K is a benchmark for mathematical reasoning that requires multi-step problem solving. Given
a context description and a question, it requires step-by-step mathematical reasoning and computa-
tion to arrive at a final answer. The dataset contains approximately 7.5K problems in the training set
and 1.3K problems in the test set. Problems range from basic arithmetic to complex word problems,
testing both mathematical and logical reasoning capabilities.

SVAMP is a challenging mathematical word problem dataset specifically designed to test the robust-
ness of language models in solving arithmetic problems. It contains 1,000 elementary math word
problems, carefully curated to probe for specific vulnerabilities in mathematical reasoning systems.
The problems require understanding both mathematical concepts and natural language semantics,
with a focus on structural variations that test genuine problem-solving capabilities rather than pat-
tern matching.

Strategy QA is a question answering dataset that focuses on multi-hop reasoning and strategic think-
ing. It consists of 2,290 yes/no questions, each requiring implicit multi-step reasoning and back-
ground knowledge to arrive at the correct answer. Unlike traditional QA datasets, Strategy QA
questions cannot be answered by simply retrieving and combining explicit facts, making it an effec-
tive benchmark for testing complex reasoning capabilities.

MATH is a comprehensive mathematics dataset spanning various topics from algebra to calculus.
It contains approximately 12K problems across different difficulty levels, with detailed step-by-
step solutions. The dataset is structured into multiple categories including algebra, counting and
probability, geometry, intermediate algebra, number theory, prealgebra, and precalculus, making
it particularly effective for evaluating mathematical problem-solving capabilities across different
domains.

GSM-Hard is a specialized subset of mathematical word problems specifically designed to test ad-
vanced reasoning capabilities. It contains problems that are significantly more challenging than
standard GSMS8K problems, requiring more complex multi-step reasoning and mathematical op-
erations. The dataset focuses on problems that typically have lower success rates with standard
approaches, making it particularly useful for evaluating the upper bounds of model performance.

TravelPlanner is a benchmark crafted for evaluating language agents in tool-use and complex plan-
ning within multiple constraints. The dataset comprises 1,225 queries in total, divided into training
(45 queries), validation (180 queries), and test (1,000 queries) sets. The benchmark incorporates
three types of constraints: environment constraints for testing adaptability to real-world conditions,
commonsense constraints for evaluating practical reasoning, and hard constraints for assessing the
ability to satisfy specific user requirements such as budget limitations. This structure makes Trav-
elPlanner particularly effective for evaluating both reasoning capabilities and practical planning
skills in real-world scenarios.
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B.6 HYPERPARAMETER

Table 8: Hyperparameters of EcoNash

Parameter Value Description
Training Configuration

Episodes per Task 100 Number of episodes per task

Buffer Size 32 Size of on-policy buffer

Batch Size 16 Mini-batch size for training

Update Interval 8 Policy update frequency (episodes)

Optimizer Adam Optimization algorithm

Learning Rate () 0.001 Learning rate for execution LLMs

Learning Rate (9)¢o0rd) 0.0005 Learning rate for coordinator LLM

Discount Factor (v) 0.99 Discount factor for future rewards
Network Architecture

Entity Dimension (d) 256 Dimension of entity embeddings

Belief State Dimension (d;) 128 Dimension of belief state

Attention Heads (H) 4 Number of attention heads

MLP Hidden Size 256 Hidden layer size in belief encoder

Transformer Blocks 2 Number of transformer layers

Key/Query Dimension 64 Dimension per attention head (d/H)

Feed-forward Size 1024 Dimension of FFN intermediate layer

Dropout Rate 0.1 Dropout probability in attention

Layer Norm Epsilon 1 x 107®  Layer normalization parameter
Temperature and Sampling Control

Thin 0.1 Minimum temperature value

T inax 2.0 Maximum temperature value

Prmin 0.1 Minimum sampling parameter

Drmax 0.9 Maximum sampling parameter
Reward Configuration

Riax 1.0 Maximum reward bound

a1 (AL weight) 0.4 Action Likelihood reward weight

ay (TS weight) 0.4 Task-specific reward weight

as (SE weight) 0.2 Self-Evaluation reward weight
Loss Weights

Ab 0.1 Weight for belief network loss

A 0.1 Regularization weight in encoder

Am 0.1 Weight for mixing network consistency
Early Stopping

€c 0.01 Commitment change threshold

€L 1 x 10~*  Loss convergence threshold

Rinreshold 0.7 Average reward threshold

Tpatience 5 Patience epochs for validation
Model Size

Learnable Parameters ~1.7M Total trainable parameters
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C PROMPT

D EXAMPLE

Coordinator Prompt(for Strategy)

"You are a coordinator in a multi-agent system
responsible for devising effective strategies to
solve a given problem. Based on the following
problem, generate a concise high-level strategy in
English, no more than 50 tokens:

Problem: {question}

Please provide a strategy considering the
following points:

1.Key elements and objectives of the problem
2.Possible solutions or steps

3.Potential challenges or limitations

4. Key aspects to focus on

Strategy:"

Figure 4: Coordinator Prompt(for Strategy)

D.1 CASE STUDY
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Coordinator Prompt(for Commitment)

"You are a coordinator in a multi-agent system
responsible for reviewing the answers of multiple
execution LLMs based on a given strategy. Your
tasks are:

1.Form a Commitment: Integrate the best aspects
of all answers to ensure consistency in the
solution process and accuracy in the final result.
2.Evaluate each answer: Assess the similarity of
the solution process to the Commitment and the
accuracy of the final result. Based on these
criteria, assign a reward score between 0 and 1 to
each answer.

Strategy: {strategy}

Execution LLMs' Answers:

*LLMI: {answerl }

*LLM2: {answer2} ...

*LLMn: {answern}

Please follow these steps: a. Review each
LLM's answer to determine its adherence to the
strategy and the correctness of the solution. b.
Formulate a comprehensive Commitment by
integrating the most effective methods and
accurate results from the answers. c. Evaluate
each answer based on the following criteria:
*Process Similarity: The consistency of the
solution steps with the Commitment

*Result Accuracy: The correctness of the final
answer Assign a reward score between 0 and 1
to each LLM, where 1 means full adherence to
the Commitment and completely correct results,
and 0 means no adherence or incorrect results.
Please output the results in the following
structured format:

Commitment: {Detail the integrated solution
here, including key steps and the final result}
Evaluation and Rewards:

*LLMI: {scorel} (Brief explanation for the
score no more than 10 tokens)

*LLM2: {score2} (Brief explanation for the
score no more than 10 tokens)

*LLMn: {scoren} (Brief explanation for the
score no more than 10 tokens)

Figure 5: Coordinator Prompt(for Commitment)
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4' Execution LLM |7

"You are an execution LLM in a multi-agent system,
responsible for deriving solutions based on a given strategy and
your own belief network. Each LLM has different beliefs but
cannot access the outputs of other LLMs. Your tasks are:
1.Form your belief based on the strategy: Assume other LLMs
will follow certain potential solutions. Your goal is to generate
the optimal solution without global information.

2.0utput the best answer: Considering your belief about other
LLMs' outputs, derive the optimal solution for the current
environment.

3.Bayesian Nash Equilibrium: Your output should maximize
expected utility under incomplete information, aligning with the
strategy.

4.Feedback adjustment: Ensure your solution is coherent under
uncertainty and optimized for the best result.

Strategy: {strategy}

Please follow these steps: a. Review the strategy and form your
belief on how other LLMs might output. b. Based on your belief,
derive and output your optimal solution. c¢. Ensure your solution
aligns with Bayesian Nash Equilibrium, maximizing expected
utility.

Final answer:"

Figure 6: Execution LLM

: Question: Let \[f(x) = \left\{ \begin{array} {cl} ax+3, &\text{ if }x>2,\\ x-5 &\text{ if } -2 \le x :
- Mle 2, W\ 2x-b &\ext{ if } x <-2. \end {array} \right\JFind $a+bS if the piccewise function is !
I
1

! continuous (which means that its graph can be drawn without lifting your pencil from the paper).

Ensure continuity by matching function values :
at x =2 and x = -2, then solve for a and b. !

Strategy | Question

: For continuity at x=2, a(2)+3 =2-5 > 2a=-8 - a=-4.
: Atx=-2,-2-5=2(-2)-b > b=1.Thus,a+b="-3.

:To make f(x) continuous, set ax+3 = x-5 at x=2 and x-5 = 2x-b at x=-2. :
:Solving gives a = -3 and b = 3. Therefore, a + b= 0. {

o
:Continuity requires f(2-) = f(2+) and f(-2-) = f(-2+). Solving these equations:
|yields a=-3 and b =3. Hence, a + b =0. i

—

I
| . . Lo
; | Integrate correct calculations ensuring continuity at x =2 |[ Comihmae ].i
Commitment | and x = -2, accurately solving for a and b to determine a +b =0. |
1
1

Figure 7: case study of math

D.2 STRATEGY EXAMPLE

D.2.1 GSMS8K

Q1: John buys 3 pizzas for $12 each. If he gives the delivery person a 20% tip on the total, how
much did he spend in total?

S1: Calculate pizza subtotal first. Add 20% of subtotal for tip. Sum for final amount.

F1:

1. Pizzacost=$? x ?
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2. Tip=7? x subtotal
3. Total = subtotal + tip

Strategy + Format : 35tokens

Q2: Janet saves twice as much money as Tom. If Tom saves $45 per week, how much does Janet
save in 5 weeks?

S2: Find Janet’s weekly savings relative to Tom’s. Multiply by number of weeks.

F2:

1. Janet weekly = ? x Tom

2. Total = weekly x weeks

Strategy + Format : 28tokens

Q3: A factory produces 150 cars per day. If they increase production by 15% next month, how
many cars will they produce in a 30-day month?

S3: Calculate production increase. Add to original. Multiply by days in month.
F3:

1. Increase = original x 15%
2. New daily = original + increase
3. Monthly = daily x days

Strategy + Format : 36tokens

Q4: Alex has 240 marbles and gives % of them to Sarah. Sarah then gives % of her marbles to
Tom. How many marbles does Sarah have left?

S4: Calculate Sarah’s initial share. Find amount she gives to Tom. Subtract.

F4:

3

1. Sarah gets = total x

2. Sarah gives = her marbles x &

3. Remaining = initial - given
Strategy + Format : 39tokens

QS: A train travels at 60 mph for 2.5 hours, then increases speed to 75 mph for 1.5 hours. What’s
the total distance traveled?

S5: Calculate distance for each speed separately using d = r x ¢. Sum distances.

F5:

1. First distance = speed; X time;
2. Second distance = speed, X times
3. Total = dq + d»

Strategy + Format : 36tokens
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D.2.2 MATH

Q1: In a bag of marbles, % are blue and % are red. The remaining 11 marbles are green. How
many marbles are in the bag?

S1: Convert fractions to common denominator. Find the fraction for remaining color. Use given
count to find total.

F1:

1. Convert to common denominator
2. Add converted fractions
3. Subtract from whole

4. Use remaining count to find total
Strategy + Format : 32tokens
Q2: Find the area of a triangle with vertices at (0,0), (4,0), and (2,5).
S2: Use coordinate geometry method for area. Set up calculation matrix. Take final result.

F2:

1. Set up coordinate matrix
2. Calculate determinant

3. Apply area formula
Strategy + Format : 28tokens
Q3: Iflog,(z) = 3 and log,(y) = 4, find log, (zy).
S3:  Apply logarithm properties. Combine given values. Express final result.

F3:

1. Write multiplication property
2. Substitute given values

3. Simplify result

Strategy + Format : 26tokens
Q4: A circle has radius 6. Find the area of the sector formed by a 40° angle at the center.
S4: Convert angle measurement. Apply sector area formula. Simplify result.

F4:

1. Convert to radians
2. Write sector formula

3. Calculate final area

Strategy + Format : 2Ttokens

Q5:  Solve the equation: 222 + 52 — 12 = 0.
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S5: Identify quadratic components. Apply standard formula. Solve for variables.

F5:

1. Identify coefficients
2. Setup quadratic formula

3. Calculate solutions

Strategy + Format : 28tokens

D.2.3 SVAMP

Q1: There are 56 books on the shelf. Tom puts 14 more books and Jane removes 22 books. How
many books are on the shelf now?

S1: Track sequential changes. Apply additions and subtractions in order.

F1:

1. Add new books

2. Subtract removed books

Strategy + Format : 25tokens

Q2: A box has 3 rows of chocolates. Each row has 4 chocolates. If 5 chocolates were eaten, how
many are left?

S2: Calculate initial total. Subtract consumed amount.

F2:

1. Find total chocolates

2. Subtract eaten ones

Strategy + Format : 23tokens

Q3: Mary has 5 times as many stickers as John. John has 12 stickers. How many stickers do they
have together?

S3: Calculate second person’s amount. Sum both quantities.

F3:

1. Find Mary’s stickers
2. Add both totals

Strategy + Format : 24tokens

Q4: A garden has 35 flowers. (%) are roses and (%) are tulips. How many flowers are neither roses
nor tulips?

S4: Sum known fractions. Find remaining fraction. Calculate final count.
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F4:

1. Add type fractions
2. Find remaining fraction

3. Calculate flower count

Strategy + Format : 27tokens

Q5: Each child needs 3 pencils. If there are 23 children, how many boxes of 10 pencils should the
teacher buy?

S5: Calculate total need. Convert to required units. Round appropriately.

F5:

1. Calculate total pencils
2. Divide by box size

3. Round to whole boxes

Strategy + Format : 28tokens

Note on Token Counts:

* All problems now follow consistent format: strategy + step-by-step format
* Strategy statements aim to be concise yet clear

» Format points provide framework without giving solutions

» Token ranges:

— Shortest: 23 tokens (SVAMP Q2)
— Longest: 39 tokens (GSMSK Q4)
— Average: (~)30 tokens
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