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Abstract
Existing cascade systems struggle with open-
ended text generation due to evaluation challenges
where multiple valid outputs exist without ground
truth references. We propose using semantic
agreement between multiple model outputs
as a training-free deferral signal and evaluate
semantic similarity metrics against token-level
confidence across translation, summarization,
question answering, and reading comprehension
tasks. We show that semantic signals provide a
stronger indication of when deferral is appropriate
than token-level methods and are resilient to
heterogeneous model quality.

1. Introduction
Large language models deliver higher quality outputs as size
increases but at substantial computational cost. Cascade
systems address this tension by routing queries between
smaller and larger models, employing smaller models when
possible and deferring to larger models only when necessary.

Despite their economic appeal, cascade systems face
unique challenges in open-ended text generation. Unlike
classification with discrete labels or numerical problems with
definitive answers, generation quality exists on a continuous
spectrum with multiple valid outputs per input. This
subjectivity complicates deferral decisions, as determining
when to defer requires assessing quality without ground
truth references—the “correct” vs “incorrect” paradigm
no longer applies. Moreover, existing LLM cascading
approaches rely on learned routing mechanisms requiring
substantial training investment through domain-specific
fine-tuning or model-specific engineering. When models
are updated, routing systems require complete retraining,
imposing recurring costs and limiting production agility.

We propose using semantic agreement between multiple
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model outputs as a training-free deferral signal. When
several smaller models produce semantically consistent
answers, their collective response likely represents reliable
output. Conversely, semantic disagreement suggests
uncertainty, indicating deferral would be beneficial. By
focusing on output agreement rather than learned confidence,
our approach eliminates supervision while remaining
applicable across diverse tasks.

We systematically explore semantic agreement capturing
different agreement dimensions: surface-level n-gram over-
lap (BLEU, ROUGE), pretrained metrics (BLEURT), and
reference-free embedding agreement (SBERT). Evaluating
these alongside token-level confidence across translation,
summarization, question answering, and reading compre-
hension, we demonstrate that semantic signals provide
stronger deferral decisions than token-level metrics and offer
favorable cost-quality tradeoffs despite compute overhead.

This approach offers advantages beyond eliminated training:
semantic agreement functions across black-box models, en-
abling application to proprietary systems, and demonstrates
unique resilience to heterogeneous model quality—adding
lower-performing models often preserves or improves
performance, unlike token-level approaches where ensemble
performance degrades toward the worst model.

2. Related Work
Cascading in Language Models With the sporadic rise
of LLM applications, previous work (Chen et al., 2024; Ong
et al., 2024; Aggarwal et al., 2024) has demonstrated the
cascade systems’ effectiveness for balancing computational
efficiency and output quality. However, these approaches re-
quire extensive training of routing mechanisms, struggle with
OOD generalization, and focus primarily on classification
or objectively assessable tasks. When underlying models
are updated—common in today’s rapidly evolving LLM
landscape—routing systems require complete retraining,
imposing recurring costs, though recent work (Kolawole
et al., 2024; Feng et al., 2024; Jitkrittum et al., 2025) explores
ways to circumvent this bottleneck.

Confidence-Based Deferral for Generation Tasks
Recent cascading methods have explored confidence signals
for open-ended generation. Gupta et al. (2024) explored
token-level uncertainty for selective generation while
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Narasimhan et al. (2024) extended this with speculative
decoding. However, it remains unclear whether token-level
confidence signals, optimized for next-token prediction,
effectively capture semantic coherence and factual accuracy
determining generation quality. Critically for practical
deployment, confidence-based approaches require model
internals access, limiting their applicability to proprietary
systems dominating real-world usage.

Ensemble Methods and Agreement-based Signals
Traditional ensembles focus on improving quality through
combination rather than defferal decisions (Lakshmi-
narayanan et al., 2017; Wang et al., 2020; 2023; Jiang
et al., 2023). ABC (Kolawole et al., 2024) uses ensemble
agreement for cascade deferral but limits this to fixed output
spaces. Yue et al. (2024) also explored consistency-based
quality estimation for numerical reasoning tasks with
objectively correct answers. Unlike these approaches,
we address the more challenging scenario of open-ended
generation where “correctness” must be defined through
semantic similarity rather than exact matching.

Semantic Similarity in NLP Semantic similarity metrics
primarily serve as evaluation tools rather than active system
components. Traditional metrics like BLEU (Papineni et al.,
2002) and ROUGE (Lin, 2004) measure surface-level lexical
overlap but miss deeper relationships. Recent approaches us-
ing contextual embeddings—BLEURT (Sellam et al., 2020),
BERTScore (Zhang et al., 2019)—show stronger correlation
with human judgements. However, semantic similarity for
use in cascade deferral decisions remains unexplored, with
prior work treating it as post-hoc evaluation rather than
architectural components for resource allocation decisions.

Our contribution We bridge these research areas by
introducing semantic agreement as a training-free deferral
signal for open-ended text generation. Our method: (1)
eliminates training requirements through direct similarity
computation, (2) functions with black-box models by
operating on outputs rather than internals, and (3) handles
open-ended generation where multiple valid outputs exist.
We extend ABC’s agreement-based approach beyond
discrete classification to continuous semantic spaces,
establishing the first comprehensive comparison of semantic
vs token-level confidence for cascade deferral.

3. Methods
3.1. Deferral Protocol

We formalize the deferral process as follows. A cascade
comprises n lightweight ensemble models, M1,...,Mn, and
a larger, high-capacity target model MT . Given an input
x, each ensemble model produces a prediction yi=Mi(x).
A deferral score function s(y1, ... , yn) then determines
whether to defer to MT . If the system chooses not to defer,
it selects a final output y=yi corresponding to the prediction

with highest score according to an output scoring function
o(yi,y1,...,yn).

We adopt the convention that higher scores reflect greater
certainty. Accordingly, the system defers to the target model
for inputs with lower deferral scores s, while retaining
predictions with higher s.

3.2. Semantic Agreement Signals
Semantic similarity metrics offer a natural way to assess
agreement between multiple model outputs without ground-
truth references. We explore increasingly sophisticated
metrics capturing different aspects of similarity, from surface-
level lexical overlap to deeper semantic representation. This
progression allows us to examine how different dimensions
of semantic agreement affect cascade performance.

In an ensemble setting, we use these similarity metrics as the
output scoring function o by computing pairwise similarities
between yi and all other yj , and set s=maxio(yi,y1,...,yn).

Classic Overlap Metrics We begin with classic
reference-based metrics: BLEU measures n-gram precision,
ROUGE-N measures n-gram overlap, and ROUGE-L
measures longest common subsequence overlap.

Pretrained Metrics BLEURT is a regression model
based off BERT, fine-tuned to reflect human judgments of
generation quality. It requires text pairs as input and outputs a
similarity score. Separately, we also use SBERT (Reimers &
Gurevych, 2019) as a reference-free approach by embedding
each output yi into a vector representation zi and computing
pairwise cosine similarities in the embedding space.

3.3. Token-Level Confidence Signals
For comparison, we evaluate token-level confidence metrics
that extend classification confidence to generation (Gupta
et al., 2024):

• Chow-Sum: Sum of token log probabilities reflecting
overall sequence confidence.

• Chow-Avg: Sum of token log probabilities normalized
by sequence length.

• Chow-Quantile(q): q-th quantile of token log probabil-
ities.

3.4. Handling Model Heterogeneity
Ensembling heterogeneous models based on token-level
confidence is challenging due to differences in training
dynamics, architectures, and vocabularies. Baseline token
probabilities vary significantly across models and may
reflect different calibration levels, leading one model to
systematically dominate when using raw confidence scores.

We address this without an expensive post-training fix,
through z-score normalization: we run each model on
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Task Semantic Token-level Large Best AUC Best AUC
Models Model Model (Semantic) (Token-level)

WMT19 DE→FR Qwen2.5-1.5B, Gemma3-1B, mT0 Large Qwen2.5-1.5B Llama-3.1-8B .6548 .6397
CNN/DailyMail Qwen2.5-1.5B, Qwen2.5-0.5B, Gemma3-1B Qwen2.5-1.5B Llama-3.1-8B .1262 .1265

XLSum Qwen2.5-1.5B, Gemma3-1B, Llama-3.2-1B Llama-3.2-1B Llama-3.1-8B .0786 .0795
SQuAD1.1 Qwen2.5-1.5B, Gemma3-1B, FLAN-T5 Large Qwen2.5-3B Qwen2.5-7B .7685 .7592
TriviaQA Qwen2.5-1.5B, Gemma3-1B, Llama-3.2-1B Llama-3.2-3B Llama-3.1-8B .5044 .6016

Table 1. Illustrative results of AUCs achieved for a given cascade when using the best of the similarity metrics for the semantic cascade,
or the best between Chow-Sum, Chow-Avg, Chow-Quantile for the token-level cascade. Full results are presented in the appendix.

a subset of training data, compute confidence metric
statistics, then normalize during inference. We use the mean
normalized confidence as the deferral score. If the system
does not defer, it selects the output from the model with the
highest normalized confidence.

4. Experiments & Results
We evaluate cascades using models from the FLAN-T5
(Chung et al., 2022), mT0 (Muennighoff et al., 2022),
Gemma (Gemma Team, 2025), Llama (AI@Meta, 2024), and
Qwen (Qwen Team, 2024) families, selected for their mul-
tilingual capabilities, cross-task generalization, and the exis-
tence of models at tiers of roughly 0.5B, 1B, 3B, or 8B param-
eters. Our experimental design maintains fair comparison by
limiting semantic ensembles to roughly equivalent in total pa-
rameters as single 3B models, though this constraint reveals
an interesting asymmetry as discussed in further paragraphs.

Evaluation Protocol We assess cascade performance us-
ing deferral curves. For threshold t, we compute deferral rate
P(r(y1,...,yn)= 1) and cascade performance E[Q(C(x))],
where Q measures quality (e.g., accuracy for TriviaQA). We
plot these as t is varied, and report area under the deferral
curve (AUC) as a scalar summary. For a given dataset, higher
values indicate better overall performance. This evaluation
method is adopted from Gupta et al. (2024), and all baseline
performances and results are provided in the appendix.

4.1. Token-level Ensemble Limitations
Token-level ensembles work moderately well when ensem-
ble models have very similar performance—for instance,
an ensemble of Gemma3-1B and Qwen2.5-1.5B deferring
to Llama-3.1-8B on WMT19 DE→FR achieves higher
AUC than a token-level cascade of either individual model
(Appendix F.2.1). However, when ensemble models have het-
erogeneous performance, this method significantly degrades
performance compared to the single-best model. This occurs
because z-scoring causes weak models to be selected about as
often as strong ones, driving output quality lower. This limits
the applicability of this method for open-ended text gener-
ation as it requires ensemble models to be of similar quality
across all tasks—a constraint rarely satisfied in practice.

Figure 1. (a) Deferral rate versus average BLEURT score on
WMT19 DE→FR for a semantic cascade with ensemble models
Qwen2.5-1.5B, Gemma3-1B, mT0 Large, deferring to large
model Llama-3.2-8B. Semantic similarity based on BLEURT
consistently outperforms simpler measures, with SBERT similarly
outperforming both ROUGE and BLEU. (b) Deferral curve for
BLEURT on the same semantic cascade, compared to deferral
curves with largest AUC (all Chow-Avg) for token-level cascades
on the individual ensemble models. The semantic cascade
consistently outperforms the token-level cascade constructed from
its single-best ensemble model.

Figure 2. (a) Deferral curves on WMT19 DE→FR for semantic
ensemble with Qwen2.5-1.5B, Gemma3-1B, FLAN-T5 Large,
versus deferral curves for token-level cascade with Llama-3.2-3B.
Both cascades defer to Llama-3.1-8B. (b) Deferral curves for
the same ensemble cascade, versus token-level cascade with
Qwen2.5-3B. Both cascades defer to Qwen2.5-7B. In both cases,
semantic ensembles have weaker baseline performance but match
or surpass token-level ensembles at larger deferral rates, indicating
that semantic similarity is a better deferral signal.

4.2. Semantic Signals Provide Superior Decisions
We evaluate BLEU, ROUGE, BLEURT, and SBERT-based
agreement metrics as standalone deferral signals. Our
results demonstrate that semantic deferral signals capture
generation reliability more effectively, with this advantage
holding across diverse domains.
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Figure 3. (a) Deferral curves for different semantic similarity
measures on an ensemble of Qwen2.5-1.5B, FLAN-T5 Large,
Gemma3-1B, deferring to large model Qwen2.5-7B. ROUGE-2
suffers due to overlooking single-word answers, but all other
similarity metrics perform similarly. (b) Deferral curves for SBERT
on the same cascade, compared to deferral curves with largest AUC
for a token-level cascade with Llama-3.2-3B (Chow-Quantile-0.1)
or Qwen2.5-3B (Chow-Avg). The semantic cascade consistently
outperforms both token-level cascades despite using smaller mod-
els, and improves over the largest model at or above 60% deferral.

Semantic agreement signal deferral superiority. On
translation, semantic cascades using BLEURT consistently
match or surpass token-level cascades of their single-best
models (Figure 1). Critically, semantic ensembles can
also achieve this performance with smaller ensemble
models—matching single-model token-level cascades with
roughly equivalent total parameters (Figure 2) and outper-
forming them on FR→EN translation. This suggests that
semantic agreement captures deferral-relevant uncertainty
more effectively than token-level confidence. Reading
comprehension is consistent with this trend, where semantic
cascades even exceed the accuracy of the best target model
(Figure 3). The consistency of this advantage across both
task domains indicates that semantic agreement more
reliably identifies when ensemble outputs are trustworthy
versus when deferral to larger models is beneficial.

Evaluation challenges and fundamental limitations. On
summarization tasks, semantic cascades typically come close
to the performance of a token-level cascade constructed from
their single-best ensemble model, despite evaluation artifacts
where several small models paradoxically outperform
target large models on ROUGE metrics (Appendix D).
Conversely, closed-book QA exposes a core limitation: 3B
models substantially outperform ensembles equal in total
parameter count. When answers are typically 1-3 tokens,
and baseline model performance is low—leading to frequent
disagreement—semantic similarity may struggle to find
signal in such disagreements and only succeed on the small
minority of queries where models agree near-exactly.

The pattern suggests a deeper principle. Semantic
signals excel precisely where open-ended generation is
most challenging: when multiple valid responses exist and
quality gradients matter more than binary correctness. This
systematic relationship between task/output characteristics

and method effectiveness demonstrates that semantic
agreement captures a genuinely different dimension of
uncertainty than token-level approaches—one more aligned
with generation quality assessment in open-ended tasks.

4.3. Resilience to Model Heterogeneity

Perhaps most surprisingly, semantic ensembles demonstrate
counter-intuitive behavior: adding weaker models often
maintains or improves, rather than degrades, performance.
When we replace mT0 Large in the ensemble from Figure 1
with the lower-performing FLAN-T5 Large, AUC improves
from 0.6548 to 0.6554—despite the substituted model being
substantially worse on average. This paradox resolves when
we recognize that semantic agreement values consistency
signals over individual model quality.

It can also be illustrated how worse-on-average models
provide signal by evaluating a simple setup. Using only
Qwen2.5-1.5B outputs while incorporating semantic sim-
ilarity with Qwen2.5-0.5B for deferral decisions improves
AUC to 0.6307 versus 0.6263 for token-level approaches
(Appendix C). This isolation experiment proves semantic
similarity’s advantage stems from superior when-to-defer
signals rather than output selection benefits. Weaker models
contribute valuable negative evidence—when they disagree
with stronger models, this disagreement reliably indicates
query difficulty.

5. Discussion, Conclusion, & Future Work
Semantic agreement represents a fundamentally better-
suited approach for open-ended cascades. Our findings
establish that semantic similarity measures meaning-level
consistency, which better aligns with generation quality
assessment, compared to token-level confidence—optimized
for language modeling objectives. This explains why
semantic signals provide superior deferral decisions even
with smaller model ensembles, as demonstrated consistently
across translation and reading comprehension, while main-
taining competitive performance on summarization tasks.

Semantic cascades offer practical advantages with favor-
able scaling prospects. Through better deferral decisions
and resilience to model heterogeneity, semantic cascades
achieve more consistent performance across tasks. Unlike
token-level approaches requiring model internals, semantic
signals function with black-box APIs and remain stable
across model updates without retraining. As established
by ABC (Kolawole et al., 2024), larger model gaps (e.g.,
7B→70B→405B) should benefit more as absolute perfor-
mance gaps between model tiers narrow and heterogeneity in
relative performance across tasks rises. Aside from scaling,
we aim to leverage complementary information content by
combining semantic and token-level signals in future work.
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A. Experimental Details
Models and Datasets For all Gemma, Llama, and Qwen models, we use their official instruction-tuned versions; FLAN-T5
and mT0 are already instruction-tuned. For consistency, we use the same SBERT model across datasets. For the SBERT
model, we use the cased multilingual BERT Base model (Devlin et al., 2018), as provided through HuggingFace, due to
its multilingual capabilities, small size, and speed.

On all datasets, we evaluate on the validation split as provided on HuggingFace, or the test split if no validation split is
available. Within a dataset, all models are given the same prompt (up to chat templating) in order to better mimic the real
world, where live user prompts cannot easily be tuned for best performance on a particular model. We do not employ few-shot
prompting strategies as their applicability in more general open-ended text generation is unclear, and their use in this context
may not reflect practical usage scenarios. Whether different prompting strategies lead to different behavior and relative
performance gains for token-level and semantic methods is an interesting topic for future analysis.

Qwen2.5-7B Qwen2.5-3B Qwen2.5-1.5B Qwen2.5-0.5B

Parameters 7.62B 3.09B 1.54B 494M

Table 2. Number of Qwen2.5 model parameters, as reported by HuggingFace.

Llama-3.1-8B Llama-3.2-3B Llama-3.2-1B

Parameters 8.03B 3.21B 1.24B

Table 3. Number of Llama model parameters, as reported by HuggingFace.

Gemma3-1B FLAN-T5 mT0 BERT Base (multilingual, cased)

Parameters 1.00B 783M 1.23B 179M

Table 4. Number of model parameters, as reported by HuggingFace.

Ensemble Deferral In Section 3.1 it is described how, in the context of ensemble deferral, we set s=maxioi. We also
tested setting s=meanioi, and observe nearly identical results. This is also true for token-level ensemble cascades.

For token-level cascades, we analyze Chow-Quantile for quantiles q∈{0.0,0.1,...,1.0}. This provides a balance between
expressivity and avoiding spuriously high “Best Quantile” results due to noise.

We use the BLEU implementation as provided by SacreBLEU (Post, 2018).

B. BLEURT Model Sizes
There are several different official BLEURT model sizes available. We use BLEURT-20 in our experiments, which has 30
layers and 579M parameters, but there are also three lossily compressed versions available: BLEURT-20-D12 (12 layers,
167M parameters), BLEURT-20-D6 (6 layers, 45M parameters), and BLEURT-20-D3 (3 layers, 30M parameters). We
find that on domains with longer output lengths, the size (quality) of the BLEURT model becomes important, but is largely
irrelevant at very small scales (Figure 4).
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(a) (b)

Figure 4. (a) Comparison of deferral curves for different BLEURT sizes for a semantic cascade of Qwen2.5-1.5B, Gemma3-1B, mT0 Large,
deferring to large model Llama-3.1-8B. Smaller sizes of BLEURT lead to worse performance. (b) A similar comparison on SQuAD1.1
of the same semantic ensemble, deferring to Qwen2.5-7B. Smaller sizes of BLEURT do not impact cascade performance due to the short
nature of responses.

C. Worse-on-Average Models Provide Useful Signal for Deferral

(a) WMT19 DE→FR (b) WMT14 FR→EN (c) WMT14 EN→FR

Figure 5. Deferral curve on WMT19 DE→FR, WMT14 FR→EN, and WMT14 EN→FR for a simplest semantic ensemble of Qwen2.5-1.5B
and Qwen2.5-0.5B, always using the outputs of Qwen2.5-1.5B when not deferring, plotted with deferral curves for token-level
Qwen2.5-1.5B. Both cascades defer to Qwen2.5-7B. In all cases, the deferral curve from this semantic cascade improves over single-model
token-level deferral signals, improving for instance the AUC to .6307 on DE→FR over single-model token-level deferral signals (Best
(Chow-Avg) AUC: .6263), and significantly over random deferral (AUC: .6130). This demonstrates how, even in a very simple ensemble,
semantic similarity with a substantially worse model can still provide a strong indication for when deferral is appropriate.

D. Difficulties with Assessing Summarization
Summarization is difficult to fairly assess as a result of the fact that several small models outperform the “target” large
models by a large degree (Table 6). In particular, we observe FLAN-T5 Large outperform large models on XLSum and
CNN/DailyMail, and mT0 Large outperform large models on XLSum. For this reason, we did not include them in our main
analysis. The small models which perform well here typically perform less well on other datasets, and as semantic cascading
is typically able to account for their weak performance on other datasets and come close to matching their performance on
summarization when they are included in the ensemble, it arguably remains a solid choice.

However, it should be noted that ROUGE scores are highly noisy, imperfect measures of summarization quality. Further,
there are often many equally satisfactory ways of summarizing a given article, but there exists only one ground-truth summary
per example in these datasets. Additionally, ROUGE does not account for factual inaccuracies. Together, these factors mean
that ROUGE scores alone cannot reliably determine summarization quality.

Based on a qualitative analysis we performed on a small sample of model responses, the differences in ROUGE performance
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appear mostly to be a result of Qwen, Llama, and Gemma models giving more detail (and using complete sentences in the
case of CNN/DailyMail, where target summaries are often comprised of multiple sentence fragments), rather than these
models outputting strictly “worse” summaries. In other words, there is a stylistic mismatch between their outputs and the
targets, but not necessarily a semantic one. Furthermore, we observed more factual inaccuracies in the summaries generated
by FLAN-T5 Large and mT0 Large than in those generated by the large models (Table 5). Different prompt styles, particularly
few-shot prompting or prompts which otherwise give examples and explicit descriptions of the target style, might better
force the models to adhere to the desired style and be able to close this performance gap.

The Dallas Mavericks player accused Ted
Kritza of taking the money . He believes
Kritza took it from his bank credit line
without his permission . In a recorded
phone call with Jefferson, Kritza
’confesses to wrongdoing’ Recording of
the conversation is now in the hands of
FBI .

Dallas Mavericks player Richard Jefferson
helped FBI find $2million dollars that
was taken from his bank credit line
without his permission. Jefferson, 34,
had reported the crime before the investi
gation began. In a recorded phone call
with Kritza, Jefferson ’confesses to
wrongdoing’ The recording is now in the
hands of the FBI.

NBA player Richard Jefferson helped the
FBI recover $2 million after accusing his
former business manager, Ted Kritza, of
stealing the money from his bank credit
line without permission. Jefferson
recorded a phone call with Kritza, in
which Kritza allegedly confessed to the
crime, and the recording is now in the
hands of the FBI. Jefferson is seeking to
put a hold on a lawsuit from a bank that
is seeking part of the $2 million until
the federal investigation into Kritza is
complete.

Richard Jefferson, a Dallas Mavericks
basketball player, assisted the FBI in
recovering $2 million that his former
business manager, Ted Kritza, allegedly
stole from Jefferson’s bank credit line.
The case is currently under federal
investigation, and Jefferson is seeking
to delay legal action from a bank that has
sued him for a portion of the stolen funds
until the investigation is complete.

Table 5. Ground-truth and predicted summaries on CNN/DailyMail. Top left: ground-truth. Top right: FLAN-T5 Large (ROUGE-2: .4583).
Bottom left: Llama-3.1-8B (ROUGE-2: .2656). Bottom right: Qwen2.5-7B (ROUGE-2: .09346). Factual inaccuracies are highlighted
in red, and superfluous information to the ground truth are highlighted in orange. Ground truth summary is comprised of sentence fragments,
whereas models output longer full sentences and sometimes unnecessary detail. Qualitatively, FLAN-T5 exhibits better stylistic matching
but higher rates of factual errors.

Ensemble deferral strategies further struggled on these datasets due to large relative differences in baseline model performance.
For instance, on CNN/DailyMail, the difference in baseline performance between Qwen2.5-1.5B and Llama-3.2-1B is almost
three times as large as the difference in baseline performance between Llama-3.2-1B and Llama-3.2-8B. It should be noted
that, on XLSum, no deferral strategy significantly improves on random deferral, leading to flat deferral curves and baseline
performance becoming the dominating factor (Figure 6).
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Figure 6. Deferral curves on XLSum. Semantic cascade’s ensemble is comprised of Llama-3.2-1B, Qwen2.5-1.5B, Gemma3-1B. All
cascades defer to Llama-8B. No cascades improve significantly on random deferral from their single-best ensemble model (only ensemble
model, for token-level cascades), hence deferral curves are nearly flat. The semantic cascade has a slightly better curve shape than the
token-level cascades, but begins at a lower baseline than its single-best ensemble model (Llama-3.2-1B). This is enough for it to achieve
similar AUC (.0786 versus 0.0795), and match or exceed performance at the 60% deferral rate and above.

E. TriviaQA: Performance Gap and Oracle Insights
As noted, closed-book QA poses a challenge for semantic similarity: 3B models outperform all ensembles of the same total
size by wide margins. For example, a token-level cascade with Llama-3.2-3B deferring to Llama-3.1-8B achieves an AUC
of .6016, compared to an AUC of just .5044 for a semantic ensemble of the three best 1B models. Even still, semantic cascades
typically nearly match, or exceed, their single-best ensemble model’s performance.

It is tempting to assume the performance gap between 3B parameter models and ensembles of 1B parameter models arises
because the 3B parameter models simply encode more information than the smaller ensemble models. Surprisingly, however,
the oracle deferral curves for this task suggest that this explanation is incomplete and that other dynamics are at play (Figure 7).
We hypothesize that the gap in performance originates not simply from a lack of encoded information, but also due to the
difficulty of the ensemble deferral task, which requires not only identifying when to defer to a large model, but also selecting
the best answer from the ensemble’s multiple outputs when not deferring. This challenge is particularly pronounced in
TriviaQA, where answers are short and baseline ensemble models perform poorly—leading to frequent disagreement from
which semantic similarity struggles to extract meaningful signal.

To illustrate this, we plot oracle curves representing the optimal performance achievable with perfect knowledge of each
model’s output quality on every example. For cascades involving a single baseline model, the oracle curve is computed by
deferring based on the score difference between the large and small models. In the case of ensemble-based cascades, the
oracle defers based on the score difference between the large model and the best-performing output among the small models
in the ensemble; when not deferring, it selects the best small-model output. Additionally, we define a partial oracle, which
always chooses the best output from the small models but relies on semantic similarity to decide whether to defer.
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(a) (b)

Figure 7. (a) Deferral curves on TriviaQA for token-level cascades and a semantic cascade with ensemble models Qwen2.5-1.5B, Llama1B,
Gemma3-1B. The partial oracle always selects the best output among the ensembles but uses semantic similarity as a deferral rule. All
cascades defer to Llama-3.1-8B. (b) Oracle deferral curves. Half of the initial performance gap between the ensemble method and Llama-3.2-
3B is closed simply by selecting the best ensemble outputs, and the ensemble oracle lies strictly above the Qwe2.5-3B oracle, demonstrating
that differences in model-encoded knowledge cannot by themselves adequately explain the observed differences in baseline performance.

F. Additional Experimental Results
F.1. Baseline Model Performances

Model
WMT19 DE→FR

(BLEURT)
WMT14 FR→EN

(BLEURT)
WMT14 EN→FR

(BLEURT)
CNN/DailyMail

(ROUGE-2)
XLSum

(ROUGE-2)
SQuAD1.1
(Accuracy)

TriviaQA
(Accuracy)

Qwen2.5-7B .6552 .7409 .6555 .1222 .0787 .7820 .5075
Qwen2.5-3B .6109 .7298 .6293 .1188 .0630 .6920 .3940
Qwen2.5-1.5B .5708 .7233 .5998 .1033 .0628 .6967 .3022
Qwen2.5-0.5B .4026 .6831 .4835 .1016 .0478 .4653 .1069
Llama-3.1-8B .6778 .7400 .6817 .1443 .0897 .7427 .6407
Llama-3.2-3B .6168 .7270 .6480 .1377 .0787 .6887 .5019
Llama-3.2-1B .4549 .6694 .5652 .1329 .0671 .3747 .2280
mT0 Large .4467 .6636 .5120 .1325 .1060 .7767 .0608
FLAN-T5 Large .3963 .6883 .4534 .1915 .1597 .5973 .1449
Gemma3-1B .5670 .7090 .6234 .0862 .0472 .5247 .1982

Table 6. Baseline model performances. At each model tier (roughly 1B, 3B, 7-8B), no single model dominates across datasets.

F.2. AUC Values

F.2.1. WMT19 DE→FR

Model Random Chow-Sum Chow-Avg Best Chow-Quantile Best Quantile

Qwen2.5-3B 0.6444 0.6514 0.6563 0.6557 0.2
Qwen2.5-1.5B 0.6243 0.6342 0.6397 0.6391 0.3
Qwen2.5-0.5B 0.5402 0.5544 0.5588 0.5576 0.4
Llama-3.2-3B 0.6473 0.6542 0.6587 0.6580 0.4
Llama-3.2-1B 0.5663 0.5786 0.5881 0.5860 0.2
mT0 Large 0.5622 0.5792 0.5827 0.5814 0.4
FLAN-T5 Large 0.5370 0.5606 0.5619 0.5609 0.2
Gemma3-1B 0.6224 0.6325 0.6388 0.6386 0.3

Table 7. AUC values on WMT19 DE→FR for token-level cascades. All cascades defer to Llama-3.1-8B. The Random column represents
the expected AUC if queries are deferred uniformly at random.
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Ensemble Chow-Sum Chow-Avg Best Chow-Quantile Best Quantile

Gemma3-1B, Qwen2.5-1.5B 0.6445 0.6455 0.6448 0.2
Gemma3-1B, Qwen2.5-1.5B, Llama-3.2-1B 0.6330 0.6315 0.6328 0.2
Gemma3-1B, Qwen2.5-1.5B, mT0 Large 0.6345 0.6320 0.6326 0.2
Gemma3-1B, Qwen2.5-1.5B, FLAN-T5 Large 0.6297 0.6247 0.6247 0.1
Qwen2.5-1.5B, Llama-3.2-1B, mT0 Large 0.6181 0.6147 0.6164 0.2

Table 8. AUC values on WMT19 DE→FR for token-level ensemble cascades. All cascades defer to Llama-3.1-8B.

Ensemble BLEU ROUGE-1 ROUGE-2 ROUGE-L BLEURT SBERT

Gemma3-1B, Qwen2.5-1.5B,
Llama-3.2-1B 0.6331 0.6330 0.6342 0.6354 0.6508 0.6403

Gemma3-1B, Qwen2.5-1.5B,
mT0 Large 0.6357 0.6381 0.6375 0.6387 0.6548 0.6418

Gemma3-1B, Qwen2.5-1.5B,
FLAN-T5 Large 0.6337 0.6362 0.6369 0.6371 0.6554 0.6426

Qwen2.5-1.5B, Llama-3.2-1B,
mT0 Large 0.6167 0.6203 0.6192 0.6207 0.6368 0.6272

Gemma3-1B, Qwen2.5-1.5B,
Llama-3.2-1B, mT0 Large 0.6339 0.6337 0.6349 0.6350 0.6552 0.6428

Gemma3-1B, Qwen2.5-1.5B,
mT0 Large, FLAN-T5 Large 0.6331 0.6339 0.6344 0.6354 0.6572 0.6417

Table 9. AUC values on WMT19 DE→FR for various semantic cascades. All cascades defer to Llama-3.1-8B.

F.2.2. WMT14 FR→EN

Model Random Chow-Sum Chow-Avg Best Chow-Quantile Best Quantile

Qwen2.5-3B 0.7353 0.7357 0.7365 0.7367 0.9
Qwen2.5-1.5B 0.7321 0.7339 0.7350 0.7348 0.1
Qwen2.5-0.5B 0.7120 0.7157 0.7191 0.7185 0.2
Llama-3.2-3B 0.7339 0.7344 0.7361 0.7365 0.5
Llama-3.2-1B 0.7051 0.7046 0.7115 0.7119 1.0
mT0 Large 0.7023 0.7070 0.7121 0.7115 0.1
FLAN-T5 Large 0.7146 0.7186 0.7233 0.7230 0.1
Gemma3-1B 0.7250 0.7264 0.7284 0.7292 0.5

Table 10. AUC values on WMT14 FR→EN for token-level cascades. All cascades defer to Qwen2.5-7B. The Random column represents
the expected AUC if queries are deferred uniformly at random.

Ensemble Chow-Sum Chow-Avg Best Chow-Quantile Best Quantile

Gemma3-1B, Qwen2.5-1.5B 0.7312 0.7323 0.7344 0.7
Gemma3-1B, Qwen2.5-1.5B, Llama-3.2-1B 0.7247 0.7259 0.7265 0.0
Gemma3-1B, Qwen2.5-1.5B, mT0 Large 0.7268 0.7267 0.7280 0.2
Gemma3-1B, Qwen2.5-1.5B, FLAN-T5 Large 0.7305 0.7311 0.7312 0.2
Qwen2.5-1.5B, Llama-3.2-1B, mT0 Large 0.7218 0.7222 0.7219 0.0

Table 11. AUC values on WMT14 FR→EN for token-level ensemble cascades. All cascades defer to Qwen2.5-7B.
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Ensemble BLEU ROUGE-1 ROUGE-2 ROUGE-L BLEURT SBERT

Gemma3-1B, Qwen2.5-1.5B,
Llama-3.2-1B 0.7322 0.7325 0.7317 0.7323 0.7350 0.7339

Gemma3-1B, Qwen2.5-1.5B,
mT0 Large 0.7339 0.7337 0.7323 0.7334 0.7369 0.7348

Gemma3-1B, Qwen2.5-1.5B,
FLAN-T5 Large 0.7343 0.7344 0.7336 0.7345 0.7380 0.7356

Qwen2.5-1.5B, Llama-3.2-1B,
mT0 Large 0.7287 0.7284 0.7284 0.7283 0.7327 0.7306

Gemma3-1B, Qwen2.5-1.5B,
Llama-3.2-1B, mT0 Large 0.7325 0.7328 0.7318 0.7328 0.7359 0.7337

Gemma3-1B, Qwen2.5-1.5B,
mT0 Large, FLAN-T5 Large 0.7330 0.7337 0.7323 0.7335 0.7375 0.7346

Table 12. AUC values on WMT14 FR→EN for various semantic cascades. All cascades defer to Qwen2.5-7B.

F.2.3. WMT14 EN→FR

Model Random Chow-Sum Chow-Avg Best Chow-Quantile Best Quantile

Qwen2.5-3B 0.6555 0.6606 0.6636 0.6633 0.2
Qwen2.5-1.5B 0.6407 0.6514 0.6535 0.6528 0.2
Qwen2.5-0.5B 0.5826 0.5996 0.6034 0.6022 0.3
Llama-3.2-3B 0.6648 0.6693 0.6722 0.6719 0.4
Llama-3.2-1B 0.6234 0.6345 0.6415 0.6405 0.5
mT0 Large 0.5969 0.6144 0.6170 0.6157 0.4
FLAN-T5 Large 0.5676 0.5889 0.5906 0.5899 0.3
Gemma3-1B 0.6526 0.6602 0.6626 0.6624 0.1

Table 13. AUC values on WMT14 EN→FR for token-level cascades. All cascades defer to Llama-3.1-8B. The Random column represents
the expected AUC if queries are deferred uniformly at random.

Ensemble Chow-Sum Chow-Avg Best Chow-Quantile Best Quantile

Gemma3-1B, Qwen2.5-1.5B 0.6637 0.6621 0.6635 0.1
Gemma3-1B, Qwen2.5-1.5B, Llama-3.2-1B 0.6621 0.6600 0.6614 0.1
Gemma3-1B, Qwen2.5-1.5B, mT0 Large 0.6574 0.6535 0.6531 0.2
Gemma3-1B, Qwen2.5-1.5B, FLAN-T5 Large 0.6486 0.6467 0.6458 0.1
Qwen2.5-1.5B, Llama-3.2-1B, mT0 Large 0.6500 0.6467 0.6458 0.1

Table 14. AUC values on WMT14 EN→FR for token-level ensemble cascades. All cascades defer to Llama-3.1-8B.
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Ensemble BLEU ROUGE-1 ROUGE-2 ROUGE-L BLEURT SBERT

Gemma3-1B, Qwen2.5-1.5B,
Llama-3.2-1B 0.6569 0.6574 0.6570 0.6582 0.6685 0.6602

Gemma3-1B, Qwen2.5-1.5B,
mT0 Large 0.6571 0.6579 0.6569 0.6589 0.6707 0.6618

Gemma3-1B, Qwen2.5-1.5B,
FLAN-T5 Large 0.6550 0.6556 0.6550 0.6558 0.6714 0.6588

Qwen2.5-1.5B, Llama-3.2-1B,
mT0 Large 0.6454 0.6466 0.6464 0.6473 0.6605 0.6499

Gemma3-1B, Qwen2.5-1.5B,
Llama-3.2-1B, mT0 Large 0.6588 0.6592 0.6587 0.6591 0.6723 0.6618

Gemma3-1B, Qwen2.5-1.5B,
mT0 Large, FLAN-T5 Large 0.6541 0.6548 0.6537 0.6556 0.6719 0.6593

Table 15. AUC values on WMT14 EN→FR for various semantic cascades. All cascades defer to Llama-3.1-8B.

F.2.4. CNN/DAILYMAIL

Model Random Chow-Sum Chow-Avg Best Chow-Quantile Best Quantile

Qwen2.5-3B 0.1315 0.1325 0.1322 0.1326 0.3
Qwen2.5-1.5B 0.1238 0.1255 0.1259 0.1265 0.6
Qwen2.5-0.5B 0.1230 0.1234 0.1262 0.1270 0.6
Llama-3.2-3B 0.1410 0.1422 0.1418 0.1420 0.4
Llama-3.2-1B 0.1386 0.1408 0.1406 0.1409 0.1
mT0 Large 0.1384 0.1408 0.1420 0.1423 0.2
Gemma3-1B 0.1152 0.1143 0.1140 0.1146 0.8

Table 16. AUC values on CNN/DailyMail for token-level cascades. All cascades defer to Llama-3.1-8B. The Random column represents
the expected AUC if queries are deferred uniformly at random.

Ensemble Chow-Sum Chow-Avg Best Chow-Quantile Best Quantile

Llama-3.2-1B, mT0 Large 0.1454 0.1423 0.1447 0.1
Llama-3.2-1B, Qwen2.5-1.5B 0.1383 0.1361 0.1373 0.5
Qwen2.5-1.5B, Gemma3-1B 0.1239 0.1226 0.1251 0.8
Llama-3.2-1B, mT0 Large, Qwen2.5-1.5B 0.1428 0.1392 0.1415 0.2

Table 17. AUC values on CNN/DailyMail for token-level ensemble cascades. All cascades defer to Llama-3.1-8B.

Ensemble BLEU ROUGE-1 ROUGE-2 ROUGE-L BLEURT SBERT

Llama-3.2-1B, mT0 Large,
Qwen2.5-1.5B 0.1382 0.1367 0.1390 0.1378 0.1384 0.1365

Llama-3.2-1B, mT0 Large,
Qwen2.5-0.5B 0.1380 0.1388 0.1383 0.1386 0.1376 0.1367

Qwen2.5-1.5B, Qwen2.5-0.5B,
Gemma3-1B 0.1248 0.1231 0.1262 0.1244 0.1222 0.1243

Table 18. AUC values on CNN/DailyMail for various semantic cascades. All cascades defer to Llama-3.1-8B.

14



Semantic Deferrals for LLM Cascades

F.2.5. XLSUM

Model Random Chow-Sum Chow-Avg Best Chow-Quantile Best Quantile

Qwen2.5-3B 0.0763 0.0767 0.0765 0.0777 0.0
Qwen2.5-1.5B 0.0762 0.0773 0.0775 0.0780 0.4
Qwen2.5-0.5B 0.0687 0.0688 0.0689 0.0692 0.4
Llama-3.2-3B 0.0842 0.0844 0.0843 0.0854 0.0
Llama-3.2-1B 0.0784 0.0781 0.0782 0.0795 0.0
Gemma3-1B 0.0684 0.0695 0.0692 0.0701 0.6

Table 19. AUC values on XLSum for token-level cascades. All cascades defer to Llama-3.1-8B. The Random column represents the
expected AUC if queries are deferred uniformly at random.

Ensemble Chow-Sum Chow-Avg Best Chow-Quantile Best Quantile

Llama-3.2-1B, Qwen2.5-1.5B 0.0783 0.0781 0.0786 0.0
Llama-3.2-1B, Qwen2.5-1.5B, Gemma3-1B 0.0745 0.0761 0.0767 1.0
Llama-3.2-1B, Qwen2.5-0.5B, Gemma3-1B 0.0721 0.0730 0.0735 0.1

Table 20. AUC values on XLSum for token-level ensemble cascades. All cascades defer to Llama-3.1-8B.

Ensemble BLEU ROUGE-1 ROUGE-2 ROUGE-L BLEURT SBERT

Llama-3.2-1B, Qwen2.5-1.5B,
Gemma3-1B 0.0773 0.0783 0.0786 0.0773 0.0769 0.0770

Llama-3.2-1B, Qwen2.5-0.5B,
Gemma3-1B 0.0734 0.0745 0.0748 0.0742 0.0739 0.0747

Qwen2.5-1.5B, Qwen2.5-0.5B,
Gemma3-1B 0.0730 0.0729 0.0740 0.0736 0.0745 0.0746

Table 21. AUC values on XLSum for various semantic cascades. All cascades defer to Llama-3.1-8B.

F.2.6. SQUAD1.1

Model Random Chow-Sum Chow-Avg Best Chow-Quantile Best Quantile

Qwen2.5-3B 0.7370 0.7583 0.7592 0.7584 0.1
Qwen2.5-1.5B 0.7393 0.7616 0.7574 0.7580 0.0
Qwen2.5-0.5B 0.6237 0.6650 0.6603 0.6590 0.2
Llama-3.2-3B 0.7353 0.7534 0.7558 0.7572 0.1
Llama-3.2-1B 0.5783 0.6154 0.6269 0.6251 0.3
mT0 Large 0.7793 0.7935 0.7949 0.7961 0.1
FLAN-T5 Large 0.6897 0.7330 0.6671 0.7183 0.0
Gemma3-1B 0.6533 0.6711 0.6669 0.6695 0.0

Table 22. AUC values on SQuAD1.1 for token-level cascades. All cascades defer to Qwen2.5-7B. The Random column represents the
expected AUC if queries are deferred uniformly at random.
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Ensemble Chow-Sum Chow-Avg Best Chow-Quantile Best Quantile

mT0 Large, Qwen2.5-1.5B 0.7881 0.7852 0.7851 0.0
mT0 Large, Qwen2.5-1.5B, FLAN-T5 Large 0.7520 0.7787 0.7775 0.0
Qwen2.5-1.5B, FLAN-T5 Large, Gemma3-1B 0.7090 0.7229 0.7348 0.0

Table 23. AUC values on SQuAD1.1 for various token-level ensemble cascades. All cascades defer to Qwen2.5-7B. Heterogeneous baseline
performance significantly harms AUC for token-level ensemble cascades.

Ensemble BLEU ROUGE-1 ROUGE-2 ROUGE-L BLEURT SBERT

mT0 Large, Qwen2.5-1.5B,
FLAN-T5 Large 0.7947 0.7959 0.7879 0.7966 0.7942 0.7969

mT0 Large, Qwen2.5-1.5B,
FLAN-T5 Large, Llama-3.2-1B 0.7852 0.7927 0.7913 0.7944 0.7847 0.7872

Qwen2.5-1.5B, FLAN-T5 Large,
Gemma3-1B 0.7654 0.7678 0.7569 0.7685 0.7678 0.7682

Qwen2.5-1.5B, FLAN-T5 Large,
Llama-3.2-1B 0.7589 0.7622 0.7526 0.7624 0.7606 0.7635

Table 24. AUC values on SQuAD1.1 for various semantic cascades. All cascades defer to Qwen2.5-7B. ROUGE-L and SBERT perform
slightly better than other measures of semantic similarity. In SQuAD, there can be multiple “correct” answers, typically excerpts of different
length from the same passage with equivalent semantic meaning. As such, these metrics capture when models output different answers
which are all still correct. Additionally, it can be observed that adding even the significantly weaker Llama3.2-1B to an ensemble has
a very minor impact on the AUC, suggesting resilience to heterogeneous baseline model performance.

F.2.7. TRIVIAQA

Model Random Chow-Sum Chow-Avg Best Chow-Quantile Best Quantile

Qwen2.5-3B 0.5174 0.5624 0.5600 0.5603 0.1
Qwen2.5-1.5B 0.4715 0.5113 0.5099 0.5096 0.1
Llama-3.2-3B 0.5713 0.6016 0.5991 0.5998 0.1
Llama-3.2-1B 0.4344 0.4589 0.4544 0.4545 0.1
mT0 Large 0.3504 0.3540 0.3528 0.3560 0.2
FLAN-T5 Large 0.3928 0.4146 0.4093 0.4149 0.0
Gemma3-1B 0.4194 0.4448 0.4441 0.4435 0.1

Table 25. AUC values on TriviaQA for token-level cascades. All cascades defer to Llama-3.1-8B. The Random column represents the
expected AUC if queries are deferred uniformly at random.

Ensemble Chow-Sum Chow-Avg Best Chow-Quantile Best Quantile

Qwen2.5-1.5B, Llama-3.2-1B 0.4996 0.5031 0.5008 0.1
Llama-3.2-1B, Gemma3-1B 0.4634 0.4676 0.4649 0.0
Qwen2.5-1.5B, Llama-3.2-1B, Gemma3-1B 0.4980 0.4961 0.4989 0.1
Qwen2.5-1.5B, Llama-3.2-1B, FLAN-T5 Large 0.4851 0.4876 0.4895 0.0
Qwen2.5-1.5B, Llama-3.2-1B, mT0 Large 0.4630 0.4529 0.4708 0.0

Table 26. AUC values on TriviaQA for token-level ensemble cascades. All cascades defer to Llama-3.1-8B.
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Semantic Deferrals for LLM Cascades

Ensemble BLEU ROUGE-1 ROUGE-2 ROUGE-L BLEURT SBERT

Qwen2.5-1.5B, Llama-3.2-1B,
Gemma3-1B 0.4993 0.5043 0.4803 0.5044 0.4957 0.4887

Qwen2.5-1.5B, Llama-3.2-1B,
FLAN-T5 Large 0.4911 0.4966 0.4782 0.4966 0.4838 0.4824

Qwen2.5-1.5B, Llama-3.2-1B,
mT0 Large 0.4862 0.4891 0.4772 0.4891 0.4708 0.4692

Llama-3.2-1B, Gemma3-1B,
FLAN-T5 Large 0.4598 0.4659 0.4400 0.4657 0.4600 0.4549

Qwen2.5-1.5B, Llama-3.2-1B,
Gemma3-1B, FLAN-T5 Large 0.4970 0.5014 0.4781 0.5011 0.4950 0.4870

Table 27. AUC values on TriviaQA for various semantic cascades. All cascades defer to Llama-3.1-8B.
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