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Abstract

In reinforcement learning with sparse rewards, demonstrations can accelerate
learning, but determining when to imitate them remains challenging. We propose
Smooth Policy Regularisation from Demonstrations (SPReD), a framework that
addresses the fundamental question: when should an agent imitate a demonstra-
tion versus follow its own policy? SPReD uses ensemble methods to explicitly
model Q-value distributions for both demonstration and policy actions, quantifying
uncertainty for comparisons. We develop two complementary uncertainty-aware
methods: a probabilistic approach estimating the likelihood of demonstration superi-
ority, and an advantage-based approach scaling imitation by statistical significance.
Unlike prevailing methods (e.g. Q-filter) that make binary imitation decisions,
SPReD applies continuous, uncertainty-proportional regularisation weights, re-
ducing gradient variance during training. Despite its computational simplicity,
SPReD achieves remarkable gains in experiments across eight robotics tasks, out-
performing existing approaches by up to a factor of 14 in complex tasks while
maintaining robustness to demonstration quality and quantity. Our code is available
athttps://github.com/YujieZhu7/SPReD.

1 Introduction

Reinforcement learning (RL) has proven effective for sequential decision problems in robotics [1} 2]
and games [3, 4], yet complex tasks require extensive iterations that introduce risks and costs when
learning must occur in real-world settings. To accelerate learning, researchers have incorporated
pre-collected demonstrations [3, 6, [7]], particularly valuable for sparse-reward environments where
agents struggle with minimal feedback. While dense reward functions could help, they require
domain expertise and become increasingly difficult to design for complex dynamics. Sparse rewards,
though simpler and less susceptible to local optima [5], significantly intensify the exploration
challenge—making demonstrations essential for effective learning.

The field has produced numerous approaches to leverage demonstrations in RL, with varying degrees
of success. Early methods employ prioritised replay mechanisms but require extensive parameter
tuning and struggle with demonstration quality adaptation [5 [8]. Other techniques use weighted
behaviour cloning (BC) with predetermined decay factors that reduce demonstration influence over
time regardless of their continuing utility [7]. More recent methods attempt to address limited or
suboptimal demonstrations through reduced Q-values for undemonstrated actions [9] or variance
estimates as weighted guidance signals [[10]], but are restricted to discrete action spaces. Jing et al.
[L1] treat demonstrations as a soft constraint on policy exploration, formulating a constrained policy
optimisation problem. Although they reduce overhead by applying a local linear search on its
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dual, the approach still involves considerable computational complexity. Efficiently leveraging such
demonstrations remains an underexplored problem.

The Q-filter approach [6] brought significant advancements by selectively applying behaviour cloning
only when demonstration actions yield higher Q-values than policy actions. This intuitive method
has become foundational in RL with demonstrations, yet our analysis reveals two critical limitations:
it relies on single point estimates without accounting for estimation uncertainty, and it makes
binary decisions that introduce high variance during training. These limitations become particularly
problematic with limited or suboptimal demonstrations—common scenarios in practical applications.

To directly address these fundamental limitations of Q-filter, we propose Smooth Policy Regularisation
from Demonstrations (SPReD), which reformulates demonstration utilisation as a distributional
comparison problem. Our approach employs ensembles of critics to model two distinct Q-value
distributions: one evaluating demonstration actions and another evaluating current policy actions.
Unlike Q-filter’s binary approach, SPReD applies continuous weights to the behavioural cloning
loss, determining how strongly each demonstration action should influence policy updates. These
weights scale smoothly with our statistical confidence that demonstration actions outperform the
current policy. We develop two complementary methods for this value distribution comparison:
a probabilistic weighting based on the likelihood that demonstration actions are superior, and an
exponential scaling inspired by weighted behavioural cloning that calibrates imitation strength based
on the statistical significance of advantages. Both methods yield state-adaptive regularisation that
enables smoother policy learning across diverse environments.

Our theoretical analysis establishes several key properties: continuous weights strictly reduce policy
gradient variance compared to binary decisions; they adapt systematically to uncertainty levels;
and they progressively diminish influence from suboptimal demonstrations as policy performance
improves. These properties provide a sound foundation for the empirical improvements we observe.
Through experiments across eight robotic tasks, we demonstrate that SPReD consistently outperforms
existing methods, achieving up to 14x success rates with the same interaction steps in complex
manipulation tasks like block stacking (0.920 vs. 0.064) and significant improvements even with
severely limited or suboptimal demonstrations. Despite using ensembles, our implementation main-
tains efficiency comparable to standard methods by leveraging the same critic networks for both target
computation and uncertainty estimation. Our results demonstrate that our uncertainty-aware approach
to comparing value distributions enables effective learning from limited or noisy demonstrations.

2 Related work

RL from expert demonstrations. Expert demonstrations enhance online RL across various ap-
proaches [12]. Atkeson and Schaal [13] pioneered demonstration-based task model and reward
function learning as initialisation for policy learning. More advanced methods leverage demonstra-
tions throughout the entire learning process. DDPGfD [5]] and DQfD [8]] utilise prioritised replay
buffers combining demonstrations and interactions, but require extensive parameter tuning and lack
mechanisms for handling suboptimal demonstrations. DAPG [[7] implements an on-policy method
with weighted BC loss based on the advantage function, but its influence diminishes through a
non-adaptive decay factor regardless of demonstration quality. Our method differs by employing
weighted BC with adaptive Q-value comparisons specific to each state-action pair, enabling smooth
regularisation that effectively incorporates both expert and suboptimal demonstrations—addressing a
key limitation of previous approaches.

RL from suboptimal demonstrations. Recent research focuses on handling imperfect demonstra-
tions adaptively. Nair et al. [6] introduced the Q-filter by incorporating demonstrations in DDPG
without pretraining, using BC loss filtered by estimated Q-values to selectively imitate demonstrators.
Our ensemble method directly enhances this concept through uncertainty quantification. Other
approaches include Assisted DDPG [14]], which relies on external controllers, LIDAR [15]], which
considers the advantage of demonstrations, and NAC [9], which reduces Q-values of unobserved
demonstration actions in discrete spaces. While some methods require demonstration pretraining [9],
our approach remains sample efficient without this step. Alternative approaches include constrained
policy optimisation [11]], BQfD’s variance-based guidance [10], and RLPD [16], which uses symmet-
ric buffer sampling and ensemble critics with Layer normalisation. We select Q-filter and RLPD as



primary baselines given their comparable settings—both handle suboptimal demonstrations without
pretraining and provide state-of-the-art performance.

Offline-to-online RL. Offline RL enables learning policies that surpass static dataset performance
without online interactions [[17, [18 [19], but remains constrained by dataset coverage and quality.
Offline-to-online RL addresses this through subsequent fine-tuning, facing challenges with inaccurate
Q-value estimates for out-of-distribution state-action pairs [20]. IQL [21]] uses expectile regression to
learn a value function and performs advantage-weighted policy extraction to learn a policy without
explicit bootstrapping from the policy. Methods like AWAC [22] implement fine-tuning through
implicit policy constraints, while others gradually relax BC constraints [23], employ ensemble
pretraining with pessimistic Q-functions [20Q], or generate interactions from composite policies
[24]. Unlike our approach, these methods typically require extensive offline datasets for pretraining,
whereas our method operates effectively with few demonstrations in a purely online manner.

Uncertainty in R Uncertainty in RL is typically categorised as aleatoric (inherent environmental
randomness) or epistemic (model knowledge limitations) [25)]. While uncertainty quantification
has proven valuable for exploration-exploitation balancing [26l 271, safety constraints [28]], and
offline learning [29], its application to demonstration utilisation remains underdeveloped. Common
approaches for uncertainty estimation include bootstrapping [30], ensemble techniques [31], and MC-
dropout [32]], with some methods explicitly addressing both uncertainty types [33]]. UWAC [34] is an
offline RL method that weights critic and actor updates using dropout-based uncertainty to manage out-
of-distribution actions. Most online RL approaches employing uncertainty with demonstrations—such
as Active DQN [35]], RCMP [36]], and CHAT [37]—make binary decisions about demonstration
usage. Our work differs by using ensemble-based epistemic uncertainty estimates to enable smooth,
continuous regularisation based on quantified confidence in demonstration superiority.

3 Preliminaries

Setup We consider the standard Markov decision process (MDP) framework M =
(S, A, P,R,~, po) where an agent interacts with an environment E over discrete time steps. The
initial state distribution is pg. At each time step, the agent observes state s € S, selects action a € A
according to a policy 7, and receives reward , = R(s, a) while transitioning to the next state s’
according to the environment dynamics P(s’|s,a). The transition tuples (s, a,r, s’) are saved in
replay buffer B with exploration noise added to actions, and mini-batches are sampled from it for
future learning. With discount factor v € [0, 1), the agent aims to maximise the expected cumulative
discounted return J = E,, s, a;~x [ Ro] where R, = ZiT:t ~*~*r;. The state-action value function
is defined as g (s, a) = E,[Ry|s, a], with the estimate Q™ (s, a). Additionally, we assume access to
a set of demonstrations D = {(sq, aq, 74, s};)} collected from an unknown policy 7 p, which may be
suboptimal. Our goal is to effectively leverage these demonstrations to accelerate learning.

TD3 and HER Our method is compatible with any off-policy actor-critic RL algorithm. For our
experiments, we implement SPReD with the state-of-the-art TD3 [38]] algorithm, which provides an
ideal foundation due to its model-free nature and suitability for continuous state and action spaces.
Critics are updated by minimising the mean squared error:

'C(az) = E(s,a)NB(T + 7}2%112 QG; (8/, d) - QOi (Sv a))Qa

where dual critic networks with target networks are employed in the target to address the overesti-
mation bias [39,|38]], and a is the action selected by the target actor with Gaussian noise. The actor
parameters ¢ are updated using deterministic policy gradient [40] to maximise:

J(¢) = ]E(s,a)NBQel (37 7T¢(S))'

For environments with sparse rewards, we employ Hindsight Experience Replay (HER) [41] to
address exploration challenges in goal-conditioned tasks. HER stores transitions twice with desired
goals or actually achieved goals, enabling learning from unsuccessful episodes. The goals are
appended to states as inputs for actor and critic networks.



Q-filter To leverage demonstrations for accelerating learning, the Q-filter [6] stores demonstration
data in a separate buffer 5. During each training step, a mini-batch of size Np is sampled from the
demonstration buffer in addition to transitions from the standard replay buffer. Both are used for critic
updates. The Q-filter technique incorporates a selective BC loss that only imitates demonstration
actions when they are estimated to be superior to the current policy’s actions:

Lpc(9) = E(sd,ad)NBD [||7T¢(5d) - ad\|2]1Q(sd,ad)>Q(sd-,7r¢(sd))]»

where 1 is the indicator function that equals 1 when the single Q estimate of the demonstration action
is higher and 0 otherwise. The actor network is then updated by optimising the combined objective,
—A1J + A2Lpc, where A; and \g are hyperparameters that balance policy improvement against
demonstration imitation.

4 Methodology

The Q-filter mechanism [6] represents a state-of-the-art approach for demonstration utilisation in
reinforcement learning, particularly for continuous control tasks with sparse rewards. While effective,
this approach makes binary decisions to accept or reject demonstrations based on point estimates
of Q-values. We hypothesised that such binary filtering mechanisms fundamentally limit learning
efficiency in two ways: they fail to account for estimation uncertainty inherent in temporal difference
learning, and they introduce gradient discontinuities during policy updates. These limitations would
theoretically cause increasingly unstable learning as policies approach optimality, precisely when
nuanced guidance from demonstrations becomes most valuable.

To address these limitations, we reformulate demonstration-based regularisation by directly comparing
the quality of demonstration actions versus current policy actions while accounting for uncertainty.
For each state-action pair in the demonstration buffer, we compare two distributions: the distribution
of Q-values for the demonstration action {Q;(s4, a4) }7~, and the distribution of Q-values for the
current policy action {Q;(sq, T4 (sa)) }i2, where i € [1,m] indexes our ensemble of m independent
critic networks. The variability across these ensemble estimates captures the epistemic uncertainty in
our value approximation. The selection of uncertainty measure is discussed in Appendix [F

Smooth policy regularisation from demonstrations Rather than using point estimates as in Q-
filter, we leverage the full distributions of Q-values from our ensemble to determine how strongly each
demonstration should influence policy learning. The key insight of our approach is that demonstration
influence should vary continuously with our confidence in its superiority. Rather than making binary
decisions, we introduce a state-adaptive weight p € [0, 1] that quantifies our statistical confidence
that a demonstration action outperforms the current policy action. This weight modulates a behaviour
cloning loss:

Lwpc = E(sd,ad)NBD [p(Sd, ad)”ﬂ—(ﬁ(sd) - CLde],

where higher p values (the dependency on (s4,aq) is dropped in notation for simplicity) apply
stronger regularisation toward demonstration actions when we are more confident in their superiority,
and lower values reduce imitation pressure when demonstrations appear less valuable.

Following the TD3 framework [38], we then update the actor network by combining standard
deterministic policy gradient with this weighted behaviour cloning term:

L(¢) = —ME(s,0)~8Q0(5,T4(5)) + A2 Lwac. (D

This continuous weighting mechanism creates a smooth regularisation effect that adapts to the
varying quality of demonstrations while accounting for uncertainty in value estimates. Despite its
computational simplicity, this approach offers theoretical benefits (see Section [5) and remarkable
empirical performance (see Section [6).

The central challenge now becomes: how should we compute this weight p by comparing two value
distributions? We present two complementary approaches for this distributional comparison: a
probabilistic method that estimates the likelihood of demonstration superiority, and an exponential
method that scales imitation strength based on the statistical significance of advantages. Despite
their different formulations, these methods are theoretically connected, with similar behaviour in
high-uncertainty regimes as we demonstrate in Property



SPReD-P: Probabilistic advantage weighting Our first method, SPReD-P, frames the above com-
parison as a probabilistic inference problem. Following common practice in uncertainty quantification,
we model the Q-value estimates from our ensemble as Gaussian distributions [27 42, |43]]:

Q(Scbad) ~ N(Q(Smad)»f}g)
Q(sa: Ty (sa)) ~ N (Q(s4,7p(s4)), 6°)

where Q(s4, aa), Q(s4, 7y (s4)) and 53, 62 represent the empirical mean and variance of Q-value
estimates across the ensemble. With these distributions established, we compute the probability that
the demonstration action outperforms the current policy action:

pp =P(Q(s4,a4) > Q(sa, 7p(54))) = @ (Q(Sd,ad\)/égQT(S;ﬂ(t)(Sd)))

where ® represents the cumulative distribution function of the standard normal distribution.

This formulation creates a continuous spectrum of imitation strengths that naturally adapts to un-
certainty levels throughout training. Early in training when Q-value estimates have high variance,
probabilities tend toward intermediate values (=~ 0.5), allowing partial learning even from uncertain
examples. As uncertainty decreases with more training, the probabilities become more decisive, ap-
proaching the binary case only when uncertainty becomes negligible; see Property [5.1] and empirical
evidence in Appendix [F] The Gaussian assumption provides a computationally efficient approxi-
mation while remaining analytically tractable; empirical comparisons in Appendix [ confirm this
assumption is plausible in practice.

SPReD-E: Exponential advantage weighting While SPReD-P provides a principled probabilistic
approach, we now introduce SPReD-E, which focuses on the magnitude of improvement rather than
its likelihood. This complementary method scales imitation strength based on how significantly a
demonstration outperforms the current policy relative to estimation uncertainty. The core insight is
that imitation should be proportional to the size of the advantage, accounting for Q-value variability.

As before, using our ensemble of critics, we generate two distributions of Q-values for each state in
the demonstration buffer: the distribution of demonstration Q-values and the distribution of current
policy Q-values. To quantify how much better the demonstration is compared to the current policy,
we need to derive an advantage measure A that respects the distributional nature of our estimates.

To simplify notation, let 1 and v represent the Q-value distributions under the current policy and
demonstration, respectively. Heuristically, we aim to define a weight pg that follows the current
policy when its Q-values exceed those of demonstrations, and increasingly imitates demonstrations
as their relative advantage grows. If the Q-value was a single value (that is, a Dirac distribution),
then we could define pg as a function of the difference, say A, between the values, for example
pe = e/8 — 1. To treat measures we look at comparing x in the support of j to y in the support of
v. Formally, this is done through a transport map 7 that rearanges p to form v (which can be written
v="Typ:=pu(T71(-))). Wedefine A = [(T(x) — x) du(x) to be the average difference between
Q-values given the map 7. Since (by a change of variables) we can write A = E,[Q] — E, [Q], there
is no dependence on 7" and A is simply the difference between means. This short argument justifies
computing the advantage directly as the difference of mean Q-values:

A = Eicpn) [Qi(84; aa)] — Eigpm) [Qi (52, m(s4))] -

Having derived this advantage measure, we transform it into a weight using an exponential function
inspired by advantage-weighted behavioural cloning [44] and policy improvement techniques:
pe=¢"P -1

where 8 controls sensitivity to advantage magnitude. We use a proportion of the interquartile
range (IQR) of Q-value distributions as 3 to capture uncertainty in advantage estimates, providing
robustness against outliers while achieving state-adaptive normalisation. This formulation is clipped
to the range [0, 1] to ensures zero weight for inferior demonstrations (A < 0), proportional weighting
for uncertain cases (small |A|), and strong imitation for clearly superior demonstrations (large A).
The subtraction of 1 creates a natural zero-threshold exactly when demonstration and policy actions
are equally valuable.



5 Theoretical properties

We now establish the theoretical foundations of SPReD, examining how both weighting mechanisms
adapt to varying uncertainty conditions and demonstrating their advantages over binary filtering; full
proofs are provided in Appendix [B]and empirical evidence are provided in Appendix [F} Our analysis
focuses on key properties that characterise the behaviour and benefits of continuous weighting.

First, we formalise the fundamental advantage of continuous weights over binary decisions:

Lemma 5.1 (Gradient-variance gap). Assuming (Al) gradient norms are bounded and (A2) demon-
strations are independently sampled, let X, = 1k gr, Y& = Pk gk g = Vllme(sk) — axl/?

Then ] ]
Var[N—D ng] < Var[NDng},

where 1y, represents binary filtering decisions, py, € [0, 1] represents our continuous weights, and
Np is the batch size. Strict inequality holds if P(0 < p, < 1) > 0.

This result establishes that SPReD’s smooth weighting produces BC gradient estimates with lower
variance than binary Q-filter approaches. This variance reduction directly improves training stability
and sample efficiency [45, 46,147,148, particularly in the early stages of learning when policy updates
are most sensitive to demonstration influence.

Next, we characterise how our weights respond to different uncertainty conditions:

Property 5.1 (Adaptive behaviour). Assume = ozB where B is the IQR of the mixture model with
components Q(sq, aq) and Q(sq, w4 (sq)). Let &3 and &2 be the variances and A be the difference of
means under assumptions given in Appendix|[B| As this variance varies, our weights satisfy:

(i) High-certainty: If 6% + 62 — 0 then pp — L a~o (withpp = 0.5 if A = 0) and pp —
clip(es —1,0,1) if A > 0 (with pg = 0if A < 0).

(ii) High-uncertainty: If 62 4+ 62 — oo then pp — 0.5 and pg — 0.

This property demonstrates how both methods adapt to uncertainty: approaching binary filtering
when confident (accepting only positive advantages, with pg = 0 for negative advantages), while
becoming conservative under high uncertainty. This adaptive behaviour is crucial for robust learning
throughout training.

The following property addresses how SPReD handles potentially suboptimal demonstrations as
learning progresses:

Property 5.2 (Diminishing weight on suboptimal demonstrations). Let Q; be the Q-value distribution
corresponding to the policy ;. Assume 7™ is the optimal policy with Q-value function Q*. We assume
that there is no uncertainty in Q* so that Q* is a single value function (not a distribution). Let
(84, aq) satisfy Q* (84, aq) < Q*(8a,7*(54)). Assume (A3) the mean Qt(s, a) of the random variable
Q:(s,a) converges to Q* (s, a) and the variance [64)? — O uniformly over actions (so that the policy
T4 is in a sense converging to the optimal policy 7). Then

Hm pp(sa,aq) =0, lim pg(sa, aa) = 0.

Crucially, this property enables SPReD to autonomously down-weight inferior demonstration actions
as the policy improves and uncertainty decreases, allowing the agent to filter out misleading informa-
tion and potentially surpass the performance of provided demonstrations without requiring explicit
scheduling or quality estimation.

Finally, we establish a fundamental connection between our two weighting schemes:
Property 5.3 (Parameter scaling relationship). When advantage magnitudes are small compared to
estimation uncertainty (|A|/o < 1 where 0 = \/63 + 62), Taylor expansion yields:

1 A

L Ry O((A/0)*), pE= % +0((A/8)).

This reveals that setting 3 = o/ 2w = 2.50 causes both methods to exhibit similar rates of change
with A in high-uncertainty scenarios, precisely when smooth regularisation is most beneficial. Under



this parameterisation, both approaches implement proportional forms of uncertainty-aware caution
up to a constant, differing only in higher-order terms.

This relationship reveals that our exponential weighting provides a non-parametric alternative that
achieves similar uncertainty-aware adaptation without requiring Gaussian assumptions, while natu-
rally placing greater emphasis on demonstrations with larger advantages. The theoretical connection
also provides principled guidance for parameter selection (see Appendix [B]for more details).

6 Experimental results

Environments and tasks We evaluate SPReD on eight challenging robotics tasks from OpenAl
Gym’s Fetch and Shadow Dexterous Hand environments [49]], simulated in MuJoCo [50]]. These
environments feature sparse binary rewards (feedback only upon goal completion) and complex
multi-goal structures, creating significant exploration challenges that make them particularly suitable
for demonstration-based learning. The Fetch tasks utilise a 7-DoF robotic arm with parallel gripper
for pushing, sliding, pick-and-place, and block stacking operations of increasing difficulty. For the
stacking tasks, we use implementations and expert policies from Lanier [S1]. The Shadow Hand
tasks represent substantially higher complexity, requiring a 24-DoF anthropomorphic hand to achieve
precise rotational control of objects (block, egg, pen) despite high-dimensional action spaces and
control noise sensitivity. We exclude the trivial FetchReach task and use 1000 demonstration episodes
for the challenging 3-block stacking task, with 100 demonstrations for all other tasks. See Appendix[D]
and Appendix [E|for additional details about environments and demonstrations. We also experiment
on locomotion tasks [52]] with dense rewards for more evaluation domains in Appendix [F}

Baselines We evaluate SPReD against several state-of-the-art baselines, all implemented with HER
for fair comparisons. Our primary RL baseline is TD3 [38]], which operates without demonstration
utilisation. We include EnsTD3, an ensemble version using 10 critics where random pairs compute
minimum target values and the ensemble mean guides actor updates (similar to REDQ [53]]), isolating
ensemble effects without demonstrations. We compare against Q-filter, the approach from Section
3 using binary-filtered BC with point Q-value estimates [6]], and its ensemble variant EnsQ-filter
that uses critic means for BC decisions, helping isolate benefits beyond simple ensembling. We
evaluate against RLPD [16]], a recent method leveraging ensemble critics with layer normalisation,
implemented with author-recommended hyperparameters and input normalisation for optimal per-
formance. We also include three variants of AWAC, a state-of-the-art offline-to-online RL method
based on advantage weights: AWAC with no pretraining on prior data, AWAC-p with pretraining, and
AWAC-r without pretraining but keeping resampling demonstrations. Our proposed SPReD approach
is implemented in the two variants: SPReD-P and SPReD-E. Both methods leverage ensemble critics
to quantify uncertainty but differ in how they transform uncertainty estimates into imitation weights.
The pseudocode of our method and training details with computational cost analysis can be found in
Appendix [C] The ablation tests on ensemble size, isolated contribution of different components, and
normalisation constant of SPReD-E are presented in Appendix [G]

Main results Table[I] presents success rates after 1 million interactions (10 million for challenging
stacking tasks), quantifying sample efficiency across methods. Our uncertainty-aware methods
(SPReD-P and SPReD-E) consistently outperform standard Q-filter, its ensemble variant, RLPD and
all variants of AWAC across all tasks, with SPReD-E achieving significantly higher success rates in
seven of eight environments than baselines, and both methods are stable exhibiting relatively lower
variance. AWAC struggles significantly in our setting with few demonstrations and environments
with sparse rewards as SPReD explicitly reasons about when demonstrations remain useful rather
than relying on advantage estimates from limited data.

The sample efficiency advantage of our approach increases with task complexity and is most pro-
nounced in intricate manipulation tasks. In FetchStack2, our methods achieve 14x the success rate of
RLPD (0.920 vs. 0.064), despite using only 100 demonstrations. Even in the challenging sliding task,
where demonstrations provide limited benefit due to sensitivity to precise force application, SPReD-E
achieves a 50% higher success rate (0.240) than the next best method (0.160).

The entire learning curves in Figure|[I| provide more comprehensive performance comparisons extend-
ing beyond the 1-10 million interactions reported in Table[I] showing longer-term behavior. Apart
from the substantial improvement of sample efficiency, our methods match or exceed all baselines



Table 1: Average success rate (with standard deviation) over 5 seeds after 1M environment interactions
(10M for stacking tasks). The highlighted results lie between the mean of the best performer and one
standard deviation below it (i.e., if the best result is 1 &= o, all values > 1 — o are bold). The success

rates of demonstrations range from 0.2-0.86 for standard tasks and 1.0 for stacking tasks.
Methods

Environment

TD3 EnsTD3 Q-filter EnsQ-filter RLPD AWAC AWAC-p AWAC-r SPReD-P SPReD-E
FetchPush 0.304£0272 0.272+0.227 0.792+0.016 0.880+0.044 0.968 +0.016 0.112+0.078 0.064 +0.032 0.280+0.076 0.976 + 0.020 0.984 + 0.032
FetchSlide 0.040 £0.062  0.064+0.109 0.072£0.039 0.104+0.032 0.160+0.057 0.112£0.117 0.032+£0.047 0.072£0.073 0.112+0.096 0.240 + 0.044
FetchPickAndPlace  0.080 +0.036  0.192£0.209 0.608 +0.047  0.688 £0.069 0.640 £0.044 0.048 £0.030 0.256+0.090 0.488 +0.089 0.832 + 0.111 0.888 + 0.064
FetchStack2 0.008 £0.016  0.000+0.000 0.048 £0.039 0.144+0.103 0.064 £0.048 0.008 £0.016 0.008 £0.016 0.008 £0.016 0.840+0.110 0.920 = 0.057
FetchStack3 0.000 £0.000 0.000+0.000 0.048 £0.059 0.040+0.025 0.080+0.062 0.000 +0.000 0.000+0.000 0.0000.000 0.248 +0.120 0.384 + 0.125
ManipulateBlock 0.072£0.053  0.136+0.048 0.760 £0.025 0.856 +0.103 0.016+0.020 0.008 £0.016 0.008 +£0.016 0.144£0.041 0.864 % 0.065 0.832 + 0.089
ManipulateEgg 0.000 £0.000 0.000+0.000 0.056 +0.054 0.096 +£0.041  0.000 £ 0.000 0.000 +0.000 0.000 +0.000 0.000 +0.000 0.208 +0.082 0.16 +0.076
ManipulatePen 0.000 £0.000 0.080+0.025 0.208 £0.111  0.264 £0.093  0.000 +0.000 0.000 £0.000 0.008 +£0.016 0.000 +0.000 0.216 +0.065 0.288 + 0.053
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Figure 1: Performance comparison across eight robotics tasks. Solid lines represent mean success
rates across 5 seeds, with shaded areas showing standard deviation. The learning curves are smoothed
using a 5-point moving average. Horizontal dashed lines indicate the success rates of the demon-
strations used for training. Our SPReD methods (red and brown) consistently outperform baselines
across environments of varying complexity.

asymptotically. SPReD excels particularly in complex tasks like stacking, where demonstrations
are most needed. In some extremely sensitive tasks where considerably suboptimal demonstrations
provide limited guidance, EnsQ-filter and RLPD show competitive performance asymptotically but
fail to adapt to different tasks.

From a computational perspective, instead of processing 10 critics sequentially, we stack their
computations into batched tensor operations that execute in parallel with the vectorised critic. SPReD
maintains efficiency and achieves nearly the same throughput as TD3 despite using 5x more critics,
while RLPD demands approximately twice the computation time (shown in Appendix [C).

Impact Of demonstration I TD3 M EnsTD3 M Q-filter EnsQ-filter W@ RLPD M AWAC I AWAC-p AWAC-r M SPReD-P M SPReD-E
quality To systematically
assess robustness to demon-
stration quality, we conduct
experiments at three dis-
tinct quality levels in Fetch-

PickAndPlace and Fetch- o - 1 2 3 4 0 1 2 3 4 0 1 2 3 4
Push as illustrated in Flg- Env steps (10°) Env steps (10°) Env steps (10°)
ure2]and Appendix Figure 2: Effect of demonstration quality in FetchPickAndPlace. The

demonstrations are expert, suboptimal and severely suboptimal from

With expert demonstrations, > : 3
left to right with success rates shown as dashed lines.

standard Q-filter performs
adequately since most demonstration actions merit imitation. However, its performance drops sharply
as demonstration quality decreases, showing the weaknesses of binary filtering when dealing with
uncertain Q-value comparisons. In the most extreme case—the PickAndPlace environment with only
one expert trajectory among 99 random trajectories (the right plot in Figure [2)—standard Q-filter



actually performs worse than TD3 without demonstrations, effectively amplifying misleading exam-
ples rather than filtering them. RLPD neither fully leverage the advantage of expert demonstrations
nor discard the sub-optimality. In contrast, both SPReD variants maintain consistent performance
across all quality levels. The automatic, continuous adaptation mechanism shown in Property [5.1] and
Appendix [F]enables SPReD methods to extract maximum value from demonstrations of any quality
level, maintaining superior sample efficiency across all test conditions without requiring explicit
scheduling or quality estimation procedures.

Impact of demonstration sample size We systematically evaluate how varying the sample size of
available demonstrations (episodes) affects learning performance across methods in Figure 3]

I TD3 M EnsTD3 M Q-filter EnsQ-filter I RLPD I AWAC W AWAC-p AWAC-r M SPReD-P I SPReD-E

5 demos 10 demos 20 demos 50 demos

Env steps (10°) Env steps (10°) Env steps (10°) Env steps (10°)

Figure 3: Effect of demonstration size in FetchPickAndPlace. The demonstrations collected from the
same policy contain 5, 10, 20, or 50 episodes with success rates shown as the dashed lines.

Our SPReD methods demonstrate superior performance even with extremely limited data (10 demon-
strations), while maintaining improvement as sample size increased. With only 5 demonstrations,
the ensemble Q-filter approach shows reasonable performance but exhibited substantially higher
variance across random seeds, indicating less reliable learning. In general, SPReD-P demonstrates
greater robustness to limited sample sizes, while SPReD-E yields better asymptotic performance
when provided with either larger sample sizes or higher-quality demonstrations, suggesting a potential
trade-off between the two approaches depending on available demonstration characteristics.

Robustness To show the robustness of our SPReD methods in comparison to the baseline, we evaluate
our methods with noisy rewards, with results shown in Appendix [} SPReD remains the best method
against the baselines, solving the task with noisy rewards where other methods fail to learn.

7 Conclusion

We have introduced SPReD, a framework for smooth policy regularisation from demonstrations
that enhances RL in sparse-reward environments. Our key contribution is a principled approach
to uncertainty-aware demonstration utilisation through ensemble-based Q-value modelling. We
developed two complementary weighting methods: SPReD-P, which leverages probabilistic estimates
of demonstration superiority, and SPReD-E, which scales imitation strength based on the statistical
significance of advantages. Both methods significantly reduce policy gradient variance compared
to binary filtering approaches. Our extensive evaluation across eight robotics tasks demonstrates
substantial performance improvements, with up to 14x success rates in challenging manipulation
tasks while maintaining robustness to varying demonstration quality and quantity. Based on our
results, we recommend SPReD-E as the default choice for most applications, particularly for complex
tasks, while noting that both methods achieve significant gains with minimal computational overhead.

Despite these advances, important limitations remain. While SPReD significantly accelerates learning
in complex manipulation tasks, we observed that demonstration influence can sometimes slow
later-stage learning in highly dexterous tasks, suggesting the need for automatic balancing between
demonstration guidance and exploration. As with many deep RL approaches, practical considerations
like hyperparameter sensitivity and sample complexity in extremely high-dimensional tasks remain
areas for continued refinement. Future work should address the automatic adaptation of demonstration
influence throughout training, potentially through meta-learning approaches. Theoretical analysis of
convergence properties would also strengthen the foundation of demonstration-based RL methods.
Sim-to-real gap is another research direction as our evaluation based on the simulation. Finally, the
simplicity of our approach makes it readily applicable to other off-policy RL algorithms beyond TD3,
offering potential improvements across a broader range of tasks and domains.
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A Additional related work: imitation learning

Imitation learning (IL) aims to mimic expert behaviours by learning observation-to-action mappings
[54]. behaviour cloning (BC), a prevalent IL method, uses supervised learning but cannot selectively
incorporate demonstrations based on estimated performance like our approach. IL’s primary challenge
is generalising to unseen scenarios with limited demonstrations, stemming from state distribution
shifts, demonstrator-learner correspondence problems [55], and i.i.d. assumption violations. Methods
like DAgger [56] and Deeply AggreVaTeD [57] address accumulated errors through continuous
expert interaction during training—an assumption our method avoids. While effective across domains,
IL cannot surpass demonstrator performance and depends heavily on demonstration quality and
quantity, unlike our approach which leverages even suboptimal demonstrations while exceeding their
performance. Some approaches use RL for post-learning refinement [58} I59], whereas we seamlessly
integrate demonstration guidance throughout learning. Crucially, traditional IL methods assume
extensive expert demonstrations, while our work targets scenarios with limited, potentially suboptimal
demonstration availability.

B Missing proofs and further theoretical results

Proof of Lemma[5.1] By Assumption (A2), the demonstration samples are i.i.d., so it suffices to
show Var[Y] < Var[X] for a single sample, where X = 1gand Y = pg with g = V|7 (s) — a|*.
Let E denote the ensemble statistics for a given state-action pair (s, a), which determine both 1 and
p. Applying the law of total variance:

Var(X) = E[Var(X | E)] 4+ Var(E[X | E])

Since g is fixed given (s, a) and ¢, we have:

E[X | E]=E[lg| E] =gE[l]| E]

For SPReD-P, p represents P(Q(s,a) > Q(s,m4(s)) | E), which is precisely E[1 | E] under our
modeling assumptions. Thus, E[X | E] = gp = Y. For the conditional variance term:

Var(X | E) = Var(lg | E) = ¢* Var(1 | E) = ¢’*p(1 —p) > 0
since 1 follows a Bernoulli distribution with parameter p conditional on E. Substituting back:

Var(X) = E[g°p(1 — p)] + Var(Y) > Var(Y)

The inequality is strict when E[g2p(1 — p)] > 0, which occurs if and only if there exists a non-
zero measure set where g # 0 and 0 < p < 1 simultaneously. Since g is typically non-zero (by
Assumption Al), this simplifies to requiring P(0 < p < 1) > 0. O

Remark on SPReD-E. Note that the key step in Lemma is the identity pp = E []l{Qd >
Qx} | E] which lets us write E[X | E] = gpp. In the exponential variant pg is not by construction
this exact conditional expectation. Nevertheless, pg € [0, 1] and it fracks the true probability pp
closely shown in Property (pp — % N PE= 5%)' Empirically (Figure , SPReD-E therefore

exhibits nearly the same reduction in gradient variance as SPReD-P. Extending Lemma [5.1]to cover
any smooth, bounded weight p remains an interesting direction for future theoretical work.

Extension of Property We restate Property [5.1] by separating into the two models: the first for
probabilistic advantage weighting and the second for exponential advantage weighting. Property [5.1]
is a summary of Property [B.T]and Property B.7]

Property B.1 (An exhaustive version of adaptive behaviour for pp). Assume Q(sq,aq) and
Q(s4,7p(sa)) are Gaussian’s with variances 63 and 62 respectively. Let A be the difference
of their means. We define pp = 0 when A = 0 and 5% + 6(21 = 0. As the variance varies, our
probabilistic advantage weights satisfy:

(i) High-certainty: If 6% + 6% — 0 then pp — 1 a0 (withpp = 0.5 if A = 0).
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(i) High-uncertainty: If 6% 4+ 62 — oo then pp — 0.5.

Proof. Since pp = ¢ <A>:

521 52
a'd+a

. IfA>Oand&§+62—>0:pp—><I>(+oo =1

)

e If A< Oand 62+ 6% — 0: pp — ®(—00) =
1
3

.
p—
-
h
Il
o
o
=
o
Q>
[SHN]
+
Q>
(V)
\
<
=
b
Il
Py
=
Il

« If 62+ 6% = o0 pp — ©(0) = 1. O
Property B.2 (An exhaustive version of adaptive behaviour for pg). Assume = o3 where 3
is the IQR of the mixture model with components Q(s4,aq) and Q(s4,7y(s4)). Let 63 and 62
be the variances and A be the difference of means of Q(s4, aq) and Q(sq, 74(sq)). Assume (for
convenience) that both distributions are continuous and symmetric. We define pp = 0 when A = 0

and 6% + 6% = 0. As the variance varies, our exponential advantage weights satisfy:

(i) High-certainty: If 6% + 62 — 0 then pp — clip(ei —1,0,1) when A > 0 and pg =0
when A < 0.

(ii) High-uncertainty: If the 4th moments of Q(sq, aq) and Q(sq, 74 (s4)) scale like 67 and 6*
respectively then as 62 + 63 — oo, pp — 0.

Proof. For notational convenience, let Q1 = Q(s4, aq) and Q2 = Q(sq, m4(sq)), and for consistency
we redefine the variances 0; = 64 and 05 = 6. We let m; be the means of (); and () be the mixture

model Q) = @; with probability 0.5 for ¢ = 1,2. We choose /3 to be the IQR of Q and 3 = a3 for
some « > 0 which we fix. In this notation A = m1 — ma.

(i) High-certainty limit: As o1 4+ 0o — 0 we claim that B — A. By deﬁnition, assuming a continuous

and symmetric distribution for @, the IQR, f3, satisfies P(|Q — 7| < g) = 0.5 (the value of 0.5 does

not matter, a larger or smaller quantile bound could be equivalently considered) where 1 = w
is the mean of (). Now for any 6 > 0 we can apply Chebyshev’s inequality to infer

P10 -ml<2_5) < P01 —mi|> 6+ P(Qs—ms|>8) < ZL + %2 g
D) =3 L= 2 2Tl =90 = 595 T 952

as 01 + 02 — 0. Hence, lim,,_, /3’ > A —2¢ for all § > 0. In particular, lim,, ¢ B > A. On the
other hand, applying Chebyshev’s inequality again implies

(1< 2 +5)

v

SE(Q1 =l <)+ 3P (@2 — mal <)

L= 2B (Q1 |2 6) - JP(1Qs — mal > 6)

_ ot o
- 252 2452

as 01 + 02 — 0 for any § > 0. This implies lim,,i_mﬁ < A+ 26 forall 6 > 0. In particular,
lim, 0 8 < A,

Now for A > 0 we have

A A 1
pr = clip(e® —1,0,1) = clip(e=s —1,0,1) — clip(e> — 1,0, 1).

For A <0and oy + o9 > 0, Wehaveg < OsinceB > 0,s0pg = clip(e% —-1,0,1) =0.

(ii) High-uncertainty limit: As either o1 — +00 or o5 — 0o we claim 3 — co. Let Z = (Q —m)2.

Then EZ is the variance of the mixture model () which is straightforward to compute as 02 =
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2 2
”1;02 + ATQ. If M is an upper bound on the 4th moment of ¢); and - then a direct computation

with Jensen’s inequality gives the bound
EZ? < M +4mM?7 +6m>M? + 3m' < CM < Co®
for some C,C' > 0. By the Paley—Zygmund inequality,

r-oizn-re @) (1- ) G 5 (1)

for any R > 0. If we choose R? = o2 (1 + 4/ ?f) then we have

P(|Q — | > R) > 0.75.

It follows thatB > R. As R — oo then B — 00.
It is straightforward to now conclude that

pe = clip(e? —1,0,1) = clip(0,0,1) = 0. O
Remark. For A < 0and o1 + o9 =0, B = Mg — My, SO

A 1
pe = clip (e% —1,0, 1) — clip (aTﬁ ~1,0, 1) — clip (e*a —1,0, 1) —0.

For A =0and o1 + 09 = 0, we define pg = 0 for consistency.
Remark. When A = 0 and 62 + 6% =0, Q(s4,aq) = Q(S4, T (s4)) almost surely, which leads to
pp = 0 if using a strict inequality and pp = 1 if using a non-strict inequality in the definition of pp,
neither desirable. Hence, we define pp = %
Proof of Property[5.2] Fix (s4,aq) with

AQ* = Q% (sq, 7 (sq)) — Q" (s4,aq) > 0.
Let R )

At = Q(sd7 ad) - Q(Sd7 T, (sd))

By (A3), there exists a sequence €, — 0 as ¢ — oo such that
sup [Q:(sa, @) — Q(sa, )| < &1
a
In particular,

Q(s4,4) = Q" (sayaa)| <&r and  |Qu(5a, Ty, (5a)) — Q" (5a, T4, (sa))| < &1
Since the policy improves, for any ¢ > 0 there is 7" with
Q" (84,79, (54)) = Q" (54,7 (sa)) =6 Vt=T.
Hence, fort > T,
At < (Q*(scbad) + Et) — (Q*(sd,ﬂ*(sd)) - - 5t) = —AQ* + 2515 + 0.
Choosing 7" large enough that 2¢; + 0 < AQ* for all ¢ > T implies A; < 0. By the high-certainty
limit of Property [5.1] as the ensemble variance vanishes we get

pp(Sd;aa) = 14,50 =0, pr(se,aq)=0. 0
Proof of Property[5.3]
Proof. For the standard normal CDF,
1 T x>
Pz)=s+——=—-—=+0(°
(@) 2 V2r  6V2rm (@)

Setting © = A /o yields the expansion of pp = ®(A/0). For pg = exp(A4/) — 1 (where clipping
is inactive when |A|/8 < 1), we use the power series of the exponential at 0:
2 3

exp(y)zl—!—y—&-%—i—%—k@(gfl)

((A/B)*). Comparing the linear terms of both
A These terms match when 3 = ov/27. L]

2
ThuspE:eXp(A/ﬁ)—lz%4_214?4_61474_0
A ~
a R g

3
B3
expansions, we see that pp — % ~ nd pg

o2

17



Remark. Empirically, our ensemble Q-values are near-Gaussian, and also the difference between
two independent distributions, where IQR ~1.35 0. Given the theoretical relationship = o+/2m,
and substituting this into 8 = « - IQR, we can determine a principled starting point for 5 and
a. While « requires tuning for specific task characteristics, the theoretical relationship provides a
meaningful baseline that ensures proper uncertainty scaling across environments.

C Algorithms and implementation details

Algorithm overview SPReD incorporates uncertainty quantification to enable adaptive demonstra-
tion utilisation through a principled ensemble-based approach. We maintain an ensemble of m critic
networks (#;), each with a corresponding target network, alongside a standard actor network (¢) with
its target network. The algorithm maintains two separate buffers: a standard experience replay buffer
B and a demonstration buffer 5 containing pre-collected demonstration transitions.

Algorithm 1 Reinforcement Learning with Smooth Policy regularisation from Demonstrations

1: Initialise critic networks 6;, actor network ¢ and their target networks ¢ < 0;, ¢’ < ¢, where
i =1,2,...,m and m is the ensemble size

2: Initialise replay buffer B = () and demonstration buffer 3p with transitions in demonstrations
(Sda Qad,Td, S/da gd)

3: for episode e = 1 to M do

4: fort =1to T do

5: Execute action a ~ 4(s) + € with exploration noise € ~ clip(NV (0, o), —c, ¢) where c is
the maximum action. Observe reward r and new state s’

6 Store the transition (s, a,r,s’,g) in B

7: Update state s + s’

8: end for

9: fort =1to T do
10: Store the transition (s, a,r, 8, g,) in B where g, is the actual achieved goal in this episode

11: end for
12: for iteration [ = 1 to k do

13: Sample mini-batch of size N from B and mini-batch of size Np from Bp.
14: Sample two critics uniformly from the ensembles
15: Update all critic networks by minimizing

L(0;) = E(5,ayoB,8, (1 + 7 min Qo (s',a) — Qo, (s,a))*

16: where @ = 7y (s') + €, € ~ clip(N(0,0”), =, )

17: if  mod d = 0 then

18: Update the actor network by minimizing Equation|T]
19: Update target networks:

20: 0, 70, + (1 — 1)

21: 1o+ (1—71)¢

22: end if

23: end for

24: end for

Our Algorithm [I] operates in two main phases. During environment interaction (lines 4-8), the
agent follows its current policy with added exploration noise bounded to the action space to collect
experiences. Following the HER approach [41]], we augment collected transitions by storing them
again with actually achieved goals (lines 9-11), enabling learning from unsuccessful episodes in
sparse-reward environments. The learning process (lines 12-21) integrates several key components:

* Coordinated sampling: Each update draws transitions from both experience and demonstra-
tion buffers with fixed proportions, ensuring consistent demonstration influence throughout
training.

* Ensemble-based target computation: We randomly select two critics from the ensemble
to compute target values, following the REDQ approach [53]] to mitigate overestimation bias
while maintaining computational efficiency.
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* Uncertainty-aware policy updates: The actor loss combines standard deterministic policy
gradient with our uncertainty-weighted behaviour cloning loss that smoothly regularises the
policy.

Weighting mechanisms During the actor update, we compute the weight p for each demonstration
using either SPReD-P or SPReD-E. For SPReD-P, we compute the probability as described in
Section which naturally produces values in the [0, 1] range through the CDF. For SPReD-E, we
practically take

1 m m
B=o- 5 [TQR{Q; (54, aq) }ix1 + IQR{Q;(sa, T(s4)) 121 |
and apply the truncation to the basic exponential form:
pe = clip(e?/? —1,0,1)

This truncation: (1) ensures pr = 0 for negative advantages, preventing imitation of demonstrably
inferior actions; (2) creates a smooth exponential ramp for modest positive advantages; and (3)
caps the weight at py = 1 when A/S > In2, providing full imitation only for clearly superior
demonstrations.

Remark. Both our choice of 8 and 5* = o/ 27, which connects two variants of our method, measure
the uncertainty of the advantage. The choice of ( is not sensitive, and 3 provides proportional bounds

for B*. With near-Gaussian Q-value distributions, our 5 ~ M By the Cauchy-Schwarz
inequality,

7(6 4 64)? < (8%)? = 2n(6% 4 62) < 2n(6 + 64)%
Then we have % B <pB*< % B since [ and B* are non-negative.
Computational considerations Despite its theoretical sophistication, SPReD introduces minimal
computational overhead. The entire probability or advantage calculation and weighting process
requires only a few simple operations beyond standard TD3, with the ensemble critics serving
dual purposes of target value computation and uncertainty estimation. The actor update occurs
less frequently (every d steps) to allow critic networks to stabilise between policy updates. Our
implementation maintains the same overall complexity as standard RL algorithms while gaining
the benefits of uncertainty-aware demonstration utilisation. The practical computational cost of our
method and all baselines we compare are presented in Figure[d SPReD requires ~ 2.6 hours per
4M environment steps, nearly identical to TD3 (2 critics), while RLPD (also 10 critics) requires
~ 4.8 hours. SPReD processes ~ 427 environment steps/second, compared to TD3’s ~ 444
steps/second—only a 3.8% decrease despite using 5x more critics. Given that SPReD achieves up to
14 x better success rates than baselines on complex tasks, this < 4% throughput cost is well justified.
Our SPReD method requires almost the same computational resources as the standard RL algorithm,
while a single running of RLPD takes nearly double time.

N w IS v

Runing time (hours)

-

o

Figure 4: Computational cost for the individual experimental runs for FetchPickAndPlace with 4e6
steps.
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Network architecture and hyperparameters We implement our approach using hyperparameters
consistent with prior work [6]]: mini-batch sizes Np = 1024 and Np = 128 for experience and
demonstration buffers respectively, discount factor v = 0.98, and loss weights A; = 1073 and
Ag = 1178. Both actor and critic networks employ identical architectures consisting of two hidden
layers with 256 neurons each and ReLLU activations. The actor’s output layer uses a tanh activation to
bound actions within the environment’s range. We use the Adam optimizer [60] with learning rate

10~3 for all networks.

For SPReD-E, the scaling constant o was set to 10 based on preliminary experiments. This value
provides sufficient caution with uncertain estimates while still allowing clear advantages to receive
significant imitation weights. The ablation test is presented in Appendix [G|

State and goal observations are normalised before being processed by the networks:

@)

li iginal value, —200, 200) —
Normalised value = clip (C ip(original value, ,200) M, -5, 5)

o+10-6

where i and o represent the running mean and standard deviation, updated at each step using
Welford’s online algorithm [61]. For methods using demonstrations, these statistics are initialised
using the demonstration data. The small constant (10~%) prevents division by zero.

For exploration, we employ clipped Gaussian noise with 0 = 0.1. Following standard TD3 imple-
mentation [38]], we add smoothing noise clip(N (0, 0.2), —0.5,0.5) to actions during critic updates
to enhance Q-function smoothness across similar actions.

We maintain a replay buffer capacity of 10° transitions and begin training after collecting 10N
initial transitions. Critic networks are updated twice per iteration while the actor network is updated
once, with target networks updated via Polyak averaging using 7 = 1073, Our ensemble consists
of 10 independent critic networks with ablation test presented in Appendix |G| Policy performance
is evaluated regularly over 25 test episodes without exploration noise. All the experiments were
performed with a single GeForce GTX 3090 GPU and an Intel Core i9-11900K CPU at 3.50GHz.

D Further environment details

We evaluate our approach on eight robotics tasks implemented in the OpenAl Gym framework [49]],
simulated using the MuJoCo physics engine [50]. These environments feature sparse rewards and
multi-goal structures, providing an ideal testbed for demonstration-based learning approaches.

Fetch robotic arm tasks The Fetch environment employs a 7-DoF robotic arm with a parallel
gripper for manipulation tasks of increasing complexity:

* FetchPush: Moving objects to target positions on a tabletop
 FetchSlide: Striking objects toward targets beyond the arm’s reach
* FetchPickAndPlace: Lifting and positioning objects in 3D space

* FetchStack2 and FetchStack3: Precisely arranging multiple blocks in specified configura-
tions

In these environments, the action space is 4-dimensional, with the first three dimensions controlling
the gripper’s movement and the fourth dimension controlling gripper opening/closing. Observations
are 25-dimensional, containing position and velocity information for both the gripper and manipulated
objects, and goals are specified as 3-dimensional target positions in Cartesian coordinates for standard
tasks. Additional dimensions are included for stacking tasks to accommodate multiple objects.

Shadow dexterous hand tasks The Shadow Hand environment presents significantly more complex
control challenges:

* ManipulateBlock: Manipulating a cube to a target orientation
* ManipulateEgg: Orienting an egg-shaped object
* ManipulatePen: Precisely controlling a pen-shaped object
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Goals in these environments are specified as 7-dimensional vectors representing target positions
(3D Cartesian coordinates) and orientations (quaternions). The action space is 20-dimensional,
corresponding to the absolute angular positions of the hand’s actuated joints. Observations are
61-dimensional, containing comprehensive kinematic information about both the hand and the
manipulated object.

All environments employ sparse binary rewards, with agents receiving 0 when successfully achieving
goals (within a specified tolerance) and -1 otherwise. For the stacking tasks, an additional reward of
+1 is provided when the gripper moves away from the blocks after successful completion, encouraging
proper task termination.

E Demonstration data quality

We collect demonstrations with varying levels of quality to evaluate the robustness of our approach
across different conditions. For each environment, we use 100 demonstration episodes, with the
exception of FetchStack3 where we use 1000 episodes due to its greater complexity.

Table 2: Categorisation of environments by demonstration quality used in main results reported by
Table[T|and Figure|[T]

Quality Level ~Success Rate  Environments

Expert 0.86-1.00 FetchStack?2 (1.00), FetchStack3 (1.00), ManipulateBlock (0.86)
Moderate 0.49-0.53 FetchSlide (0.53), FetchPickAndPlace (0.49)
Low 0.20-0.39 ManipulateEgg (0.39), ManipulatePen (0.37), FetchPush (0.20)

For the challenging stacking tasks (FetchStack2 and FetchStack3), we utilise expert demonstra-
tions from policies developed by Lanier et al. [51]], achieving perfect success rates (1.0). The
ManipulateBlock environment also features high-quality demonstrations with a success rate of 0.86.

For the remaining environments, we generate demonstrations of varying quality using policies trained
with EnsTD3+HER and introducing controlled levels of noise. FetchSlide (0.53) and FetchPickAnd-
Place (0.49) use moderate-quality demonstrations, while ManipulateEgg (0.39), ManipulatePen (0.37),
and FetchPush (0.20) employ lower-quality demonstrations. Table [2] categorises these environments
by demonstration quality level.

For experiments explicitly analyzing sensitivity to demonstration quality (Figure [2]and Figure[10),
we generate three distinct quality levels for each environment:

1. Expert: Demonstrations collected from well-trained policies with minimal added noise.
2. Suboptimal: Generated by adding moderate Gaussian noise to expert actions.

3. Severely suboptimal: Created with substantial noise that significantly degrades demonstra-
tion quality.

This systematic variation enables us to precisely characterise how each algorithm’s performance
scales with demonstration quality, isolating this factor from other variables. For the extreme test
case, we also evaluate performance when provided with 99% random trajectories mixed with just 1%
expert demonstrations.

The deliberate inclusion of diverse demonstration qualities reflects real-world scenarios where perfect
demonstrations may be unavailable or prohibitively expensive to collect. An algorithm’s ability to
extract useful information even from imperfect demonstrations is particularly important for practical
applications.

F Empirical evidence to support methods

Uncertainty measures As we mention in Section[2] there are different methods of the uncertainty
measure. We investigate dropout-based uncertainty as an alternative to our ensemble approach.
Contrary to the intuition that dropout might reduce overhead, our experiments show it actually
increases computational cost while degrading performance:
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Table 3: Running time and success rate for SPReD-P with different uncertainty measures in Fetch-
PickAndPlace. The ensemble size for ensemble method is 10. For dropout method, the dropout rate
is 0.1, and there are 500 forward passes per critic (2 critics in TD3).

Method Time (4M steps)  Success rate (1M steps)

Ensemble 2.6h 0.832+0.111
Dropout  20.3h 0.600 £ 0.057

The dropout approach is 8x slower due to requiring 1000 stochastic forward passes (500 x 2) to
estimate uncertainty, while our ensemble uses a single vectorised pass through 10 critics in parallel
on GPU. Although both methods eventually learn an expert policy within 4M steps, dropout shows
worse sample efficiency (28% drop), likely due to: (1) noisier uncertainty estimates, (2) overconfident
predictions on unseen data [62]], and (3) computational bottlenecks from repeated passes that hinder
efficient batch processing.

These results are consistent with prior findings [62] that ensembles yield better uncertainty estimates
than dropout, and modern GPUs enable highly efficient ensemble parallelisation.

Bootstrapping presents other computational challenges: (1) separate data samples per model prevent
batch-sharing, (2) models process different minibatches, blocking parallelisation, and (3) storing
multiple bootstrap samples increases memory demands. In contrast, our ensemble processes the same
batch across all critics via a single vectorised operation, achieving near-linear speedup. Moreover,
Bootstrapped DQN [30] supports this strategy, suggesting that diversity from random initialisations
of deep NN eliminates the need of explicit data bootstrapping.

These results confirm that vectorised ensembles offer the best balance between uncertainty estimation
quality and computational efficiency.

Locomotion tasks We also evaluate our methods for relatively easy OpenAl Gym locomotion tasks
[52] with dense rewards, where goals and HER are excluded from the algorithm. The tasks are to
move the following robots in the forward direction:

* Hopper: a two-dimensional one-legged figure

* HalfCheetah: a two-dimensional robot with 9 body parts and 8 joints
* Walker2d: a two-dimensional bipedal robot

e Ant: a three-dimensional quadruped robot

* Humanoid: a three-dimensional bipedal robot which simulates a human

According to the initial sample efficiency at 200K steps shown in Table ] SPReD method surpasses
all variants of AWAC for HalfCheetah and Ant, and is particularly outstanding on HalfCheetah
(SPReD-P gains 12% improvement from EnsQ-filter and 72% improvement from Q-filter). AWAC
is competitive for other tasks with near-expert demonstrations, and RLPD has remarkable sample
efficiency initially. However, the learning scores of AWAC and RLPD are asymptotically lower than
SPReD for all locomotion tasks we tested, which is visualised by learning curves in Figure[5] Even in
setting with dense rewards, our SPReD method is the robustest with relatively high sample efficiency,
consistent improvement and the best converging performance, confirming that our uncertainty-aware
approach effectively transfers across different continuous control domains.

Table 4: Average score (with standard deviation) over 5 seeds after 200K interactions for locomotion
tasks. The highlighted results lie between the mean of the best performer and one standard deviation
below it (i.e., if the best result is p £ o, all values > p — o are bold). The scores of demonstrations
range from 2500-7000.

Environment

Methods

TD3 EnsTD3 Q-filter EnsQ-filter RLPD AWAC AWAC-p AWAC-r SPReD-P  SPReD-E
Hopper 1468 £849  2144+966 2818 £438 2930546 2744 +580 2855707 322850 2461 +1042 324618 2740 +344
HalfCheetah ~ 3728 +419 3775+ 1756 4671760 7188934 6721 £3542 4835854  5150+801 4209 +1069 8060 +171 7336+ 601
Walker2d 1861 £ 1159 2334 +£772 1485+589 3576+528 4519+154 3987 +108 3343+1696 4005+433 3351 842 2403 + 1154
Ant 2028 £643 3496+ 669 2478 £960 5862+292 6068 £42 34701325  -4+1776 3465 £987 5636 +496 5779 + 318

Humanoid 853+£242 35882039 4489469 5066+ 143 4701 £432 5261 + 32 4592 £ 545 5293 +£52 4920+ 542 4806 + 557
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Figure 5: Performance comparison across five locomotion tasks. Horizontal dashed lines indicate the
scores of the demonstrations used for training. Our SPReD methods (red and brown) consistently
outperform baselines across different tasks.

AWAC’s poor performance on both locomotion and manipulation domains stems from a fundamental
mismatch with our problem setting: AWAC assumes large offline datasets ( 1M transitions) for
effective pretraining, but we have only 5K demonstration transitions. Without sufficient pretraining
data, and since demonstrations are quickly diluted in the replay buffer, their impact fades early,
effectively reducing AWAC to standard RL. Moreover, AWAC’s advantage weighting assumes
the offline data covers a substantial portion of the state space, which doesn’t hold with sparse
demonstrations.

Gaussian assumption Our SPReD-P method relies on the assumption that Q-value estimates
across the ensemble follow a Gaussian distribution. To validate this assumption, we compare the
performance of our Gaussian approach against two nonparametric alternatives that make no distribu-
tional assumptions: (1) Nonpara_pairwise, which randomly pairs critic networks and makes pairwise
comparisons, and (2) Nonpara_cross, which performs all possible cross-comparisons between critics
(10 x 10 pairs).

As demonstrated in Figure[6] the Gaussian approximation consistently outperforms both nonpara-
metric methods in the FetchPickAndPlace environment. These results validate our modeling choice,
suggesting that the Gaussian approximation effectively captures the underlying uncertainty while

1.0

0.8

0.6

0.4

Success rate

—— Gaussian
—— Nonpara_pairwise
—— Nonpara_cross

0.2

0.0

0 1 2 3 4
Env steps (10°)

Figure 6: Comparison between Gaussian and nonparametric methods in FetchPickAndPlace. Gaus-
sian approximates two distributions of Q-values as Gaussian distributions using the sample mean and
variance. Nonpara_pairwise pairwise compares 10 pairs of Q-values, while Nonpara_cross crosswise
compares 10 x 10 pairs of Q-values. The dashed line shows the success rate of demonstrations.
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providing computational advantages over nonparametric approaches. The superior performance likely
stems from the Gaussian model’s ability to leverage the entire ensemble’s information in a statistically
efficient manner, whereas the nonparametric approaches may suffer from higher variance in their
comparisons.

Variance reduction Through weighted BC, the gradient variance of policy updates is significantly
reduced in our SPReD method as proved by Lemma [5.1] Figure[7]confirms our theoretical prediction
and establishes the benefit of smooth policy regularisation from demonstrations.
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Figure 7: Empirical gradient variance of actor updates in the FetchPush environment, demonstrating
that two variants of our SPReD method significantly reduce policy update variance compared to
binary imitation decisions.

Adaptive mechanisms Figure[§provides insight into the adaptive mechanism behind the robustness
of our SPReD method with various demonstration qualities. Both probabilistic and exponential
variants progressively reduce the influence of these extremely suboptimal demonstrations (with only
a 0.06 success rate), effectively eliminating their impact on policy updates. Examining SPReD-P’s
weighting mechanism in detail (Figure [8a), we observe three distinct phases which coincide with our
theoretical expectation in Property [B.1} (1) an initial uncertainty phase where most weights cluster
around 0.5, reflecting limited confidence in Q-value comparisons; (2) a transition phase around
one million interactions where the policy improves and weights begin polarizing; and (3) a final
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Figure 8: Evolution of behaviour cloning weights in the FetchPickAndPlace environment with
severely suboptimal demonstrations (99% random trajectories). SPReD-P (left) shows three distinct
phases: initial uncertainty (weights ~ 0.5), transition (polarizing weights), and final expert policy
(most weights — 0). SPReD-E (right) displays a similar trend with generally lower weight magnitudes
for generally inferior demonstrations. Both methods automatically reduce the influence of poor
demonstrations as learning progresses, demonstrating the adaptive nature of the uncertainty-aware
weighting mechanisms.
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phase where the vast majority of demonstration weights approach zero, with only genuinely superior
demonstration actions retaining influence. SPReD-E (Figure [8b) shows similar qualitative behaviour,
though with generally lower weight magnitudes due to its exponential scaling and conforms the
theoretical results in Property [B-2 with a pessimistic normalisation c.

Noisy rewards We also evaluate the robustness of our methods to noisy rewards. We consider two
types of noisy rewards: with probability of 0.1, flipping rewards of -1 (failure) to be O (success) or
adding Gaussian noise to the rewards of -1. Note that reward computation function in HER is still
accurate and not affected.

Il TD3 M EnsTD3 MR Q-filter EnsQ-filter 1@ RLPD I AWAC W AWAC-p AWAC-r M SPReD-P I SPReD-E

Flipping noisy Rewards

Gaussian noisy Rewards
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w
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0.0 0.5 1.0 15 2.0 00 02 04 06 08 10

Env steps (10°) Env steps (10°)

Figure 9: The robustness to noisy rewards in FetchPush. The success rate of demonstrations is shown
as dashed lines.

With noisy rewards, the efficient utilisation of demonstrations becomes more crucial. With either
kind of noisy rewards, the standard Q-filter fails to learn the policy due to the disturbed Q-values.
However, our SPReD methods remain the best among all baselines, benefiting from smooth and
uncertainty-aware regularisations.

G Ablation study: impact of ensemble size and normalisation constant of
SPReD-E on performance

Additional experiments of demonstration quality The experiments in FetchPush exhibit similar
trends as in FetchPickAndPlace, confirming the robustness of our methods to demonstration quality.

Il TD3 M EnsTD3 M Q-filter EnsQ-filter I RLPD I AWAC I AWAC-p AWAC-r M SPReD-P H SPReD-E

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
Env steps (10°) Env steps (10°) Env steps (10°)

Figure 10: Effect of demonstration quality in FetchPush. The demonstrations are expert, suboptimal
and severely suboptimal from left to right with success rates shown as dashed lines.

Ensemble size We systematically evaluate the effect of ensemble size on learning performance by
varying it from 2 to 30 critics across multiple environments. Our analysis reveals task-dependent
sensitivity to ensemble size. As shown in Figure[T1] performance in the FetchPickAndPlace envi-
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Figure 11: Effect of ensemble size on learning performance. Left: FetchPickAndPlace environment
shows minimal sensitivity to ensemble size for both methods. Right: ManipulateEgg environment
demonstrates improved performance with larger ensembles, with diminishing returns beyond size 10.
Ensemble sizes tested: 2, 3, 5, 10, 20, and 30.

ronment (left) remains relatively consistent across different ensemble sizes for both SPReD variants,
suggesting that even small ensembles (> 2) capture sufficient uncertainty information for this task.

In contrast, the more complex ManipulateEgg manipulation task (right) shows a clearer performance
improvement with increasing ensemble size. This suggests that more challenging control tasks with
higher-dimensional action spaces benefit from the improved uncertainty estimates provided by larger
ensembles. However, the performance gains diminish noticeably beyond an ensemble size of 10, with
minimal additional improvement at sizes 20 and 30 despite the substantial increase in computational
cost.

Based on this analysis and computational efficiency considerations, we select an ensemble size of
10 for our main experiments. This choice provides a favorable trade-off between performance and
computational requirements, and maintains consistency with the RLPD baseline which also uses 10
critics. Further scaling the ensemble provides diminishing returns that do not justify the additional
computational overhead for most practical applications.

Isolated contribution Since SPReD introduces both continuous weights and ensemble-based
uncertainty estimation, it is important to understand their individual and combined effects. We
conduct a systematic ablation study to isolate these contributions. By varying ensemble size (2 vs.
10) and regularisation type (binary vs. continuous), we can assess each component’s impact (with
success rates at 1M steps).

From results in Table[5] we have the following key findings. First, continuous regularisation is the
primary driver. Even with a minimal ensemble (size 2), SPReD-P improves over Q-filter by 28%
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Table 5: The success rates of different methods in FetchPickAndPlace at 1M steps to assess isolated
contributions of ensemble and continuous weights.

Q-filter EnsQ-filter SPReD-P (size 2) SPReD-E (size 2) SPReD-P (size 10) SPReD-E (size 10)
0.608 £0.047 0.688 £0.069 0.776 £ 0.070 0.152 £0.304 0.832+0.111 0.888 £ 0.064

(0.776 vs 0.608). This demonstrates that smooth, uncertainty-proportional weights are fundamentally
better than binary decisions, regardless of ensemble size. Then ensembles add complementary value.
Expanding from 2 to 10 critics further boosts performance for both SPReD variants. However, the
gains are method-specific—SPReD-P shows modest improvement (+7%, 0.776 vs 0.832) while
SPReD-E shows dramatic improvement (+484%, 0.152 vs 0.888 ). This differential benefit reveals an
important insight that the methods have different uncertainty requirements. SPReD-E’s exponential
weighting critically depends on accurate uncertainty estimates through 3. With only 2 critics,
the IQR calculation is noisy, leading to suboptimal scaling. In contrast, SPReD-P’s probabilistic
approach is inherently more robust to limited ensemble sizes. The ablation confirms that while
both components contribute independently, they work synergistically. Continuous regularisation
provides the foundation for better learning, while larger ensembles enable more precise uncertainty
quantification—particularly crucial for SPReD-E’s exponential scaling mechanism. This validates
our design decision to combine both innovations rather than pursuing either in isolation.

Normalisation constant The theoretical scaling 8 = o+/27 in Property builds a connection
with our probabilistic advantage weighting method SPReD-P, but there is no guarantee that it
works best. While both o and IQR measure Q-value distribution spread, the IQR-based approach
provides better empirical performance, particularly in more challenging tasks (17% improvement
in FetchPickAndPlace with o = 10 after 1M steps) as shown in Figure[T2] The advantage is even
more pronounced with lower-quality demonstrations (44% higher success rate after 4M steps). This
advantage likely stems from IQR’s robustness to outliers in Q-value estimates during early training
when ensemble variance is high. According to our experimental results, the effect of a depends on
task and demonstration quality, but the performance of our SPReD-E is not very sensitive to the
choice of . There is no general trend indicating that a smaller or larger value of « would be better.
This is a task-specific hyperparameter which can be tuned to achieve better performance for a specific
task. In our work, we take o = 10 for the consistent comparisons, which performs well overall.
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Figure 12: Effect of normalisation constant o of SPReD-E in the FetchPickAndPlace environment
with suboptimal and severely suboptimal demonstrations (success rates shown as dashed lines).
The performances of SPReD-P SPReD-E with theoretical 5 = o\/27 are given as the baseline of
comparison.
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H Broader impacts

Our research on uncertainty-aware reinforcement learning from demonstrations offers several societal
benefits: accelerating robotic automation across industries, enabling safer operation in hazardous
environments, and democratizing access to robotic solutions through reduced demonstration require-
ments. However, these advances may also contribute to workforce displacement in sectors reliant on
manual labor, potentially devalue certain specialised demonstration skills, and introduce challenges
for accountability in systems that require minimal human supervision. We acknowledge that com-
plementary workforce development programs and economic policies will be important alongside
technological advances in automation to address potential negative impacts on employment.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claim of reduced gradient variance, higher sample efficiency and robust-
ness with quality and quantity of demonstrations obtained by smooth uncertainty-aware
policy regularisation made in the abstract and introduction is verified both theoretically and
experimentally in Section[5} Section[6]and Appendix

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It s fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We present comprehensive experiments on tasks with different complexity,
demonstration quality and demonstration size in Section[6] In Section[7} we explicitly discuss
limitations including: demonstration influence potentially slowing later-stage learning
in highly dexterous tasks, hyperparameter sensitivity challenges, and remaining sample
complexity issues in extremely high-dimensional tasks that require further refinement.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,

model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms

and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to

address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: The complete presentations and proofs with corresponding assumptions of our
theoretical results in Section[5]are provided in Appendix [B] We also provide the empirical
evidence to support our theory in Appendix [F]

Guidelines:

» The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Our algorithm is well-explained with pseudocode and all implementation
details provided in Appendix[C] The demonstrations used in this paper are also explained in
Appendix [E] for reproducibility.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide our implementation code with detailed instructions for environment
setup, model training, and experiment reproduction on GitHub. The demonstration datasets
used across all experiments are also included to enable complete reproduction of our results.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https !
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We briefly introduce the experimental settings in Section[] The full implemen-
tation details are included in Appendix [C| with detailed explanations about the environments

in Appendix
Guidelines:
* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
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Justification: We report the standard deviations across 5 seeds as error bars for all results
shown as the shaded area in all applicable figures and included in Table|l{ with explanation
in captions.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We provide the relevant information in Appendix [C|
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our experiments are based on the simulated environments with open source
with no human participants.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts
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11.

12.

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: In Appendix [Hl we discuss both positive impacts of our technology, ac-
knowledging the need for complementary workforce development alongside technological
advances.

Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our experiments are simulations on robotic manipulation tasks without concern
of privacy or misuse.

Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

33



13.

14.

15.

Justification: We properly cite all external assets used in our research, including OpenAl
Gym environments, MuJoCo physics engine for simulation, and expert stacking task policies
from Lanier et al. All these assets are used in accordance with their open-source licenses
and academic citation requirements.

Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: The code for our method is provided with a document for instructions.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects
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16.

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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