
Linear Transformers are Versatile In-Context Learners

Max Vladymyrov 1 Johannes von Oswald 1 Mark Sandler 1 Rong Ge 2

Abstract

Recent research has demonstrated that transform-
ers, particularly linear attention models, implicitly
execute gradient-descent-like algorithms on data
provided in-context during their forward inference
step. However, their capability in handling more
complex problems remains unexplored. In this
paper, we prove that each layer of a linear trans-
former maintains a weight vector for an implicit
linear regression problem and can be interpreted
as performing a variant of preconditioned gradi-
ent descent. We also investigate the use of linear
transformers in a challenging scenario where the
training data is corrupted with different levels
of noise. Remarkably, we demonstrate that for
this problem linear transformers discover an intri-
cate and highly effective optimization algorithm,
surpassing or matching in performance many rea-
sonable baselines. We analyze this algorithm and
show that it is a novel approach incorporating mo-
mentum and adaptive rescaling based on noise
levels. Our findings show that even linear trans-
formers possess the surprising ability to discover
sophisticated optimization strategies.

1. Introduction
The transformer architecture (Vaswani et al., 2017) has rev-
olutionized the field of machine learning, driving break-
throughs across various domains and serving as a foundation
for powerful models (Anil et al., 2023; Achiam et al., 2023;
Team et al., 2023; Jiang et al., 2023). However, despite their
widespread success, the mechanisms that drive their perfor-
mance remain an active area of research. A key component
of their success is attributed to in-context learning (ICL,
Brown et al., 2020) – an emergent ability of transformers to
make predictions based on information provided within the
input sequence itself, without explicit parameter updates.

1Google Research 2Duke University. Correspondence to: Max
Vladymyrov <mxv@google.com>.

Proceedings of the 1 st Workshop on In-Context Learning at the
41 st International Conference on Machine Learning, Vienna, Aus-
tria. 2024. Copyright 2024 by the author(s).

Recently, several papers (Garg et al., 2022; Akyürek et al.,
2022; von Oswald et al., 2023a) have suggested that
ICL might be partially explained by an implicit meta-
optimization of the transformers that happens on input con-
text (aka mesa-optimization Hubinger et al., 2019). They
have shown that transformers with linear self-attention lay-
ers (aka linear transformers) trained on linear regression
tasks can internally implement gradient-based optimization.

Specifically, von Oswald et al. (2023a) demonstrated that
linear transformers can execute iterations of an algorithm
similar to the gradient descent algorithm (which they call
GD++), with each attention layer representing one step of
the algorithm. Later, Ahn et al. (2023); Zhang et al. (2023)
further characterized this behavior, showing that the learned
solution is a form of preconditioned GD, and this solution
is optimal for one-layer linear transformers.

In this paper, we continue to study linear transformers
trained on linear regression problems. We prove that each
layer of every linear transformer maintains a weight vector
for an underlying linear regression problem. Under some
restrictions, the algorithm it runs can be interpreted as a
complex variant of preconditioned gradient descent with
momentum-like behaviors.

While maintaining a linear regression model (regardless of
the data) might seem restrictive, we show that linear trans-
formers can discover powerful optimization algorithms. As
a first example, we prove that in case of GD++, the precon-
ditioner results in a second order optimization algorithm.

Furthermore, we demonstrate that linear transformers can
be trained to uncover even more powerful and intricate al-
gorithms. We modified the problem formulation to consider
mixed linear regression with varying noise levels1 (inspired
by Bai et al., 2023). This is a harder and non-trivial prob-
lem with no obvious closed-form solution, since it needs to
account for various levels of noise in the input.

Our experiments with two different noise variance distri-
butions (uniform and categorical) demonstrate the remark-
able flexibility of linear transformers. Training a linear
transformer in these settings leads to an algorithm that out-

1We consider a model where each sequence contains data with
the same noise level, while different sequences have different noise
levels.

1



Linear Transformers are Versatile In-Context Learners

performs GD++ as well as various baselines derived from
the exact closed-form solution of the ridge regression. We
discover that this result holds even when training a linear
transformer with diagonal weight matrices.

Through a detailed analysis, we reveal key distinctions from
GD++, including momentum-like term and adaptive rescal-
ing based on the noise levels.

Our findings contribute to the growing body of research
where novel, high-performing algorithms have been directly
discovered through the reverse-engineering of transformer
weights. This work expands our understanding of the im-
plicit learning capabilities of attention-based models and
highlights the remarkable versatility of even simple linear
transformers as in-context learners. We demonstrate that
transformers have the potential to discover effective algo-
rithms that may advance the state-of-the-art in optimization
and machine learning in general.

2. Preliminaries
In this section we introduce notations for linear transformers,
data, and type of problems we consider.

2.1. Linear transformers and in-context learning

Given input sequence e1, e2, ..., en ∈ Rd+1, a single head in
a linear self-attention layer is usually parameterized by four
matrices, key WK , query WQ, value WV and projection
WP . The output of the non-causal layer at position i is
ei + ∆ei where ∆ei is computed as

∆ei = WP

(∑n
j=1〈WQei,WKej〉WV ej

)
. (1)

Equivalently, one can use parameters P = WPWV and
Q = W>KWQ, and the equation becomes

∆ei =
∑n
j=1(e>j Qei)Pej . (2)

Multiple heads (P1, Q1), (P2, Q2), ..., (Ph, Qh) simply
sum their effects

∆ei =
∑H
k=1

∑n
j=1(e>j Qkei)Pkej . (3)

We define a linear transformer as a multi-layer neural net-
work composed of L linear self-attention layers parame-
terized by θ = {Qlk, P lk} for k = 1 . . . H, l = 1 . . . L.
To isolate the core mechanisms, we consider a simplified
decoder-only architecture, excluding MLPs and LayerNorm
components. This architecture was also used in previous
work (von Oswald et al., 2023a; Ahn et al., 2023).

We consider two versions of linear transformers: FULL
with the transformer parameters represented by full matrices
and DIAG, where the parameters are restricted to diagonal
matrices only.

Inspired by von Oswald et al. (2023a), in this paper we
consider regression data as the token sequence. Each token
ei = (xi, yi) ∈ Rd+1 consists of a feature vector xi ∈ Rd
and its corresponding output yi ∈ R. Additionally, we
append a query token en+1 = (xt, 0) to the sequence, where
xt ∈ Rd represents test data. The goal of in-context learning
is to predict yt for the test data xt. We constrain the attention
to only focus on the first n tokens of the sequence so that it
ignores the query token.

We use (xli, y
l
i) to denote the i-th token in the trans-

former’s output at layer l. The initial layer is simply the
input: (x0i , y

0
i ) = (xi, yi). For a model with parameters

θ, we read out the prediction by taking the negative2 of
the last coordinate of the final token in the last layer as
ŷθ({e1, ..., en}, en+1) = −yLn+1.

Let’s also define the following notation to be used through-
out the paper

Σ =

n∑
i=1

xi(xi)
>; α =

n∑
i=1

yixi; λ =

n∑
i=1

(yi)
2

Σl =

n∑
i=1

xli(x
l
i)
>; αl =

n∑
i=1

ylix
l
i; λl =

n∑
i=1

(yli)
2

2.2. Noisy regression model

As a model problem, we consider data generated from a
noisy linear regression model. For each input sequence τ ,
we sample a ground-truth weight vector wτ ∼ N(0, I), and
generate n data points as xi ∼ N(0, I) and yi = 〈wτ , xi〉+
ξi, with noise ξi ∼ N(0, σ2

τ ).

Note that each sequence can have different ground-truth
weight vectors wτ , but every data point in the sequence
shares the same wτ and στ . The query is generated as xt ∼
N(0, I) and yt = 〈wτ , xt〉 (since the noise is independent,
whether we include noise in yq will only be an additive
constant to the final objective).

We further define an ordinary least square (OLS) loss as

LOLS(w) =
∑n
i=1 (yi − 〈w, xi〉)2 . (4)

The OLS solution is w∗ := Σ−1α with residuals ri :=
yi − 〈w∗, xi〉.

In the presence of noise στ , w∗ in general is not equal to
the ground truth wτ . For a known noise level στ , the best
estimator for wτ is provided by ridge regression:

LRR(w) =
∑n
i=1 (yi − 〈w, xi〉)2 + σ2

τ‖w‖2, (5)

2We set the actual prediction to −yln+1, similar to von Oswald
et al. (2023a), because it’s easier for linear transformers to predict
−yt.

2



Linear Transformers are Versatile In-Context Learners

with solution w∗σ2 :=
(
Σ + σ2

τI
)−1

α. Of course, in real-
ity the variance of the noise is not known and has to be
estimated from the data.

2.3. Fixed vs. mixed noise variance problems

We consider two different problems within the noisy linear
regression framework.
Fixed noise variance. In this scenario, the variance στ
remains constant for all the training data. Here, the in-
context loss is:

L(θ) = E
wτ∼N(0,I)
xi∼N(0,I)

ξi∼N(0,σ2
τ )

[
(ŷθ({e1, ..., en}, en+1)− yt)2

]
, (6)

where ei = (xi, yi) and yi = 〈wτ , xi〉 + ξi. This prob-
lem was initially explored by Garg et al. (2022). Later,
von Oswald et al. (2023a) have demonstrated that a linear
transformer (6) converges to a form of a gradient descent
solution, which they called GD++. We define this in details
later.
Mixed noise variance. In this case, the noise variance
στ is drawn from some fixed distribution p(στ ) for each
sequence. The in-context learning loss becomes:

L(θ) = E
wτ∼N(0,I)
xi∼N(0,I)

ξi∼N(0,σ2
τ )

στ∼p(στ )

[
(ŷθ({e1, ..., en}, en+1)− yt)2

]
. (7)

This scenario adds complexity because the model must pre-
dict wτ for changing noise distribution, and the optimal
solution likely would involve some sort of noise estimation.

This simple modification surprisingly improves the conver-
gence for both FULL and DIAG linear transformers com-
pared to GD++. In fact, GD++ fails to model noise variance
and instead converges to a solution which can be interpreted
as a single noise variance estimate across all input data.

3. Related work
In-context Learning as Gradient Descent Our work
builds on research that frames in-context learning as (vari-
ants of) gradient descent (Akyürek et al., 2022; von Oswald
et al., 2023a). For 1-layer linear transformer, several works
(Zhang et al., 2023; Mahankali et al., 2023; Ahn et al., 2023)
characterized the optimal parameters and training dynamics.
More recent works extended the ideas to auto-regressive
models (Li et al., 2023; von Oswald et al., 2023b) and non-
linear models (Cheng et al., 2023). Fu et al. (2023) noticed
that transformers perform similarly to second-order New-
ton methods on linear data, for which we give a plausible
explanation in Theorem 5.1.
In-context Learning in LLMs There are also many
works that study how in-context learning works in pre-
trained LLMs (Kossen et al., 2023; Wei et al., 2023; Hendel

et al., 2023; Shen et al., 2023). Due to the complexity of
such models, the exact mechanism for in-context learning
is still a major open problem. Several works (Olsson et al.,
2022; Chan et al., 2022; Akyürek et al., 2024) identified in-
duction heads as a crucial mechanism for simple in-context
learning tasks, such as copying, token translation and pattern
matching.

Other theories for training transformers Other than the
setting of linear models, several other works (Garg et al.,
2022; Tarzanagh et al., 2023; Li et al., 2023; Huang et al.,
2023; Tian et al., 2023a;b) considered optimization of trans-
formers under different data and model assumptions. (Wen
et al., 2023) showed that it can be difficult to interpret the
“algorithm” performed by transformers without very strong
restrictions.

Mixed Linear Models Several works observed that trans-
formers can achieve good performance on a mixture of lin-
ear models (Bai et al., 2023; Pathak et al., 2023; Yadlowsky
et al., 2023). While these works show that transformers can
implement many variants of model-selection techniques, our
result shows that linear transformers solve such problems by
discovering interesting optimization algorithm with many
hyperparameters tuned during the training process. Such
a strategy is quite different from traditional ways of doing
model selection. Transformers are also known to be able to
implement strong algorithms in many different setups (Guo
et al., 2023; Giannou et al., 2023).

Effectiveness of linear and kernel-like transformers A
main constraint on transformer architecture is that it takes
O(N2) time for a sequence of length N , while for a linear
transformer this can be improved to O(N). Mirchandani
et al. (2023) showed that even linear transformers are quite
powerful for many tasks. Other works (Katharopoulos et al.,
2020; Wang et al., 2020; Schlag et al., 2021; Choromanski
et al., 2020) uses ideas similar to kernel/random features to
improve the running time to almost linear while not losing
much performance.

4. Linear transformers maintain linear
regression model at every layer

While large, nonlinear transformers can model complex
relationship, we show that linear transformers are restricted
to maintaining a linear regression model based on the input,
in the sense that the l-th layer output is always a linear
function of the input with latent (and possibly nonlinear)
coefficients.

Theorem 4.1. Suppose the output of a linear transformer
at l-th layer is (xl1, y

l
1), (xl2, y

l
2), ..., (xln, y

l
n), (xlt, y

l
t), then

there exists matrices M l, vectors ul, wl and scalars al such

3



Linear Transformers are Versatile In-Context Learners

that

xl+1
i = M lxi + yiu

l, xl+1
t = M lxt,

yl+1
i = alyi − 〈wl, xi〉, yl+1

t = −〈wl, xt〉.

Note that M l, ul, wl and al are not linear in the input, but
this still poses restrictions on what the linear transformers
can do. For example we show that it cannot represent a
quadratic function:

Theorem 4.2. Suppose the input to a linear trans-
former is (x1, y1), (x2, y2), ..., (xn, yn) where xi ∼
N(0, I) and yi = w>xi, let the l-th layer output be
(xl1, y

l
1), (xl2, y

l
2), ..., (xln, y

l
n) and let yl = (yl1, ..., y

l
n) and

y∗ = (x1(1)2, x2(1)2, ..., xn(1)2) (here xi(1) is just the
first coordinate of xi), then when n� d with high probabil-
ity the cosine similarity of y∗ and yl is at most 0.1.

Theorem 4.1 implies that the output of linear transformer
can always be explained as linear combinations of input
with latent weights al and wl. The matrices M l, vectors
ul, wl and numbers al are not linear and can in fact be quite
complex, which we characterize below:

Lemma 4.3. In the setup of Theorem 4.1, if we let(
Al bl

(cl)> dl

)
:=

h∑
k=1

P lk n∑
j=1

((
xlj
ylj

)
((xlj)

>, ylj)

)
Qlk

 ,
then one can recursively compute matrices M l, vectors
ul, wl and numbers al for every layer using

M l+1 = (I +Al)M l + bl(wl)>

ul+1 = (I +Al)ul + albl

al+1 = (1 + dl)al + 〈cl, ul〉
wl+1 = (1 + dl)wl − (M l)>cl,

with the init. condition a0 = 1, w0 = 0,M0 = I, u0 = 0.

The updates to the parameters are complicated and nonlin-
ear, allowing linear transformers to implement powerful
algorithms, as we will later see in Section 5. In fact, even
with diagonal P and Q, they remain flexible. The updates in
this case can be further simplified to a more familiar form:

Lemma 4.4. In the setup of Theorem 4.1 with diagonal
parameters, ul, wl are updated as

ul+1 = (I − Λl)ul + ΓlΣ
(
alw∗ − wl

)
;

wl+1 = (1 + sl)wl −ΠlΣ(alw∗ − wl)− Φlul.

Here Λl,Γl, sl,Πl,Φl are matrices and numbers that de-
pend on M l, ul, al, wl in Lemma 4.3.

Note that Σ
(
alw∗ − wl

)
is (proportional to) the gradient

of a linear model f(wl) =
∑n
i=1(alyi − 〈wl, xi〉)2. This

makes the updates similar to a gradient descent with mo-
mentum:

ul+1 = (1− β)ul +∇f(wl);wl+1 = wl − ηul.

Of course, the formula in Lemma 4.4 is still much more
complicated with matrices in places of β and η, and also
including a gradient term for the update of w.

5. Power of diagonal attention matrices
Although linear transformers are constrained, they can solve
complex in-context learning problems. Empirically, we
have found that they are able to very accurately solve linear
regression with mixed noise variance (7). Surprisingly, the
final loss remains remarkably consistent even when their Q
and P matrices (3) are diagonal. This section will analyze
this special case and explain its effectiveness.

Since the elements of x are permutation invariant, a diagonal
parameterization reduces each attention heads to just four
parameters:

P lk =

(
plx,kI 0

0 ply,k

)
; Qlk =

(
qlx,kI 0

0 qly,k

)
.

(8)
It would be useful to further reparametrize the linear trans-
former (3) using:

wlxx =
∑H
k=1 p

l
x,kq

l
x,k, wlxy =

∑H
k=1 p

l
x,kq

l
y,k,

wlyx =
∑H
k=1 p

l
y,kq

l
x,k, wlyy =

∑H
k=1 p

l
y,kq

l
y,k.

(9)

This leads to the following diagonal layer updates:

xl+1
i = xli + wlxxΣlxli + wlxyy

l
iα
l

xl+1
t = xlt + wlxxΣlxlt + wlxyy

l
tα
l

yl+1
i = yli + wlyx〈αl, xli〉+ wlyyy

l
iλ
l,

yl+1
t = ylt + wlyx〈αl, xlt〉+ wlyyy

l
tλ
l.

(10)

Four variables wlxx, wlxy, wlyx, wlyy represent information
flow between the data and the labels across layers. For
instance, the term controlled by wlxx measures information
flow from xl to xl+1, wlyx measures the flow from xl to yl+1

and so forth. Since the model can always be captured by
these 4 variables, having many heads does not significantly
increase its representation power. When there is only one
head the equation wlxxw

l
yy = wlxyw

l
yx is always true, while

models with more than one head do not have this limitation.
However empirically even models with one head is quite
powerful.

5.1. GD++ and least squares solver
GD++, introduced in von Oswald et al. (2023a), represents
a linear transformer that is trained on a fixed noise variance

4



Linear Transformers are Versatile In-Context Learners

problem (6). It is a variant of a diagonal linear transformer,
with all the heads satisfying qly,k = 0. Dynamics are influ-
enced only by wlxx and wlyx, leading to simpler updates:

xl+1
i =

(
I + wlxxΣl

)
xli

yl+1
i = yli + wlyx〈αl, xli〉.

(11)

The update on x acts as preconditioning, while the update
on y performs gradient descent on the current data.

While existing analysis by Ahn et al. (2023) has not yielded
fast convergence rates for GD++, we show here that it is
actually a second-order optimization algorithm for the least
squares problem (4):

Theorem 5.1. Given (x1, y1), ..., (xn, yn), (xt, 0) where
Σ has eigenvalues in the range [ν, µ] with a condition
number κ = ν/µ. Let w∗ be the optimal solution to
least squares problem (4), then there exists hyperparam-
eters for GD++ algorithm that outputs ŷ with accuracy
|ŷ − 〈xt, w∗〉| ≤ ε‖xt‖‖w∗‖ in l = O(log κ+ log log 1/ε)
steps. In particular that implies there exists an l-layer linear
transformer that can solve this task.

The convergence rate ofO(log log 1/ε) is typically achieved
only by second-order algorithms such as Newton’s method.

5.2. Understanding wyy: adaptive rescaling
If a layer only has wlyy 6= 0, it has a rescaling effect. The
amount of scaling is related to the amount of noise added in
a model selection setting. The update rule for this layer is:

yl+1
i =

(
1 + wlyyλ

l
)
yli.

This rescales every y by a factor that depends on λl. When
wlyy < 0, this shrinks of the output based on the norm of
y in the previous layer. This is useful for the mixed noise
variance problem, as ridge regression solution scales the
least squares solution by a factor that depends on the noise
level.

Specifically, assuming Σ ≈ E[Σ] = nI , the ridge regression
solution becomesw∗σ2 ≈ n

n+σ2w
∗, which is exactly a scaled

version of the OLS solution. Further, when noise is larger,
the scaled factor is smaller, which agrees with the behavior
of a negative wyy .

We can show that using adaptive scaling wyy even a 2-layer
linear transformer can be enough to solve a simple example
of categorical mixed noise variance problem στ ∈ {σ1, σ2}
and n→∞:

Theorem 5.2. Suppose the input to the transformer
is (x1, y1), (x2, y2), ..., (xn, yn), (xq, 0), where xi ∼
N(0, 1

nI), yi = w>xi + ξi. Here ξi ∼ N(0, σ2) is the
noise whose noise level σ can take one of two values: σ1 or
σ2. Then as n goes to +∞, there exists a set of parameters
for two-layer linear transformers such that the implicit w2

of the linear transformer converges to the optimal ridge
regression results (and the output of the linear transformer
is −〈w2, xq〉). Further, the first layer only has wyx being
nonzero and the second layer only has wyy being nonzero.

5.3. Understanding wxy: adapting step-sizes
The final term in the diagonal model, wxy, has a more
complicated effect. Since it changes only the x-coordinates,
it does not have an immediate effect on y. To understand
how it influences the y we consider a simplified two-step
process, where the first step only has wxy 6= 0 and the
second step only has wyx 6= 0 (so the second step is just
doing one step of gradient descent). In this case, the first
layer will update the xi’s as:

x1i = xi + yiwxy

n∑
j=1

yjxj

= xi + wxyyi

n∑
j=1

(〈w∗, xj〉+ rj)xj

= xi + wxyyiΣw
∗

= xi + wxy(〈w∗, xi〉+ ri)Σw
∗

= (I + wxyΣw∗(w∗)>)xi + wxyriΣw
∗.

There are two effects of the wxy term, one is a multiplicative
effect on xi, and the other is an additive term that makes
x-output related to the residual ri. The multiplicative step
in xi has an unknown preconditioning effect. For simplicity
we assume the multiplicative term is small, that is:

x1i ≈ xi + wxyriΣw
∗; x1t ≈ xt.

The first layer does not change y, so y1t = yt and y1i = yi.
For this set of xi, we can write down the output on y in the
second layer as

y2t = yt + wyx

n∑
i=1

yi(x
1
i )
>xt

≈ yt + wyx[

n∑
i=1

yixi + wxy

n∑
i=1

yiriΣw
∗]xt

= yt + wyx(1 + wxy

n∑
i=1

r2i )(Σw
∗)>xt.

Here we used the properties of residual ri (in particu-
lar
∑
i yixi = Σw∗, and

∑
i yiri =

∑
i r

2
i ). Note that

(Σw∗)>xt is basically what a gradient descent step on the
original input should do. Therefore effectively, the two-
layer network is doing gradient descent, but the step size
is the product of −wyx and (1 + wxy

∑
i r

2
i ). The factor

(1 + wxy
∑
i r

2
i ) depends on the level of noise, and when

wxy, wyx < 0, the effective step size is smaller when there
is more noise. This is especially helpful in the model selec-
tion problem, because intuitively one would like to perform
early-stopping (small step sizes) when the noise is high.

5



Linear Transformers are Versatile In-Context Learners

10−10

10−5

100

A
dj

. e
va

l l
os

s
σmax = 0

10−2

10−1

100
σmax = 1

10−2

10−1

100
σmax = 2

10−1

100
σmax = 3

1 3 5 7
Number of layers

10−1

100

A
dj

. e
va

l l
os

s

σmax = 4

1 3 5 7
Number of layers

10−1

100 σmax = 5

1 3 5 7
Number of layers

10−1

σmax = 6

1 3 5 7
Number of layers

10−1

σmax = 7

GD++ Diag Full ConstRR AdaRR TunedRR

Figure 1. In-context learning performance for noisy linear regression problem across models with different number of layers and σmax for
στ ∼ U(0, σmax). Each marker corresponds to a separately trained model with a given number of layers. Models with diagonal attention
weights (DIAG) match those with full attention weights (FULL). Models specialized on a fixed noise (GD++) perform poorly, similar
to a Ridge Regression solution with a constant noise (CONSTRR). Among the baselines, only tuned exact Ridge Regression solution
(TUNEDRR) is comparable with linear transformers.

6. Experiments
In this section, we investigate the training dynamics of lin-
ear transformers when trained with a mixed noise variance
problem (7). We evaluate three types of single-head linear
transformer models:

• FULL. Trains full parameter matrices.

• DIAG. Trains diagonal parameter matrices (10).

• GD++. An even more restricted diagonal variant de-
fined in (11).

For each experiment, we train each linear transformer mod-
ifications with a varying number of layers (1 to 7) using
using Adam optimizer for 200 000 iterations with a learning
rate of 0.0001 and a batch size of 2 048. In some cases,
especially for a large number of layers, we had to adjust
the learning rate to prevent stability issues. We report the
best result out of 5 runs with different training seeds. We
used N = 20 in-context examples in D = 10 dimensions.
We evaluated the algorithm using 100 000 novel sequences.
All the experiments were done on a single H100 GPU with
80GB of VRAM. It took on average 4–12 hours to train
a single algorithm, however experimenting with different
weight decay parameters, better optimizer and learning rate
schedule will likely reduce this number dramatically.

We use adjusted evaluation loss as our main performance
metric. It is calculated by subtracting the oracle loss from
the predictor’s loss. The oracle loss is the closed-form
solution of the ridge regression loss (5), assuming the noise
variance στ is known. The adjusted evaluation loss allows
for direct model performance comparison across different
noise variances. This is important because higher noise
significantly degrades the model prediction. Our adjustment

does not affect the model’s optimization process, since it
only modifies the loss by an additive constant.

Baseline estimates. We evaluated the linear transformer
against a closed-form solution to the ridge regression prob-
lem (5). We estimated the noise variance στ using the
following methods:

• Constant Ridge Regression (CONSTRR). The noise
variance is estimated using a single scalar value for
all the sequences, tuned separately for each mixed
variance problem.

• Adaptive Ridge Regression (ADARR). Estimate the
noise variance via unbiased estimator (Cherkassky &
Ma, 2003) σ2

est = 1
n−d

∑n
j=1(yj − ŷj)

2, where ŷj
represents the solution to the ordinary least squares (4),
found in a closed-form.

• Tuned Adaptive Ridge Regression (TUNEDRR). Same
as above, but after the noise is estimated, we tuned two
additional parameters to minimize the evaluation loss:
(1) a max. threshold value for the estimated variance,
(2) a multiplicative adjustment to the noise estimator.
These values are tuned separately for each problem.

Notice that all the baselines above are based on ridge regres-
sion, which is a closed-form, non-iterative solution. Thus,
they have an algorithmic advantage over linear transformers
that do not have access to matrix inversion. These baselines
help us gauge the best possible performance, establishing
an upper bound rather than a strictly equivalent comparison.

A more faithful comparison to our method would be an
iterative version of the ADARR that does not use matrix
inversion. Instead, we can use gradient descent to estimate
the noise and the solution to the ridge regression. However,

6



Linear Transformers are Versatile In-Context Learners

0.0 0.5 1.0
0.000

0.005

0.010

A
dj

. e
va

l l
os

s σmax = 0

0 1 2
0.00

0.01

σmax = 1

0 1 2 3
0.00

0.05

σmax = 2

0 1 2 3 4
0.00

0.05

0.10
σmax = 3

0 1 2 3 4 5
Variance σ

0.0

0.1

A
dj

. e
va

l l
os

s σmax = 4

0 1 2 3 4 5 6
Variance σ

0.0

0.1

σmax = 5

0 1 2 3 4 5 6 7
Variance σ

0.0

0.1

σmax = 6

0 1 2 3 4 5 6 7 8
Variance σ

0.0

0.1

0.2
σmax = 7

0 1 2 3 4 5 6
Variance σ

0.00
0.05
0.10
0.15
0.20

A
dj

. e
va

l l
os

s 2 layers

0 1 2 3 4 5 6
Variance σ

3 layers

0 1 2 3 4 5 6
Variance σ

4 layers

0 1 2 3 4 5 6
Variance σ

5 layers

0 1 2 3 4 5 6
Variance σ

6 layers

0 1 2 3 4 5 6
Variance σ

7 layers

GD++ Diag Full ConstRR AdaRR TunedRR

Figure 2. Per-variance profile of models behavior for uniform noise variance στ ∼ U(0, σmax). Top two rows: 7-layer models with
varying σmax. Bottom row: models with varying numbers of layers, fixed σmax = 5. In-distribution noise is shaded gray.

in practice, this gradient descent estimator converges to
ADARR only after ≈ 100 iterations. In contrast, linear
transformers typically converge in fewer than 10 layers.

We consider two choices for the distribution of στ :

• Uniform. στ ∼ U(0, σmax) drawn from a uniform
distribution bounded by σmax. We tried multiple sce-
narios with σmax ranging from 0 to 7.

• Categorical. στ ∈ S chosen from a discrete set S. We
tested S = {1, 3} and S = {1, 3, 5}.

Our approach generalizes the problem studied by Bai et al.
(2023), who considered only categorical variance selection
and show experiments only with two στ values.

Uniform noise variance. For the uniform noise variance,
Fig. 1 shows that FULL and DIAG achieve comparable per-
formance across different numbers of layers and different
σmax. On the other hand, GD++ converges to a higher
value, closely approaching the performance of the CON-
STRR baseline.

As σmax grows, linear transformers show a clear advan-
tage over the baselines. With 4 layers, they outperform
the closed-form solution ADARR for σmax = 4 and larger.
Models with 5 or more layers match or exceed the perfor-
mance of TUNEDRR.

The top of Fig. 2 offers a detailed perspective on perfor-
mance of 7-layer models and the baselines. Here, we com-
puted per-variance profiles across noise variance range from
0 to σmax + 1. We can see that poor performance of GD++

comes from its inability to estimate well across the full

noise variance range. Its performance closely mirrors to
CONSTRR, suggesting that GD++ under the hood might
also be estimating a single constant variance for all the data.

ADARR perfectly estimates problems with no noise, but
struggles more as noise variance increases. TUNEDRR
slightly improves estimation by incorporating σmax into
its tunable parameters, yet its prediction suffers in the mid-
range. FULL and DIAG demonstrate comparable perfor-
mance across all noise variances. While more research is
needed to definitively confirm or deny their equivalence, we
believe that these models are actually not identical despite
their similar performance.

At the bottom of Fig. 2 we set the noise variance to σmax =
5 and display a per-variance profile for models with varying
layers. Two-layer models for FULL and DIAG behave akin
to GD++, modeling only a single noise variance in the
middle. However, the results quickly improve across the
entire noise spectrum for 3 or more layers. In contrast,
GD++ quickly converges to a suboptimal solution.

Categorical noise variance. Fig. 3 shows a notable differ-
ence between DIAG and FULL models for categorical noise
variance στ ∈ {1, 3}. This could stem from a bad local
minima, or suggest a fundamental difference between the
models for this problem. Interestingly, from per-variance
profiling we see that DIAG extrapolates better for variances
not used for training, while FULL, despite its lower in-
distribution error, performs worse on unseen variances. For
στ ∈ {1, 3, 5}, examining the per-variance profile at the bot-
tom of Fig. 3 reveals differences in their behaviors. FULL
exhibits a more complex per-variance profile with more

7



Linear Transformers are Versatile In-Context Learners

στ ∈ {1, 3} στ ∈ {1, 3, 5}

1 3 5 7
Number of layers

10−2

10−1

100

A
dj

. e
va

l l
os

s

0 1 2 3 4 5 6
Noise variance

0.0

0.1

0.2

A
dj

. e
va

l l
os

s

1 3 5 7
Number of layers

10−2

10−1

100

A
dj

. e
va

l l
os

s

0 1 2 3 4 5 6
Noise variance

0.0

0.1

0.2

A
dj

. e
va

l l
os

s

σ
τ
∈
{1
,3
}

0.0

0.1

0.2

A
dj

. e
va

l l
os

s 2 layers 3 layers 4 layers 5 layers 6 layers 7 layers

σ
τ
∈
{1
,3
,5
}

0 1 2 3 4 5 6
Variance σ

0.0

0.1

0.2

A
dj

. e
va

l l
os

s

0 1 2 3 4 5 6
Variance σ

0 1 2 3 4 5 6
Variance σ

0 1 2 3 4 5 6
Variance σ

0 1 2 3 4 5 6
Variance σ

0 1 2 3 4 5 6
Variance σ

GD++ Diag Full ConstRR AdaRR TunedRR

Figure 3. In-context learning performance for noisy linear regression across models with varying number of layers for conditional noise
variance στ ∈ {1, 3} and στ ∈ {1, 3, 5}. Top: loss for models with various number of layers and per-variance profile for models with 7
layers. Bottom: Per-variance profile of the model across different numbers of layers. In-distribution noise is shaded gray.

fluctuations than the diagonal model, suggesting greater rep-
resentational capacity. Surprisingly, it did not translate to
better loss results compared to DIAG.

For easy comparison, we compile the results of all methods
and baselines in Table 1 in the Appendix.

7. Conclusions
Our research reveals the surprising ability of linear trans-
formers to tackle challenging in-context learning problems.
We show that each layer maintains an implicit linear regres-
sion model, akin to a complex variant of preconditioned
gradient descent with momentum-like behavior.

Remarkably, when trained on noisy linear regression prob-
lems with unknown noise variance, linear transformers not
only outperform standard baselines but also uncover a so-
phisticated optimization algorithm that incorporates noise-
aware step-size adjustments and rescaling. This discovery
highlights the potential of linear transformers to automat-
ically discover novel optimization algorithms when pre-
sented with the right problems, opening exciting avenues
for future research, including automated algorithm discov-
ery using transformers and generalization to other problem
domains.

While our findings demonstrate the impressive capabilities
of linear transformers in learning optimization algorithms,
we acknowledge limitations in our work. These include
the focus on simplified linear models, analysis of primar-
ily diagonal attention matrices, and the need for further
exploration into the optimality of discovered algorithms,

generalization to complex function classes, scalability with
larger datasets, and applicability to more complex trans-
former architectures. We believe these limitations present
valuable directions for future research and emphasize the
need for a deeper understanding of the implicit learning
mechanisms within transformer architectures.

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ah-

mad, Ilge Akkaya, Florencia Leoni Aleman, Diogo
Almeida, Janko Altenschmidt, Sam Altman, Shyamal
Anadkat, et al. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

Kwangjun Ahn, Xiang Cheng, Hadi Daneshmand, and Su-
vrit Sra. Transformers learn to implement preconditioned
gradient descent for in-context learning. arXiv preprint
arXiv:2306.00297, 2023.

Ekin Akyürek, Dale Schuurmans, Jacob Andreas, Tengyu
Ma, and Denny Zhou. What learning algorithm is in-
context learning? investigations with linear models. arXiv
preprint arXiv:2211.15661, 2022.

Ekin Akyürek, Bailin Wang, Yoon Kim, and Jacob Andreas.
In-Context language learning: Architectures and algo-
rithms. arXiv preprint arXiv:2401.12973, 2024.

Rohan Anil, Andrew M Dai, Orhan Firat, Melvin John-
son, Dmitry Lepikhin, Alexandre Passos, Siamak Shak-
eri, Emanuel Taropa, Paige Bailey, Zhifeng Chen, et al.

8



Linear Transformers are Versatile In-Context Learners

Palm 2 technical report. arXiv preprint arXiv:2305.10403,
2023.

Yu Bai, Fan Chen, Huan Wang, Caiming Xiong, and Song
Mei. Transformers as statisticians: Provable in-context
learning with in-context algorithm selection. arXiv
preprint arXiv:2306.04637, 2023.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah,
Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan,
Pranav Shyam, Girish Sastry, Amanda Askell, et al. Lan-
guage models are few-shot learners. Advances in neural
information processing systems, 33:1877–1901, 2020.

Stephanie Chan, Adam Santoro, Andrew Lampinen, Jane
Wang, Aaditya Singh, Pierre Richemond, James McClel-
land, and Felix Hill. Data distributional properties drive
emergent in-context learning in transformers. Advances
in Neural Information Processing Systems, 35:18878–
18891, 2022.

Xiang Cheng, Yuxin Chen, and Suvrit Sra. Transformers
implement functional gradient descent to learn non-linear
functions in context. arXiv preprint arXiv:2312.06528,
2023.

Vladimir Cherkassky and Yunqian Ma. Comparison of
model selection for regression. Neural computation, 15
(7):1691–1714, 2003.

Krzysztof Choromanski, Valerii Likhosherstov, David Do-
han, Xingyou Song, Andreea Gane, Tamas Sarlos, Pe-
ter Hawkins, Jared Davis, Afroz Mohiuddin, Lukasz
Kaiser, et al. Rethinking attention with performers. arXiv
preprint arXiv:2009.14794, 2020.

Deqing Fu, Tian-Qi Chen, Robin Jia, and Vatsal Sharan.
Transformers learn higher-order optimization methods
for in-context learning: A study with linear models. arXiv
preprint arXiv:2310.17086, 2023.

Shivam Garg, Dimitris Tsipras, Percy S Liang, and Gregory
Valiant. What can transformers learn in-context? a case
study of simple function classes. Advances in Neural
Information Processing Systems, 35:30583–30598, 2022.

Angeliki Giannou, Shashank Rajput, Jy-yong Sohn, Kang-
wook Lee, Jason D Lee, and Dimitris Papailiopoulos.
Looped transformers as programmable computers. arXiv
preprint arXiv:2301.13196, 2023.

Tianyu Guo, Wei Hu, Song Mei, Huan Wang, Caiming
Xiong, Silvio Savarese, and Yu Bai. How do transform-
ers learn in-context beyond simple functions? a case
study on learning with representations. arXiv preprint
arXiv:2310.10616, 2023.

Roee Hendel, Mor Geva, and Amir Globerson. In-
context learning creates task vectors. arXiv preprint
arXiv:2310.15916, 2023.

Yu Huang, Yuan Cheng, and Yingbin Liang. In-
context convergence of transformers. arXiv preprint
arXiv:2310.05249, 2023.

Evan Hubinger, Chris van Merwijk, Vladimir Mikulik, Joar
Skalse, and Scott Garrabrant. Risks from learned opti-
mization in advanced machine learning systems. arXiv
preprint arXiv:1906.01820, 2019.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch,
Chris Bamford, Devendra Singh Chaplot, Diego de las
Casas, Florian Bressand, Gianna Lengyel, Guillaume
Lample, Lucile Saulnier, et al. Mistral 7b. arXiv preprint
arXiv:2310.06825, 2023.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas,
and François Fleuret. Transformers are rnns: Fast autore-
gressive transformers with linear attention. In Interna-
tional conference on machine learning, pp. 5156–5165.
PMLR, 2020.

Jannik Kossen, Tom Rainforth, and Yarin Gal. In-context
learning in large language models learns label relation-
ships but is not conventional learning. arXiv preprint
arXiv:2307.12375, 2023.

Yingcong Li, Muhammed Emrullah Ildiz, Dimitris Papail-
iopoulos, and Samet Oymak. Transformers as algorithms:
Generalization and stability in in-context learning. In In-
ternational Conference on Machine Learning, pp. 19565–
19594. PMLR, 2023.

Arvind Mahankali, Tatsunori B Hashimoto, and Tengyu
Ma. One step of gradient descent is provably the optimal
in-context learner with one layer of linear self-attention.
arXiv preprint arXiv:2307.03576, 2023.

Suvir Mirchandani, Fei Xia, Pete Florence, Brian Ichter,
Danny Driess, Montserrat Gonzalez Arenas, Kanishka
Rao, Dorsa Sadigh, and Andy Zeng. Large language
models as general pattern machines. arXiv preprint
arXiv:2307.04721, 2023.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas
Joseph, Nova DasSarma, Tom Henighan, Ben Mann,
Amanda Askell, Yuntao Bai, Anna Chen, et al. In-
context learning and induction heads. arXiv preprint
arXiv:2209.11895, 2022.

Reese Pathak, Rajat Sen, Weihao Kong, and Abhimanyu
Das. Transformers can optimally learn regression mixture
models. arXiv preprint arXiv:2311.08362, 2023.

9



Linear Transformers are Versatile In-Context Learners

Imanol Schlag, Kazuki Irie, and Jürgen Schmidhuber. Linear
transformers are secretly fast weight programmers. In
International Conference on Machine Learning, pp. 9355–
9366. PMLR, 2021.

Lingfeng Shen, Aayush Mishra, and Daniel Khashabi. Do
pretrained transformers really learn in-context by gradient
descent? arXiv preprint arXiv:2310.08540, 2023.

Davoud Ataee Tarzanagh, Yingcong Li, Xuechen Zhang,
and Samet Oymak. Max-margin token selection in atten-
tion mechanism. In Thirty-seventh Conference on Neural
Information Processing Systems, 2023.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui
Wu, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut, Jo-
han Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gem-
ini: a family of highly capable multimodal models. arXiv
preprint arXiv:2312.11805, 2023.

Yuandong Tian, Yiping Wang, Beidi Chen, and Simon Du.
Scan and snap: Understanding training dynamics and
token composition in 1-layer transformer. arXiv preprint
arXiv:2305.16380, 2023a.

Yuandong Tian, Yiping Wang, Zhenyu Zhang, Beidi Chen,
and Simon Du. Joma: Demystifying multilayer trans-
formers via joint dynamics of mlp and attention. In
NeurIPS 2023 Workshop on Mathematics of Modern Ma-
chine Learning, 2023b.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and
Illia Polosukhin. Attention is all you need. Advances in
neural information processing systems, 30, 2017.

Johannes von Oswald, Eyvind Niklasson, Ettore Randazzo,
João Sacramento, Alexander Mordvintsev, Andrey Zh-
moginov, and Max Vladymyrov. Transformers learn in-
context by gradient descent. In International Conference
on Machine Learning, pp. 35151–35174. PMLR, 2023a.

Johannes von Oswald, Eyvind Niklasson, Maximilian
Schlegel, Seijin Kobayashi, Nicolas Zucchet, Nino Scher-
rer, Nolan Miller, Mark Sandler, Max Vladymyrov, Raz-
van Pascanu, et al. Uncovering mesa-optimization algo-
rithms in transformers. arXiv preprint arXiv:2309.05858,
2023b.

Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang, and
Hao Ma. Linformer: Self-attention with linear complexity.
arXiv preprint arXiv:2006.04768, 2020.

Jerry Wei, Jason Wei, Yi Tay, Dustin Tran, Albert Web-
son, Yifeng Lu, Xinyun Chen, Hanxiao Liu, Da Huang,
Denny Zhou, et al. Larger language models do in-context
learning differently. arXiv preprint arXiv:2303.03846,
2023.

Kaiyue Wen, Yuchen Li, Bingbin Liu, and Andrej Risteski.
Transformers are uninterpretable with myopic methods:
a case study with bounded dyck grammars. In Thirty-
seventh Conference on Neural Information Processing
Systems, 2023.

Steve Yadlowsky, Lyric Doshi, and Nilesh Tripuraneni.
Pretraining data mixtures enable narrow model selec-
tion capabilities in transformer models. arXiv preprint
arXiv:2311.00871, 2023.

Ruiqi Zhang, Spencer Frei, and Peter L Bartlett. Trained
transformers learn linear models in-context. arXiv
preprint arXiv:2306.09927, 2023.

10



Linear Transformers are Versatile In-Context Learners

A. Proofs from Sections 4 and 5
A.1. Proof of Theorem 4.1

We first give the proof for Theorem 4.1. In the process we will also prove Lemma 4.3, as Theorem 4.1 follows immediately
from an induction based on the lemma.

Proof. We do this by induction. At l = 0, it’s easy to check that we can set a(0) = 1, w(0) = 0,M (0) = I, u(0) = 0.

Suppose this is true for some layer l, if the weights of layer l are (P l1, Q
l
1), ..., (P lk, Q

l
k) for k heads, at output of layer l + 1

we have: (
xl+1
i

yl+1
i

)
=

(
xli
yli

)
+

p∑
k=1

P lk n∑
j=1

((
xlj
ylj

)
((xlj)

>, ylj)

)
Qlk

( xli
yli

)
. (12)

Note that the same equation is true for i = n+ 1 just by letting yn+1 = 0. Let the middle matrix has the following structure:

(
A b
c> d

)
:=

p∑
k=1

P lk n∑
j=1

((
xlj
ylj

)
((xlj)

>, ylj)

)
Qlk

 ,
Then one can choose the parameters of the next layer as in Lemma 4.3

M l+1 = (I +A)M l + b(wl)>

ul+1 = (I +A)ul + alb

al+1 = (1 + d)al + 〈c, ul〉
wl+1 = (1 + d)wl − (M l)>c.

One can check that this choice satisfies (12).

A.2. Proof of Lemma 4.4

This lemma is in fact a corollary of Lemma 4.3. We first give a more detailed version which explicitly state the unknown
matrices Λl,Γl,Πl,Φl:

Lemma A.1. In the setup of Theorem 4.1 with diagonal parameters (9), one can recursively compute matrices ul, wl using
the following formula

ul+1 =
(
(1 + wlxy(al)2ρ)I + wlxxΣl

)
ul

+ alwlxy
(
M l + alul(w∗)>

)
Σ
(
alw∗ − wl

)
,

wl+1 = (1 + wlyyλ
l)wl

− wlyx(M l)>(M l + alul(w∗)>)Σ(alw∗ − wl)
− alρwlyx(M l)>ul,

where ρ =
∑n
i=1 r

2
i and initial conditions a0 = 1, w0 = 0,M0 = I, u0 = 0

Proof. First, we compute the following matrix that appeared in Lemma 4.3 for the specific diagonal case:

(
Al bl

(cl)> dl

)
=

p∑
k=1

P lk n∑
j=1

((
xlj
ylj

)
((xlj)

>, ylj)

)
Qlk

 ,
=

(
wlxxΣl wlxyα

l

wlyx(αl)> wlyyλ
l

)
.

11



Linear Transformers are Versatile In-Context Learners

This implies that Al = wlxxΣl, bl = wlxyα
l, cl = wlyxα

l and dl = wlyyλ
l. Next we rewrite αl:

αl =

n∑
i=1

ylxl

=

n∑
i=1

(alyi − 〈wl, xi〉)(M lxi + yiu
l)

=

n∑
i=1

(alri + 〈alw∗ − wl, xi〉)((M l + alul(w∗)>)xi + riu
l)

=

n∑
i=1

〈alw∗ − wl, xi〉(M l + alul(w∗)>)xi +

n∑
i=1

alr2i u
l

= (M l + alul(w∗)>)Σ(alw∗ − wl) + alρul.

Here the first step is by Theorem 4.1, the second step replaces yi with 〈w∗, xi〉 + ri, the third step uses the fact that∑n
i=1 rixi = 0 to get rid of the cross terms.

The remaining proof just substitutes the formula for αl into Lemma 4.3.

Now Lemma A.1 implies Lemma 4.4 immediately by setting Λl = −wlxy(al)2ρI−wlxxΣl, Γl = alwlxy
(
M l + alul(w∗)>

)
,

sl = tuwyyλ
l, Πl = wlyx(M l)>(M l + alul(w∗)>) and Φl = alρwlyx(M l)>.

A.3. Proof for Theorem 4.2

Proof. By Theorem 4.1, we know yli = 〈wl, xi〉 for some wl. When n� d, with high probability the norm of yl is on the
order of Θ(

√
n)‖wl‖, and the norm of y∗ is Θ(

√
n). Therefore we only need to bound the correlation. The correlation is

equal to

|〈y∗, yl〉| = |wl1
n∑
i=1

x31 +

n∑
i=1

xi(1)2
d∑
j=2

wljxi(j)|.

We know with high probability |
∑n
i=1 x

3
i | = O(

√
n) because E[x3i ] = 0. The second term can be written as 〈wl, v〉 where

v is a vector whose coordinates are v1 = 0 and vj =
∑n
i=1 xi(1)2xi(j) for 2 ≤ j ≤ d, therefore with high probability

‖v‖ = O(
√
nd). Therefore, with high probability the cosine similarity is at most

|〈y∗, yl〉|
‖y∗‖‖yl‖

= O(1)
|〈y∗, yl〉|
n‖wl

= O(1)
|wl1

∑n
i=1 x

3
1 +

∑n
i=1 xi(1)2

∑d
j=2 w

l
jxi(j)|

n‖wl

≤ O(1)
|wl1||

∑n
i=1 x

3
1|+ |wl|‖v‖

n‖wl

≤ O(1)

√
n+
√
nd

n
.

When n� d this can be made smaller than any fixed constant.

A.4. Proof for Theorem 5.1

In this section we prove Theorem 5.1 by finding hyperparameters for GD++ algorithm that solves least squares problems
with very high accuracy. The first steps in the construction iteratively makes the data xi’s better conditioned, and the last
step is a single step of gradient descent. The proof is based on several lemma, first we observe that if the data is very
well-conditioned, then one-step gradient descent solves the problem accurately:

12



Linear Transformers are Versatile In-Context Learners

Lemma A.2. Given (x1, y1), ..., (xn, yn) where Σ :=
∑n
i=1 xix

>
i has eigenvalues between 1 and 1 + ε. Let w∗ :=

arg minw
∑n
i=1(yi − 〈w, xi〉)2 be the optimal least squares solution, then ŵ =

∑n
i=1 yixi satisfies ‖ŵ − w∗‖ ≤ ε‖w∗‖.

Proof. We can write yi = 〈xi, w∗〉+ ri. By the fact that w∗ is the optimal solution we know ri’s satisfy
∑n
i=1 rixi = 0.

Therefore ŵ =
∑n
i=1 yixi =

∑n
i=1〈xi, w∗〉xi = Σw∗. This implies

‖ŵ − w∗‖ = ‖(Σ− I)w∗‖ ≤ ‖Σ− I‖‖w∗‖ ≤ ε‖w∗‖.

Next we show that by applying just the preconditioning step of GD++, one can get a well-conditioned x matrix very quickly.
Note that the Σ matrix is updated as Σ← (I−γΣ)Σ(I−γΣ), so an eigenvalue of λ in the original Σ matrix would become
λ(1− γλ)2. The following lemma shows that this transformation is effective in shrinking the condition number

Lemma A.3. Suppose ν/µ = κ ≥ 1.1, then there exists an universal constant c < 1 such that choosing γν = 1/3 implies

maxλ∈[ν,µ] λ(1− γλ)2

minλ∈[ν,µ] λ(1− γλ)2
≤ cκ.

On the other hand, if ν/µ = κ ≤ 1 + ε where ε ≤ 0.1, then choosing γν = 1/3 implies

maxλ∈[ν,µ] λ(1− γλ)2

minλ∈[ν,µ] λ(1− γλ)2
≤ 1 + 2ε2.

The first claim shows that one can reduce the condition number by a constant factor in every step until it’s a small constant.
The second claim shows that once the condition number is small (1 + ε), each iteration can bring it much closer to 1 (to the
order of 1 +O(ε2)).

Now we prove the lemma.

Proof. First, notice that the function f(x) = x(1− γx)2 is monotonically nondecreasing for x ∈ [0, ν] if γν = 1/3 (indeed,
it’s derivative f ′(x) = (1− γx)(1− 3γx) is always nonnegative). Therefore, the max is always achieved at x = ν and the
min is always achieved at x = µ. The new ratio is therefore

ν(1− γν)2

µ(1− γµ)2
= κ

4/9

(1− 1/3κ)2
.

When κ ≥ 1.1 the ratio 4/9
(1−1/3κ)2 is always below 4/9

(1−1/3.3)2 which is a constant bounded away from 1.

When κ = 1 + ε < 1.1, we can write down the RHS in terms of ε

ν(1− γν)2

µ(1− γµ)2
= κ

4/9

(1− 1/3κ)2
= (1 + ε)(1 +

1

2
(1− 1

1 + ε
))−2.

Note that by the careful choice of γ, the RHS has the following Taylor expansion:

(1 + ε)(1 +
1

2
(1− 1

1 + ε
))−2 = 1 +

3ε2

4
− 5ε3

4
+O(ε4).

One can then check the RHS is always upperbounded by 2ε2 when ε < 0.1.

With the two lemmas we are now ready to prove the main theorem:

13



Linear Transformers are Versatile In-Context Learners

0 2 4 6 8
Prediction after K layers

10−1

100

A
dj

us
te

d 
ev

al
 lo

ss

GD++

0 2 4 6 8
Prediction after K layers

10−1

100

Diag

0 2 4 6 8
Prediction after K layers

10−1

100

Full
1 layers
2 layers
3 layers
4 layers
5 layers
6 layers
7 layers

Figure 4. Linear transformer models show a consistent decrease in error per layer when trained on data with mixed noise variance
στ ∼ U(0, 5). The error bars measure variance over 5 training seeds.

Proof. By Lemma A.3 we know in O(log κ + log log 1/ε) iterations, by assigning κ in the way of Lemma A.3 one can
reduce the condition number of x to κ′ ≤ 1 + ε/2κ (we chose ε/2κ here to give some slack for later analysis).

Let Σ′ be the covariance matrix after these iterations, and ν′, µ′ be the upper and lowerbound for its eigenvalues. The
data xi’s are transformed to a new data x′i = Mxi for some matrix M . Let M = AΣ−1/2, then since M ′ = AA>

we know A is a matrix with singular values between
√
µ′ and

√
ν′. The optimal solution (w∗)′ = M−>w∗ has norm

at most
√
ν/
√
µ′‖w∗‖. Therefore by Lemma A.2 we know the one-step gradient step with ŵ =

∑n
i=1

1
µ′ yixi satisfy

‖ŵ − (w∗)′‖ ≤ (κ′ − 1)
√
ν/
√
µ′‖w∗‖. The test data xt is also transformed to x′t = AΣ−1/2xt, and the algorithm outputs

〈ŵ, x′t〉, so the error is at most
√
ν‖w∗‖ ∗ ‖x′t‖ ≤ (κ′ − 1)

√
κ
√
κ′‖w∗‖ ∗ ‖xt‖. By the choice of κ′ we can check that RHS

is at most ε‖w∗‖‖xt‖.

A.5. Proof of the Theorem 5.2

Proof. The key observation here is that when n→∞, under the assumptions we have limn→∞
∑n
i=1 xix

>
i = I . Therefore

the ridge regression solutions converge to w∗σ2 = 1
1+σ2

∑n
i=1 yixi and the desired output is 〈w∗σ2 , xq〉.

By the calculations before, we know after the first-layer, the implicit w is w1 = wyx
∑n
i=1 yixi. As long as wyx is a

constant, when n→∞ we know 1
n

∑n
i=1(y1i )2 = σ2 (as the part of y that depend on x is negligible compared to noise),

therefore the output of the second layer satisfies

w2 = (1 + nσ2wyy)w1 = (1 + nσ2wyy)wyx

n∑
i=1

yixi.

Therefore, as long as we choose wyx and wyy to satisfy (1 + nσ2wyy)wyx = 1
1+σ2 when σ = σ1 or σ2 (notice that these

are two linear equations on wyx and nwyxwyy, so they always have a solution), then we have limn→∞ w2 = w∗σ2 for the
two noise levels.

B. More experiments
Here we provide results of additional experiments that did not make it to the main text.

Fig. 5 shows an example of unadjusted loss. Clearly, it is virtually impossible to compare the methods across various noise
levels this way.

Fig. 6 shows per-variance profile of intermediate predictions of the network of varying depth. It appears that GD++

demonstrates behavior typical of GD-based algorithms: early iterations model higher noise (similar to early stopping),
gradually converging towards lower noise predictions. DIAG exhibits this patter initially, but then dramatically improves,
particularly for lower noise ranges. Intriguingly, FULL displays the opposite trend, first improving low-noise predictions,
followed by a decline in higher noise prediction accuracy, especially in the last layer.

Finally, Table 1 presents comprehensive numerical results for our experiments across various mixed noise variance models.
For each model variant (represented by a column), the best-performing result is highlighted in bold.

14



Linear Transformers are Versatile In-Context Learners

0 2 4 6
Variance σ

0

2

4

6

U
na

dj
us

te
d 

ev
al

 lo
ss GD++

Diag
Full
ConstRR
AdaRR
TunedRR

Figure 5. Example of unadjusted loss given by directly minimizing (7). It is pretty hard to see variation between comparable methods
using this loss directly.

15



Linear Transformers are Versatile In-Context Learners

0.00

0.25

0.50

0.75

1.00

2 
la

ye
rs

 m
od

el
A

dj
. e

va
l l

os
s

GD++ Diag Full

0.00

0.25

0.50

0.75

1.00

3 
la

ye
rs

 m
od

el
A

dj
. e

va
l l

os
s

0.00

0.25

0.50

0.75

1.00

4 
la

ye
rs

 m
od

el
A

dj
. e

va
l l

os
s

0.00

0.25

0.50

0.75

1.00

5 
la

ye
rs

 m
od

el
A

dj
. e

va
l l

os
s

0.00

0.25

0.50

0.75

1.00

6 
la

ye
rs

 m
od

el
A

dj
. e

va
l l

os
s

0.00

0.25

0.50

0.75

1.00

7 
la

ye
rs

 m
od

el
A

dj
. e

va
l l

os
s

0 2 4 6 8 10
Variance σ

0.00

0.25

0.50

0.75

1.00

8 
la

ye
rs

 m
od

el
A

dj
. e

va
l l

os
s

0 2 4 6 8 10
Variance σ

0 2 4 6 8 10
Variance σ

After 1 layer
After 2 layers

After 3 layers
After 4 layers

After 5 layers
After 6 layers

After 7 layers
After 8 layers

Figure 6. Layer by layer prediction quality for different models with στ ∼ U(0, 5). The error bars measure std over 5 training seeds.

16



Linear Transformers are Versatile In-Context Learners

Method Uniform στ ∼ (0, σmax) Categorical στ ∈ S
0 1 2 3 4 5 6 7 {1,3} {1,3,5}

1 layer
GD++ 1.768 1.639 1.396 1.175 1.015 0.907 0.841 0.806 1.007 0.819
DIAG 1.767 1.639 1.396 1.175 1.015 0.906 0.841 0.806 1.007 0.819
FULL 1.768 1.640 1.397 1.176 1.016 0.907 0.842 0.806 1.008 0.820

2 layers
GD++ 0.341 0.295 0.243 0.265 0.347 0.366 0.440 0.530 0.305 0.427
DIAG 0.265 0.214 0.173 0.188 0.219 0.242 0.254 0.259 0.201 0.246
FULL 0.264 0.215 0.173 0.188 0.220 0.245 0.259 0.263 0.202 0.276

3 layers
GD++ 0.019 0.021 0.071 0.161 0.259 0.344 0.454 0.530 0.222 0.422
DIAG 0.013 0.015 0.048 0.087 0.109 0.118 0.121 0.123 0.098 0.119
FULL 0.012 0.015 0.049 0.075 0.101 0.117 0.124 0.127 0.076 0.113

4 layers
GD++ 9.91e-05 0.014 0.066 0.160 0.258 0.344 0.454 0.530 0.222 0.422
DIAG 1.19e-04 0.006 0.024 0.041 0.050 0.059 0.065 0.073 0.043 0.062
FULL 1.63e-04 0.005 0.021 0.038 0.052 0.065 0.068 0.076 0.032 0.061

5 layers
GD++ 1.14e-07 0.014 0.066 0.161 0.265 0.344 0.454 0.530 0.222 0.422
DIAG 1.81e-07 0.004 0.016 0.029 0.041 0.051 0.058 0.062 0.026 0.051
FULL 1.79e-07 0.002 0.015 0.026 0.038 0.048 0.059 0.065 0.016 0.048

6 layers
GD++ 2.37e-10 0.009 0.066 0.161 0.265 0.344 0.454 0.530 0.222 0.422
DIAG 2.57e-10 0.003 0.014 0.028 0.040 0.048 0.054 0.059 0.020 0.047
FULL 2.71e-10 0.002 0.014 0.025 0.036 0.044 0.052 0.059 0.011 0.043

7 layers
GD++ 2.65e-12 0.009 0.066 0.161 0.265 0.344 0.454 0.530 0.222 0.422
DIAG 2.50e-12 0.002 0.014 0.027 0.040 0.047 0.052 0.059 0.018 0.046
FULL 2.50e-12 0.002 0.010 0.025 0.035 0.047 0.050 0.057 0.010 0.035

Baselines
CONSTRR 0 0.009 0.066 0.161 0.265 0.365 0.454 0.530 0.222 0.422

ADARR 0 0.003 0.016 0.034 0.053 0.068 0.081 0.092 0.051 0.084
TUNEDRR 0 0.002 0.010 0.023 0.037 0.049 0.060 0.068 0.021 0.054

Table 1. Adjusted evaluation loss for models with various number of layers with uniform noise variance στ ∼ U(0, σmax). We highlight
in bold the best results for each problem setup (i.e. each column).

17


