
Under review as submission to TMLR

Magnifying the Three Phases of GAN Training —
Fitting, Refining and Collapsing

Anonymous authors
Paper under double-blind review

Abstract

Generative Adversarial Networks (GANs) are efficient generative models but may suffer
from mode mixture and mode collapse. We present an original global characterization of
GAN training by dividing it into three successive phases — fitting, refining, and collapsing.
Such a characterization underscores a strong correlation between mode mixture and the
refining phase, as well as mode collapse and the collapsing phase. To analyze the causes
and features of each phase, we propose a novel theoretical framework that integrates both
continuous and discrete aspects of GANs, addressing a gap in existing literature that pre-
dominantly focuses on only one aspect. We develop a specialized metric to detect the phase
transition from refining to collapsing and integrate it in an “early stopping” algorithm to op-
timize GAN training. Experiments on synthetic datasets and real-world datasets including
MNIST, Fashion MNIST and CIFAR-10 substantiate our theoretical insights and highlight
the efficacy of our algorithm.

1 Introduction

Generative Adversarial Networks (GANs) serve as a popular technique for unsupervisedly learning generative
models of structured and complicated data (Goodfellow et al., 2014). GANs typically involve a generator
that produces samples resembling a target dataset, and a discriminator that differentiates between real and
generated samples.

One of the main challenges with GAN training is fine-tuning the combined dynamics of the discriminator
and generator. Many troublesome phenomena can occur if the dynamics of the generator are not adequately
matched with that of the discriminator. Among them, mode mixture (Lei et al., 2019; An et al., 2020;
Tanielian et al., 2020) and mode collapse (Goodfellow, 2017) are most commonly observed. Mode collapse
occurs when the generator generates limited sample varieties, while mode mixture happens when it blends
different modes, producing unrealistic data.

Numerous variants of GAN have been designed to tackle these challenges through a careful blend of hyper-
parameter optimization and heuristics (Ioffe & Szegedy, 2015; Nowozin et al., 2016; Arjovsky et al., 2017; Li
et al., 2017; Nguyen et al., 2017; Ghosh et al., 2018; Miyato et al., 2018). Another line of research focuses
on developing theoretical frameworks that can better analyze and optimize GAN training (Lei et al., 2019;
An et al., 2020; Sun et al., 2020; Gu et al., 2021; No et al., 2021; Becker et al., 2022; Huang & Zhang,
2023). Regarding theoretical analyses, existing literatures mainly center on the local behavior of GANs near
stationary points (Sun et al., 2020; Becker et al., 2022) or the static landscape of GANs (Lei et al., 2019; An
et al., 2020; Gu et al., 2021; No et al., 2021). And many of them make straightforward assumptions about
the generator (No et al., 2021), the discriminator (No et al., 2021; Becker et al., 2022), or the distribution of
real data (Sun et al., 2020; Becker et al., 2022). Please refer to appendix A for additional literature review.

In this paper, we present an original theoretical framework that characterizes the global behavior of GAN
dynamics. We divide the training progress into three successive phases called fitting, refining, and collapsing.
For each phase, we provide a thorough analysis using well-founded mathematical explanations, backed by
elaborate experiments.

1

Under review as submission to TMLR

1.1 Motivation

By training the Non-Saturating GAN (Goodfellow et al., 2014) (NSGAN) on a 3-dimensional Gaussian
mixture dataset and MNIST (LeCun et al., 1998), we record down the generated samples in fig. 1. In the
first row, the blue dots stand for real samples drawn from the Gaussian mixture, while the generated samples
are represented by orange dots. Initially, the generated samples concentrate near the origin. As training
progresses, they diffuse, eventually filling the space spanned by real modes. The mode mixture issue is
now the most severe. Subsequently, the generated samples are drawn near the modes and the straight lines
connecting them. This process refines the generated samples and partially mitigate mode mixture. Next
comes the unexpected collapse: the generated samples collapse rather than getting more delicate. Every
multiple epochs, the number of modes in the generated samples is halved, going from eight to four, then to
two, and eventually only one mode remains. This phenomenon is seldom addressed in the existing literature.
Nevertheless, it challenges the conventional belief that mode collapse indicates the failure of GAN training.
Indeed, if we can terminate GAN training at the opportune moment, the generated samples may showcase
considerable diversity. In the second row, both the real MNIST images and the generated images are
embedded using UMAP (Uniform Manifold Approximation and Projection) (McInnes et al., 2018) into the
same 3-dimensional space, where a similar phenomenon has been observed.

Figure 1: The real and generated samples by training NSGAN on a 3-dimensional Gaussian mixture dataset
and MNIST. First row: Gaussian mixture dataset. Orange: Real samples. Blue: Generated samples.
Epochs from left to right: 0, 10, 50, 200, 300, 360. Initially, the generated samples cluster near the origin,
then spread out and occupy the space spanned by real modes. However, instead of becoming more refined,
they eventually collapse to part of the modes. Second row: MNIST embedded in a 3-dimensional
space. Colored: Real samples. Black: Generated samples. Epochs (Batches) from left to right: 0(0), 0(8),
0(32), 0(64), 32(0), 47(0). Similar phenomenon has been observed. See appendix G for more details.

Through generalization of analogous phenomena across various datasets, we introduce a novel framework
delineating the three phases of GAN training: fitting, refining, and collapsing. For the Gaussian mixture
dataset (i.e., the first row), fitting corresponds to the first two subfigures in fig. 1. Refining relates to the
third subfigure. And collapsing aligns with the last three subfigures. The degree of mode mixture and mode
collapse differs across the three phases, as described in table 1. Therefore, we would like to precisely identify
the phase transition from refining to collapsing, and halt training at the right time. Stopping earlier results
in more unrealistic samples, whereas stopping later leads to less diverse ones.

Table 1: Severity of mode mixture and mode collapse in three phases. Transitioning from fitting to refining
improves sample quality by reducing mode mixture and collapse. Conversely, transitioning from refining to
collapsing deteriorates sample quality, resulting in delicate yet similar samples.

Mode Mixture Mode Collapse
Fitting Severe Severe
Refining Medium Medium
Collapsing Mild Severe

2

Under review as submission to TMLR

1.2 Our Contributions

Our contributions are threefold:

A novel theoretical framework based on NSGAN that integrates discrete and continuous facets of GANs
through the use of particle models. Specifically speaking, in section 2.1, we propose a technique called
continuous data augmentation to augment datasets from discrete samples so that they have continuous
probability density functions. In section 2.2, we discuss about the discrete facet of NSGAN by interpreting
it as a particle model.

A comprehensive perspective of GANs by presenting the novel tripartite phases of GAN training:
fitting, refining, and collapsing. We highlight the characteristics of each phase through rigorous mathematical
formulations and numerical experiments, as detailed in section 3, section 4, and section 5.

A specialized metric and the induced “early stopping” algorithm that optimizes GAN training
by detecting the phase transition from refining to collapsing. We elaborate on this metric in section 5.2
and the early stopping algorithm in section 5.3. Notably, this metric is intrinsic to GAN training as it
relies on information from the current state of the generator and discriminator, facilitating evaluation and
optimization without direct reliance on generated or real images.

2 Preparatory Work

This section is dedicated to the preparatory work, including our theoretical framework and problem settings.
We first discuss how to model real-world datasets in section 2.1. Therein, we introduce a novel approach
called continuous data augmentation. We move on to discuss how to interpret Divergence GANs, particularly
NSGAN, as a particle model in section 2.2. The fusion of the two methodologies forms our theoretical
framework which is well-suited for analyzing GAN dynamics. All the proofs in this section can be found in
appendix D.

2.1 How to Model Real-World Datasets?

The probability distributions of real-world datasets are usually modeled as a linear combination of Dirac
measures that remain unchanged throughout GAN training (Sun et al., 2020; Becker et al., 2022). This
kind of modeling may not be optimal since neural networks are typically trained from batches of data,
and the batch size is relatively small compared with the size of the dataset. Therefore, the distribution of
data varies substantially from batch to batch. To address such a misalignment, we propose continuous data
augmentation, a way to augment datasets so that they have continuous probability density functions.
Definition 2.1. Let x1, x2, . . . , xN ∈ Rn. Given a discrete probability measure µ = 1

N

∑N
i=1 δxi

, where δxi

is the Dirac measure with unit mass concentrated on the point xi. The continuous data augmentation of µ
is defined as a continuous probability measure µ̂ with density function

f̂(x) = 1
N

N∑
i=1

Kh(x, xi)

where Kh(x, y) = K(x/h, y/h)/h is the scaled kernel with bandwidth h > 0.

We always assume, if not otherwise stated, that K is the Radial Basis Function (RBF) kernel

K(x, y) =
(√

1/π
)n

exp(−∥x − y∥2
2).

This kind of formulation approximates the distribution of real-world datasets in a flexible way. When the
bandwidth h tends to 0, µ̂ converges to the original probability measure µ. When h is away from 0, samples
from the continuously augmented dataset are more diversified while remaining close to certain real samples
from the original dataset. Moreover, when training GANs, batches of data can be viewed as random samples
from the augmented dataset, rather than remaining fixed throughout training, which better mirrors reality.

3

Under review as submission to TMLR

Algorithm 1 Interpretation of Non-Saturating GAN (NSGAN) as a Particle Model
Require: The discriminator dω and the generator gθ, the noise prior pz, batch size m > 0, stepsize s > 0

1: for number of training iterations do
2: Train the discriminator dω as in (Goodfellow et al., 2014).
3: Sample zi’s from the noise prior pz(z).
4: Generate particles

Zi = gθ(zi), i = 1, . . . , m.

5: Update the particles
Ẑi = Zi + s · ∇dω(Zi)

2dω(Zi)
, i = 1, . . . , m.

6: Apply the stop gradient operator to Ẑi and update gθ by descending its stochastic gradient:

∇θ
1
m

m∑
i=1

∥∥gθ(zi) − Ẑi

∥∥2
2.

7: end for

2.2 Rethinking Divergence GANs as Particle Models

Divergence GANs such as Vanilla GAN (Goodfellow et al., 2014), NSGAN (Goodfellow et al., 2014) and
f -GAN (Nowozin et al., 2016) can be interpreted as particle models (Gao et al., 2019; Johnson & Zhang,
2019; Franceschi et al., 2023; Huang & Zhang, 2023; Yi et al., 2023). This paper focuses on the NSGAN for
its practicality and conciseness. And we outline the methodology for other Divergence GANs in appendix I.
The pseudocode of NSGAN as a particle model is presented in algorithm 1. We show in theorem 2.1 that
algorithm 1 is essentially equivalent to the original NSGAN. Thus we also refer to generated samples as
particles in this paper.
Theorem 2.1. The update of gθ via applying the stop gradient operator to Ẑi and descending the gradient

∇θ
1
m

m∑
i=1

∥∥gθ(zi) − Ẑi

∥∥2
2

in algorithm 1 is equivalent to descending the gradient

−∇θ
1
m

m∑
i=1

log
(
dω(gθ(zi))

)
in the original formulation of NSGAN.

Unless otherwise stated, we assume the discriminator is optimal,1 i.e., d∗
ω(x) = pdata(x)/

(
pdata(x)+pg(x)

)
, as

established by Goodfellow et al. (2014). Under this assumption, the vector field ∇dω(x)/dω(x) corresponds
precisely to the velocity field of the Wasserstein gradient flow for a specific f -divergence, as shown by Yi
et al. (2023). Consequently, it can be reformulated in terms of r(x) = pdata(x)/pg(x) as

∇d∗
w(x)

d∗
w(x) = ∇r(x) · 1

r(x)(1 + r(x)) .

We will use this velocity field as the foundation for our discussions throughout this paper. Specifically, we
will apply this field in section 3 to derive and visualize the evolution dynamics of particles. In section 4, we
will explore how the concept of steepness relates to this field, providing deeper insights into the severity of
mode mixture. Finally, in section 5, we will formulate an early stopping metric based on this field, aiding in
the optimization of the training process.

1For the sake of completeness, we also provide an analysis of a class of suboptimal discriminators in appendix C.

4

Under review as submission to TMLR

We make the following assumption on the noise prior pz(z) for reasons in appendix B.
Assumption 2.1. Let n be the dimension of real samples. We assume that the noise prior pz ∼ N (0, In)
is an n-dimensional standard Gaussian distribution.

3 The First Phase of GAN Training — Fitting

We begin with the first phase of GAN training: fitting. Roughly speaking, fitting refers to the process
where the generated samples progressively spread to cover the space that envelopes the majority of the
modes. To derive and visualize the evolution dynamics of particles, we employ a multiscale approach to
model real-world distributions by building two models at different scales. Ensuring consistency across the
analysis, the 3-dimensional Gaussian mixture used in section 1.1 serves as the basis. We introduce two minor
adjustments to the original setup. Firstly, the 3-dimensional distribution is projected onto the xy-plane, and
its associated marginal distribution is used for clearer visualization. Secondly, the covariance matrix of each
Gaussian component is adjusted to 0.1I to amplify the effect. The two models are elucidated respectively
in section 3.1 and section 3.2.

3.1 Model 1: The Modes are Clustered

We first examine the scenario where the modes are clustered. Such a configuration is common in real-world
datasets in the local sense. For instance, the two handwritten digits 1 and 7 are similar and their modes are
close in MNIST (please refer to appendix E for a visualization of how close they are). In this subsection, we
investigate three typical intermediate stages of GAN training: initialization, where generated samples cover
all the modes, and where generated samples cover only one mode.

For initialization, we assume that pg equals the Gaussian distribution N ([0, 0], 0.2I2) and

pdata ∼ 1
4N ([1, 1], 0.1I2) + 1

4N ([1, −1], 0.1I2) + 1
4N ([−1, 1], 0.1I2) + 1

4N ([−1, −1], 0.1I2).

The vector field that a particle is updated (i.e., ∇d∗
ω(x)/d∗

ω(x)) is plotted in the first subfigure of fig. 2. We
observe that the particles are drawn towards the nearest modes, and there is a positive correlation between
the vector lengths, i.e., the intensity of attraction and the particles’ distances from the modes. 2

For the second case where the generated samples cover all the modes, we modify pg to follow the uniform
distribution on [−2, 2]× [−2, 2]. The vector field that a particle is updated (i.e., ∇d∗

ω(x)/d∗
ω(x)) is plotted in

the second subfigure of fig. 2. We observe that the particles close to the centers of the modes tend to remain
stationary, whereas particles far from the modes will be updated to bring them closer to the nearest mode.2

Finally, we investigate the case where generated samples cover a single mode. Assume that pg ∼ N ([1, 1], I2),
so that the generated samples cover the mode centered at (1, 1). Please refer to the third subfigure of fig. 2
for the plot of ∇d∗

ω(x)/d∗
ω(x). This time, the discriminator values are unevenly distributed near the four

modes: the lowest for the mode covered by generated samples, and the highest for the mode furthest away
from the generated samples. Moreover, the intensity of attraction, as indicated by vector lengths, peaks near
the mode unoccupied by generated samples but diminishes near the crowded one. The intuition is that once
a particle come into proximity to the unoccupied mode, it will be forcefully drawn towards it.2

3.2 Model 2: The Modes are Far Apart

In this subsection, we study the case where the modes are far apart. From a global perspective, real-world
datasets often exhibit such a structure, particularly those with multiple categories. As an illustration, the
modes of dogs and trucks in CIFAR-10 (Krizhevsky et al., 2009) are far apart because of the significant
differences in their appearances (please refer to appendix E for a visualization of how far they are).

We demonstrate the difficulty for the generator to capture all the modes in such a case. Assume that

pdata ∼ 1
4N ([3, 3], 0.1I2) + 1

4N ([3, −3], 0.1I2) + 1
4N ([−3, 3], 0.1I2) + 1

4N ([−3, −3], 0.1I2)

2 Please refer to appendix D for the corresponding theoretical results.

5

Under review as submission to TMLR

2 1 0 1 2
x

2.0
1.5
1.0
0.5
0.0
0.5
1.0
1.5
2.0

y

0.00

0.15

0.30

0.45

0.60

0.75

0.90

1.05

2 1 0 1 2
x

2.0
1.5
1.0
0.5
0.0
0.5
1.0
1.5
2.0

y

0.00

0.15

0.30

0.45

0.60

0.75

0.90

2 1 0 1 2
x

2.0
1.5
1.0
0.5
0.0
0.5
1.0
1.5
2.0

y

0.00

0.15

0.30

0.45

0.60

0.75

0.90

1.05

4 2 0 2 4
x

4

2

0

2

4

y

0.00

0.15

0.30

0.45

0.60

0.75

0.90

1.05

Figure 2: The vector field ∇d∗
ω(x)/d∗

ω(x) and the values of the discriminator in different models. First:
Model 1 at initialization. Second: Model 1 with generated samples covering all modes. Third: Model 1
with generated samples covering only one mode. Fourth: Model 2.

and pg ∼ N ([3, 3], 3I2). The plot of ∇d∗
ω(x)/d∗

ω(x) can be found in the last subfigure of section 3.2. We
notice a general weakening of attraction intensity near all modes, presenting challenges for particles to move
towards an unoccupied mode subject to the vector field.2 This situation could result in a “pre-refining” mode
collapse or nonconvergence, preventing GAN training from advancing to the refining phase. Such collapse
or nonconvergence might be attributed to detrimental network initialization or imbalanced training of the
generator and the discriminator. Given its infrequency in practice, we will not delve deeper into this topic.

4 The Second Phase of GAN Training — Refining

This section focuses on the refining phase of GAN training, where generated samples become more refined,
reducing the number of samples within the modes and alleviating the mode mixture. To measure the severity
of mode mixture, we introduce a tool called “steepness.” We demonstrate that in order to push pz towards
the multimodal distribution pdata, the generator function g must exhibit significant steepness. Using insights
from the velocity field of particle evolution, we derive the formula for the evolution of steepness throughout
the training process. All proofs related to this section can be found in appendix D.

4.1 Using Steepness to Measure the Severity of Mode Mixture

Recall that during the fitting phase, the generated samples progressively spread to cover the space that
envelopes most of the modes. By the end of this phase, many generated samples will fall within these modes,
resulting in severe mode mixture. According to the update rule for particles, a particle x located within the
modes will be pushed in the direction of ∇d∗

w(x)/d∗
w(x), which generally points towards the nearest mode.

There is a critical point between two adjacent modes where particles that start near this point are pulled
apart in opposite directions. As training progresses, there exist two points z1 and z2 that are close to each
other in the latent space, yet their corresponding images under the generator function gθ, namely gθ(z1)
and gθ(z2), can be far apart. When z1 and z2 are infinitesimally close, this behavior indicates that the
Jacobian of gθ has a large entry. See fig. 3 for an illustration. This motivates the concept of “steepness” in
definition 4.1, which generalizes the notion of a derivative in the one-dimensional case.

Definition 4.1. Let g : Rn → Rn be continuously differentiable. We define its steepness S(g) as the upper
bound of the max norm of its Jacobian, namely,

S(g) = sup
x∈Rn

∥Jg(x)∥max.

In the next two subsections, we will first derive the formula for the steepness of the optimal generator
function. Then, we will use insights from the particle dynamics to derive how steepness evolves during the
course of training. We will also give quantitative results on how steepness impacts the severity of mode
mixture.

6

Under review as submission to TMLR

Latent Space

Generator Function 𝒈𝒈𝜽𝜽

NoiseGenerated SampleReal Sample

Sample Space

𝒛𝒛𝟏𝟏 𝒛𝒛𝟐𝟐

𝒈𝒈𝜽𝜽(𝒛𝒛𝟏𝟏) 𝒈𝒈𝜽𝜽(𝒛𝒛𝟐𝟐)

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

15

10

5

0

5

10

15

g(
x)

(g) = 2
(g) = 5
(g) = 10
(g) = 100

g(x) = x
Optimal g *

15 10 5 0 5 10 15
x

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

De
ns

ity
 o

f g
#
p z

(g) = 2
(g) = 5
(g) = 10
(g) = 100
(0, 1)

1
2 (8, 1) + 1

2 (8, 1)

Figure 3: Left: Motivation of steepness. Generated samples (blue dots) are updated towards the modes
(orange clusters). At certain points, small changes in the latent space cause large changes in the sample
space, indicating large steepness of the generator function. Middle: Generator functions g with varying
steepness. Right: The density plot of pg = g#pz, with pdata = 0.5N (−8, 1) + 0.5N (8, 1) The shaded areas
represent the severity of mode mixture. Generator functions with higher steepness exhibit less severe mode
mixture. Quantitative results are detailed in section 4.3.

4.2 Steepness of Measure-Preserving Maps

In this subsection, we study the steepness of the optimal generator function g that satisfies g#pz = pdata.
Starting with the 1-dimensional case, we first give a full characterization of the measure-preserving maps.
Let Φ(x) denotes the cumulative distribution function (CDF) of N (0, 1) and let Ψ(x) be that of pdata(x).
Then g = Ψ−1 ◦h◦Φ, where h is a measure-preserving map of U(0, 1), i.e., the uniform distribution on (0, 1).
Among the many measure-preserving maps with different h’s, special attention is given to where h equals
the identity map. In this instance, the corresponding g is the optimal transport from pz to pdata under the
Wasserstein distance with strictly convex cost functions (Santambrogio, 2015), which includes the popular
2-Wasserstein distance as a special case. Please refer to appendix J for visualization of g’s with different pdata.
Theorem 4.1. Assume that

pdata ∼ 1
N

N (µ1, σ2) + 1
N

N (µ2, σ2) + · · · + 1
N

N (µN , σ2),

Here the µi’s are in ascending order, and µi+1 − µi ≥ 6σ for all 1 ≤ i ≤ N − 1. Let Φ(x) denotes the
cumulative distribution function (CDF) of N (0, 1) and let Ψ(x) be that of pdata(x). Then g(x) := Ψ−1(Φ(x))
satisfies

S(g) ≥ min
1≤i≤N−1

σ · exp
((µi+1 − µi)2

8σ2

)
· exp(−q2),

where q is the (1 − 1/N)-th quantile of the standard Gaussian distribution.

We conclude that the magnitude of S(g) depends on the distance between two adjacent modes in 1-
dimensional cases. This property can be generalized to higher dimensions, as articulated in theorem 4.2.
This theorem provides an explicit lower bound of the steepness, which exhibits an exponential dependence
on both the Euclidean distance ∥x̄−xi∥2 and the reciprocal of the bandwidth 1/h. When the modes xi’s are
considerably distant from each other or when the bandwidth h diminishes, the steepness S(g) will be large.
Theorem 4.2. Let ν be the truncated Gaussian distribution Nr(0, In) in the n-dimensional ball Br(0) and
assume that µ̂ is a probability measure with probability density function

f̂(x) = 1
Nh

N∑
i=1

(√
1/π

)n

exp
(

−∥x − xi∥2
2

h2

)
.

Suppose that g : Br(0) → Rn is continuously differentiable and piecewise injective. Then S(g) > M , where

M = δ · h1/n ·
√

π

n
· max

1≤i≤N
exp

(
∥x̄ − xi∥2

2
nh2

)
.

Here, x̄ =
∑N

i=1 xi/n, and δ = exp
(
−r2/2

)
/
√

2π.

7

Under review as submission to TMLR

4.3 Evolution of the Generator’s Steepness

We use insights from the particle dynamics to derive how steepness evolves during the course of training.
Theorem 4.3 gives the recurrent formula in the setting where the optimal generator has a sufficiently large
steepness k∗. The proof involves examining the trajectory of a designated particle throughout the training
process, with detailed verification deferred to appendix D.
Theorem 4.3. Assume that pdata ∼ N (0, k2

∗In) and that the discriminator is optimal, i.e., the discriminator
consistently provides the precise moving direction for the particle. 1 Then kt, the steepness of g at discrete
time step t satisfies

kt+1 = kt + s

(
1
k2

t

− 1
k2

∗

)
· 1

1 + ktφ(ktx0/k∗)
k∗φ(x0)

,

where 0 ≤ t ≤ T , and T is the maximum time. Here, φ is the probability density function of N (0, In).

We present quantitative results demonstrating how the steepness of generator functions affects the severity
of mode mixture, as detailed in theorem 4.4. For an illustration, please refer to fig. 3, where we consider the
case of N = 2 with µ1 = −µ2 = −8. In this figure, the shaded areas indicate the severity of mode mixture.
Our observations reveal that generator functions with greater steepness lead to a reduction in the severity
of mode mixture, which aligns with the findings in theorem 4.4.
Theorem 4.4. Assume that pdata ∼

∑N
i=1 N (µi, σ2)/N . Here, the µi’s are in ascending order, with the

condition that µi − µi−1 ≥ 6σ for all 1 ≤ i ≤ N − 1. Furthermore, assume that the generator function g is
increasing and satisfies S(g) ≤ k. Additionally, assume that

g−1
(

µi + µi+1

2

)
= Φ−1

(
Ψ

(
µi + µi+1

2

))
,

where Φ(x) denotes the cumulative distribution function (CDF) of the standard normal distribution N (0, 1),
and Ψ(x) is the CDF of the distribution pdata(x). Then, the probability that the generated samples fall into
the interval

N⋃
i=1

[µi + 3σ, µi+1 − 3σ],

which indicates mode mixture, is at least

N∑
i=1

(
Φ

(
Φ−1

(
Ψ

(
µi + µi+1

2

))
+ µi+1 − µi − 3σ

2k

)
− Φ

(
Φ−1

(
Ψ

(
µi + µi+1

2

))
− µi+1 − µi − 3σ

2k

))
.

5 The Third Phase of GAN Training — Collapsing

This section focuses on the third phase of GAN training: collapsing. Rather than improving, the gener-
ated samples would eventually collapse to a limited number of modes. We start by offering an empirical
understanding of this phenomenon in section 5.1. Following that, we introduce a metric that can detect the
phase transition from refining to collapsing in section 5.2. Notably, such a metric completely originates from
the velocity field of particle evolution. After theoretically deriving such a metric, we propose a novel early
stopping algorithm that can judiciously halt GAN training when it nears or reaches the brink of collapse,
preventing further deterioration in sample quality in section 5.3.

5.1 What Is the Reason for GANs’ Collapsing?

We empirically demonstrate that collapsing stems from the “overfitting” of the discriminator. Overfitting
generally describes the situation where a machine learning model makes precise predictions for the training
data but fails to do so for unseen data. We employ this idea to denote the discriminator’s propensity to give
very high values to real samples and exceedingly low values to other samples. Please refer to appendix G

8

Under review as submission to TMLR

for a visualization of the optimal discriminator’s such behavior. To see the connection, we focus on the way
particles are updated in algorithm 1:

Ẑ = Z + s · ∇d(Z)
2d(Z) .

Here, d represents the discriminator function (omitting the subscript ω for brevity), Z is a particle before
update, and Ẑ is the same particle after update. If the discriminator “overfits”, there will be a large disparity
between its value within the modes and outside of the modes. Consequently, the norm of the gradient ∥∇d∥2
will reach its peak at the boundaries of the modes. This will displace Ẑ significantly from Z if Z is close to
the boundary. The boundaries of the modes will therefore shrink, and this process will persist until all the
particles have dispersed. Please refer to fig. 4 for an illustration and experimental observations.

Figure 4: A depiction of why collapsing happens. Left: An illustration. Right: Experimental observations
on the 3-dimensional Gaussian mixture dataset. In the illustration, the original particles (orange rhombi)
near the boundary of the mode (solid gray circle / sphere) will be pushed to a significant distance (orange-red
pentagons). The particles within the mode (green rhombi) will stay close to their original places (dark green
pentagons). This contracts the boundary of the mode (gray dotted line).

5.2 Detecting the Phase Transition From Refining to Collapsing

In this section, we give a priori estimation of ∥∇d(x)/d(x)∥2 in the collapsing phase. Since collapsing
manifests at the end of refining, it is important to analyze the discriminator’s behavior when generated and
real samples are close. Unlike the optimal discriminator in Vanilla GAN that assigns a uniform value of
0.5 to both real and generated samples when fully trained, the optimal discriminator in NSGAN assigns
values near 0.5 to the central regions of modes and values near 0 to regions with scarce real samples. Amidst
them, the values gradually diminish from 0.5 to 0. Please refer to appendix G for a visualization of the
optimal discriminator’s such behavior. This observation leads to a linear model of the discriminator in
assumption 5.1. The rationale behind selecting the radius as 2

√
2h is given in appendix H.

Assumption 5.1. Let the probability density function of the real distribution be

pdata(x) = 1
Nh

N∑
i=1

(√
1/π

)n

exp
(

−∥x − xi∥2
2

h2

)
,

where we require min1≤i,j≤N ∥xi − xj∥2 ≥ 2
√

2h. We assume that at the end of the refining phase where
generated samples closely resemble real samples, the discriminator d(x) is of the form

d(x) =
{

1
2 −

√
2

8h ∥x − xi∥2, x ∈ B2
√

2h(xi),
0, otherwise.

Now, we estimate ∥∇d(x)/d(x)∥2 based on assumption 5.1. Considering that collapsing typically takes place
near the boundaries of the modes (refer to section 5.1), we calculate ∥∇d(x)/d(x)∥2 at x̃ that locates

√
2h

away from x. This choice originates from the fact that for Gaussian distributions, 95 percent of the samples
fall within a sphere with a radius of two standard deviations from the mean. Through direct computation,
we derive that ∥∇d(x̃)/d(x̃)∥2 =

√
2/(2h). Note that this value solely relies on the bandwidth h and remains

unaffected by the dimension of the dataset.

9

Under review as submission to TMLR

Algorithm 2 Early Stopping of GANs
Require: A GAN model including a generator gθ and a discriminator dω, the estimated bandwidth h > 0,

the scale factor ks > 0, the number of modes m ≥ 1, the number of warm-up training iterations Nw

1: for number of training iterations do
2: Train the discriminator dω as in algorithm 1.
3: Compute the (1 − 1/m) quantile of ∥∇dω/dω∥2 in a batch. Let the value be q.
4: if q > ks ·

√
2/(2h), current iteration > Nw then

5: break
6: end if
7: Train the generator gθ as in algorithm 1.
8: end for

5.3 Early Stopping

We have theoretically derived ∥∇d(x)/d(x)∥2 in the collapsing phase. In this section, we propose a novel
algorithm called “early stopping” that can halt GAN training at an early time when it nears or reaches
the brink of collapse, preventing further deterioration in sample quality. The pseudocode is presented in
algorithm 2.

There are three key ingredients: ks, m and Nw. The scale factor ks will be multiplied by
√

2/(2h) to establish
a threshold. Training is terminated if the value of ∥∇dω/dω∥2 exceeds this threshold. Then the best-
performing model will be selected among the checkpoints saved before the stopping point. The scale factor
is set proportional to the distances between two adjacent modes in the dataset. The underlying rationale is
that when ∥∇dω/dω∥2 is small compared with the inter-mode distances, generated samples that are deviated
from the modes can be re-attracted to the modes, causing no collapsing. Nevertheless, as ∥∇dω/dω∥2 grows
to be comparable to the inter-mode distances, it is increasingly likely for the generated samples to gravitate
towards alternate modes, posing a potential risk of mode collapse. The parameter m denotes the number
of modes and serves as a criterion for determining the proportion of samples within a batch that will be
compared against the aforementioned threshold. Specifically, we opt to evaluate samples corresponding to
the (1 − 1/m)th quantile. Underlying this choice is the presumption that once a particular mode initiates
collapsing, it signifies the commencement of the GAN training transitioning into the collapsing phase. The
number of warm-up training iterations Nw is user-defined. It indicates how many training iterations GANs
would undergo before transitioning into the second phase. This provision serves as a safeguard against
premature cessation of training because during the fitting phase, ∥∇dω/dω∥2 may exceed the threshold as
well.

6 Experiments

In this section, we present the experimental results. All the codes are available in the supplementary material.

6.1 Verifying Fitting and Refining

We demonstrate the existence of fitting and refining in real-world datasets. Our experiments focus on MNIST
and Fashion MNIST because of the clarity of their modes. Detailed results as well as results for Fashion
MNIST are deferred to appendix G. The experimental settings and rationale can be found in appendix F.

Methodology. We train NSGAN on MNIST and use a classification network q(x) to analyze the generated
images. Here, x is an image tensor, and q(x) outputs a 10-dimensional vector (p0, p1, . . . , p9), where pi ∈ [0, 1]
represents the likelihood of x corresponding to the handwritten digit i. We count the pairs (i, j) within a
batch where both pi and pj exceed 10−2, and visualize the occurrences using heatmaps in fig. 5. We infer
that such x exhibits a mixture of modes i and j by pairing (i, j).

Results. Initially, only few entries in the heatmap are nonzero, meaning that the generated images all look
similar. As training progresses, more entries become nonzero, reflecting the fitting phase where the generated

10

Under review as submission to TMLR

samples spread to cover the space that envelopes the modes. The off-diagnoal entries serve as indicators of
mode mixture. We observe that they decrease in magnitude as training advances, validating the refining
phase. However, the issue of mode mixture persists even at the closure of refining. These observations are
in line with what we have derived in section 3 and section 4.

0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

0
0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

1
0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

2
0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

4
0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

8
0 2 4 6 8

0

2

4

6

8

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Figure 5: The logarithm of the occurrence of pairings (i, j) plus 1 in a batch of size 256. Epochs from left
to right: 0, 1, 2, 4, 8. At first, there are few nonzero entries. As training continues, more entries become
nonzero, indicating the spread of generated samples across mode space, i.e., the fitting phase. Off-diagonal
entries signal mode mixture, decreasing over training and validating the refining phase. However, mode
mixture persists even after refining. The annotated heatmaps can be found in appendix G.

6.2 Early Stopping

We present the results of early stopping (algorithm 2) applied to both synthetic and real datasets, including 3-
dimensional Gaussian mixture, MNIST, Fashion MNIST and CIFAR-10. The detailed experimental settings
are provided in appendix F and the results of more training runs can be found in appendix G.

Early stopping. We train NSGAN on different datasets and record down ||∇dω/dω||2 each epoch until
the maximum specified epochs. The threshold in early stopping is determined by ks ·

√
2/(2h), where ks

equals the estimated distance between two modes and h equals the estimated bandwidth. Instead of halting
training when this norm exceeds the threshold, we opt to continue training, which allows us to assess the
sample quality both before and after the stop. The experimental results for the 3-dimensional Gaussian
mixture, MNIST, Fashion MNIST, and CIFAR-10 are shown in fig. 7.

Comparison with FID Score and Duality Gaps. In evaluating GAN performance, metrics are typically
either domain-specific or domain-agnostic. We chose the FID score (Heusel et al., 2017) to represent the
former, which focus on the quality of generated images, and duality gaps (Grnarova et al., 2019; Sidheekh
et al., 2021) as a representative of the latter, which assess the optimization process itself. In fig. 8, we show
that our intrinsic metric aligns with the FID score by detecting surges signaling mode collapse, effectively
guiding training termination and reducing the need for checkpoints. Moreover, in appendix G we demonstrate
that our metric not only aligns with duality gaps but is also more sensitive in detecting mode collapse.

Validating the early stopping metric. We validate the effectiveness of our early stopping metric by
demonstrating that, upon applying the technique of injecting noise into the intermediate layers of the dis-
criminator to combat mode collapse, the metric is pushed back. The results can be found in fig. 6.

1004 101 102 10314 101 102 103 10424 101 102 10334 10 1 100 101 10244 101 102 103 10454

Figure 6: Histograms of the values of ∥∇dω/dω∥2 and their 90th percentile across epochs. Red for the
model with noise and blue for the model without noise. The noise-free GAN collapses at the 54th epoch.
Preceding the 54th, the noised model nearly always exhibits lower ∥∇dω/dω∥2 values compared to its noise-
free counterpart. Post 54th epoch, this relationship reverses. Notably, in the noise-free model, ∥∇dω/dω∥2
tends towards zero, contributing to this observed divergence. See appendix G for additional results.

11

Under review as submission to TMLR

0 25 50 75 100 125 150 175 200
Epochs

0

5

10

15

20

25
||

d
/d

|| 2

Epoch: 77

|| d /d ||2 = 8.9
87.5% of || d /d ||2

0 20 40 60 80 100
Epochs

0

500

1000

1500

2000

2500

3000

3500

4000

||
d

/d
|| 2

Epoch: 51

|| d /d ||2 = 1877
90% of || d /d ||2

0 20 40 60 80 100 120
Epochs

0

1000

2000

3000

4000

5000

||
d

/d
|| 2 Epoch: 82

|| d /d ||2 = 2679
90% of || d /d ||2

0 20 40 60 80 100 120
Epochs

0

1000

2000

3000

4000

5000

6000

||
d

/d
|| 2

Epoch: 84

|| d /d ||2 = 4391
90% of || d /d ||2

Figure 7: Experimental results of early stopping. The figures in each column, from left to right, represent the
results from the following datasets: Gaussian mixture, MNIST, Fashion MNIST, and CIFAR-10, respectively.
The images framed in red are the most realistic ones within the presented ones. Gaussian mixture: The
generated samples consistently demonstrate high quality after the fitting phase. As training approaches the
stopping point, a discernible deviation in sample quality is observed. Eventually, the samples collapse to half
of the modes. MNIST: Prior to the stopping point, the generated samples exhibit high quality and variety.
After the stopping point, they are first contaminated by noise. And then collapse to a specific mode. Fashion
MNIST: Before the stopping point, the generated images demonstrate both clarity and diversity. After the
stopping point, they first become noise, and then collapse to some of the modes. CIFAR-10: Before the
stopping point, the generated samples were crisp and varied. After the stopping point, they collapse and
transition between different modes. The results of more training runs can be found in appendix G

0 20 40 60 80 100
Epochs

0

500

1000

1500

2000

2500

3000

||
d

/d
|| 2

Epoch: 25

100

200

300

400

500

FI
D

Sc
or

e

90% Percentile of || d /d ||2
|| d /d ||2=1877

0 20 40 60 80 100 120
Epochs

0

1000

2000

3000

4000

5000

||
d

/d
|| 2 Epoch: 73

100

200

300

400

500

600

FI
D

Sc
or

e

90% Percentile of || d /d ||2
|| d /d ||2=2679

0 20 40 60 80 100 120
Epochs

0

1000

2000

3000

4000

5000

6000

||
d

/d
|| 2

Epoch: 69

200

250

300

350

400

450

500

FI
D

Sc
or

e

90% Percentile of || d /d ||2
|| d /d ||2=4391

Figure 8: The tendency of ∥∇dω/dω∥2 and the FID scores on MNIST, Fashion MNIST and CIFAR-10, from
left to right. Red circled for the FID scores and blue for our metric. A consistent pattern is observed:
Whenever our metric surges past the threshold, the FID scores nearly concurrently escalate to high values,
signifying a notable deterioration in sample quality. Please refer to appendix G for additional results.

7 Conclusion

This study presents a tripartite framework for GAN training, encompassing the phases of fitting, refining,
and collapsing. Through rigorous mathematical formulations and corroborative numerical experiments, we
highlight the characteristics of each phase. Our comprehensive examination unveils the intricate dynamics
associated with the challenges of mode collapse and mode mixture. Moreover, to enhance the efficiency
and robustness of GAN training, we introduced a novel early stopping algorithm that is intrinsic to GAN
training and does not rely on extrinsic metrics like the FID score. In the future, we plan to enhance our
early stopping algorithm for multi-modal datasets and various GAN variants. We also aim to extend its
applicability to other generative models. For additional discussions, please refer to appendix K.

12

Under review as submission to TMLR

References
Dongsheng An, Yang Guo, Na Lei, Zhongxuan Luo, Shing-Tung Yau, and Xianfeng Gu. AE–OT: A new

generative model based on extended semi-discrete optimal transport. In International Conference on
Learning Representations, 2020.

Martin Arjovsky, Soumith Chintala, and L’eon Bottou. Wasserstein generative adversarial networks. In
International Conference on Machine Learning, pp. 214–223. PMLR, 2017.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Evan Becker, Parthe Pandit, Sundeep Rangan, and Alyson Fletcher. Instability and local minima in GAN
training with kernel discriminators. In Advances in Neural Information Processing Systems, volume 35,
2022.

Giulio Biroli, Tony Bonnaire, Valentin de Bortoli, and Marc M’ezard. Dynamical regimes of diffusion models.
arXiv preprint arXiv:2402.18491, 2024.

Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale GAN training for high fidelity natural image
synthesis. In International Conference on Learning Representations, 2019.

Ricky TQ Chen, Jens Behrmann, David K Duvenaud, and J"orn-Henrik Jacobsen. Residual flows for invert-
ible generative modeling. In Advances in Neural Information Processing Systems, volume 32, 2019.

Xi Chen, Diederik P. Kingma, Tim Salimans, Yan Duan, Prafulla Dhariwal, John Schulman, Ilya Sutskever,
and Pieter Abbeel. Variational lossy autoencoder. In International Conference on Learning Representa-
tions, 2017.

Rewon Child. Very deep VAEs generalize autoregressive models and can outperform them on images. In
International Conference on Learning Representations, 2021.

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real NVP. In International
Conference on Learning Representations, 2017.

Rick Durrett. Probability: Theory and Examples, volume 49. Cambridge University Press, 2019.

Jean-Yves Franceschi, Emmanuel De B’ezenac, Ibrahim Ayed, Micka"el Chen, Sylvain Lamprier, and Patrick
Gallinari. A neural tangent kernel perspective of GANs. In International Conference on Machine Learning,
pp. 6660–6704. PMLR, 2022.

Jean-Yves Franceschi, Mike Gartrell, Ludovic Dos Santos, Thibaut Issenhuth, Emmanuel de Bezenac, Mickael
Chen, and Alain Rakotomamonjy. Unifying GANs and score-based diffusion as generative particle models.
In Advances in Neural Information Processing Systems, volume 36, 2023.

Ruiqi Gao, Yang Song, Ben Poole, Ying Nian Wu, and Diederik P Kingma. Learning energy-based models
by diffusion recovery likelihood. In International Conference on Learning Representations, 2021.

Yuan Gao, Yuling Jiao, Yang Wang, Yao Wang, Can Yang, and Shunkang Zhang. Deep generative learning
via variational gradient flow. In International Conference on Machine Learning, pp. 2093–2101. PMLR,
2019.

Arnab Ghosh, Viveka Kulharia, Vinay P Namboodiri, Philip HS Torr, and Puneet K Dokania. Multi-agent
diverse generative adversarial networks. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 8513–8521, 2018.

Ian Goodfellow. NIPS 2016 tutorial: Generative adversarial networks. arXiv preprint arXiv:1701.00160,
2017.

13

Under review as submission to TMLR

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in Neural Information Processing
Systems, volume 27, 2014.

Will Grathwohl, Ricky T. Q. Chen, Jesse Bettencourt, and David Duvenaud. Scalable reversible generative
models with free-form continuous dynamics. In International Conference on Learning Representations,
2019.

Paulina Grnarova, Kfir Y Levy, Aurelien Lucchi, Nathanael Perraudin, Ian Goodfellow, Thomas Hofmann,
and Andreas Krause. A domain agnostic measure for monitoring and evaluating GANs. In Advances in
Neural Information Processing Systems, volume 32, 2019.

Xianfeng Gu, Na Lei, and Shing-Tung Yau. Optimal transport for generative models. In Handbook of
Mathematical Models and Algorithms in Computer Vision and Imaging: Mathematical Imaging and Vision,
pp. 1–48. Springer, 2021.

Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C Courville. Improved
training of Wasserstein GANs. In Advances in Neural Information Processing Systems, volume 30, 2017.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans
trained by a two time-scale update rule converge to a local nash equilibrium. Advances in Neural Infor-
mation Processing Systems, 30, 2017.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In Advances in Neural
Information Processing Systems, volume 33, 2020.

Yu-Jui Huang and Yuchong Zhang. GANs as gradient flows that converge. Journal of Machine Learning
Research, 24(217):1–40, 2023.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. In International Conference on Machine Learning, pp. 448–456. PMLR, 2015.

Rie Johnson and Tong Zhang. A framework of composite functional gradient methods for generative adver-
sarial models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43(1):17–32, 2019.

Tero Karras, Miika Aittala, Janne Hellsten, Samuli Laine, Jaakko Lehtinen, and Timo Aila. Training
generative adversarial networks with limited data. In Advances in Neural Information Processing Systems,
volume 33, 2020.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-based
generative models. Advances in Neural Information Processing Systems, 35, 2022.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. In International Conference on
Learning Representations, 2014.

Durk P Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible 1imes1 convolutions. In
Advances in Neural Information Processing Systems, volume 31, 2018.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. Master’s
thesis, Department of Computer Science, University of Toronto, 2009.

Anders Boesen Lindbo Larsen, Søren Kaae Sønderby, Hugo Larochelle, and Ole Winther. Autoencoding
beyond pixels using a learned similarity metric. In International Conference on Machine Learning, pp.
1558–1566. PMLR, 2016.

Yann LeCun, L’eon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to docu-
ment recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Na Lei, Yang Guo, Dongsheng An, Xin Qi, Zhongxuan Luo, Shing-Tung Yau, and Xianfeng Gu. Mode
collapse and regularity of optimal transportation maps. arXiv preprint arXiv:1902.02934, 2019.

14

Under review as submission to TMLR

Chun-Liang Li, Wei-Cheng Chang, Yu Cheng, Yiming Yang, and Barnab’as P’oczos. MMD GAN: To-
wards deeper understanding of moment matching network. In Advances in Neural Information Processing
Systems, volume 30, 2017.

Marvin Li and Sitan Chen. Critical windows: Non-asymptotic theory for feature emergence in diffusion
models. arXiv preprint arXiv:2403.01633, 2024.

Zinan Lin, Ashish Khetan, Giulia Fanti, and Sewoong Oh. Pacgan: The power of two samples in generative
adversarial networks. In Advances in Neural Information Processing Systems, volume 31, 2018.

Xudong Mao, Qing Li, Haoran Xie, Raymond YK Lau, Zhen Wang, and Stephen Paul Smolley. Least squares
generative adversarial networks. In Proceedings of the IEEE International Conference on Computer Vision,
pp. 2794–2802, 2017.

Leland McInnes, John Healy, and James Melville. UMAP: Uniform manifold approximation and projection
for dimension reduction. arXiv preprint arXiv:1802.03426, 2018.

Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization for gener-
ative adversarial networks. In International Conference on Learning Representations, 2018.

Tu Nguyen, Trung Le, Hung Vu, and Dinh Phung. Dual discriminator generative adversarial nets. In
Advances in Neural Information Processing Systems, volume 30, 2017.

Albert No, TaeHo Yoon, Kwon Sehyun, and Ernest K Ryu. WGAN with an infinitely wide generator has
no spurious stationary points. In International Conference on Machine Learning, pp. 8205–8215. PMLR,
2021.

Sebastian Nowozin, Botond Cseke, and Ryota Tomioka. f-GAN: Training generative neural samplers using
variational divergence minimization. In Advances in Neural Information Processing Systems, volume 29,
2016.

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep convolu-
tional generative adversarial networks. In International Conference on Learning Representations, 2016.

Ali Razavi, Aaron Van den Oord, and Oriol Vinyals. Generating diverse high-fidelity images with VQ-VAE-2.
In Advances in Neural Information Processing Systems, volume 32, 2019.

Filippo Santambrogio. Optimal transport for applied mathematicians. Birk"auser, NY, 55(58–63):94, 2015.

Antonio Sclocchi, Alessandro Favero, and Matthieu Wyart. A phase transition in diffusion models reveals
the hierarchical nature of data. arXiv preprint arXiv:2402.16991, 2024.

Sahil Sidheekh, Aroof Aimen, Vineet Madan, and Narayanan C Krishnan. On duality gap as a measure for
monitoring GAN training. In International Joint Conference on Neural Networks, 2021.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben Poole.
Score-based generative modeling through stochastic differential equations. In International Conference on
Learning Representations, 2021.

Ruoyu Sun, Tiantian Fang, and Alexander Schwing. Towards a better global loss landscape of GANs. In
Advances in Neural Information Processing Systems, volume 33, 2020.

Ugo Tanielian, Thibaut Issenhuth, Elvis Dohmatob, and Jeremie Mary. Learning disconnected manifolds:
A no GAN’s land. In International Conference on Machine Learning, pp. 9418–9427. PMLR, 2020.

Aaron Van den Oord, Nal Kalchbrenner, Lasse Espeholt, Oriol Vinyals, Alex Graves, et al. Conditional image
generation with PixelCNN decoders. In Advances in Neural Information Processing Systems, volume 29,
2016.

A"aron Van Den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. Pixel recurrent neural networks. In
International Conference on Machine Learning, pp. 1747–1756. PMLR, 2016.

15

Under review as submission to TMLR

Jianwen Xie, Yang Lu, Ruiqi Gao, Song-Chun Zhu, and Ying Nian Wu. Cooperative training of descriptor
and generator networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42(1):27–45,
2018.

Yunfei Yang, Zhen Li, and Yang Wang. On the capacity of deep generative networks for approximating
distributions. Neural Networks, 145:144–154, 2022.

Mingxuan Yi, Zhanxing Zhu, and Song Liu. MonoFlow: Rethinking divergence GANs via the perspective of
Wasserstein gradient flows. In International Conference on Machine Learning, pp. 39984–40000. PMLR,
2023.

A Additional Literature Review

In this section, we provide more detailed literature review.

Generative models. Learning the generative model based on large amounts of data is a fundamental task
in machine learning and statistics. Popular techniques include Variational Autoencoders (Kingma & Welling,
2014; Chen et al., 2017; Razavi et al., 2019; Child, 2021), Generative Adversarial Networks (Goodfellow et al.,
2014; Radford et al., 2016; Arjovsky et al., 2017; Gulrajani et al., 2017; Nguyen et al., 2017; Ghosh et al.,
2018; Lin et al., 2018; Brock et al., 2019; Karras et al., 2020), flow-based generative models (Dinh et al.,
2017; Kingma & Dhariwal, 2018; Chen et al., 2019; Grathwohl et al., 2019), autoregressive models (Van den
Oord et al., 2016; Van Den Oord et al., 2016), energy-based models (Xie et al., 2018; Gao et al., 2021) and
diffusion models (Ho et al., 2020; Song et al., 2021; Karras et al., 2022). Among these models, GANs’ ability
for rapid sampling, unsupervised feature learning and broad applicability makes them the primary focus of
this study.

Practical considerations of GANs. In the realm of GAN, mode collapse (Goodfellow, 2017) is one of
the major challenges which has received a lot of attention. It refers to the situation where the generator
produces samples on only a few modes instead of the entire data distribution. The issue of mode collapse has
been addressed mainly from three perspectives: modifying the network architecture, designing new objective
functions and using normalization techniques. Regarding the network architecture, existing approaches
involve increasing the number of generator (Ghosh et al., 2018) or discriminator (Nguyen et al., 2017),
using joint architectures (Larsen et al., 2016). From the objective function side, various metrics such as the
Wasserstein distance (Arjovsky et al., 2017), f -divergence (Nowozin et al., 2016), least squares distance (Mao
et al., 2017), maximum mean discrepancy (Li et al., 2017) are employed. Normalization techniques such as
batch normalization (Ioffe & Szegedy, 2015), layer normalization (Ba et al., 2016) and spectral normalization
(Miyato et al., 2018) have also achieved superb empirical performance. Mode mixture (Lei et al., 2019) is
another troublesome phenomenon in which the generated samples fall outside the real distribution and are
thus unrealistic. Existing approaches include picking generated samples using a rejection sampling method
(Tanielian et al., 2020), or generating samples with discontinuous optimal transport rather than deep neural
networks (Lei et al., 2019; An et al., 2020; Gu et al., 2021).

Theoretical frameworks of GANs. Another line of research approaches mode collapse and mode mixture
by establishing theoretical frameworks for better analyzing and optimizing GAN training. These researches
fall into two categories: landscape analysis and dynamic analysis. Landscape analysis is static because
it simply examines the results of GAN training; it ignores the interaction between the discriminator and
generator during training. For instance, Sun et al. (2020) analyzed the landscape of a family of GANs called
separable-GAN. They proved that the landscape of separable-GAN has exponentially many bad basins,
all of which are deemed as mode-collapse. In contrast, No et al. (2021) demonstrated that Wasserstein
GAN with an infinitely broad generator has no spurious stationary points by modeling both the generator
and the discriminator using random feature theory. Lei et al. (2019) used results from optimal transport
theory to account for mode mixture. Dynamic analysis, on the other hand, considers how the discriminator
and generator interact. Franceschi et al. (2022) considered GANs from the perspective of Neural Tangent
Kernel (NTK). Becker et al. (2022) suggested the “Isolated Points Model” to explain the causes of GANs’
instability. Another dynamical way of modeling GANs is to regard it as a particle model (Huang & Zhang,

16

Under review as submission to TMLR

2023; Franceschi et al., 2023). This kind of modeling is used in conjunction with Fokker–Planck equation
theories by Huang and Zhang to demonstrate the convergence of GANs to the global stationary point (Huang
& Zhang, 2023).

Relation of GANs and particle models. There has been an emerging trend in recent years to conceptu-
alize GANs as particle models. We present the interpretation of NSGAN as a particle model in algorithm 1.
Huang & Zhang (2023) examined a similar interpretation of vanilla GAN, but did not specifically discuss
NSGAN. Gao et al. (2019) used a variational gradient flow approach to analyse GANs, without placing much
emphasis on the connection to particle models. Franceschi et al. (2023) unified GANs within the context of
particle models and interpret GANs as “interactive particle models”.

Phased process in diffusion models. Recently, analogous phase transition phenomena, akin to those
elucidated in our paper, have been uncovered in diffusion models. For example, Biroli et al. (2024) showed
that the generative process in diffusion models undergoes a “speciation” transition, revealing data structure
from noise, followed by a “collapse” transition, converging dynamics to memorized data points, akin to
condensation in a glass phase. Sclocchi et al. (2024) found that the backward diffusion process acting after
a time t is governed by a phase transition at some threshold time, where the probability of reconstructing
high-level features suddenly drops and the reconstruction of low-level features evolves smoothly across the
whole diffusion process. Li & Chen (2024) studied properties of critical windows that are are narrow time
intervals in sampling during which particular features of the final image emerge.

B Choice of Latent Dimension

In this section, we provide the rationale behind our choice of the latent dimension in assumption 2.1. At the
population level, Yi et al. (2023) demonstrated that NSGAN minimizes the f -divergence Df (pdata∥pg) with

f(u) = −(u + 1) log u

u + 1 + u(1 − 2 log 2) − 1.

Let µ and ν be mutually singular measures on Rn, Yang et al. (2022) proved that

Df (µ∥ν) = f(0) + f∗(0) > 0,

where f∗ stands for the Fenchel conjugate of f . If the latent dimension is less than n, then gθ#pz is
supported on a low-dimensional manifold, so that gθ#pz and ν will be mutually singular. Thus there is
always a positive gap in f -divergence between gθ#pz and ν. In other words, gθ#pz cannot approximate ν
well even if the GAN model has been trained perfectly. To prevent such inherent misalignment, we assume
that the latent dimension always equals n. Combined with the continuous data augmentation of real-world
datasets, we assume that the noise prior pz(z) is an n-dimensional standard Gaussian distribution, denoted
as N (0, In), where n is the dimension of real samples.

C Analyses of a Class of Suboptimal Discriminators

C.1 The Class of Suboptimal Discriminators

In this section, we consider a class of suboptimal discriminators that can be represented as

d̂ω(x) = pdata(x)
pdata(x) + f(r(x)) · pg(x) ,

where r(x) = pdata(x)/pg(x) is the density ratio and f is a scalar function. When f ≡ 1, the discriminator is
optimal, as established by (Goodfellow et al., 2014). This representation arises from the training procedure
of the discriminator, which effectively trains a binary classifier. This process is equivalent to using gradient
descent to estimate r(x). The function f(r(x)) reflects the error between the true value and the estimated
value because

d̂ω(x) = 1
1 + f(r(x))

(
pdata(x)/pg(x)

)−1 = 1
1 +

(
r(x)/f(r(x))

)−1 .

17

Under review as submission to TMLR

In this context, the role of f(r(x)) becomes clear — it measures the deviation of the suboptimal discriminator
from the optimal one. When f(r(x)) deviates from 1, it indicates that the discriminator is not perfectly
distinguishing between the real and generated data, thus introducing some bias or error into the estimation
process. Such a framework allows us to analyze and understand the behavior of suboptimal discriminators
and their impact on the overall performance of the generative adversarial network.

C.2 The Influence of the Suboptimal Discriminator to the Vector Field

In this subsection, we investigate the influence of the suboptimal discriminator on the vector field that
governs the movement of particles. This analysis complements the discussion in section 3.
Proposition C.1. Assume that f ∈ C2(0, +∞). Then, at a point x where pdata(x)pg(x) > 0, the cosine
of the angle θ between the suboptimal vector ∇d̂ω(x)/(2d̂ω(x)) and the optimal vector ∇d∗

ω(x)/(2d∗
ω(x)) is

given by

cos θ =
〈
∇d̂ω(x), ∇d∗

ω(x)
〉∥∥∇d̂ω(x)

∥∥
2

∥∥∇d∗
ω(x)

∥∥
2

= sign
(

f(r(x))
r(x) − f ′(r(x))

)
.

Consequently, there exists δ > 0 that depends on f such that whenever r(x) < δ, the two vectors are in the
same direction.

Proof. To calculate the angle between two vectors, we can ignore their scalar coefficients. Therefore, we only
need to determine the angle between ∇d̂ω(x) and ∇d∗

ω(x). Using the results derived in theorem D.2, this
calculation reduces to finding the angle between

−pdata(x)∇pg(x) + pg(x)∇pdata(x)

and
− pdata(x)∇

(
α(x) · pg(x)

)
+

(
α(x) · pg(x)

)
∇pdata(x)

= α(x)
(

− pdata(x)∇pg(x) + pg(x)∇pdata(x)
)

− pdata(x)pg(x)∇α(x),
where α(x) = f(r(x)). We use the same technique and divide both vectors by the scalar pdata(x)pg(x)α(x).
By applying the chain rule, we only need to compute the angle between

−∇ log pg(x) + ∇ log pdata(x) = ∇ log r(x)

and
∇ log r(x) − ∇ log α(x).

We proceed with the final calculations:

cos θ = ⟨∇ log r(x), ∇ log(r(x)/f(r(x)))⟩
∥∇ log r(x)∥2∥∇ log(r(x)/f(r(x)))∥2

.

For the numerator, we have ∇ log r(x) = ∇r(x)/r(x), and

∇ log f(r(x)) = f ′(r(x))
f(r(x)) · ∇r(x),

implying that ∇ log r(x) and ∇ log(r(x)/f(r(x))) are both parallel to ∇r(x). Therefore,

cos θ = sign
(

1
r(x) − f ′(r(x))

f(r(x))

)
= sign

(
f(r(x))

r(x) − f ′(r(x))
)

.

By the continuity of f ′′, there exists ε > 0 such that for x ∈ [0, ε), we have |f ′′(x)| < M . As a result, for x
such that r(x) < δ := min

(
ε,

√
2f(0)/M

)
, we have

cos θ = sign
(
f(r(x)) − r(x)f ′(r(x))

)
= sign

(
f(0) + r(x)2f ′′(ξ)/2

)
= 1

for some ξ ∈ (0, r(x)), where we use Taylor’s expansion with the Lagrange remainder.

18

Under review as submission to TMLR

We now briefly discuss the implications of proposition C.1. Firstly, this proposition considers f ≡ 1 as a
special case, in which cos θ = 1 for any choice of x. Secondly, although the proposition seems to hold only
for x where r(x) is small, this is sufficient for our purposes. In this subsection, we are focusing on the fitting
phase, where r(x) is typically small for x ∼ pg(x). Finally, it may seem counter-intuitive that the vector
field of the suboptimal discriminator aligns perfectly with that of the optimal discriminator. However, it is
important to note that while the directions of these two vector fields may be the same, their magnitudes can
differ. We choose not to delve further into this topic because the magnitudes can be adjusted by varying the
step sizes.

C.3 The Influence of the Suboptimal Discriminator to the Evolution of Steepness

In this subsection, we investigate the influence of the suboptimal discriminator on the evolution of steepness.
This analysis complements the discussion in section 4.
Proposition C.2. Assume that pdata ∼ N (0, k2

∗In) and that the discriminator is suboptimal and takes the
form

d̂ω(x) = pdata(x)
pdata(x) + f(r(x)) · pg(x) ,

where r(x) = pdata(x)/pg(x), and f is a function measuring the deviation of d̂ω(x) from the optimal dis-
criminator. Then kt, the steepness of g at discrete time step t satisfies

kt+1 = kt + s

(
1
k2

t

− 1
k2

∗

)
· f(r(ktx0)) − r(ktx0)f ′(r(ktx0))

r(ktx0) + f(r(ktx0)) ,

where 0 ≤ t ≤ T , and T is the maximum time. Here, φ is the probability density function of N (0, In) and

r(ktx0) = ktφ(ktx0/k∗)
k∗φ(x0) .

Proof. Let φ(x) be the probability density function of the n-dimensional standard Gaussian distribution

φ(x) = 1√
(2π)n

· exp
(

− 1
2x⊤x

)
.

Then the probability density function of N (0, k2In) is φ(x/k)/k. Let xt = ktx0 denotes the position of the
particle at time t. Here, kt represents the steepness of the generator function. We investigate the evolution
of the particle subject to the vector field given by ∇d̂ω(x)/d̂ω(x), which can be written in terms of r(x) as

xt+1 = xt + s ·
(
f(r(xt)) − r(xt)f ′(r(xt))

)
∇r(xt)

r(xt)
(
r(xt) + f(r(xt))

) , t = 1, 2, . . . , T.

By the formula of φ(x), we deduce that ∇φ(x) = −φ(x)x. Below we compute ∇r(x) by the chain rule:

∇r(x) = kt

k∗
· ∇φ(x/k∗) · φ(x/kt) − φ(x/k∗)∇φ(x/kt)

φ(x/kt)2

= kt

k∗
·
(

1
k2

t

− 1
k2

∗

)
· φ(x/k∗)

φ(x/kt)
· x.

Using xt = ktx0, we derive the following recurrent formula for {kt}T
t=0:

kt+1 = kt + s

(
1
k2

t

− 1
k2

∗

)
· f(r(ktx0)) − r(ktx0)f ′(r(ktx0))

r(ktx0) + f(r(ktx0)) ,

where
r(ktx0) = ktφ(ktx0/k∗)

k∗φ(x0) .

Note that this proposition considers f ≡ 1 as a special case, leading to the same conclusion as in theorem 4.3.

19

Under review as submission to TMLR

D Proofs to Theorems

Here, we aggregate all the theorems presented in the paper and furnish proofs for some of them.

D.1 Equivalence of NSGAN with Its Particle Model Interpretation

Theorem D.1. The update of gθ via applying the stop gradient operator to Ẑi and descending the gradient

∇θ
1
m

m∑
i=1

∥∥gθ(zi) − Ẑi

∥∥2
2

in algorithm 1 is equivalent to descending the gradient

−∇θ
1
m

m∑
i=1

log
(
dω(gθ(zi))

)
in the original formulation of NSGAN.

Proof. We prove by directly computing the gradient using the chain rule. In fact, we have

∇θ
1
m

m∑
i=1

∥∥gθ(zi) − Ẑi

∥∥2
2 = 2

m

m∑
i=1

∇θgθ(zi)⊤ ·
(
gθ(zi) − Ẑi

)
= − s

m

m∑
i=1

∇θgθ(zi)⊤ · ∇dω(Zi)
dω(Zi)

= −s∇θ
1
m

m∑
i=1

log
(
dω(gθ(zi))

)
.

Note that in the first equation, we implicitly use the fact that ∇θẐi = 0 due to the assumption that the stop
gradient operator is applied to Ẑi.

D.2 Properties of Particle Update Dynamics — The General Result

Theorem D.2. Assume that the discriminator is optimal, i.e., d∗
ω(x) = pdata(x)/(pdata(x) + pg(x)). De-

note r(x) = pdata(x)/pg(x). At a point x where r(x) ≈ 0, x is updated following approximately ∇ log
(
r(x)

)
.

Conversely, when r(x) ≫ 1, x is updated following approximately ∇
(

− 1/r(x)
)
.

Proof. In the following, we abbreviate d∗
ω(x) as d(x). We then rewrite ∇d(x)/d(x) in terms of r(x):

∇d(x)
d(x) = −pdata(x)∇pg(x) + pg(x)∇pdata(x)

(pdata(x) + pg(x))pdata(x)

= ∇
(

pdata(x)
pg(x)

)
· pg(x)2

pdata(x)(pdata(x) + pg(x))

= ∇r(x) · 1
r(x)(1 + r(x)) .

When r(x) ≈ 0, we have
1

r(x)(1 + r(x)) ≈ 1
r(x) .

As a result,
∇d(x)
d(x) ≈ ∇ log r(x).

20

Under review as submission to TMLR

When r(x) ≫ 1, we have
1

r(x)(1 + r(x)) ≈ 1
r(x)2 .

Consequently,
∇d(x)
d(x) ≈ ∇

(
− 1

r(x)

)
.

We hereby outline the implications of this theorem. The value of log
(
r(x)

)
changes dramatically as x

decreases from 1 to 0, leading to correspondingly large magnitudes of ∥∇ log
(
r(x)

)
∥2 when r(x) ≈ 0. This

indicates that in the regions where pg(x) significantly exceeds pdata(x), particles are propelled towards distant
points. Conversely, ∇

(
− 1/r(x)

)
changes more gradually with increasing x, resulting in smaller magnitudes

of ∥∇
(

− 1/r(x)
)
∥2 when r(x) ≫ 1. In such regions where pg(x) is lower than pdata(x), particles tend to

remain relatively stationary. These align with our observations in section 3.

D.3 Properties of Particle Update Dynamics — The Data-Dependent Results

Proposition D.1. Assume that

pdata ∼ 1
4N ([1, 1], 0.1I2) + 1

4N ([1, −1], 0.1I2) + 1
4N ([−1, 1], 0.1I2) + 1

4N ([−1, −1], 0.1I2)

and that pg ∼ N ([0, 0], 0.2I2). Let x = [x1, x2]. Then the vector field that governs particles’ update is given
by

∇r(x) · 1
r(x)(1 + r(x)) ,

where
r(x) = 1

2
∑

(a,b)∈{(±1,±1)}

exp
(
−2.5

(
(x1 − 2a)2 + (x2 − 2b)2)

+ 5a2 + 5b2)
and

∇r(x) = −5
2

∑
(a,b)∈{(±1,±1)}

exp
(
−2.5

(
(x1 − 2a)2 + (x2 − 2b)2)

+ 5a2 + 5b2) [
x1 − 2a
x2 − 2b

]
.

Proof. For each Gaussian distribution, the density function is

N (µ, Σ)(x) = 1
2π

√
det(Σ)

exp
(

− 1
2(x − µ)⊤Σ−1(x − µ)

)
.

Here, µ ∈ {[1, 1], [1, −1], [−1, 1], [−1, −1]}, and Σ = 0.1I2. Therefore,

N ([a, b], 0.1I2)(x) = 1
2π · 0.1 · exp

(
− 1

2 · 0.1
(
(x1 − a)2 + (x2 − b)2))

= 1
0.2π

· exp
(
−5

(
(x1 − a)2 + (x2 − b)2))

.

Thus,
pdata(x) = 1

0.8π

∑
(a,b)∈{(±1,±1)}

exp
(
−5

(
(x1 − a)2 + (x2 − b)2))

.

For pg(x) which is normally distributed with mean [0, 0] and covariance 0.2I2, we have

pg(x) = 1
0.4π

· exp
(
−2.5(x2

1 + x2
2)

)
.

21

Under review as submission to TMLR

Combining the above results, we have

r(x) = 1
2

∑
(a,b)∈{(±1,±1)}

exp
(
−2.5

(
(x1 − 2a)2 + (x2 − 2b)2)

+ 5a2 + 5b2)
.

Next, we compute ∇r(x):

∇r(x) = 1
2

∑
(a,b)∈{(±1,±1)}

∇ exp
(
−2.5

(
(x1 − 2a)2 + (x2 − 2b)2)

+ 5a2 + 5b2)
.

For each term exp
(
−2.5

(
(x1 − 2a)2 + (x2 − 2b)2)

+ 5a2 + 5b2)
, its gradient is:

∇ exp
(
−2.5

(
(x1 − 2a)2 + (x2 − 2b)2)

+ 5a2 + 5b2)
= − 5 exp

(
−2.5

(
(x1 − 2a)2 + (x2 − 2b)2)

+ 5a2 + 5b2) [
x1 − 2a
x2 − 2b

]
.

Thus,

∇r(x) = −5
2

∑
(a,b)∈{(±1,±1)}

exp
(
−2.5

(
(x1 − 2a)2 + (x2 − 2b)2)

+ 5a2 + 5b2) [
x1 − 2a
x2 − 2b

]
.

Putting the expressions of r(x) and ∇r(x) together, we will have

∇r(x) · 1
r(x)(1 + r(x)) .

When we take a closer look at the numerator ∇r(x), we observe that it is a weighted sum of the vectors
originating from x and pointing towards two times the centers of the four modes, which are (2, 2), (2, −2),
(−2, 2), and (−2, −2). Due to the exponential decay property of the exponential function, the influence of
these vectors diminishes rapidly with distance. Consequently, the vector field is predominantly influenced
by the mode in the same quadrant as x. Specifically, if we assume without loss of generality that x lies in
the first quadrant, the vector field will be approximately [2 − x1, 2 − x2]⊤, up to a scaling factor.

Proposition D.2. Assume that

pdata ∼ 1
4N ([1, 1], 0.1I2) + 1

4N ([1, −1], 0.1I2) + 1
4N ([−1, 1], 0.1I2) + 1

4N ([−1, −1], 0.1I2)

and that pg ∼ U
(
[−2, 2] × [−2, 2]

)
. Let x = [x1, x2]. Then the vector field that governs particles’ update is

given by

∇r(x) · 1
r(x)(1 + r(x)) ,

where
r(x) = 20

π

∑
(a,b)∈{(±1,±1)}

exp
(
−5

(
(x1 − a)2 + (x2 − b)2))

· 1x∈[−2,2]×[−2,2]

and
∇r(x) = −200

π

∑
(a,b)∈{(±1,±1)}

exp
(
−5

(
(x1 − a)2 + (x2 − b)2)) [

x1 − a
x2 − b

]
· 1x∈[−2,2]×[−2,2].

Proof. For each Gaussian distribution, the density function is

N (µ, Σ)(x) = 1
2π

√
det(Σ)

exp
(

− 1
2(x − µ)⊤Σ−1(x − µ)

)
.

22

Under review as submission to TMLR

Here, µ ∈ {[1, 1], [1, −1], [−1, 1], [−1, −1]}, and Σ = 0.1I2. Therefore,

N ([a, b], 0.1I2)(x) = 1
2π · 0.1 · exp

(
− 1

2 · 0.1
(
(x1 − a)2 + (x2 − b)2))

= 1
0.2π

· exp
(
−5

(
(x1 − a)2 + (x2 − b)2))

.

Thus,
pdata(x) = 1

0.8π

∑
(a,b)∈{(±1,±1)}

exp
(
−5

(
(x1 − a)2 + (x2 − b)2))

For pg(x) which is uniformly distributed, we have

pg(x) = 1
16 · 1x∈[−2,2]×[−2,2].

Combining the above results,

r(x) = 20
π

∑
(a,b)∈{(±1,±1)}

exp
(
−5

(
(x1 − a)2 + (x2 − b)2))

· 1x∈[−2,2]×[−2,2].

Now, we compute ∇r(x):

∇r(x) = 20
π

∑
(a,b)∈{(±1,±1)}

∇ exp
(
−5

(
(x1 − a)2 + (x2 − b)2))

1x∈[−2,2]×[−2,2].

For each term exp
(
−5

(
(x1 − a)2 + (x2 − b)2))

, its gradient is:

∇ exp
(
−5

(
(x1 − a)2 + (x2 − b)2))

= −10 exp
(
−5

(
(x1 − a)2 + (x2 − b)2)) [

x1 − a
x2 − b

]
.

Thus,

∇r(x) = −200
π

∑
(a,b)∈{(±1,±1)}

exp
(
−5

(
(x1 − a)2 + (x2 − b)2)) [

x1 − a
x2 − b

]
· 1x∈[−2,2]×[−2,2].

Putting the expressions of r(x) and ∇r(x) together, we will have

∇r(x) · 1
r(x)(1 + r(x)) .

When we take a closer look at the numerator ∇r(x), we observe that it is a weighted sum of the vectors
originating from x and pointing towards the centers of the four modes, which are (1, 1), (1, −1), (−1, 1),
and (−1, −1). Due to the exponential decay property of the exponential function, the influence of these
vectors diminishes rapidly with distance. Consequently, the vector field is predominantly influenced by the
mode in the same quadrant as x. Specifically, if we assume without loss of generality that x lies in the first
quadrant, the vector field will be approximately [1 − x1, 1 − x2]⊤, up to a scaling factor.

Proposition D.3. Assume that

pdata ∼ 1
4N ([1, 1], 0.1I2) + 1

4N ([1, −1], 0.1I2) + 1
4N ([−1, 1], 0.1I2) + 1

4N ([−1, −1], 0.1I2)

and that pg ∼ N ([1, 1], I2). Let x = [x1, x2]. Then the vector field that governs particles’ update is given by

∇r(x) · 1
r(x)(1 + r(x)) ,

23

Under review as submission to TMLR

where

r(x) = 5
2

∑
(a,b)∈{(±1,±1)}

exp
(

−9
2

((
x1 − 10a − 1

9

)2
+

(
x2 − 10b − 1

9

)2
)

+ 5
9(a − 1)2 + 5

9(b − 1)2
)

and

∇r(x) = −45
2 ·

∑
(a,b)∈{(±1,±1)}

exp
(

−9
2

((
x1 − 10a − 1

9

)2
+

(
x2 − 10b − 1

9

)2
)

+ 5
9(a − 1)2 + 5

9(b − 1)2
) x1 − 10a − 1

9
x2 − 10b − 1

9

 .

Proof. For each Gaussian distribution, the density function is

N (µ, Σ)(x) = 1
2π

√
det(Σ)

exp
(

− 1
2(x − µ)⊤Σ−1(x − µ)

)
.

Here, µ ∈ {[1, 1], [1, −1], [−1, 1], [−1, −1]}, and Σ = 0.1I2. Therefore,

N ([a, b], 0.1I2)(x) = 1
2π · 0.1 · exp

(
− 1

2 · 0.1
(
(x1 − a)2 + (x2 − b)2))

= 1
0.2π

· exp
(
−5

(
(x1 − a)2 + (x2 − b)2))

.

Thus,
pdata(x) = 1

0.8π

∑
(a,b)∈{(±1,±1)}

exp
(
−5

(
(x1 − a)2 + (x2 − b)2))

.

For pg(x) which is normally distributed with mean [1, 1] and covariance I2, we have

pg(x) = 1
2π

· exp
(
−0.5

(
(x1 − 1)2 + (x2 − 1)2))

.

Combining the above results, we have

r(x) = 5
2

∑
(a,b)∈{(±1,±1)}

exp
(

−9
2

((
x1 − 10a − 1

9

)2
+

(
x2 − 10b − 1

9

)2
)

+ 5
9(a − 1)2 + 5

9(b − 1)2
)

.

Next, we compute ∇r(x):

∇r(x) = 5
2

∑
(a,b)∈{(±1,±1)}

∇ exp
(

−9
2

((
x1 − 10a − 1

9

)2
+

(
x2 − 10b − 1

9

)2
)

+ 5
9(a − 1)2 + 5

9(b − 1)2
)

.

For each term on the right-hand side, its gradient is:

∇ exp
(

−9
2

((
x1 − 10a − 1

9

)2
+

(
x2 − 10b − 1

9

)2
)

+ 5
9(a − 1)2 + 5

9(b − 1)2
)

= − 9 · exp
(

−9
2

((
x1 − 10a − 1

9

)2
+

(
x2 − 10b − 1

9

)2
)

+ 5
9(a − 1)2 + 5

9(b − 1)2
) [

x1 − (10a − 1)/9
x2 − (10b − 1)/9

]
.

Thus,

∇r(x) = −45
2 ·

∑
(a,b)∈{(±1,±1)}

exp
(

−9
2

((
x1 − 10a − 1

9

)2
+

(
x2 − 10b − 1

9

)2
)

+ 5
9(a − 1)2 + 5

9(b − 1)2
) x1 − 10a − 1

9
x2 − 10b − 1

9

 .

24

Under review as submission to TMLR

Putting the expressions of r(x) and ∇r(x) together, we will have

∇r(x) · 1
r(x)(1 + r(x)) .

When we take a closer look at the numerator ∇r(x), we observe that it is a weighted sum of the vectors
originating from x and pointing towards (1, 1), (−11/9, 1), (1, −11/9), and (−11/9, −11/9), respectively.
Due to the exponential decay property of the exponential function, the influence of these vectors diminishes
rapidly with distance. Consequently, the vector field is predominantly influenced by the mode in the same
quadrant as x. Specifically, if we assume without loss of generality that x lies in the first quadrant, the
vector field will be approximately [1 − x1, 1 − x2]⊤, up to a scaling factor.

Proposition D.4. Assume that

pdata ∼ 1
4N ([3, 3], 0.1I2) + 1

4N ([3, −3], 0.1I2) + 1
4N ([−3, 3], 0.1I2) + 1

4N ([−3, −3], 0.1I2)

and that pg ∼ N ([3, 3], 3I2). Let x = [x1, x2]. Then the vector field that governs particles’ update is given by

∇r(x) · 1
r(x)(1 + r(x)) ,

where

r(x) = 15
4

∑
(a,b)∈{(±3,±3)}

exp
(

−29
6

((
x1 − 30a − 3

29

)2
+

(
x2 − 30b − 3

29

)2
)

+ 5
29(a − 3)2 + 5

29(b − 3)2
)

and

∇r(x) = −145
4 ·

∑
(a,b)∈{(±3,±3)}

exp
(

−29
6

((
x1 − 30a − 3

29

)2
+

(
x2 − 30b − 3

29

)2
)

+ 5
29(a − 3)2 + 5

29(b − 3)2
) x1 − 30a − 3

29
x2 − 30b − 3

29

 .

Proof. For each Gaussian distribution, the density function is

N (µ, Σ)(x) = 1
2π

√
det(Σ)

exp
(

− 1
2(x − µ)⊤Σ−1(x − µ)

)
.

Here, µ ∈ {[3, 3], [3, −3], [−3, 3], [−3, −3]}, and Σ = 0.1I2. Therefore,

N ([a, b], 0.1I2)(x) = 1
2π · 0.1 · exp

(
− 1

2 · 0.1
(
(x1 − a)2 + (x2 − b)2))

= 1
0.2π

· exp
(
−5

(
(x1 − a)2 + (x2 − b)2))

.

Thus,
pdata(x) = 1

0.8π

∑
(a,b)∈{(±3,±3)}

exp
(
−5

(
(x1 − a)2 + (x2 − b)2))

.

For pg(x) which is normally distributed with mean [3, 3] and covariance 3I2, we have

pg(x) = 1
6π

· exp
(

−1
6

(
(x1 − 3)2 + (x2 − 3)2))

.

Combining the above results, we have

r(x) = 15
4

∑
(a,b)∈{(±3,±3)}

exp
(

−29
6

((
x1 − 30a − 3

29

)2
+

(
x2 − 30b − 3

29

)2
)

+ 5
29(a − 3)2 + 5

29(b − 3)2
)

.

25

Under review as submission to TMLR

Next, we compute ∇r(x):

15
4

∑
(a,b)∈{(±3,±3)}

∇ exp
(

−29
6

((
x1 − 30a − 3

29

)2
+

(
x2 − 30b − 3

29

)2
)

+ 5
29(a − 3)2 + 5

29(b − 3)2
)

.

For each term on the right-hand side, its gradient is:

exp
(

−29
6

((
x1 − 30a − 3

29

)2
+

(
x2 − 30b − 3

29

)2
)

+ 5
29(a − 3)2 + 5

29(b − 3)2
)

=

− 29
3 exp

(
−29

6

((
x1 − 30a − 3

29

)2
+

(
x2 − 30b − 3

29

)2
)

+ 5
29(a − 3)2 + 5

29(b − 3)2
) [

x1 − (30a − 3)/29
x2 − (30b − 3)/29

]
.

Thus,

∇r(x) = −145
4 ·

∑
(a,b)∈{(±3,±3)}

exp
(

−29
6

((
x1 − 30a − 3

29

)2
+

(
x2 − 30b − 3

29

)2
)

+ 5
29(a − 3)2 + 5

29(b − 3)2
) x1 − 30a − 3

29
x2 − 30b − 3

29

 .

Putting the expressions of r(x) and ∇r(x) together, we will have

∇r(x) · 1
r(x)(1 + r(x)) .

When we take a closer look at the numerator ∇r(x), we observe that it is a weighted sum of
the vectors originating from x and pointing towards (27/29, 27/29), (−33/29, 27/29), (27/29, −33/29),
and (−33/29, −33/29), respectively. Due to the exponential decay property of the exponential function,
the influence of these vectors diminishes rapidly with distance. Consequently, the vector field is predomi-
nantly influenced by the mode in the same quadrant as x. Specifically, if we assume without loss of generality
that x lies in the first quadrant, the vector field will be approximately [27/29 − x1, 27/29 − x2]⊤, up to a
scaling factor. Regarding the term 1 + r(x) in the denominator, we observe that its magnitude is large
when x is far from the coordinates x1 = 0, x2 = 0, and the centers of the modes. This increased magnitude
compared to the scenario in proposition D.3 explains the overall weakening of the attraction intensity near
all the modes.

D.4 Characterization of Measuring-Preserving Maps

Lemma D.1. (Durrett, 2019) Let X be a random variable taking values on R and let FX(x) be its CDF.
Then

F −1
X

(
U(0, 1)

)
∼ X

and
FX(X) ∼ U(0, 1),

where U(0, 1) denotes the uniform distribution on (0, 1).
Theorem D.3. Let Φ(x) denotes the cumulative distribution function (CDF) of N (0, 1) and let Ψ(x) be
that of pdata(x). If g satisfies g#pz = pdata, then g = Ψ−1 ◦ h ◦ Φ, where h is a measure-preserving map
of U(0, 1), i.e., the uniform distribution on (0, 1).

Proof. We only need to show that Ψ◦g ◦Φ−1 is a measure-preserving map of U(0, 1). In fact, by lemma D.1,
we have

(Ψ ◦ g ◦ Φ−1)#U(0, 1) = (Ψ ◦ g)#pz = Ψ#pdata = U(0, 1).

26

Under review as submission to TMLR

D.5 Steepness of Measure-Preserving Map in 1-Dimension

Theorem D.4. Assume that

pdata ∼ 1
N

N (µ1, σ2) + 1
N

N (µ2, σ2) + · · · + 1
N

N (µN , σ2),

Here the µi’s are in ascending order, and µi+1 − µi ≥ 6σ for all 1 ≤ i ≤ N − 1. Let Φ(x) denotes the
cumulative distribution function (CDF) of N (0, 1) and let Ψ(x) be that of pdata(x). Then g(x) := Ψ−1(Φ(x))
satisfies

S(g) ≥ min
1≤i≤N−1

σ · exp
((µi+1 − µi)2

8σ2

)
· exp(−q2),

where q is the (1 − 1/N)-th quantile of the standard Gaussian distribution.

Proof. Instead of computing the derivative of g, we compute that of g−1. By the formula for the derivative
of inverse functions, we have

(g−1)′(y) = Ψ′(y)
Φ′

(
Φ−1(Ψ(y))

)
= 1

Nσ

N∑
i=1

exp
(

− (y − µi)2

2σ2

)
· exp

((Φ−1(Ψ(y))2

2

)
≤ max

1≤i≤N−1

1
Nσ

· N · exp
(

− (µi+1 − µi)2

8σ2

)
· exp

((Φ−1(Ψ((µi + µi+1)/2)))2

2

)
≤ max

1≤i≤N−1

1
σ

· exp
(

− (µi+1 − µi)2

8σ2

)
· exp(q2).

where q is the (1 − 1/N)-th quantile of the standard Gaussian distribution. Again, by the formula for the
derivative of inverse functions, we have

S(g) ≥ min
1≤i≤N−1

σ · exp
((µi − µi+1)2

8σ2

)
· exp(−q2).

D.6 Steepness of Measure-Preserving Maps in Higher Dimensions

The standard result in (Durrett, 2019) specifically addresses the case of lemma D.2 where K = 1. And it
can be straightforwardly extended to encompass any K.
Lemma D.2. (Durrett, 2019) Let X ∼ ρ(x)dx be a n-dimensional random vector. Let D ⊂ Rn sat-
isfy P(X ∈ D) = 1. Assume that the map

φ : D =
K⊎

k=1
Di → Rn

satisfies the following requirements: for each 1 ≤ k ≤ K, φ := φ|Dk
is injective and its inverse function is

continuously differentiable. Then the probability density function of Y = φ(X) is

ρY (y) =
K∑

k=1
ρX

(
φ−1(y)

)
·
∣∣∣det

(
Jφ−1

k
(y)

)∣∣∣ · 1φ(Dk)(y).

Equivalently, for any x ∈ D,

ρY (φ(x)) =
K∑

k=1
ρX(x) · |det (Jφ(x))|−1 · 1φ(Dk)(φ(x)).

27

Under review as submission to TMLR

Theorem D.5. Let ν be the truncated Gaussian distribution Nr(0, In) in the n-dimensional ball Br(0) and
assume that µ̂ is a probability measure with probability density function

f̂(x) = 1
Nh

N∑
i=1

(√
1/π

)n

exp
(

−∥x − xi∥2
2

h2

)
.

Suppose that g : Br(0) → Rn is continuously differentiable and piecewise injective. Then S(g) > M , where

M = δ · h1/n ·
√

π

n
· max

1≤i≤N
exp

(
∥x̄ − xi∥2

2
nh2

)
.

Here, x̄ =
∑N

i=1 xi/n, and δ = exp
(
−r2/2

)
/
√

2π.

Proof. Let Dk (1 ≤ k ≤ K) be a partition of Br(0) such that for each 1 ≤ k ≤ K, g|Dk
is injective. We

regard g as the composition of two functions g := g2 ◦ g1. Here, g1 : Br(0) → (0, 1)n satisfies

g1(x) = g1(x1, x2, . . . , xn) = (Φr(x1), Φr(x2), . . . , Φr(xn)),

where Φr(·) is the cumulative density function of the 1-dimensional standard Gaussian distribution truncated
in (−r, r). It is straightforward to show that the derivative of Φr has a positive lower bound, say,

δ := 1√
2π

exp
(

−r2

2

)
.

Thus | det Jg1(x)| ≥ δn for any x ∈ Br(0).

By lemma D.1, g1#ν = π, where π is the uniform distribution on (0, 1)n. In the rest of the proof, we
direct our focus to g2 : (0, 1)n → Rn, which satisfies g2#π = µ̂. Because g2 = g ◦ g−1

1 and g is injective
on Di (1 ≤ i ≤ N), we conclude that g2 is injective on g1(Dk) (1 ≤ k ≤ K). By applying lemma D.2 to g2
and g1(Dk) (1 ≤ k ≤ K), we deduce that for y ∈ (0, 1)n,

f̂(g2(y)) =
K∑

k=1

1
| det(Jg2(y))| · 1g2(g1(Dk))(g2(y)) ≥

K∑
k=1

1
| det(Jg2(y))| · 1g1(Dk)(y) = 1

| det(Jg2(y))| .

Let BR(0) be the n-dimensional open ball centered at the origin with radius R = 2 max1≤i≤N ∥xi∥2. We
consider the point y0 satisfying

g2(y0) = arg max
x∈BR(0)

min
1≤i≤N

∥x − xi∥2.

If there are many of them, we randomly pick one. Let x̄ =
∑N

i=1 xi/n. For this y0, we have

f̂(g2(y0)) ≤ f̂(x̄) = 1
Nh

N∑
i=1

(√
1/π

)n

exp
(

−∥x̄ − xi∥2
2

h2

)
.

Hence
| det(Jg2(y0))| ≥ f̂(g2(y0))−1 ≥ h ·

(√
π

)n min
1≤i≤N

exp
(

∥x̄ − xi∥2
2

h2

)
.

Recall that we have | det(Jg1(g2(y0)))| ≥ δn, where δ = 1√
2π

exp
(

−r2

2

)
.

Combine the above results and we have

|det(Jg(y0))| = |det(Jg2(y0)) det(Jg1(g2(y0)))| ≥ h ·
(
δ
√

π
)n min

1≤i≤N
exp

(
∥x̄ − xi∥2

2
h2

)
.

28

Under review as submission to TMLR

If S(g) < M , then by Hadamard’s theorem which states that the determinant of a matrix is smaller than or
equal to the product of the 2-norms of its column vectors, one can show that

| det(Jg(y0))| ≤
(
M

√
n

)n
.

Substitute for the expression of M , we will find that the above two expressions contradict.

D.7 Evolution of Steepness

Theorem D.6. Assume that pdata ∼ N (0, k2
∗In) and that the discriminator is optimal, i.e., the discriminator

consistently provides the precise moving direction for the particle. Then kt, the steepness of g at discrete
time step t satisfies

kt+1 = kt + s

(
1
k2

t

− 1
k2

∗

)
· 1

1 + ktφ(ktx0/k∗)
k∗φ(x0)

,

where 0 ≤ t ≤ T , and T is the maximum time. Here, φ is the probability density function of N (0, In).

Proof. Let φ(x) be the probability density function of the n-dimensional standard Gaussian distribution

φ(x) = 1√
(2π)n

· exp
(

− 1
2x⊤x

)
.

Then the probability density function of N (0, k2In) is φ(x/k)/k. Let xt = ktx0 denotes the position of the
particle at time t. Here, kt represents the steepness of the generator function. We investigate the evolution
of the particle subject to the vector field given by ∇d(x)/d(x). Assuming the discriminator is optimal, this
process is governed by the following explicit formula (Yi et al., 2023):

xt+1 = xt + s · ∇r(xt)
r(xt)(r(xt) + 1) , t = 1, 2, . . . , T.

Here, s denotes the stepsize (which absorbs the constant 2 in the vector field), T is the maximum time, and

r(x) = φ(x/k∗)/k∗

φ(x/kt)/kt

is the ratio of the probability density function of pdata and pg. By the formula of φ(x), we deduce
that ∇φ(x) = −φ(x)x. Below we compute ∇r(x) by the chain rule:

∇r(x) = kt

k∗
· ∇φ(x/k∗) · φ(x/kt) − φ(x/k∗)∇φ(x/kt)

φ(x/kt)2

= kt

k∗
·
(

1
k2

t

− 1
k2

∗

)
φ(x/k∗)
φ(x/kt)

· x.

Using xt = ktx0, we derive the following recurrent formula for {kt}T
t=0:

kt+1 = kt + s

(
1
k2

t

− 1
k2

∗

)
· 1

1 + ktφ(ktx0/k∗)
k∗φ(x0)

.

D.8 Quantitative Results on How Steepness Impacts the Severity of Mode Mixture

Theorem D.7. Assume that pdata ∼
∑N

i=1 N (µi, σ2)/N . Here, the µi’s are in ascending order, with the
condition that µi − µi−1 ≥ 6σ for all 1 ≤ i ≤ N − 1. Furthermore, assume that the generator function g is
increasing and satisfies S(g) ≤ k. Additionally, assume that

g−1
(

µi + µi+1

2

)
= Φ−1

(
Ψ

(
µi + µi+1

2

))
,

29

Under review as submission to TMLR

where Φ(x) denotes the cumulative distribution function (CDF) of the standard normal distribution N (0, 1),
and Ψ(x) is the CDF of the distribution pdata(x). Then, the probability that the particles fall into the interval

N⋃
i=1

[µi + 3σ, µi+1 − 3σ],

which indicates mode mixture, is at least
N∑

i=1

(
Φ

(
Φ−1

(
Ψ

(
µi + µi+1

2

))
+ µi+1 − µi − 3σ

2k

)
− Φ

(
Φ−1

(
Ψ

(
µi + µi+1

2

))
− µi+1 − µi − 3σ

2k

))
.

Proof. Given x ∼ N (0, 1), we need to calculate the probability that

x ∈
N⋃

i=1
[g−1(µi + 3σ), g−1(µi+1 − 3σ)].

Since g−1(
(µi + µi+1)/2

)
is determined by its optimal counterpart, it suffices to analyze how g−1(µi + 3σ)

and g−1(µi+1 − 3σ) deviate from this value. In other words, we only need to compute the maximum value
of g−1(µi + 3σ) and the minimum value of g−1(µi+1 − 3σ), as the probability that a standard Gaussian
variable falls within an interval decreases with respect to its left endpoint and increases with respect to its
right endpoint. Using the property that S(g) ≤ k, we have:

g−1(µi + 3σ) ≤ g−1
(

µi + µi+1

2

)
− µi+1 − µi − 3σ

2k
,

and
g−1(µi+1 − 3σ) ≥ g−1

(
µi + µi+1

2

)
+ µi+1 − µi − 3σ

2k
.

By summing over all intervals, we derive that the probability that particles fall into
N⋃

i=1
[µi + 3σ, µi+1 − 3σ]

is at least
N∑

i=1

(
Φ

(
g−1

(
µi + µi+1

2

)
+ µi+1 − µi − 3σ

2k

)
− Φ

(
g−1

(
µi + µi+1

2

)
− µi+1 − µi − 3σ

2k

))

=
N∑

i=1

(
Φ

(
Φ−1

(
Ψ

(
µi + µi+1

2

))
+ µi+1 − µi − 3σ

2k

)
− Φ

(
Φ−1

(
Ψ

(
µi + µi+1

2

))
− µi+1 − µi − 3σ

2k

))
.

Note that for the case that N = 2 and −µ1 = µ2 = µ, this probability simplifies to

Φ
(2µ − 3σ

2k

)
− Φ

(
− 2µ − 3σ

2k

)
.

E Disparity Among Modes Across Different Datasets

E.1 MNIST

Proporcessing. We first transform the images in MNIST by sequentially resizing the images to 64 × 64
pixels, converting them to PyTorch tensors, and normalizing the tensor values to the range of [−1, 1].

Computation. We calculate the average image tensor for each label based on a set of 10 image tensors
sharing the same label. Next, we compute the pairwise distances between these average tensors using the
Frobenius norm. The resulting distances are visualized as a heatmap in fig. 9.

30

Under review as submission to TMLR

0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

0.0 33.7 24.9 24.8 27.8 20.2 25.2 28.1 24.9 27.4

33.7 0.0 22.5 22.6 25.0 21.3 25.1 23.5 20.9 23.2

24.9 22.5 0.0 19.3 21.1 20.1 17.3 23.8 16.9 21.8

24.8 22.6 19.3 0.0 23.2 13.7 23.6 22.7 15.9 20.8

27.8 25.0 21.1 23.2 0.0 18.2 18.8 17.9 19.2 10.8

20.2 21.3 20.1 13.7 18.2 0.0 19.2 19.6 13.6 16.5

25.2 25.1 17.3 23.6 18.8 19.2 0.0 25.1 20.4 20.7

28.1 23.5 23.8 22.7 17.9 19.6 25.1 0.0 20.9 13.1

24.9 20.9 16.9 15.9 19.2 13.6 20.4 20.9 0.0 16.7

27.4 23.2 21.8 20.8 10.8 16.5 20.7 13.1 16.7 0.0
0

5

10

15

20

25

30

Figure 9: Frobenius distances between different modes in MNIST. The tensor of the modes are approximated
by taking the average of image tensors that share the same label.

E.2 Fashion MNIST

Proporcessing. We first transform the images in Fashion MNIST by first resizing the images to 64 × 64
pixels, converting them to PyTorch tensors, and normalizing the tensor values to the range of [−1, 1].

Computation. We calculate the average image tensor for each label based on a set of 10 image tensors
sharing the same label. Next, we compute the pairwise distances between these average tensors using the
Frobenius norm. The resulting distances are visualized as a heatmap in fig. 10.

T-
sh

irt
/to

p

Tr
ou

se
r

Pu
llo

ve
r

Dr
es

s

Co
at

Sa
nd

al

Sh
irt

Sn
ea

ke
r

Ba
g

An
kl

e
bo

ot

T-shirt/top

Trouser

Pullover

Dress

Coat

Sandal

Shirt

Sneaker

Bag

Ankle boot

0.0 28.2 24.7 20.0 25.5 43.0 16.3 46.3 34.0 43.2

28.2 0.0 37.5 17.4 36.9 40.7 30.8 44.2 43.5 48.1

24.7 37.5 0.0 32.3 10.8 43.2 11.7 45.0 25.8 38.7

20.0 17.4 32.3 0.0 30.7 40.1 23.7 43.0 37.1 44.0

25.5 36.9 10.8 30.7 0.0 46.8 13.5 47.7 27.4 41.1

43.0 40.7 43.2 40.1 46.8 0.0 37.6 17.2 34.1 31.8

16.3 30.8 11.7 23.7 13.5 37.6 0.0 40.6 24.1 36.8

46.3 44.2 45.0 43.0 47.7 17.2 40.6 0.0 33.6 32.5

34.0 43.5 25.8 37.1 27.4 34.1 24.1 33.6 0.0 27.8

43.2 48.1 38.7 44.0 41.1 31.8 36.8 32.5 27.8 0.0
0

10

20

30

40

Figure 10: Frobenius distances between different modes in Fashion MNIST. The tensor of the modes are
approximated by taking the average of image tensors that share the same label.

31

Under review as submission to TMLR

E.3 CIFAR-10

Proporcessing. We first transform the images in CIFAR-10 by sequentially resizing the images to 64 × 64
pixels, converting them to PyTorch tensors, and normalizing the tensor values to the range of [−1, 1].

Computation. We calculate the average image tensor for each label based on a set of 10 image tensors
sharing the same label. Next, we compute the pairwise distances between these average tensors using the
Frobenius norm. The resulting distances are visualized as a heatmap in fig. 11.

ai
rp

la
ne

au
to

m
ob

ile bi
rd ca

t

de
er

do
g

fro
g

ho
rs

e

sh
ip

tru
ck

airplane

automobile

bird

cat

deer

dog

frog

horse

ship

truck

0.0 25.9 24.8 29.5 33.1 30.7 38.0 25.9 14.4 22.5

25.9 0.0 13.8 16.0 17.8 19.0 18.7 14.9 20.5 14.8

24.8 13.8 0.0 8.1 9.2 11.1 14.3 6.5 24.5 22.2

29.5 16.0 8.1 0.0 7.3 6.3 10.7 9.3 29.0 26.3

33.1 17.8 9.2 7.3 0.0 9.5 7.4 10.3 32.2 28.5

30.7 19.0 11.1 6.3 9.5 0.0 12.8 13.2 29.9 29.6

38.0 18.7 14.3 10.7 7.4 12.8 0.0 14.7 35.3 30.0

25.9 14.9 6.5 9.3 10.3 13.2 14.7 0.0 26.3 21.3

14.4 20.5 24.5 29.0 32.2 29.9 35.3 26.3 0.0 16.8

22.5 14.8 22.2 26.3 28.5 29.6 30.0 21.3 16.8 0.0
0

5

10

15

20

25

30

35

Figure 11: Frobenius distances between different modes in CIAFR-10. The tensor of the modes are approx-
imated by taking the average of image tensors that share the same label.

F Detailed Experimental Settings

Our codes are all provided in the supplementary material.

F.1 Verifying Fitting and Refining

Methodology. We demonstrate that the phases of fitting and refining exist in real-world datasets. To
do this, we use a classification network q(x) that takes an image tensor x as an input and outputs a 10-
dimensional vector,

(p0, p1, . . . , p9),

where each pi ∈ [0, 1] denotes the likelihood of x corresponding to the ith category (e.g., the 1st category in
MNIST corresponds to the handwritten digit 1 and the 2nd category in Fashion MNIST represents pullovers).
Our focus gravitates towards those pi’s that exhibit significant magnitudes. For discernibility, a threshold τ
is set to 10−2. In other words, if pi > 10−2, then there is a notable probability that x belongs to the
ith category. Empirical observations suggest that seldom do more than three pi’s surpass the designated
threshold. Hence, for any x, we may pair (i, j) when both pi and pj exceed τ . By pairing, the intuition is
that such x potentially resides between modes i and j. In scenarios where only a single pi surpasses τ , i is
paired with itself, implying that the x predominantly belongs to the ith category. We count the occurrences
of the pairings (i, j) (0 ≤ i, j ≤ 9) in a batch of size 256 and visualize them with heatmaps in fig. 5, fig. 15 and
fig. 16. In these figures, the value of the entry (i, j) represents the logarithmically transformed occurrence
frequency of pair (i, j) within a batch, adjusted by one, thereby mitigating the impact of dominant diagonal
values on the colorbar.

32

Under review as submission to TMLR

Classification networks. We use the MNIST classification network in MNIST classification network and
the Fashion MNIST classification network in Fashion MNIST classification network.

Number of training runs. We conducted our experiments at least 50 times and consistently observed
similar patterns across all trials. Therefore, we randomly selected two of these experiments to present in this
paper.

F.2 Early Stopping

Early stopping on 3-dimensional Gaussian mixture. In this part, our codes borrow heavily from
NSGAN. Both the generator and the discriminator are implemented as full-connected neural networks with
SGD optimizers. Now we elaborate on how to calculate the threshold defined in algorithm 2. The threshold
is given by ks ·

√
2/(2h). We set ks = 2, the distance between two modes in the 3-dimensional Gaussian

mixture dataset. For h, it equals
√

2σ, where σ is the standard variation of every Gaussian component,
which is

√
0.0125 in our setting. Therefore the threshold is

2 ×
√

2/(2 ×
√

2 ×
√

0.0125) ≈ 8.9.

As for the warm-up training iteration parameter Nw, we set it to 50.

Early stopping on MNIST. In this part, our generator and discriminator architectures borrow heavily
from NSGAN on MNIST. Both the generator and the discriminator are implemented as convolutional neural
networks with Adam optimizers. Now we elaborate on how to calculate the threshold defined in algorithm 2.
The threshold is given by ks ·

√
2/(2h). We set ks = 33.7, the distance between two farthest modes in MNIST

(please refer to appendix E). For h, it equals
√

2σ, where σ2 is derived as follows. We first compute the
population variance of the images from each label, arriving at 10 values. Then we compute their average
value, and divide this value by 64 × 64 × 1, i.e., the total number of dimensions. Therefore the threshold is

33.7 ×
√

2/(2 ×
√

2 ×
√

0.33/642) ≈ 1877.

As for the warm-up training iteration parameter Nw, we set it to 20.

Early stopping on fashion MNIST. In this part, our generator and discriminator architectures borrow
heavily from NSGAN on Fashion MNIST. Both the generator and the discriminator are implemented as
convolutional neural networks with Adam optimizers. Now we elaborate on how to calculate the threshold
defined in algorithm 2. The threshold is given by ks ·

√
2/(2h). We set ks = 48.1, the distance between two

farthest modes in Fashion MNIST (please refer to appendix E). For h, it equals
√

2σ, where σ2 is derived as
follows. We first compute the population variance of the images from each label, arriving at 10 values. Then
we compute their average value, and divide this value by 64 × 64 × 1, i.e., the total number of dimensions.
Therefore the threshold is

48.1 ×
√

2/(2 ×
√

2 ×
√

0.33/642) ≈ 2679.

As for the warm-up training iteration parameter Nw, we set it to 50.

Early stopping on CIFAR-10. In this part, our generator and discriminator architectures borrow heavily
from NSGAN on CIFAR-10. Both the generator and the discriminator are implemented as convolutional
neural networks with Adam optimizers. Now we elaborate on how to calculate the threshold defined in
algorithm 2. The threshold is given by ks ·

√
2/(2h). We set ks = 38.0, the distance between two farthest

modes in CIFAR-10 (please refer to appendix E). For h, it equals
√

2σ, where σ2 is derived as follows. We
first compute the population variance of the images from each label, arriving at 10 values. Then we compute
their average value, and divide this value by 64 × 64 × 3, i.e., the total number of dimensions. Therefore the
threshold is

38.0 ×
√

2/(2 ×
√

2 ×
√

0.23/(642 × 3)) ≈ 4391.

As for the warm-up training iteration parameter Nw, we set it to 50.

Number of training runs. On all of the datasets mentioned above, we conducted our experiments at least
100 times. We observed similar patterns across all trials, although the point at which the GANs collapsed
varied. Therefore, we choose to present those that collapsed before a certain threshold to ensure consistency

33

https://github.com/Joy2469/Deep-Learning-MNIST---Handwritten-Digit-Recognition.git
https://www.kaggle.com/code/shriramjaju/pytorch-fashionmnist/notebook
https://github.com/eriklindernoren/PyTorch-GAN.git
https://github.com/YasinShafiei/FashionMnist_DCGAN.git
https://github.com/YasinShafiei/FashionMnist_DCGAN.git
https://github.com/YasinShafiei/FashionMnist_DCGAN.git

Under review as submission to TMLR

in our reported results. It is important to note that the generated samples eventually collapsed in our
experiments, either sooner or later, without contradicting the findings in our paper.

G Additional Experimental Results

G.1 UMAP Embedding of MNIST

Introduction to UMAP. We first give a brief introduction to UMAP (Uniform Manifold Approximation
and Projection) (McInnes et al., 2018). It is a widely-used dimensionality reduction technique that excels
in preserving the global structure and local relationships of high-dimensional data when mapped to lower
dimensions. UMAP operates by first constructing a high-dimensional graph representation of the data,
capturing both local and global structure. This is achieved by identifying nearest neighbors for each data
point and creating a weighted graph where the edge weights reflect the probability of connections between
points. UMAP then optimizes a low-dimensional embedding by minimizing the cross-entropy between the
high-dimensional and low-dimensional representations.

Methodology. We use UMAP to embed the MNIST dataset into a 3-dimensional space and transform the
generated images into the same embedded space using the transform method. In the resulting plots, the
dots representing different digits are colored differently, while the generated samples are shown as black dots.

Results: The detailed training process. We first present the detailed results of the training process to
complement that in fig. 1. At the beginning, the generated samples tend to cluster within a small region of
the entire space. As training advances, these initial clusters gradually disperse, with the generated samples
spreading out more widely. Over time, the samples increasingly occupy the entire space spanned by the real
data modes, effectively capturing the diversity present in the real dataset. This justifies the fitting phase.
However, around the 47th epoch, this positive trend reverses. The generated samples begin to collapse
towards only a fraction of the modes, which indicates the collapsing phase. It is important to note that the
refining phase cannot be directly observed in these figures. While the generated samples appear to lie within
the embedded modes, their quality may still vary due to potential information loss when reducing from
high-dimensional space to low-dimensional space. This dimensionality reduction can obscure some details of
the samples. For more details on how to test the refining phase, please refer to section 6.1.

0, 0 0, 1 0, 2 0, 4 0, 8 0, 16

0, 32 0, 64 0, 128 1, 0 2, 0 4, 0

8, 0 16, 0 32, 0 43, 0 45, 0 47, 0

Figure 12: The UMAP visualization of the detailed training process of NSGAN on MNIST. The label “e, b”
at the bottom of each plot denotes the bth batch within the eth epoch. Initially, the generated samples
cluster within a small region. As training progresses, these clusters begin to disperse, with the samples
spreading out gradually. Over time, the generated samples increasingly populate the entire space that is
spanned by the real modes. However, at approximately the 47th epoch, this trend reverses. The generated
samples begin to collapse to only a fraction of the modes.

34

Under review as submission to TMLR

Figure 13: The UMAP visualization of generated samples at initialization using different initialization meth-
ods. From left to right: Xavier normal, Xavier uniform, Kaiming normal, Kaiming uniform,
orthogonal, and Dirac initialization. The latent dimension (i.e., noise dimension) is the same as the
image dimension. Despite these different approaches, the generated samples consistently cluster within a
small region of the entire space rather than spanning it completely.

Results: Different initialization method. We then examine the distribution of generated samples
under various network initialization methods to emphasize the necessity of the fitting phase. Initially,
these generated samples tend to cluster within a small region of the entire space, rather than spanning it
completely. This phenomenon can be explained by two primary factors. First, when the latent dimension
(i.e., the noise dimension) is smaller than the image dimension, the generator maps the noise distribution
onto a low-dimensional manifold, which inherently restricts its ability to span the entire space. Second,
even when the latent dimension is equal to or greater than the image dimension, this issue remains. We
empirically validate this by testing several popular initialization methods, including Xavier normal, Xavier
uniform, Kaiming normal, Kaiming uniform, orthogonal, and Dirac initializations. Despite these different
approaches, the generated samples consistently fail to fully span the space, highlighting the critical need for
the fitting phase to achieve a more comprehensive distribution.

G.2 Overfitting of the Discriminator

In this subsection, we elaborate on the optimal discriminator’s behavior outlined in section 5.1. We consider
the following synthetic dataset

pdata ∼ 1
4N ([1, 1], 0.0125I2) + 1

4N ([1, −1], 0.0125I2) + 1
4N ([−1, 1], 0.0125I2) + 1

4N ([−1, −1], 0.0125I2),

and train the discriminator until optimal. We plot the values of the optimal discriminator in fig. 14. We
observe that the discriminator values are close to 0.5 in the central regions of the modes and vanish in the
regions far from the modes. Between them, the discriminator values smoothly change from 0.5 to 0.

3 2 1 0 1 2 3
3

2

1

0

1

2

3

0.00

0.06

0.12

0.18

0.24

0.30

0.36

0.42

0.48

0.54

Di
sc

rim
in

at
or

 O
ut

pu
t

Figure 14: The values of the optimal discriminator. The discriminator values are close to 0.5 in the central
regions of the modes (i.e., [±1, ±1]) and vanish in the regions far from the modes. Between them, the
discriminator values smoothly change from 0.5 to 0.

35

Under review as submission to TMLR

G.3 Verifying Fitting and Refining

Annotated heatmaps for MNIST. We verify the existence of fitting and refining on MNIST. Annotated
heatmaps are employed to track the evolution of pairings (i, j) occurrence within batches of size 256. The
values depicted in these heatmaps represent the logarithm of occurrence counts plus 1, with darker colors
indicating higher values. Each heatmap includes epoch numbers ranging from 0 to 38 displayed at the bottom.
Initially, the heatmap has few nonzero entries, indicating limited sample diversity during the fitting phase.
As training advances, more entries became nonzero, reflecting a broader distribution of generated samples
across the mode space. Notably, the values of off-diagonal entries signifies the severity of mode mixture,
which gradually decrease over the course of training, validating the refining phase. However, the issue of
mode mixture persists even at the end of refining. By the 36th epoch, the heatmap only has two nonzero
entries, suggesting the collapsing phase, where the generated samples become less diverse and concentrate
around few modes. These observations provide empirical evidence for our proposed three phases of GAN
training.

0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.5

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

5.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

2

2.9 0.0 0.0 0.0 0.0 0.0 1.1 1.6 1.1 2.3

0.0 3.2 1.6 0.7 0.7 1.4 1.8 1.8 1.1 1.4

0.0 1.6 3.4 0.7 0.7 0.0 1.4 1.8 2.3 0.0

0.0 0.7 0.7 3.9 0.0 1.8 1.4 2.1 1.6 2.1

0.0 0.7 0.7 0.0 3.4 0.0 1.6 1.1 0.7 2.3

0.0 1.4 0.0 1.8 0.0 3.0 1.9 0.0 1.1 1.6

1.1 1.8 1.4 1.4 1.6 1.9 2.9 0.0 1.1 0.0

1.6 1.8 1.8 2.1 1.1 0.0 0.0 4.0 0.0 1.4

1.1 1.1 2.3 1.6 0.7 1.1 1.1 0.0 2.4 1.1

2.3 1.4 0.0 2.1 2.3 1.6 0.0 1.4 1.1 3.1

0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

4

3.4 0.0 0.7 0.0 1.4 0.0 1.4 0.0 1.1 2.1

0.0 3.1 1.1 0.7 1.1 0.7 0.0 1.4 0.7 1.4

0.7 1.1 3.7 1.8 1.1 0.0 0.0 2.2 2.1 0.0

0.0 0.7 1.8 3.8 0.0 1.9 0.7 1.9 0.7 1.6

1.4 1.1 1.1 0.0 3.1 0.7 1.8 1.1 1.1 2.6

0.0 0.7 0.0 1.9 0.7 3.3 1.6 0.0 1.1 0.7

1.4 0.0 0.0 0.7 1.8 1.6 3.6 0.0 0.7 0.0

0.0 1.4 2.2 1.9 1.1 0.0 0.0 3.8 0.0 1.1

1.1 0.7 2.1 0.7 1.1 1.1 0.7 0.0 3.0 1.1

2.1 1.4 0.0 1.6 2.6 0.7 0.0 1.1 1.1 3.1

0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

6

3.7 0.0 1.1 0.0 0.0 0.0 1.4 0.0 0.7 1.8

0.0 3.8 0.7 0.0 0.0 0.0 1.6 1.8 0.7 0.0

1.1 0.7 3.4 1.6 0.0 0.0 0.0 1.6 1.4 0.7

0.0 0.0 1.6 3.7 0.0 1.1 0.0 1.1 0.0 1.6

0.0 0.0 0.0 0.0 3.8 0.7 1.4 0.7 1.6 1.4

0.0 0.0 0.0 1.1 0.7 3.1 1.4 0.0 1.4 0.7

1.4 1.6 0.0 0.0 1.4 1.4 3.7 0.0 0.0 0.0

0.0 1.8 1.6 1.1 0.7 0.0 0.0 4.2 0.0 0.7

0.7 0.7 1.4 0.0 1.6 1.4 0.0 0.0 3.6 1.1

1.8 0.0 0.7 1.6 1.4 0.7 0.0 0.7 1.1 3.4

0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

8

3.4 0.0 0.0 0.0 0.0 0.0 1.1 1.4 0.0 1.8

0.0 3.6 0.7 0.0 0.0 0.0 0.0 1.4 0.7 0.7

0.0 0.7 3.4 0.7 0.0 0.0 0.0 1.9 1.4 1.1

0.0 0.0 0.7 3.5 0.0 1.6 0.7 1.8 1.4 1.6

0.0 0.0 0.0 0.0 3.7 0.0 0.7 0.7 0.0 2.2

0.0 0.0 0.0 1.6 0.0 3.3 0.0 0.0 1.4 1.4

1.1 0.0 0.0 0.7 0.7 0.0 3.7 0.0 0.7 0.0

1.4 1.4 1.9 1.8 0.7 0.0 0.0 4.2 0.0 1.1

0.0 0.7 1.4 1.4 0.0 1.4 0.7 0.0 3.8 1.1

1.8 0.7 1.1 1.6 2.2 1.4 0.0 1.1 1.1 3.7

0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

10

3.7 0.0 0.7 0.0 0.0 0.7 1.6 0.0 1.1 0.7

0.0 3.4 0.7 0.0 0.0 0.7 0.0 0.0 1.1 1.1

0.7 0.7 3.6 0.7 0.0 0.0 0.0 1.6 0.0 0.0

0.0 0.0 0.7 3.6 0.0 1.1 0.0 1.4 0.7 0.7

0.0 0.0 0.0 0.0 3.9 0.0 0.7 0.7 1.1 2.2

0.7 0.7 0.0 1.1 0.0 3.5 1.9 0.0 1.4 0.7

1.6 0.0 0.0 0.0 0.7 1.9 4.0 0.0 0.7 0.0

0.0 0.0 1.6 1.4 0.7 0.0 0.0 4.0 0.0 1.4

1.1 1.1 0.0 0.7 1.1 1.4 0.7 0.0 3.5 1.6

0.7 1.1 0.0 0.7 2.2 0.7 0.0 1.4 1.6 3.7

0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

12

3.0 0.0 0.0 0.0 0.0 0.7 1.1 0.7 1.1 1.4

0.0 4.0 0.7 0.0 0.0 0.0 0.7 1.4 0.0 0.0

0.0 0.7 3.7 0.0 1.4 0.0 0.7 1.4 1.1 0.7

0.0 0.0 0.0 3.7 0.0 1.4 0.0 1.1 1.6 1.4

0.0 0.0 1.4 0.0 3.4 0.0 0.0 0.7 1.1 1.4

0.7 0.0 0.0 1.4 0.0 3.6 0.7 0.0 1.1 0.7

1.1 0.7 0.7 0.0 0.0 0.7 4.0 0.0 0.0 0.0

0.7 1.4 1.4 1.1 0.7 0.0 0.0 4.0 0.0 1.4

1.1 0.0 1.1 1.6 1.1 1.1 0.0 0.0 3.9 1.6

1.4 0.0 0.7 1.4 1.4 0.7 0.0 1.4 1.6 3.2

0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

14

3.6 0.0 0.0 0.0 0.0 0.0 0.7 0.7 1.1 1.4

0.0 3.8 0.7 0.0 0.0 0.0 0.7 1.8 0.0 1.1

0.0 0.7 3.8 1.1 0.0 0.0 1.1 1.8 0.7 1.1

0.0 0.0 1.1 3.7 0.0 1.8 0.0 1.6 0.7 1.4

0.0 0.0 0.0 0.0 3.1 0.7 1.1 0.0 0.0 1.4

0.0 0.0 0.0 1.8 0.7 3.8 1.1 0.0 1.4 1.6

0.7 0.7 1.1 0.0 1.1 1.1 3.6 0.0 0.7 0.0

0.7 1.8 1.8 1.6 0.0 0.0 0.0 4.1 0.7 1.4

1.1 0.0 0.7 0.7 0.0 1.4 0.7 0.7 3.4 0.7

1.4 1.1 1.1 1.4 1.4 1.6 0.0 1.4 0.7 3.6

0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

16

4.0 0.0 1.1 0.0 0.0 0.0 1.6 0.7 1.1 0.0

0.0 3.7 0.7 0.7 0.0 0.7 0.7 1.4 0.7 0.0

1.1 0.7 3.5 1.4 1.1 0.0 0.0 1.6 1.6 1.4

0.0 0.7 1.4 3.9 0.0 1.1 0.0 0.0 1.4 0.7

0.0 0.0 1.1 0.0 3.9 0.0 0.0 0.0 0.7 1.9

0.0 0.7 0.0 1.1 0.0 3.7 1.1 0.0 0.0 0.7

1.6 0.7 0.0 0.0 0.0 1.1 3.9 0.0 0.7 0.0

0.7 1.4 1.6 0.0 0.0 0.0 0.0 3.7 0.0 1.4

1.1 0.7 1.6 1.4 0.7 0.0 0.7 0.0 3.2 1.4

0.0 0.0 1.4 0.7 1.9 0.7 0.0 1.4 1.4 3.4

0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

18

4.0 0.0 0.0 0.0 0.0 0.0 1.1 0.0 0.0 1.1

0.0 3.7 0.0 1.1 0.0 0.7 0.0 0.7 0.7 0.7

0.0 0.0 3.5 0.7 0.0 0.0 0.0 1.1 0.7 0.0

0.0 1.1 0.7 3.7 0.0 1.4 0.7 1.1 1.1 1.1

0.0 0.0 0.0 0.0 3.7 0.0 0.0 0.0 1.1 1.9

0.0 0.7 0.0 1.4 0.0 3.8 0.7 0.7 1.1 1.4

1.1 0.0 0.0 0.7 0.0 0.7 3.8 0.0 0.0 0.0

0.0 0.7 1.1 1.1 0.0 0.7 0.0 4.0 0.0 1.4

0.0 0.7 0.7 1.1 1.1 1.1 0.0 0.0 3.6 1.1

1.1 0.7 0.0 1.1 1.9 1.4 0.0 1.4 1.1 3.9

0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

20

3.7 0.7 0.0 0.0 0.0 0.0 0.7 1.1 1.4 1.1

0.7 3.1 1.1 0.0 0.0 0.7 1.1 1.4 1.1 1.1

0.0 1.1 3.6 1.1 0.0 0.0 0.0 0.7 1.9 0.0

0.0 0.0 1.1 3.6 0.0 1.1 0.7 1.4 0.0 1.1

0.0 0.0 0.0 0.0 3.8 0.7 0.0 1.4 0.7 1.8

0.0 0.7 0.0 1.1 0.7 3.6 1.6 0.0 0.0 0.0

0.7 1.1 0.0 0.7 0.0 1.6 4.1 0.0 1.1 0.0

1.1 1.4 0.7 1.4 1.4 0.0 0.0 4.0 0.0 1.1

1.4 1.1 1.9 0.0 0.7 0.0 1.1 0.0 3.7 1.4

1.1 1.1 0.0 1.1 1.8 0.0 0.0 1.1 1.4 3.6

0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

22

3.7 0.0 1.1 0.0 0.0 0.0 0.7 0.0 1.1 0.0

0.0 3.9 0.0 0.0 0.0 0.7 0.7 1.4 0.7 0.0

1.1 0.0 3.8 1.1 1.1 0.0 0.0 1.6 1.1 0.0

0.0 0.0 1.1 3.9 0.0 1.4 0.0 1.9 0.7 0.7

0.0 0.0 1.1 0.0 3.9 0.0 1.1 0.0 1.1 2.1

0.0 0.7 0.0 1.4 0.0 3.4 0.7 1.1 0.7 0.7

0.7 0.7 0.0 0.0 1.1 0.7 3.6 0.0 0.0 0.0

0.0 1.4 1.6 1.9 0.0 1.1 0.0 3.8 0.0 0.0

1.1 0.7 1.1 0.7 1.1 0.7 0.0 0.0 3.4 1.1

0.0 0.0 0.0 0.7 2.1 0.7 0.0 0.0 1.1 4.0

0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

24

3.9 0.0 0.0 0.0 0.7 0.7 1.6 0.7 0.7 1.4

0.0 3.7 0.7 0.0 0.0 0.7 0.0 1.4 1.1 0.0

0.0 0.7 3.6 1.4 1.1 0.0 0.7 0.7 0.7 0.7

0.0 0.0 1.4 3.7 0.0 1.6 0.0 1.1 0.7 1.6

0.7 0.0 1.1 0.0 3.2 0.7 0.0 0.7 1.1 1.8

0.7 0.7 0.0 1.6 0.7 4.0 1.1 0.0 1.1 0.0

1.6 0.0 0.7 0.0 0.0 1.1 3.7 0.0 1.4 0.0

0.7 1.4 0.7 1.1 0.7 0.0 0.0 4.2 0.0 1.4

0.7 1.1 0.7 0.7 1.1 1.1 1.4 0.0 3.1 0.7

1.4 0.0 0.7 1.6 1.8 0.0 0.0 1.4 0.7 3.4

0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

26

3.7 0.0 0.7 0.7 0.0 0.0 0.7 1.4 0.7 0.7

0.0 3.8 0.0 0.0 0.0 0.7 0.7 1.6 0.0 1.4

0.7 0.0 3.4 0.0 0.7 0.0 0.0 1.4 1.4 0.0

0.7 0.0 0.0 3.6 0.0 1.1 0.0 1.8 0.0 0.0

0.0 0.0 0.7 0.0 3.8 0.0 1.1 0.7 0.7 2.2

0.0 0.7 0.0 1.1 0.0 3.5 0.7 0.0 1.1 1.1

0.7 0.7 0.0 0.0 1.1 0.7 4.0 0.0 0.7 0.0

1.4 1.6 1.4 1.8 0.7 0.0 0.0 4.1 0.0 0.7

0.7 0.0 1.4 0.0 0.7 1.1 0.7 0.0 3.5 1.4

0.7 1.4 0.0 0.0 2.2 1.1 0.0 0.7 1.4 3.7

0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

28

4.1 0.0 1.1 0.0 0.0 0.0 0.0 0.0 0.0 1.4

0.0 3.4 1.1 0.0 0.0 0.0 0.0 0.7 0.7 1.6

1.1 1.1 3.4 0.7 0.0 0.0 0.0 1.1 1.4 0.0

0.0 0.0 0.7 4.0 0.0 1.8 0.0 0.0 0.0 1.1

0.0 0.0 0.0 0.0 3.8 0.7 0.7 0.0 0.7 1.9

0.0 0.0 0.0 1.8 0.7 3.6 1.1 0.0 1.6 0.7

0.0 0.0 0.0 0.0 0.7 1.1 3.9 0.0 0.7 0.0

0.0 0.7 1.1 0.0 0.0 0.0 0.0 3.9 0.0 0.7

0.0 0.7 1.4 0.0 0.7 1.6 0.7 0.0 3.7 1.1

1.4 1.6 0.0 1.1 1.9 0.7 0.0 0.7 1.1 3.6

0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

30

3.6 0.0 0.0 0.0 1.1 0.0 0.7 1.4 0.7 1.6

0.0 3.8 0.0 0.0 0.0 0.0 0.0 0.7 1.1 0.7

0.0 0.0 3.6 1.1 0.0 0.7 0.0 1.6 1.4 1.1

0.0 0.0 1.1 3.8 0.0 0.7 0.0 0.0 0.0 1.4

1.1 0.0 0.0 0.0 3.6 0.7 0.7 1.1 0.7 1.4

0.0 0.0 0.7 0.7 0.7 3.6 1.1 0.0 1.1 1.6

0.7 0.0 0.0 0.0 0.7 1.1 4.0 0.0 0.7 0.0

1.4 0.7 1.6 0.0 1.1 0.0 0.0 3.9 0.0 1.9

0.7 1.1 1.4 0.0 0.7 1.1 0.7 0.0 3.6 1.8

1.6 0.7 1.1 1.4 1.4 1.6 0.0 1.9 1.8 3.5

0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

32

3.7 0.0 0.7 0.0 0.0 0.0 0.7 0.0 0.0 1.4

0.0 3.8 0.0 0.0 0.0 0.0 0.0 1.1 0.0 0.0

0.7 0.0 4.0 0.7 0.7 0.0 1.1 1.6 1.9 0.0

0.0 0.0 0.7 4.0 0.0 1.4 0.0 1.1 1.1 1.4

0.0 0.0 0.7 0.0 3.7 0.0 0.7 0.7 0.0 1.6

0.0 0.0 0.0 1.4 0.0 3.6 1.1 0.0 0.0 0.7

0.7 0.0 1.1 0.0 0.7 1.1 3.4 0.0 0.7 0.0

0.0 1.1 1.6 1.1 0.7 0.0 0.0 3.9 0.7 1.4

0.0 0.0 1.9 1.1 0.0 0.0 0.7 0.7 3.7 1.1

1.4 0.0 0.0 1.4 1.6 0.7 0.0 1.4 1.1 3.6

0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

34

3.7 0.0 0.7 0.0 0.0 0.7 0.7 0.7 1.1 1.6

0.0 3.1 0.0 0.0 0.0 0.0 0.0 0.7 0.7 0.7

0.7 0.0 3.7 0.7 0.0 0.0 0.0 1.8 1.6 0.0

0.0 0.0 0.7 4.0 0.0 2.1 1.1 1.4 1.4 1.9

0.0 0.0 0.0 0.0 3.7 0.0 1.1 1.1 1.4 2.1

0.7 0.0 0.0 2.1 0.0 3.7 1.1 0.0 1.1 0.0

0.7 0.0 0.0 1.1 1.1 1.1 3.6 0.0 0.0 0.0

0.7 0.7 1.8 1.4 1.1 0.0 0.0 3.7 0.0 0.7

1.1 0.7 1.6 1.4 1.4 1.1 0.0 0.0 3.9 0.7

1.6 0.7 0.0 1.9 2.1 0.0 0.0 0.7 0.7 3.4

0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

36

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.5 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 5.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

38

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.5 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 5.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Figure 15: Annotated heatmaps for verifying fitting and refining in MNIST. The values are the logarithm
of the occurrence of pairings (i, j) plus 1 in a batch of size 256. Darker colors indicate higher values. The
epochs, ranging from 0 to 38, are displayed at the bottom of each heatmap. Initially, there are few nonzero
entries, suggesting limited sample diversity. As training progresses, more entries become nonzero, indicating
wider sample distribution across mode space, which corresponds to the fitting phase. Off-diagonal entries
reflect mode mixture, which diminishes over training, confirming the refining phase. Remarkably, mode
mixture persists even at the closure of the refining phase. Note that by the 36th epoch, only two entries
remain nonzero, indicating the collapsing phase.

36

Under review as submission to TMLR

Verifying fitting and refining in Fashion MNIST. We verify the existence of fitting and refining
on Fashion MNIST using annotated heatmaps. The heatmap values are the logarithm of pairings (i, j)
occurrence plus 1 in batches of size 256, with darker colors indicating higher values. Each epoch is divided
into 5 collections of batches, denoted as e, b where e is the epoch and b is the batch collection within the
epoch. Initially, there are only two nonzero entries, which suggests limited sample diversity. As training
progresses, more entries become nonzero, indicating a broader sample distribution across the mode space
during the fitting phase. Notably, unlike MNIST, the phases of fitting and refining in Fashion MNIST occur
quickly, evidenced by the rapid stabilization of off-diagonal values. It is important to note that the large
values in some off-diagonal entries do not necessarily imply severe mode mixture. For example, “T-shirt”,
“Pullover”, and “Shirt” are frequently confused in Fashion MNIST classification tasks.

0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.5 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 5.5 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0, 0
0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

0.0 0.0 0.0 0.0 0.0 0.0 3.5 0.0 4.8 3.0

0.0 0.0 0.0 0.0 0.0 0.0 1.6 0.0 1.1 0.0

0.0 0.0 0.0 0.0 1.4 0.0 2.8 0.0 1.4 1.1

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 1.4 0.0 0.0 0.0 0.0 0.0 0.7 0.0

0.0 0.0 0.0 0.0 0.0 2.2 0.0 1.1 0.0 3.6

3.5 1.6 2.8 0.0 0.0 0.0 0.0 0.0 0.7 0.0

0.0 0.0 0.0 0.0 0.0 1.1 0.0 0.0 0.0 1.8

4.8 1.1 1.4 0.0 0.7 0.0 0.7 0.0 3.1 0.0

3.0 0.0 1.1 0.0 0.0 3.6 0.0 1.8 0.0 1.6

0, 1
0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

1.1 0.0 0.0 1.1 0.0 0.0 3.7 0.0 4.7 3.0

0.0 0.0 0.0 0.0 0.0 0.0 1.4 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7

1.1 0.0 0.0 1.1 0.0 0.0 0.0 0.0 0.0 0.7

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 2.9 0.0 1.8 1.1 3.2

3.7 1.4 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.0

0.0 0.0 0.0 0.0 0.0 1.8 0.0 0.0 0.0 1.1

4.7 0.0 0.0 0.0 0.0 1.1 0.7 0.0 4.4 0.0

3.0 0.0 0.7 0.7 0.0 3.2 0.0 1.1 0.0 0.0

0, 2
0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

0.0 0.0 0.0 0.0 0.0 0.0 3.8 0.0 4.4 3.1

0.0 3.7 0.0 1.6 0.0 0.0 1.8 0.0 0.0 0.7

0.0 0.0 0.0 0.0 0.0 0.0 2.2 0.0 0.0 0.7

0.0 1.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 1.6 0.0 0.7 0.7 3.4

3.8 1.8 2.2 0.0 0.0 0.0 0.0 0.0 1.4 0.0

0.0 0.0 0.0 0.0 0.0 0.7 0.0 1.6 0.0 2.6

4.4 0.0 0.0 0.0 0.0 0.7 1.4 0.0 3.7 0.0

3.1 0.7 0.7 0.0 0.0 3.4 0.0 2.6 0.0 1.1

0, 3
0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

2.2 0.7 0.0 0.7 0.7 0.0 3.6 0.0 4.4 3.0

0.7 3.6 0.0 0.0 0.0 0.0 1.6 0.0 0.7 0.7

0.0 0.0 1.1 0.0 1.1 0.0 2.6 0.0 0.0 0.7

0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7

0.7 0.0 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 1.6 0.0 1.6 1.1 3.4

3.6 1.6 2.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 1.6 0.0 0.0 0.0 1.6

4.4 0.7 0.0 0.0 0.0 1.1 0.0 0.0 4.2 0.0

3.0 0.7 0.7 0.7 0.0 3.4 0.0 1.6 0.0 1.9

0, 4

0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

0.0 0.0 0.0 0.0 0.0 0.0 3.6 0.0 4.6 2.3

0.0 3.4 0.0 1.4 0.0 0.0 2.1 0.0 0.0 0.7

0.0 0.0 0.0 0.0 0.0 0.0 2.3 0.0 0.7 0.7

0.0 1.4 0.0 1.1 0.0 0.0 0.0 0.0 0.0 0.7

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 2.9 0.0 2.9 1.4 3.5

3.6 2.1 2.3 0.0 0.0 0.0 0.0 0.0 0.7 0.0

0.0 0.0 0.0 0.0 0.0 2.9 0.0 1.6 0.0 1.6

4.6 0.0 0.7 0.0 0.0 1.4 0.7 0.0 3.0 0.0

2.3 0.7 0.7 0.7 0.0 3.5 0.0 1.6 0.0 2.2

1, 0
0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

1.6 0.0 0.0 1.6 0.0 0.0 3.8 0.0 3.8 2.6

0.0 3.9 0.0 0.0 0.0 0.0 1.8 0.0 0.0 0.7

0.0 0.0 1.6 0.0 2.6 0.0 3.0 0.0 0.0 0.0

1.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7

0.0 0.0 2.6 0.0 0.0 0.0 0.0 0.0 0.7 0.0

0.0 0.0 0.0 0.0 0.0 3.1 0.0 2.8 1.6 3.2

3.8 1.8 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 2.8 0.0 1.6 0.0 2.2

3.8 0.0 0.0 0.0 0.7 1.6 0.0 0.0 3.2 0.0

2.6 0.7 0.0 0.7 0.0 3.2 0.0 2.2 0.0 2.8

1, 1
0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

0.0 0.7 0.0 1.1 0.0 0.0 3.8 0.0 4.0 1.9

0.7 3.5 0.0 1.9 0.0 0.0 1.4 0.0 0.7 0.0

0.0 0.0 0.0 0.0 0.7 0.0 3.2 0.0 0.0 1.1

1.1 1.9 0.0 1.1 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 2.2 0.0 2.6 0.7 3.5

3.8 1.4 3.2 0.0 0.0 0.0 1.9 0.0 0.7 0.0

0.0 0.0 0.0 0.0 0.0 2.6 0.0 0.0 0.0 2.6

4.0 0.7 0.0 0.0 0.0 0.7 0.7 0.0 3.6 0.0

1.9 0.0 1.1 0.0 0.0 3.5 0.0 2.6 0.0 2.8

1, 2
0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

1.9 0.0 0.0 1.1 0.0 0.0 3.6 0.0 4.1 2.3

0.0 3.9 0.0 1.9 0.0 0.0 1.4 0.0 0.0 0.7

0.0 0.0 0.0 0.0 0.0 0.0 3.4 0.0 0.0 0.0

1.1 1.9 0.0 1.6 0.0 0.0 0.0 0.0 0.0 0.7

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 3.3 0.0 2.5 1.6 3.0

3.6 1.4 3.4 0.0 0.0 0.0 0.0 0.0 0.7 0.0

0.0 0.0 0.0 0.0 0.0 2.5 0.0 0.0 0.0 2.1

4.1 0.0 0.0 0.0 0.0 1.6 0.7 0.0 3.3 0.0

2.3 0.7 0.0 0.7 0.0 3.0 0.0 2.1 0.0 3.3

1, 3
0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

1.6 1.1 0.0 1.1 0.0 0.0 3.6 0.0 3.7 1.9

1.1 4.0 0.0 1.9 0.0 0.0 1.1 0.0 0.0 0.0

0.0 0.0 1.9 0.0 1.8 0.0 3.2 0.0 0.0 0.0

1.1 1.9 0.0 1.6 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 1.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 2.4 0.0 2.7 1.8 3.4

3.6 1.1 3.2 0.0 0.0 0.0 0.0 0.0 0.7 0.0

0.0 0.0 0.0 0.0 0.0 2.7 0.0 1.1 0.0 2.6

3.7 0.0 0.0 0.0 0.0 1.8 0.7 0.0 3.7 0.0

1.9 0.0 0.0 0.0 0.0 3.4 0.0 2.6 0.0 3.4

1, 4

0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

0.0 0.7 0.0 1.4 0.0 0.0 4.0 0.0 3.8 1.8

0.7 4.3 0.0 1.6 0.7 0.0 1.1 0.0 0.0 0.0

0.0 0.0 0.0 0.0 1.1 0.0 3.3 0.0 0.0 0.0

1.4 1.6 0.0 1.9 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.7 1.1 0.0 0.0 0.0 0.0 0.0 0.7 0.0

0.0 0.0 0.0 0.0 0.0 3.1 0.0 2.3 1.6 2.9

4.0 1.1 3.3 0.0 0.0 0.0 0.0 0.0 0.7 0.0

0.0 0.0 0.0 0.0 0.0 2.3 0.0 1.1 0.7 1.9

3.8 0.0 0.0 0.0 0.7 1.6 0.7 0.7 3.5 0.0

1.8 0.0 0.0 0.0 0.0 2.9 0.0 1.9 0.0 2.7

2, 0
0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

0.0 0.0 0.0 1.1 0.0 0.0 3.8 0.0 3.5 1.4

0.0 4.2 0.0 1.1 0.0 0.0 0.7 0.0 0.0 0.0

0.0 0.0 0.0 0.0 1.9 0.0 3.6 0.0 0.0 0.0

1.1 1.1 0.0 1.6 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 1.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 1.1 0.0 2.5 0.0 3.0

3.8 0.7 3.6 0.0 0.0 0.0 1.1 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 2.5 0.0 3.6 0.0 2.8

3.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.7 0.0

1.4 0.0 0.0 0.0 0.0 3.0 0.0 2.8 0.0 3.8

2, 1
0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

1.1 0.0 0.0 1.8 0.0 0.0 4.0 0.0 3.4 2.3

0.0 4.0 0.0 0.7 0.0 0.0 1.4 0.0 0.0 0.0

0.0 0.0 0.0 0.0 2.1 0.0 3.6 0.0 0.7 1.1

1.8 0.7 0.0 2.2 0.0 0.0 0.0 0.0 0.0 0.7

0.0 0.0 2.1 0.0 0.0 0.0 0.0 0.0 0.7 0.0

0.0 0.0 0.0 0.0 0.0 3.4 0.0 2.7 0.7 2.9

4.0 1.4 3.6 0.0 0.0 0.0 0.0 0.0 0.7 0.0

0.0 0.0 0.0 0.0 0.0 2.7 0.0 2.2 0.0 1.9

3.4 0.0 0.7 0.0 0.7 0.7 0.7 0.0 3.4 0.0

2.3 0.0 1.1 0.7 0.0 2.9 0.0 1.9 0.0 2.4

2, 2
0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

1.9 0.0 0.0 1.4 0.7 0.0 3.9 0.0 3.5 1.1

0.0 3.9 0.0 1.8 0.0 0.0 1.4 0.0 0.0 1.1

0.0 0.0 1.9 0.0 2.4 0.0 3.5 0.0 0.7 0.0

1.4 1.8 0.0 2.7 0.0 0.0 0.7 0.0 0.0 0.0

0.7 0.0 2.4 0.0 0.0 0.0 0.0 0.0 0.7 0.0

0.0 0.0 0.0 0.0 0.0 3.4 0.0 2.7 0.7 2.8

3.9 1.4 3.5 0.7 0.0 0.0 0.0 0.0 0.7 0.0

0.0 0.0 0.0 0.0 0.0 2.7 0.0 0.0 0.0 2.2

3.5 0.0 0.7 0.0 0.7 0.7 0.7 0.0 2.8 0.0

1.1 1.1 0.0 0.0 0.0 2.8 0.0 2.2 0.0 3.6

2, 3
0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

1.9 0.0 0.0 1.1 0.0 0.0 4.2 0.0 3.6 1.6

0.0 3.9 0.0 1.4 0.0 0.0 0.7 0.0 0.0 0.7

0.0 0.0 1.9 0.0 1.1 0.0 3.4 0.0 0.0 0.0

1.1 1.4 0.0 2.6 0.0 0.0 0.7 0.0 0.0 0.7

0.0 0.0 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 2.8 0.0 2.9 0.0 2.8

4.2 0.7 3.4 0.7 0.0 0.0 1.1 0.0 0.7 0.0

0.0 0.0 0.0 0.0 0.0 2.9 0.0 1.6 0.0 1.1

3.6 0.0 0.0 0.0 0.0 0.0 0.7 0.0 3.2 0.0

1.6 0.7 0.0 0.7 0.0 2.8 0.0 1.1 0.0 3.2

2, 4

0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

1.9 0.7 0.0 1.6 0.0 0.0 3.0 0.0 3.4 1.9

0.7 3.9 0.0 0.0 0.0 0.0 1.8 0.0 0.0 0.0

0.0 0.0 1.1 0.0 1.4 0.0 3.6 0.0 0.0 0.0

1.6 0.0 0.0 1.6 0.0 0.0 0.7 0.0 0.0 0.0

0.0 0.0 1.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 2.6 0.0 2.4 0.0 3.4

3.0 1.8 3.6 0.7 0.0 0.0 1.1 0.0 1.1 0.0

0.0 0.0 0.0 0.0 0.0 2.4 0.0 1.6 0.0 2.8

3.4 0.0 0.0 0.0 0.0 0.0 1.1 0.0 4.4 0.0

1.9 0.0 0.0 0.0 0.0 3.4 0.0 2.8 0.0 3.3

3, 0
0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

1.6 0.0 0.0 0.7 0.7 0.0 3.7 0.0 3.7 2.1

0.0 3.9 0.0 1.4 0.0 0.0 1.6 0.0 0.0 0.0

0.0 0.0 1.6 0.0 1.8 0.0 3.3 0.0 0.0 0.0

0.7 1.4 0.0 1.9 0.0 0.0 0.0 0.0 0.0 0.0

0.7 0.0 1.8 0.0 0.0 0.0 0.0 0.0 0.0 0.7

0.0 0.0 0.0 0.0 0.0 3.7 0.0 2.9 1.1 3.1

3.7 1.6 3.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 2.9 0.0 1.6 0.0 2.5

3.7 0.0 0.0 0.0 0.0 1.1 0.0 0.0 3.7 0.0

2.1 0.0 0.0 0.0 0.7 3.1 0.0 2.5 0.0 2.6

3, 1
0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

2.4 0.7 0.0 1.1 0.0 0.0 4.1 0.0 3.6 1.8

0.7 3.9 0.0 1.6 0.0 0.0 0.7 0.0 0.7 0.7

0.0 0.0 0.0 0.0 1.4 0.0 3.3 0.0 0.0 0.0

1.1 1.6 0.0 3.3 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 1.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 3.0 0.0 3.1 0.0 2.6

4.1 0.7 3.3 0.0 0.0 0.0 1.6 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 3.1 0.0 1.6 0.7 1.4

3.6 0.7 0.0 0.0 0.0 0.0 0.0 0.7 2.9 0.0

1.8 0.7 0.0 0.0 0.0 2.6 0.0 1.4 0.0 3.6

3, 2
0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

1.9 0.0 0.0 1.4 0.0 0.0 3.9 0.0 3.8 1.1

0.0 3.8 0.0 1.6 0.0 0.0 1.6 0.0 0.0 0.0

0.0 0.0 0.0 0.0 1.4 0.0 3.4 0.0 0.0 0.0

1.4 1.6 0.0 1.1 0.0 0.0 0.0 0.0 0.0 0.7

0.0 0.0 1.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 3.9 0.0 2.4 1.4 2.6

3.9 1.6 3.4 0.0 0.0 0.0 1.9 0.0 0.7 0.0

0.0 0.0 0.0 0.0 0.0 2.4 0.0 0.0 0.0 2.6

3.8 0.0 0.0 0.0 0.0 1.4 0.7 0.0 3.8 0.0

1.1 0.0 0.0 0.7 0.0 2.6 0.0 2.6 0.0 2.9

3, 3
0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

1.6 0.0 0.0 1.6 0.0 0.0 3.8 0.0 3.6 1.9

0.0 4.0 0.0 1.8 0.0 0.0 0.7 0.0 0.0 0.0

0.0 0.0 1.1 0.0 1.1 0.0 3.0 0.0 0.0 0.7

1.6 1.8 0.0 3.1 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 3.8 0.0 2.6 1.6 2.8

3.8 0.7 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 2.6 0.0 2.9 0.0 1.9

3.6 0.0 0.0 0.0 0.0 1.6 0.0 0.0 3.4 0.0

1.9 0.0 0.7 0.0 0.0 2.8 0.0 1.9 0.0 3.4

3, 4

Figure 16: Annotated heatmaps for verifying fitting and refining in Fashion MNIST. The labels 0 to 9 mean
“T-shirt/top”, “Trouser”, “Pullover”, “Dress”, “Coat”, “Sandal”, “Shirt”, “Sneaker”, “Bag”, and “Ankle
boot”, respectively. The values are the logarithm of the occurrence of pairings (i, j) plus 1 in a batch of size
256. Darker colors indicate higher values. Each epoch is equally divided into 5 collection of batches. The
label “e, b” at the bottom of each heatmap denotes the bth collection within the eth epoch. Therefore, the
heatmaps displayed are for the first 4 epochs only. Initially, the few nonzero entries indicate limited sample
diversity. As training progresses, more entries became nonzero, reflecting a broader sample distribution
across the mode space, which corresponds to the fitting phase. Unlike MNIST, the phases of fitting and
refining in Fashion MNIST take place rapidly because the off-diagonal values stabilize quickly. It is important
to note that the large values of some off-diagonal entries do not necessarily imply severe mode mixture; for
instance, “T-shirt”, “Pullover”, and “Shirt” are often confused in Fashion MNIST classification tasks.

37

Under review as submission to TMLR

G.4 Early Stopping on Gaussian Mixture: More Training Runs

We train NSGAN on the 3-dimensional Gaussian mixture dataset and record down ||∇dω/dω||2 each epoch
until the maximum specified epochs. The threshold is set to 8.9 for reasons in appendix F.2. Instead of
halting training when this norm exceeds the threshold, we opt to continue training, which allows us to assess
the sample quality both before and after the stop.

In fig. 17, we present the tendency of ||∇dω/dω||2 against epochs in four trials. We consistently observe
a pattern where these values initially increase, then decrease to nearly zero, subsequently rise above the
threshold of 8.9, and continue to increase thereafter. This phenomenon can be empirically understood as
follows: during the fitting phase, particles are updated to relatively large distances to explore modes; in the
refining phase, most particles stabilize near the modes, while the remainder converge to the modes. Finally,
in the collapsing phase discussed in section 5.1, particles are pushed away from the modes. The generated
samples in the four trials are displayed in fig. 18, fig. 19, fig. 20, and fig. 21, respectively.

Figure 17: The values of ∥∇dω/dω∥2 against epochs in four trials. We mark the stopping epochs by red
crosses. The patterns of ∥∇dω/dω∥2 values across epochs are consistent in all the four training runs. Ini-
tially, these values increase, then decrease to nearly zero, and subsequently rise above the threshold of 8.9,
continuing to increase thereafter.

38

Under review as submission to TMLR

0 10 20 30 40

50 60 70 80 90

100 110 120 130 140

150 160 170 180 190

Figure 18: Generated samples in trial 0. The stopping point is the 76th epoch. Before the stopping point,
generated samples demonstrate notable quality, particularly evident around the 50th epoch. As training
approaches the stopping point, they start to deviate from the modes. After the stopping, they undergo a
gradual deterioration, ultimately collapsing to approximately half of the 8 modes.

0 10 20 30 40

50 60 70 80 90

100 110 120 130 140

150 160 170 180 190

Figure 19: Generated samples in trial 1. The stopping point is the 60th epoch. Before the stopping point,
generated samples demonstrate notable quality, particularly evident around the 50th epoch. As training
approaches the stopping point, they start to deviate from the modes. After the stopping, they undergo a
gradual deterioration, ultimately collapsing to approximately half of the 8 modes.

39

Under review as submission to TMLR

0 10 20 30 40

50 60 70 80 90

100 110 120 130 140

150 160 170 180 190

Figure 20: Generated samples in trial 2. The stopping point is the 67th epoch. Before the stopping point,
generated samples demonstrate notable quality, particularly evident around the 50th epoch. As training
approaches the stopping point, they start to deviate from the modes. After the stopping, they undergo a
gradual deterioration, ultimately collapsing to approximately half of the 8 modes.

0 10 20 30 40

50 60 70 80 90

100 110 120 130 140

150 160 170 180 190

Figure 21: Generated samples in trial 3. The stopping point is the 77th epoch. Before the stopping point,
generated samples demonstrate notable quality, particularly evident around the 60th epoch. As training
approaches the stopping point, they start to deviate from the modes. After the stopping, they undergo a
gradual deterioration, ultimately collapsing to approximately half of the 8 modes.

40

Under review as submission to TMLR

G.5 Early Stopping on MNIST: More Training Runs

We train NSGAN on MNIST and record down ||∇dω/dω||2 each epoch until the maximum specified epochs.
The threshold is set to 1877 for reasons in appendix F.2. Instead of halting training when this norm exceeds
the threshold, we opt to continue training, which allows us to assess the sample quality both before and after
the stop.

In fig. 22, we present the tendency of ||∇dω/dω||2 against epochs in four trials. We consistently observe a
pattern where these values show a smooth initial increase, followed by turbulent fluctuations, culminating in
a sudden surge surpassing the threshold of 1877, and then dropping to approximately zero thereafter. The
generated samples in the four trials are displayed in fig. 23, fig. 24, fig. 25, and fig. 26, respectively. Note that
these figures should be interpreted from left to right, where each column of images represents the generated
samples from the epoch indicated at the bottom of the column.

Epochs0

1000

2000

3000

4000

||
d

/d
|| 2

Epoch: 41

|| d /d ||2 = 1877
Trial 0

Epochs

||
d

/d
|| 2

Epoch: 33

|| d /d ||2 = 1877
Trial 1

0 20 40 60 80 100
Epochs

0

1000

2000

3000

4000

||
d

/d
|| 2

Epoch: 57

|| d /d ||2 = 1877
Trial 2

0 20 40 60 80 100
Epochs

||
d

/d
|| 2

Epoch: 36

|| d /d ||2 = 1877
Trial 3

Figure 22: The values of ∥∇dω/dω∥2 against epochs in four trials. We mark the stopping epochs by red
crosses. The patterns of ∥∇dω/dω∥2 values across epochs are consistent across in four training runs. The
values exhibit a smooth initial increase, followed by turbulent fluctuations, culminating in a sudden surge
above the 1877 threshold, before dropping to approximately zero.

41

Under review as submission to TMLR

Figure 23: Generated images in trial 0. The stopping point is the 41st epoch. Before reaching the stopping
point, the generated samples exhibit good quality, notably around the 30th epoch. Shortly after the stop,
they are contaminated with noise. Then they gradually regain clarity and ultimately collapse to one of the
modes.

Figure 24: Generated images in trial 1. The stopping point is the 33rd epoch. Before reaching the stopping
point, the generated samples exhibit good quality, notably around the 30th epoch. Shortly after the stop,
they are contaminated with noise. Then they gradually regain clarity and ultimately collapse to one of the
modes.

42

Under review as submission to TMLR

Figure 25: Generated images in trial 2. The stopping point is the 57th epoch. Before reaching the stopping
point, the generated samples exhibit good quality, notably around the 55th epoch. Shortly after the stop,
they are contaminated with noise. Then they gradually regain clarity and ultimately collapse to one of the
modes.

Figure 26: Generated images in trial 3. The stopping point is the 36th epoch. Before reaching the stopping
point, the generated samples exhibit good quality, notably around the 35th epoch. Shortly after the stop,
they are contaminated with noise. Then they gradually regain clarity and ultimately collapse to one of the
modes.

43

Under review as submission to TMLR

G.6 Early Stopping on Fashion MNIST: More Training Runs

We train NSGAN on Fashion MNIST and record down ||∇dω/dω||2 each epoch until the maximum specified
epochs. The threshold is set to 2679 for reasons in appendix F.2. Instead of halting training when this norm
exceeds the threshold, we opt to continue training, which allows us to assess the sample quality both before
and after the stop.

In fig. 27, we present the tendency of ||∇dω/dω||2 against epochs in four trials. We consistently observe a
pattern where these values exhibit a smooth initial increase, followed by turbulent fluctuations, culminating
in a sudden surge to surpass the threshold of 2679. Note that in the phases of fitting and refining, ||∇dω/dω||2
may exceed the threshold as well. This situation justifies the necessity of introducing a warm-up training
iteration parameter Nw in algorithm 2. The generated samples in the four trials are displayed in fig. 28,
fig. 29, fig. 30, and fig. 31, respectively. Note that these figures should be interpreted from left to right,
where each column of images represents the generated samples from the epoch indicated at the bottom of
the column.

Epochs0

1000

2000

3000

4000

5000

||
d

/d
|| 2 Epoch: 77

|| d /d ||2 = 2679
Trial 0

Epochs

||
d

/d
|| 2 Epoch: 68

|| d /d ||2 = 2679
Trial 1

0 25 50 75 100
Epochs

0

1000

2000

3000

4000

5000

||
d

/d
|| 2 Epoch: 72

|| d /d ||2 = 2679
Trial 2

0 25 50 75 100
Epochs

||
d

/d
|| 2 Epoch: 80

|| d /d ||2 = 2679
Trial 3

Figure 27: The values of ∥∇dω/dω∥2 against epochs in four trials. We mark the stopping epochs by red
crosses. Note that only the values of the epochs after Nw = 50 (where Nw is the warm-up training iteration
parameter defined in algorithm 2) that exceed 2679 may be considered as potential stopping points. The
patterns of ∥∇dω/dω∥2 values across epochs are consistent in all four training runs. Initially, there is a
gradual rise, followed by turbulent fluctuations, and eventually a sharp surge above the 2679 threshold.

44

Under review as submission to TMLR

Figure 28: Generated images in trial 0. The stopping point is the 77th epoch. Before the stopping point,
the generated samples demonstrate good quality, particularly evident around the 66th epoch. Shortly after
surpassing this point, they become contaminated by noise. After that, there is a gradual recovery of clarity,
ultimately resulting in convergence towards two specific modes.

Figure 29: Generated images in trial 1. The stopping point is the 68th epoch. Before the stopping point,
the generated samples demonstrate good quality, particularly evident around the 66th epoch. Shortly after
surpassing this point, they become contaminated by noise. After that, there is a gradual recovery of clarity,
ultimately resulting in convergence towards three specific modes.

45

Under review as submission to TMLR

Figure 30: Generated images in trial 2. The stopping point is the 72nd epoch. Before the stopping point,
the generated samples demonstrate good quality, particularly evident around the 66th epoch. Shortly after
surpassing this point, they become contaminated by noise. After that, there is a gradual recovery of clarity,
ultimately resulting in convergence towards four specific modes.

Figure 31: Generated images in trial 3. The stopping point is the 80th epoch. Before the stopping point,
the generated samples demonstrate good quality, particularly evident around the 78th epoch. Shortly after
surpassing this point, they become contaminated by noise. After that, there is a gradual recovery of clarity,
ultimately resulting in convergence towards two specific modes.

46

Under review as submission to TMLR

G.7 Early Stopping on CIFAR-10: More Training Runs

We train NSGAN on CIFAR-10 and record down ||∇dω/dω||2 each epoch until the maximum specified epochs.
The threshold is set to 4391 for reasons in appendix F.2. Instead of halting training when this norm exceeds
the threshold, we opt to continue training, which allows us to assess the sample quality both before and after
the stop.

In fig. 32, we present the tendency of ||∇dω/dω||2 against epochs in four trials. We consistently observe a
pattern where these values exhibit a smooth initial increase, followed by turbulent fluctuations, culminating
in a sudden surge to surpass the threshold of 4391. The generated samples in the four trials are displayed
in fig. 33, fig. 34, fig. 35, and fig. 36, respectively. Note that these figures should be interpreted from left to
right, where each column of images represents the generated samples from the epoch indicated at the bottom
of the column.

Epochs0

2000

4000

6000

8000

10000

||
d

/d
|| 2

Epoch: 76

|| d /d ||2 = 4391
Trial 0

Epochs

||
d

/d
|| 2

Epoch: 93

|| d /d ||2 = 4391
Trial 1

0 25 50 75 100
Epochs

0

2000

4000

6000

8000

10000

||
d

/d
|| 2

Epoch: 68

|| d /d ||2 = 4391
Trial 2

0 25 50 75 100
Epochs

||
d

/d
|| 2

Epoch: 83

|| d /d ||2 = 4391
Trial 3

Figure 32: The values of ∥∇dω/dω∥2 against epochs in four trials. We mark the stopping epochs by red
crosses. The patterns of ∥∇dω/dω∥2 values across epochs are consistent in all four training runs. The values
show a gradual rise at the beginning, followed by turbulent fluctuations, and then suddenly surge above the
threshold of 4391.

47

Under review as submission to TMLR

Figure 33: Generated images in trial 0. The stopping point is the 76th epoch. Before the stopping point,
the generated samples demonstrate good quality, particularly evident around the 72th epoch. Shortly after
surpassing this point, they become contaminated by noise. Afterwards, they regain clarity, but transition
between different modes.

Figure 34: Generated images in trial 1. The stopping point is the 93rd epoch. Before the stopping point,
the generated samples demonstrate good quality, particularly evident around the 78th epoch. Shortly after
surpassing this point, they become contaminated by noise. Afterwards, they regain clarity, but transition
between different modes.

48

Under review as submission to TMLR

Figure 35: Generated images in trial 2. The stopping point is the 68th epoch. Before the stopping point, the
generated samples demonstrate good quality, particularly evident around the 54th epoch. Approaching the
stopping point, they become contaminated by noise. Afterwards, they regain clarity, but transition between
different modes.

Figure 36: Generated images in trial 3. The stopping point is the 83rd epoch. Before the stopping point,
the generated samples demonstrate good quality, particularly evident around the 66th epoch. Shortly after
surpassing this point, they become contaminated by noise. Afterwards, they regain clarity and converge
towards one specific mode.

49

Under review as submission to TMLR

G.8 Comparison Between Our Early Stopping Metric With the FID Score and the Duality Gaps

When evaluating GAN performance, metrics generally fall into two categories: domain-specific and domain-
agnostic. For our comparisons, we chose the FID score (Heusel et al., 2017) to represent domain-specific
metrics, which focus on the quality of generated images, and duality gaps (Grnarova et al., 2019; Sidheekh
et al., 2021) as a representative of domain-agnostic metrics, which assess the optimization process itself.
Notably, our early stopping metric ∥∇dω/dω∥2 (referred to as “the metric” hereafter) is domain-agnostic
and does not require real or generated images.

Comparison with the FID score. We plot the metric and the FID score in the same figure with shared
x-axis. The results of four trials for MNIST, Fashion MNIST and CIFAR-10 are shown respectively in fig. 37,
fig. 38, and fig. 39.

0 20 40 60 80 100
Epochs

0

500

1000

1500

2000

2500

3000

3500

4000

||
d

/d
|| 2

Epoch: 32

100

200

300

400

500

FI
D

Sc
or

e

90% Percentile of || d /d ||2
|| d /d ||2=1877

0 20 40 60 80 100
Epochs

0

500

1000

1500

2000

2500

3000

3500

4000

||
d

/d
|| 2

Epoch: 24

50

100

150

200

250

300

350

400

450

FI
D

Sc
or

e

90% Percentile of || d /d ||2
|| d /d ||2=1877

0 20 40 60 80 100
Epochs

0

500

1000

1500

2000

2500

3000

3500

4000

||
d

/d
|| 2

Epoch: 50

50

100

150

200

250

300

350

400

450

FI
D

Sc
or

e

90% Percentile of || d /d ||2
|| d /d ||2=1877

0 20 40 60 80 100
Epochs

0

500

1000

1500

2000

2500

3000

3500

4000

||
d

/d
|| 2

Epoch: 20

100

200

300

400

500

FI
D

Sc
or

e

90% Percentile of || d /d ||2
|| d /d ||2=1877

Figure 37: The tendency of ∥∇dω/dω∥2 and the FID scores on MNIST in four trials. Initially, the metric
shows a smooth rise, accompanied by a steady decrease in the FID score, indicating the phase of fitting and
refining. Subsequently, the metric exhibits turbulent evolution, and the FID score also rises, signaling the
conclusion of refining and the prelude of collapsing. Then both the metric and FID score soar. Consequently,
the FID score remains consistently high, indicating the collapsing phase.

0 20 40 60 80 100 120
Epochs

0

1000

2000

3000

4000

5000

||
d

/d
|| 2 Epoch: 72

100

200

300

400

500

FI
D

Sc
or

e

90% Percentile of || d /d ||2
|| d /d ||2=2679

0 20 40 60 80 100 120
Epochs

0

1000

2000

3000

4000

5000

||
d

/d
|| 2 Epoch: 66

100

200

300

400

500

FI
D

Sc
or

e

90% Percentile of || d /d ||2
|| d /d ||2=2679

50

Under review as submission to TMLR

0 20 40 60 80 100 120
Epochs

0

1000

2000

3000

4000

5000

||
d

/d
|| 2 Epoch: 82

100

200

300

400

500

600

FI
D

Sc
or

e

90% Percentile of || d /d ||2
|| d /d ||2=2679

0 20 40 60 80 100 120
Epochs

0

1000

2000

3000

4000

5000

||
d

/d
|| 2 Epoch: 80

100

200

300

400

500

FI
D

Sc
or

e

90% Percentile of || d /d ||2
|| d /d ||2=2679

Figure 38: The tendency of ∥∇dω/dω∥2 and the FID scores on Fashion MNIST in four trials. Initially,
the metric shows a smooth rise, accompanied by a steady decrease in the FID score, indicating the phase
of fitting and refining. Subsequently, the metric exhibits turbulent evolution, but the FID score remains
steady. This aligns with our empirical observations in appendix G.6, where generated images demonstrate
good quality despite the rapid transition of particles from modes to modes. Then both the metric and FID
score soar. Consequently, the FID score remains consistently high, indicating the collapsing phase.

0 20 40 60 80 100 120
Epochs

0

1000

2000

3000

4000

5000

6000

||
d

/d
|| 2

Epoch: 79

200

250

300

350

400

450

FI
D

Sc
or

e

90% Percentile of || d /d ||2
|| d /d ||2=4391

0 20 40 60 80 100 120
Epochs

0

1000

2000

3000

4000

5000

6000

||
d

/d
|| 2

Epoch: 89

200

250

300

350

400

450

FI
D

Sc
or

e

90% Percentile of || d /d ||2
|| d /d ||2=4391

0 20 40 60 80 100 120
Epochs

0

1000

2000

3000

4000

5000

6000

||
d

/d
|| 2

Epoch: 73

200

250

300

350

400

450

500

FI
D

Sc
or

e

90% Percentile of || d /d ||2
|| d /d ||2=4391

0 20 40 60 80 100 120
Epochs

0

1000

2000

3000

4000

5000

6000

||
d

/d
|| 2

Epoch: 106

200

250

300

350

400

450

500

550
FI

D
Sc

or
e

90% Percentile of || d /d ||2
|| d /d ||2=4391

Figure 39: The tendency of ∥∇dω/dω∥2 and the FID scores on CIFAR-10 in four trials. Initially, the
metric shows a smooth rise, accompanied by a steady decrease in the FID score, indicating the phase of fitting
and refining. Subsequently, the metric exhibits turbulent evolution, but the FID score remains steady. This
aligns with our empirical observations in appendix G.7, where generated images demonstrate good quality
despite the rapid transition of particles from modes to modes. Then both the metric and FID score soar.
Consequently, the FID score remains consistently high, indicating the collapsing phase.

Comparison with the duality gaps. We present the comparison between our metric ∥∇dω/dω∥2 and
the duality gap (Grnarova et al., 2019), along with its improved counterpart, the perturbed duality gap
(Sidheekh et al., 2021). We first briefly introduce the two metrics, and then show the results in fig. 40.

51

Under review as submission to TMLR

Duality gap. The duality gap is an optimization concept that measures the difference between the pri-
mal and dual forms of a problem. In GANs, it quantifies the suboptimality of the current generator and
discriminator. For parameters (θg, θd) at a given iteration, the duality gap is defined as:

DG(θg, θd) = max
θ′

d
∈Θd

F (θg, θ′
d) − min

θ′
g∈Θg

F (θ′
g, θd),

where Θd and Θg are the parameter spaces for the discriminator and generator, respectively, and F is the
objective function of the Vanilla GAN: F (θg, θd) = Ex∼pdata [log d(x)] +Ez∼pz

[log(1 − d(g(z)))]. In practice,
Grnarova et al. (2019) proposed to estimate the duality gap through the following steps:

1. Train the GAN to iteration t, obtaining parameters (θt
g, θt

d).

2. Find the worst-case discriminator and generator by optimizing one while keeping the other fixed:

θworst
d ≈ arg max

θ′
d

∈Θd

F (θt
g, θ′

d), θworst
g ≈ arg min

θ′
g∈Θg

F (θ′
g, θt

d).

3. Estimate the duality gap as: DG(θt
g, θt

d) ≈ F (θt
g, θworst

d) − F (θworst
g , θt

d).

Perturbed duality gap. The perturbed duality gap, introduced by Sidheekh et al. (2021), improves upon
the standard duality gap by more effectively distinguishing between Nash and non-Nash critical points.
This metric performs local perturbations to the parameters (θt

g, θt
d) with Gaussian noise before the second

optimization step, helping the model escape from saddle points. This ensures the subsequent optimization
does not get stuck in suboptimal regions.

Experimental results. We observe that before the collapsing phase, the metric resembles the patterns
in the perturbed duality gaps. However, at collapse, the metric sharply increases, while the duality gaps
behave inconsistently across datasets. For MNIST, both duality gaps drop to zero, obscuring whether this
signals mode collapse or convergence. In Fashion MNIST, the vanilla gap drops to zero, but the perturbed
gap remains above zero, offering no clear indication. In CIFAR-10, both gaps stay steady, failing to signal
collapse. These findings suggest our metric is a more reliable indicator of mode collapse than the duality gaps.

0 10 20 30 40 50
Epochs

0

250

500

750

1000

1250

1500

1750

2000

Fr
ob

en
iu

s N
or

m

Frobenius Norm
Vanilla Duality Gap
Perturbed Duality Gap

0

5

10

15

20

25

Du
al

ity
 G

ap

0 10 20 30 40 50 60 70
Epochs

0

500

1000

1500

2000

2500

3000

Fr
ob

en
iu

s N
or

m

Frobenius Norm
Vanilla Duality Gap
Perturbed Duality Gap

0.0

2.5

5.0

7.5

10.0

12.5

15.0

Du
al

ity
 G

ap

0 10 20 30 40 50 60
Epochs

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Fr
ob

en
iu

s N
or

m

Frobenius Norm
Vanilla Duality Gap
Perturbed Duality Gap

4

6

8

10

12

14

16

Du
al

ity
 G

ap

Figure 40: The tendency of ∥∇dω/dω∥2 and the duality gaps for MNIST, Fashion MNIST, and CIFAR-10,
from left to right. The metric is depicted by solid blue lines. The duality gaps are represented by red lines,
where the vanilla duality gaps are indicated with dashed lines and dotted markers, while the perturbed duality
gaps are indicated with solid lines and triangular markers. We observe that prior to collapsing (occurring
at the 46th, 73rd, and 60th epochs for MNIST, Fashion MNIST, and CIFAR-10, respectively), the metric
exhibit similar patterns seen in the perturbed duality gaps. At the point of collapsing, the metric sharply
rises above the threshold, whereas the duality gaps behave differently across the three experiments. For
MNIST, both duality gaps drop to 0, making it unclear whether this indicates mode collapse or convergence.
In the case of Fashion MNIST, the vanilla duality gap falls to 0 while the perturbed gap decreases but
remains above 0, yet neither provides a definitive indication of the GAN’s status. For CIFAR-10, both
duality gaps remain steady, offering no clear signal of mode collapse. These findings suggest that the metric
is more effective at signaling the collapsing phase.

52

Under review as submission to TMLR

G.9 Impact on the Early Stopping Metric after Applying Techniques to Mitigate Mode Collapse

In this subsection, we validate our early stopping metric’s effectiveness by demonstrating that injecting noise
into the intermediate layers of the discriminator combats mode collapse and pushes back the metric.

Experimental setup. We devise two generator models of identical architecture and implement two discrim-
inators, one adhering to the original design (which we will refer to as “noise-free”) and the other modified to
incorporate Gaussian noise with a standard deviation of 0.1 before forwarding the input to the subsequent
layer (which we will refer to as “noised”). Both generators and discriminators are initialized using the same
random seed. During training, the four networks are concurrently trained, with each generator paired with
a discriminator. We present the generated images of the two models on Fashion MNIST in fig. 41 and
histograms of ∥∇dω/dω∥2 in fig. 42.

Results. The noise-free GAN collapses at the 54th epoch, while the noised GAN consistently generates
high-quality images. The introduction of noise results in an overall decrease in the ||∇dω/dω||2 compared
to its noise-free counterpart before the 54th epoch. After the 54th epoch, the opposite trend is observed,
attributed to the vanishing of ||∇dω/dω||2 in the noise-free GAN. This indicates that the strategy of injecting
noise to mitigate mode collapse leads to an overall decrease in our proposed metric, thereby validating the
effectiveness of the metric.

Figure 41: The generated images from the noise-free GAN and the noised GAN. Upper: Noise-free GAN.
Lower: Noised GAN. The noise-free GAN collapses at the 54th epoch, whereas the noised GAN consistently
produces high-quality images.

101 1.1 × 101 1.2 × 101 1.3 × 101 1.4 × 101 1.5 × 101 1.6 × 101

0 1002 1004 100 1016 101 1028

101 10210 101 10212 101 102 10314 101 102 10316 101 102 103 104 10518

53

Under review as submission to TMLR

101 102 103 10420 101 102 103 10422 101 102 103 10424 101 102 103 104 10526 101 102 103 104 10528

101 102 10330 101 102 103 104 10532 101 102 10334 100 101 102 10336 100 101 10238

101 102 103 10440 101 102 103 10442 10 1 100 101 10244 101 102 103 104 10546 100 101 102 103 10448

101 102 103 104 10550 101 102 103 104 105 10652 101 102 103 10454 101 102 103 104 10556 101 102 103 104 10558

Figure 42: Histograms of the values of ∥∇dω/dω∥2 and their 90th percentile across epochs. The epochs are
displayed at the bottom of each histogram. The x-axis represents ∥∇dω/dω∥2 values on a logarithmic scale,
while the y-axis denotes density. Results are differentiated by color: red for the model with noise and blue
for the model without noise. Preceding the 54th epoch where the noise-free GAN collapses, the noised model
nearly always exhibits lower ∥∇dω/dω∥2 values compared to its noise-free counterpart. Post 54th epoch, this
relationship reverses. Notably, in the noise-free model, ∥∇dω/dω∥2 tends towards zero, contributing to this
observed divergence.

H Rationale Behind the Discriminator Model

The rationale behind selecting the radius as 2
√

2h emanates from the equivalence of an RBF kernel with
bandwidth h to a Gaussian kernel of variance h2/2. For a Gaussian distribution, 99 percent of samples lie
within a sphere centered at the mean and extending to 3 times the standard deviation. We further extend
the boundary to 4 times the standard deviation in light of potential mode mixture.

I Extension to Other Divergence GANs

In this section, we outline how our framework can be extended to encompass other Divergence GANs. We
focus on the f -GAN proposed in (Nowozin et al., 2016) with the f -divergence defined as

Df (Qθ||pdata) =
∫

x

pdata(x)f
(

pdata(x)
Qθ(x)

)
dx.

The variational lower bound of Df (Qθ||pdata) is used as the training objective:

F (θ; ω) = Ex∼pdata

[
gf

(
Vω(x)

)]
+ Ex∼Qθ

[
− f∗(

gf (Vω(x))
)]

.

Here, f∗ is the Fenchel conjugate of f , gf is analogous to the generator and Vω is similar to the discriminator.
We consider its variant where the objective function of the generator is modified to

−Ex∼Qθ

[
gf

(
Vω(x)

)]
,

54

Under review as submission to TMLR

while the objective function of the discriminator remains unchanged.

General methodology. The key to analyzing Divergence GANs is their interpretation as particle models.
The update of the generator Qθ can be recasted as:

• Generate particles Zi = Qθ(zi).

• Update the particles Ẑi = Zi + g′
f (Vω(Zi))∇Vω(Zi).

• Update θ by descending its stochastic gradient with respect to the Mean Square Error (MSE) loss
betweeen Ẑi’s and g(zi)’s.

Fitting phase. We may plot the vector field g′
f (Vω(Zi))∇Vω(Zi) instead of the original ∇dω/dω to visualize

the updating process of particles, which promotes the fitting of the modes.

Refining phase. Only theorem 4.3 in section 4.3 needs to be modified to accommodate the desired Diver-
gence GAN.

Collapsing phase. In section 5.1, apart from modifying the update formula for particles, a more appropriate
model for the discriminator needs to be established in assumption 5.1 and a new threshold may be developed
on the basis of it in algorithm 2.

J Visualizing Generator Functions

This section visualizes generator functions g that satisfy g#pz = pdata, where pz ∼ N (0, 1) and pdata is a
Gaussian mixture, as shown in fig. 43. For qualitative effects of the parameters in pdata, please refer to
table 2. We then discuss about how to plot fig. 43. While Φ can be computed in MATLAB using the
built-in function normcdf, Ψ−1 typically necessitates solving a non-linear equation at each evaluation point.
To mitigate computational expenses, we choose to calculate the inverse of g, which is g−1 = Φ−1 ◦ Ψ. In
this context, Ψ can be computed by employing gmdistribution to construct a Gaussian mixture model,
followed by utilizing cdf to assess the cumulative distribution function (CDF) of the model at a specific
point. To generate a plot of g, a mere interchange of the x and g−1(x) in the plot function suffices.

-10 -5 0 5 10

-10

-8

-6

-4

-2

0

2

4

6

8

10

-3 -2 -1 0 1 2 3

-10

-8

-6

-4

-2

0

2

4

6

8

10

-3 -2 -1 0 1 2 3

-10

-8

-6

-4

-2

0

2

4

6

8

10

-5 0 5

-10

-8

-6

-4

-2

0

2

4

6

8

10

Figure 43: The functions g that satisfy g#pz = pdata, where pdata is a Gaussian mixture. First: Varying
the mean µ. Second: Varying the variance σ2. Third: Varying the mixing coefficients {αi}n

i=1. Fourth:
Varying the number of Gaussians n. Please refer to table 2 for a detailed description.

Table 2: Qualitative effects of the parameters in pdata ∼ α1N (µ1, σ2) + · · · + αnN (µn, σ2) on g.

Parameters Qualitative Effects on g

Means {µi}n
i=1 Larger ∥µi − µi+1∥2 increases the magnitude of g′ between the two modes.

Variances σ2 Larger σ2 increases the asymptotic slope of g as x → ∞.
Mixing coefficients {αi}n

i=1 Different combinations of αi incline g towards specific modes.
Number of Gaussians n Larger n increases the number of segments in g.

55

Under review as submission to TMLR

K Discussions

In this section, we provide additional intuitions and implications.

In terms of applicability scope, our theoretical framework is primarily derived from Divergence GANs,
specifically NSGAN, where we can leverage their particle model interpretations. While Divergence GANs
represent a significant category within GANs, they do not encompass some prominent GAN models, such as
Wasserstein GAN with gradient penalty and MMD GAN. Exploring how our theoretical framework can be
extended to incorporate these Integral Probability Metric (IPM) based GAN variants presents an intriguing
avenue for future research.

Regarding the theoretical framework, it is important to note that not all Divergence GANs may fit neatly
into the tripartite phases. While we often observe such empirical patterns, we acknowledge the possibility
that when networks are not well-initialized or when advanced techniques are used, GAN training may deviate
from the fitting phase entirely. However, these inquiries may spark independent interests and are beyond
the scope of our study.

In our numerical experiments, we used relatively small-scale real-world datasets compared to modern
datasets. This choice was deliberate as we aimed to assess the effectiveness of our early stopping algorithm
in detecting the transition from refining to collapsing phases. Modern datasets often comprise exponentially
more modes, which could potentially limit the efficacy of our algorithm, particularly considering that our
algorithm takes the number of modes as an input parameter.

56

