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ABSTRACT

Recent 4D Gaussian Splatting (4DGS) methods often fail under fast motion with
large inter-frame displacements, where Gaussian attributes are poorly learned dur-
ing training, and fast-moving objects are often lost from the reconstruction. In this
work, we introduce Spatiotemporal Position Implicit Network for 4DGS, coined
SPIN-4DGS, which learns Gaussian attributes from explicitly collected spatiotem-
poral positions rather than modeling temporal displacements, thereby enabling
more faithful splatting under fast motions with large inter-frame displacements.
To avoid the heavy memory overhead of explicitly optimizing attributes across all
spatiotemporal positions, we instead predict them with a lightweight feed-forward
network trained under a rasterization-based reconstruction loss. Consequently,
SPIN-4DGS learns shared representations across Gaussians, effectively capturing
spatiotemporal consistency and enabling stable high-quality Gaussian splatting
even under challenging motions. Across extensive experiments, SPIN-4DGS con-
sistently achieves higher fidelity under large displacements, with clear improve-
ments in PSNR and SSIM on challenging sports scenes from the CMU Panoptic
dataset. For example, SPIN-4DGS notably outperforms the strongest baseline,
D3DGS, by achieving +1.83 higher PSNR on the Basketball scene.
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Figure 1: Faithful reconstruction of fast motion with large inter-frame displacements. Existing
4DGS approaches often produce blurred or incomplete reconstructions of fast-moving objects. In
contrast, ours successfully reconstructs clear and accurate details, such as the basketball in the scene.

1 INTRODUCTION

Rendering fast motions with large inter-frame displacements remains challenging for dynamic scene
reconstruction, despite its importance for a wide range of real-world applications. Recent advances
in 4D Gaussian Splatting (4DGS) have shown remarkable efficiency and visual quality, making it a
promising framework for dynamic scene reconstruction. In particular, existing 4DGS methods (Yang
et al., 2024a; Duan et al., 2024; Wu et al., 2024; Xu et al., 2024) achieves strong results on dynamic
scenes with small displacements (e.g., Neu3D (Li et al., 2022b)) across video frames.

However, as motions become faster and inter-frame shifts grow larger (e.g., Panoptic Sports (Joo
et al., 2015)), existing 4DGS methods, including explicit 4D parametrization (Yang et al., 2024a;
Duan et al., 2024) and deformable approaches (Wu et al., 2024; Xu et al., 2024; Kwak et al., 2025),
often fail to capture the rapid dynamics, producing blurred or even vanished objects. To be specific,
in deformable approaches, Gaussians are defined in a static canonical space and transformed over
time through learned deformations. However, they often fail to assign initial Gaussians for fast-
moving objects in the canonical space, causing those objects to remain unseen during deformation
training. On the other hand, although explicit parameterization roughly tracks Gaussian positions
that correspond to fast motions at the early stage of training, their attributes, including color, opacity,



Under review as a conference paper at ICLR 2026

(a) Left: 15K training iteration, Right: 30K training iteration. (b) Canonical space

Figure 2: Failure modes on fast motions with large inter-frame displacements. We visualize
failure modes of existing frameworks; (2a) explicit parameterization and (2b) deformable methods.
Figure (2a) shows drastic degradation on training iterations (i.e., 15K — 30K), and (2b) shows the
canonical space of deformable initialization fails to assign Gaussians for fast motions.

scale, and rotation, rapidly collapse in later training, leading to drastic degradation. As a result, both
approaches show failure modes with blurred or even vanished motions, as shown in Figure 2.

To this end, we focus on addressing the failure in learning Gaussian attributes for fast-moving ob-
jects with large displacements. Although positions remain sufficiently accurate to capture motion,
other attributes collapse more easily. This degradation arises because reconstruction loss is domi-
nated by background Gaussians; fast-moving Gaussians at new positions incur higher reconstruction
errors, while static backgrounds are easier to fit. As a result, both deformable and explicit 4DGS
approaches tend to bias learning toward background fitting, eventually leading dynamic objects to
disappear. In addition, such large displacements can cause cross-frame interference during frame-
by-frame rasterization. Although a 4DGS (Yang et al., 2024a) can be sliced differently at each time,
its parameters are shared, so optimizing for one frame makes other slices suboptimal unless we
separate Gaussians by explicit spatiotemporal positions (z,y, z,t). This observation motivates us
to leverage the explicit spatiotemporal positions of fast-moving Gaussians as inputs for generating
their attributes, thereby achieving more faithful splatting under large displacements.

In this paper, we introduce SPIN-4DGS (Spatiotemporal Position Implicit Network for 4DGS),
a lightweight yet effective framework designed to handle fast motions with large inter-frame dis-
placements. To be specific, we first estimate high-quality spatiotemporal positions (x,y, z,t) of
Gaussians that can serve as the inputs for later attribute prediction, initially gathering them across
the entire scene before refining them in a frame-wise manner. Then, we leverage these positions to
predict Gaussian attributes through a lightweight feed-forward network, avoiding the heavy memory
overhead of explicitly optimizing attributes over all spatiotemporal positions. This design learns a
shared implicit representation across all Gaussians and decodes attributes directly from positions un-
der rasterization loss. As a result, learned attributes remain consistent across positions, and dynamic
objects can stay stable even under large displacements. Meanwhile, attributes are stored implicitly in
network parameters, rather than explicitly for each Gaussian, which significantly improves memory
efficiency on a large number of spatiotemporal positions.

To validate the effectiveness of the proposed SPIN-4DGS, we perform experiments on various sports
scenes from the CMU Panoptic Sports dataset, where human motions are rapid and small objects
move across large inter-frame displacements. Across six sports scenes, SPIN-4DGS achieves the
best performances, significantly outperforming all baselines. For example, SPIN-4DGS achieves
a +1.83 PSNR dB improvement compared to the strongest baseline, D3DGS (Luiten et al., 2024),
with a higher SSIM of 0.92 on the Basketball scene. Specifically, qualitative results in Figure 4 and
Table 1 demonstrate that prior methods often blur Gaussians or fail to capture fast-moving objects
(e.g., Basketball), whereas SPIN-4DGS preserves them with sharp and stable reconstructions. In-
terestingly, we further observe that SPIN-4DGS significantly improves performance when reusing
pre-trained Gaussian positions from strong baselines, such as D3DGS (Luiten et al., 2024) and
4DGS (Yang et al., 2024a).

Overall, our work introduces SPIN-4DGS, the first framework that learns Gaussian attributes di-
rectly from jointly optimized frame-wise positions, enabling stable and high-quality 4DGS under
large inter-frame displacements. This 4D reparameterization allows ours to mitigate temporal failure
modes under such fast motion while still capturing rich temporal appearance dynamics. We believe
SPIN-4DGS addresses a fundamental challenge of 4DGS by enabling stable learning in various
real-world scenarios, thereby opening a new direction for advancing dynamic scene representation.
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Figure 3: Illustration of the overall framework. SPIN-4DGS consists of two stages of (a) Spa-
tiotemporal Position Estimation and (b) Implicit Network for 4DGS. Specifically, (a) we slice Gaus-
sians along the temporal axis to obtain spatiotemporal position sets and refine them with rasterization
loss. Then, (b) the refined positions are normalized and passed through a 4D hash encoder and multi-
branch decoders to predict Gaussian attributes (scale, rotation, color, and opacity).

2 RELATED WORK

Learning temporal dynamics for 3D Gaussian. Recent advances have shown significant progress
in extending 3D Gaussian representations into the 4D domain by learning temporal dynamics. Early
attempts (Luiten et al., 2024; Javed et al., 2024) incrementally propagated 3D Gaussians from the
first frame, demonstrating the potential of 4D Gaussian splatting, but suffering from sequential in-
efficiency and overfitting due to numerous per-frame iterations. However, their reliance on external
supervision, such as segmentation masks, substantially increases training costs and computational
overhead. Meanwhile, inspired by NeRF approaches (Cao & Johnson, 2023; Fridovich-Keil et al.,
2023; Park et al., 2021), deformable frameworks (Wu et al., 2024; Yang et al., 2024b; Lu et al.,
2024; Zhu et al., 2024; Lin et al., 2024; Xu et al., 2024) instead construct a canonical space to ini-
tialize Gaussians and then learn temporal displacements in rotation, scale, and position. Despite
their robustness on motions with small inter-frame displacements, these methods still underperform
on rapid motions with large displacements, as Gaussians that represent fast motion are often omitted
during canonicalization and thus remain unseen in the subsequent deformation process. In contrast,
we address these challenges without external supervision, showing that high-fidelity capture of fast
motion can be achieved solely from raw video inputs.

Explicit 4D Gaussian Parameterizations. Another promising direction is to focus on directly
parameterizing Gaussians in 4D from scratch (Yang et al., 2024a; Lee et al., 2024; Duan et al.,
2024), rather than optimizing each frame separately in the 3D domain. Such explicit 4D modeling
unifies space and time into a continuous field and encodes dynamics as 4D Gaussian splats, which
can be temporally sliced for rendering, in contrast to deformable-based approaches. For instance,
4D-Rotor-Gaussians (Duan et al., 2024) performs temporal slicing of 4D Gaussians at each times-
tamp to obtain dynamic 3D Gaussians, which are then projected to the image plane. While explicit
4D parameterizations achieve higher frame rates (FPS) and improved rendering quality, they require
longer training times and larger storage requirements. Moreover, under fast motion with large dis-
placements, we observed that corresponding Gaussian attributes gradually blur due to cross-frame
interference. A single 4D Gaussian must simultaneously explain all timestamps; however, rasteriza-
tion is performed frame by frame, so optimization for one frame inevitably affects the others. This
inherent conflict in the rasterization process makes it challenging to maintain temporal consistency
in dynamic regions. In contrast, our method avoids such cross-frame degradation by directly decod-
ing Gaussians at explicit spatiotemporal positions in a feed-forward manner. This design explicitly
separates large-displacement Gaussians at each timestamp, which prevents cross-frame degradation
and leads to both stable training and consistent rendering quality.

3 METHOD

In this section, we present the Spatiotemporal Position Implicit Network for 4DGS (SPIN-4DGS), a
framework for reconstructing dynamic scenes under motions with large inter-frame displacements.
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We first review 3D Gaussian Splatting as preliminaries in section 3.1. Then, section 3.2 describes
how we obtain explicit spatiotemporal Gaussian positions, and section 3.3 details how their attributes
are predicted via a feed-forward implicit network. The overall framework is illustrated in Figure 3.

3.1 PRELIMINARY: 3D GAUSSIAN SPLATTING

3D Gaussian Splatting (3DGS; Kerbl et al. (2023)) provides a differentiable volume rendering rep-
resentation. It introduces anisotropic Gaussians where the parameters (i.e., position, scale, rotation,
color, and opacity) of each Gaussian are defined and optimized for tile-based rendering. Structure-
from-Motion (SfM; Schonberger & Frahm (2016)) techniques estimate the initial positions and col-
ors of Gaussians from input images. For a given arbitrary point x € R3 in the 3D scene, Gaussian
is defined as follows:

67(0x) = exp (5 x— 1) Zbx ) ) M)

where G3P(x) denotes the value of the Gaussian at arbitrary point x. The parameters of each
Gaussian include the position p € R3, opacity o € R, color ¢ € R3 represented using spherical
harmonics coefficients, and the covariance matrix ¥ € R3*3, which is defined in terms of a diagonal
scale matrix S = diag(s1, s2, $3) and a rotation matrix R € SO(3), obtained from quaternions. To
ensure that the covariance matrix remains 3 positive semi-definite, it is computed as follows:

Ssp =RSS'RT. 2)

To render via rasterization, the 3D Gaussians are first projected onto the 2D image plane. This is
done by applying the viewing transformation W and the Jacobian matrix (Zwicker et al., 2001) J to
compute the 2D covariance matrix 3op as follows:

Sop=JWX;p, WTJT 3

During the rendering process, pixel values are computed via alpha blending. The alpha value (i.e.,
opacity) of each Gaussian is obtained by projecting the 3D Gaussian G; into 2D as GfD . Specifi-
cally, for each pixel, the alpha value o, and the resulting color C are computed as

N i1
o =0;G?P(x), C(x)= Zci al H(l — ), 4)
i=1 j=1

where 0; is the intrinsic opacity of the ¢-th Gaussian, ¢; its color, and NV the total number of Gaussians
contributing to the pixel.

3.2 SPATIOTEMPORAL GAUSSIAN POSITIONS

In this section, our goal is to construct a Gaussian point set that fully spans the trajectory of dynamic
objects, ensuring sufficient coverage for faithful reconstruction. Prior methods perform reasonably
well in regions where Gaussians are densely clustered, but under large inter-frame displacements,
they often fail to maintain enough points around fast-moving objects. Even when positions are
sufficiently available, attributes remain challenging. To be specific, when Gaussians spanning the
entire trajectory are optimized jointly, frame-specific supervision signals interfere with one another.
Because rasterization is performed frame by frame, updates that make a Gaussian optimal for one
timestamp can render it suboptimal for others. This cross-frame interference can potentially weaken
the learning signal and degrade the quality of the reconstruction.

To overcome these issues, we construct Gaussian sets independently at each time step, explicitly
separating them by spatiotemporal positions. This formulation avoids interference across frames
and enables more reliable attribute learning for fast-moving objects under large displacements.

Uy = fg(X,}’,Z,t), Ct = g¢(X,y,Z,t) € {03 < '7255}37 te {17 . 7T} (5)

Here, f¢ and g4 are explicit functions of the temporal axis predicting the position and color cor-
responding to each frame t. For example, the explicit approaches (Duan et al., 2024; Yang et al.,
2024a) construct points by performing time slicing along the temporal axis, whereas a deformable
approach (Wu et al., 2024; Xu et al., 2024; Bae et al., 2024) network can learn to construct them
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as time-varying structures. For SPIN-4DGS, we estimate spatiotemporal positions by an explicit
method (Yang et al., 2024a) as a default. Lastly, we further refine the estimated position by utiliz-
ing rasterization loss with corresponding colors at every frame to densify salient points and prune
unnecessary ones.

Up Reﬁne(ut,ct;t), t=0,...,T. (6)

After refinement, the Gaussian points at each timestamp ¢ are fixed as explicit spatiotemporal posi-
tions and directly fed into our implicit network to learn the corresponding attributes.

3.3 IMPLICIT NETWORK FOR 4D GAUSSIAN SPLATTING

In this section, we describe an implicit network that is trained in an end-to-end manner to directly
predict 4D Gaussian parameters from learnable spatiotemporal Gaussian positions initialized from
the collected ones. In contrast to prior approaches require pre-defined or pre-optimized Gaussian
attributes (e.g., scale, rotation, opacity, color) to model temporal dynamics, our network is trained
from scratch using only the collected spatiotemporal positions (y,t) € R* as input. Given (y,1),
the network predicts all 4D Gaussian parameters, including opacity o € R, spherical harmonics
coefficients sh € R*®, scale s € R?, and rotation represented as a unit quaternion r € R*.

Input position normalization. At each frame ¢, the spatiotemporal Gaussian positions serve as
inputs to a feed-forward network for learning implicit representations of other Gaussian parameters.
Since the raw 3D Gaussian positions u € R? on the scene are unbounded, we apply a normalization
step to stabilize learning and preserve representational capacity. Specifically, following the scene
contraction strategy of Mip-NeRF (Barron et al., 2021), we first compress the coordinates into a
finite ball and then map them to the normalized range [0, 1], as defined in equation 7.

K, el <1,

contract(p) = < 1 > © > 1 fi = 1 contract(p) + 3 € [0,1°. (7
EEETIFATEY BTIATR) 1 )
leell /- llaell

To keep spatial and temporal scales comparable, we normalize time to [0, 1] to match the scale of
the spatial embedding. Concretely, we use the current timestamp divided by the total duration:

thorm = ﬂ € [Oa 1] and X = [I]Ta tnorm

tmax — Tmin

Our network adopts an encoder-decoder architecture, where the encoder f,,,. maps the normalized
input X to a latent embedding f.,,.(X) which the decoder takes as input. We note that the position
u is also parameterized and jointly optimized with the network, similar to existing frameworks (Wu
et al., 2024; Xu et al., 2024).

1" e o, (8)

Encoder architecture for shared latent representation. We directly extend the widely used 3D
Instant-NGP (Miiller et al., 2022) multi-hash grid to 4D by appending the temporal axis, producing
a compact latent vector for each input. Given the normalized input X = [, tyorm | | > We map it
into a unified 4D embedding via a single spatio-temporal encoder. In contrast to low-rank decom-
positions (e.g., planar), which may reduce computation but degrade expressiveness as the number of
Gaussians grows and incur extra cost from per-level hash management, we avoid such factorizations
and employ the 4D hash encoder (Chen et al., 2025) directly as follows:

2 = fone(X) € REF €))

where L denotes the number of hash levels and F' the number of channels per level. We concatenate
features across all levels to form z € RLF | which we use as the latent representation.

Attribute-aware decoder for Gaussian attribute prediction. Given a latent vector z, we use
a multi-branch decoder to produce Gaussian parameters, scale, rotation, spherical harmonics coef-
ficients, and opacity. Each attribute is predicted by a separate head (three-layer MLP) taking the
shared encoder output z € RZ¥" as input. All decoder heads use GELU (Hendrycks & Gimpel,
2016) activations instead of ReLU (Agarap, 2018).

(éaf‘7S}la 6) = (fscale(z)7 fml(z)7 fsh(z)v fopacity(z))~ (10)



Under review as a conference paper at ICLR 2026

We convert the raw outputs into valid parameter ranges using attribute-specific activations and post-
processing:

(s,r,sh,0) = (exp(8), = sh, o(0)). (11)

lI#ll2°

We also follow the Gaussian post-processing (Kerbl et al., 2023) pipeline, with a few additional
steps for stable training.

Scale decoder. To prevent gradient explosion from exponential growth, we clip the pre-scale in the
backward pass: § < clip(§, max = 20). We also initialize the final-layer bias to —5 to start from a
small scale, i.e., exp(—5) = 0.0067, and keep it trainable.

Rotation decoder. To bias the predicted quaternion toward the identity at the start of training, we
set the final-layer bias to (1,0,0,0), i.e., the first element to 1.0 and the remaining elements to 0,
so that the initial output satisfies  ~ (1,0, 0,0). This initialization lets the network learn rotations
progressively while preserving a stable initial structure.

Opacity decoder. To stabilize early training and encourage a near-transparent start, we set the
final-layer bias to logit(0.1) ~ —2.197 (trainable), initializing 6 at ~ 0.1. The network then learns
to increase opacity only where needed, focusing on informative points.

Color decoder. The decoder directly regresses color coefficients from encoder embeddings, with
no special initialization, to capture the high-dimensional color required for SH-based rendering.

Loss objectives. Finally, frame images are rendered via rasterization, and we optimize the model
using the standard 3DGS reconstruction loss as follows:

L=(1-XLi+XLpssm. (12)

where A is a hyperparameter; we set A = 0.2, as following prior works (Kerbl et al., 2023).

4 EXPERIMENTS

In this section, we demonstrate the effectiveness of the proposed method, SPIN-4DGS. Specifically,
we choose to employ the recent explicit parameterization method for 4DGS (Yang et al., 2024a),
which is publicly available, only in the early training stage to estimate spatiotemporal Gaussian
positions. These positions are then used in our framework to learn new Gaussian attributes. We
then evaluate its ability to capture fast motion on various sports scene benchmarks from the CMU
Panoptic Sports dataset (Joo et al., 2015), comparing it with existing 4DGS baselines.

Implementation details. The network uses a hidden dimension of 64, and the encoder is configured
with L = 16 levels and F' = 4 features per level; the hash map size 21. Parameter groups in
both the encoder and the decoder utilize separate learning rates, as Gaussian attributes (e.g., scale
and rotation) are sensitive, and a uniform learning rate often leads to unstable optimization. The
encoder learning rate is initialized to 8 X 10~3; decoder learning rates are 1 x 103 for color,
3 x 10~* for scale, 3 x 1075 for rotation, and 8 x 10~* for opacity. position parameters use the
same learning rate as 3DGS. We use Adam (Kinga et al., 2015) with a linear warm-up and cosine
decay schedule, under which every parameter’s learning rate decays to 1 x 10~7. Experiments
were conducted on an RTX 4090 GPU (24 GB), and the implementation utilized PyTorch (Paszke
et al., 2019) 2.1 with CUDA 11.8. By default, we train for 40K iterations with a batch size of 3.
We perform quantitative evaluations using PSNR (Peak Signal-to-Noise Ratio), SSIM (Wang et al.
(2004); Structural Similarity Index), and LPIPS (Zhang et al. (2018); Learned Perceptual Image
Patch Similarity), and additionally report frames per second (FPS) to assess rendering speed.

Datasets. We employ the CMU Panoptic Sports dataset (Joo et al., 2015) to validate scenarios
of fast motions with large inter-frame displacements in our experiments. Specifically, the Panoptic
Sports dataset is a challenging benchmark containing six sports scenes: juggle, basketball, boxing,
football, softball, and tennis. Each scene is recorded at 30 FPS for 5 seconds (150 frames per scene).
A total of 31 cameras were used, and the native resolution of 640 x 360 was retained. Evaluation
was referenced to four fixed test cameras (IDs of 0, 10, 15, and 30).

4DGS baselines. We compare our method with recent 4DGS baselines across various strate-
gies, including (a) explicit parameterizations for 4DGS: 4DGS (Yang et al., 2024a), 4D-Rotor-
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Table 1: Comparisons on dynamic sports scenes in the CMU Panoptic Sports dataset. We
evaluate ours with existing 4DGS baselines on benchmarks containing fast motions with large inter-
frame displacements. We report PSNR and SSIM for six sports scene sequences across all baselines.

Method 4DGS Category Basketball Boxes Football Juggle Softball Tennis Avg.

PSNRT SSIM{ PSNR SSIMt PSNRf SSIM{ PSNRT SSIM{ PSNRT SSIM? PSNRT SSIM{ PSNRT SSIM{ FPST Storagel
GriddD Deformable 2582 089 2681 091 2761 091 2809 092 2691 091 2710 091 2706 091 146 333
4DGaussian Deformable 2728 090 2732 091 2871 091 2694 091 2724 091 2766 091 2753 091 40 62
MoDec-GS Deformable 2742 090 2617 092 2709 092 2803 093 2731 092 2736 092 2723 092 62 34
TC3DGS External supervision  27.92 089 2828  0.89 2800 089 2915 090 2796 089 2597 089 2788 089 890 49
D3DGS External supervision 2822 091 2946 091 2849 091 2948 091 2843 091 2811 091 2870 091 760 1994
4D-Rotor-Gaussians  Explicit 2776 090 2694 089 2654 092 2762 092 2703 092 2709 091 2716 091 100 94
4DGS Explicit 2789 092 2817 093 2835 093 2868 093 2867 093 2850 093 2838 093 197 1293
Ours 3005 092 2991 093 2999 093 3031 093 3024 093 3014 093 3011 093 104 1261

Softball Tennis Basketball

Football

4DGaussian 4DGS D3DGS Ours GT

Figure 4: Visualizations on dynamic sports scenes in the CMU Panoptic Sports dataset. Com-
pared to prior 4D Gaussian baselines, where fast-moving objects (e.g., ball, bat, and racket) often
disappear or become corrupted, our method successfully preserves these objects throughout the se-
quence, producing more faithful and consistent reconstructions.

Gaussians (Duan et al., 2024)!, (b) deformable 4DGS: Grid4D (Xu et al., 2024), 4D Gaussian (Wu
et al., 2024), MoDec-GS (Kwak et al., 2025), and (c) external supervision: D3DGS (Luiten et al.,
2024), TC3DGS (Javed et al., 2024). We note that D3DGS and TC3DGS are designed to handle
large inter-frame displacements, such as the Panoptic Sports dataset. All baselines are evaluated
following the dynamic scene setups specified in their papers.

4.1 EXPERIMENTAL RESULTS ON PANOPTIC SPORTS

In this section, we evaluate our method with various 4DGS baselines on six dynamic sports scenes
(Basketball, Boxes, Football, Juggle, Softball, and Tennis) from the CMU Panoptic Sports dataset,
which involve rapid human motions and small objects undergoing large inter-frame displacements.

As reported in Table 1, SPIN-4DGS achieves the best PSNR on all six scenes with an average
of 30.11 dB, outperforming the strongest explicit baseline 4DGS (28.38 dB) by +1.73 dB and the
external supervision baseline D3DGS (28.70 dB) by +1.41 dB. SSIM also remains consistently high
at 0.93, confirming stable reconstruction quality. In particular, our method even surpasses models
trained with external supervision such as segmentation maps (e.g., D3DGS, TC3DGS), showing that
high fidelity can be achieved without costly priors. Beyond averages, the improvements are most
significant on challenging scenes with extreme motion. On Basketball, SPIN-4DGS improves PSNR
by over +1.83 dB against the best baseline, D3DGS (Luiten et al., 2024), while on Tennis, where
rackets move rapidly and cover large displacements, the margin also surpasses +1.64 dB against
the best baseline, 4DGS (Yang et al., 2024a). Overall, those results highlight the robustness of our
approach to challenging fast-motion scenarios where prior methods often fail.

"We reimplemented the method using the official PyTorch code released by the authors.
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Qualitative comparisons in Figure 4 further illustrate these differences. Deformable baseline (i.e.,
4DGaussian, first column) results blur fine-grained structures, explicit 4DGS (second) results fre-
quently lose moving objects, and even externally supervised (i.e., D3DGS, third) results suffer degra-
dation on small, fast objects like a tennis racket. In contrast, SPIN-4DGS preserves sharp and stable
reconstructions across all frames, closely matching the ground truth.

As shown in Figure 4, only the externally supervised baselines (e.g., D3DGS) are able to represent
the fast-moving objects (e.g., basketball) in these sports scenes. Although D3DGS achieves a high
rendering speed, it requires external supervision during training and incurs substantial storage over-
head (1994 MB) to store a large set of Gaussian attributes for the entire sequence. Explicit 4DGS
renders faster than SPIN-4DGS, yet still fails to reconstruct these fast-moving objects and yields
lower PSNR. In contrast, SPIN-4DGS attains higher fidelity with a smaller footprint (1261 MB) by
storing only Gaussian positions and the network. Such a network-based approach also makes it pos-
sible to reconstruct only selected time intervals without storing all Gaussians of the entire sequence.
Compared to other network-based deformable baselines, SPIN-4DGS reaches 104 FPS, substan-
tially higher than 4DGaussian (40 FPS) and MoDec-GS (62 FPS), while these methods still struggle
to represent fast-moving objects. These observations suggest that SPIN-4DGS offers a practically
usable trade-off among fidelity, storage, and speed for fast-motion sports scenes.

4.2 ABLATION STUDY AND ANALYSIS

We conduct a series of ablation experiments to demonstrate the proposed method further. First, we
analyze the impacts of estimated spatiotemporal position quality and refinement in Table 2 and 3.
We also examine a position-reuse setting in Table 4, where positions from existing 4DGS models
are provided, to validate the effectiveness of our attributes learning scheme. Finally, we validate the
effect of each component of our implicit network in Table 5.

Table 2: Ablation study on spatiotemporal positions. We perform ablation studies on (a) varying
the early training duration used to estimate spatiotemporal Gaussian positions from the explicit
baseline, 4DGS (Yang et al., 2024a), evaluated without subsequent refinement, and (b) varying the
number of frame-wise refinement iterations applied after position estimation.

(a) Effect of early training duration (b) Effect of refinement iterations
Iteration PSNRT SSIMt LPIPS| Timel Iteration ~PSNRT SSIMtT LPIPS|  Timel
0.5K 29.86 0.92 0.14 33m
15K 29.57 0.92 0.15 10m 1K 20.89 0.92 0.14 55m
30K 29.39 0.91 0.15 30m 2K 30.05 0.92 0.14 1h 40m

Ablation on spatiotemporal positions. We investigate how the quality of estimated spatiotemporal
positions and the amount of refinement affect the final reconstruction. Results are summarized in
Table 2, evaluated on the Basketball sequence.

(a) Effect of early training duration. Using positions extracted after 15K iterations of 4DGS (Yang
et al., 2024a) already achieves strong performance (29.57 PSNR, 0.92 SSIM) with only 10 minutes
of cost. Extending training to 30K iterations not only triples the runtime but also slightly degrades
the quality, indicating that long optimization is unnecessary once positions are sufficiently stable.

(b) Effect of refinement iterations. We then vary the number of frame-wise refinement steps after
position estimation. Increasing refinement from 0.5K to 2K iterations improves PSNR from 29.86
to 30.05, confirming that moderate refinement shows consistent benefits. In practice, we also prune
redundant Gaussians during refinement, which reduces background clutter and focuses updates on
salient regions, further enhancing efficiency.

Effects of input position formulation. We further analyze the effect of spatiotemporal slicing in
Table 3 and Figure 5. For a fair comparison, we fix the batch size to 1 and run all experiments on the
football sequence, varying only the position design. We compare two settings: (a) w/o spatiotempo-
ral slicing, where all Gaussians are optimized jointly without slicing, and (b) spatiotemporal slicing
(ours), where positions are sliced frame by frame and aligned along the time axis.

Without slicing, as shown in Table 3, Gaussians are optimized jointly in a unified 4D space. In this
formulation, a single Gaussian must simultaneously explain multiple timestamps. However, raster-
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ization is performed frame by frame, so optimization that reduces the loss for one frame inevitably
makes the Gaussian suboptimal for others. This cross-frame interference weakens the supervision
signal, slows convergence, and increases both training time and memory usage. In contrast, spa-
tiotemporal slicing explicitly separates Gaussians by (z,y, z,t) and filters out irrelevant points at
each frame. This avoids interference across frames and ensures that optimization is focused on the
relevant Gaussians for each time step. As aresult, slicing achieves both higher reconstruction fidelity
and significantly lower training cost.

Qualitative comparisons in Figure 5 con- Tyble 3: Ablation on spatiotemporal slicing. We
firm these findings. Under the unified 4D compare a unified 4D formulation (i.e., w/o slicing),
formulation, attributes collapse as Gaus- where Gaussian positions are optimized jointly across

sians attempt to describe other timestamps,  space—time, against our spatiotemporal slicing strat-
producing blurred faces and distorted fast-  ¢gy that assigns positions per frame.

moving objects (e.g., football in the scene).

Our sliced formulation decouples Gaus- Spatiotemporal Slicing PSNRT SSIM? Time| Train Cost|
sians over time, showing sharper details X 2748 0.89  1h20m 18GB
and temporally consistent reconstructions. v 2896 092  25m 9GB

.

w/o Slicing Ours

GT
Figure 5: Qualitative comparison of spatiotemporal slicing. Without slicing, Gaussians simul-
taneously represent multiple time steps, causing their contributions to overlap and conflict during

rasterization. This results in blurred faces and distorted fast-moving objects. Our slicing explicitly
separates Gaussians over time, enhancing qualities with temporally consistent reconstructions.

Impacts of implicit 4DGS scheme. We further validate the impacts of the proposed implicit 4DGS
scheme by reusing positions from strong baselines and retraining only attributes with our framework.
In this setting, we extract pre-trained spatiotemporal positions from D3DGS (Luiten et al., 2024)
and 4DGS (Yang et al., 2024a), but discard all their learned attributes. SPIN-4DGS then learns new
attributes through its implicit network, while keeping the imported positions learnable to allow for
refinement during training. This setup highlights not only the effectiveness of our attribute learning
design but also its plug-and-play compatibility with existing 4DGS pipelines, where our scheme
consistently enhances reconstruction quality regardless of the underlying position estimator.

Table 4: Compatibility with existing 4DGS baselines. = We reuse pre-trained positions from
D3DGS (Luiten et al., 2024) and 4DGS (Yang et al., 2024a), replacing their attribute optimization
with our proposed implicit network training. SPIN-4DGS consistently improves PSNR/SSIM across
all scenes, highlighting the compatibility and effectiveness of the proposed implicit 4DGS scheme.

Method Basketball Boxes Football Juggle Softball Tennis
PSNRT SSIMT PSNRtT SSIMT PSNRT SSIMT PSNRT SSIMT PSNRT SSIMT PSNRtT  SSIMT
4DGS 27.89 0.92 28.17 0.93 28.35 0.93 28.68 0.93 28.67 0.93 28.50 0.93
4DGS + Ours 29.57 0.92 29.63 0.92 29.42 0.92 29.98 0.92 29.94 0.93 29.83 0.93
D3DGS 28.22 0.91 29.46 0.91 28.49 0.91 29.48 0.92 28.43 0.91 28.11 091

D3DGS + Ours ~ 30.50 0.94 30.26 0.94 29.21 0.94 31.04 0.95 30.92 0.95 30.51 0.95

As shown in Table 4, SPIN-4DGS consistently improves performance even when initialized with
external positions. With D3DGS positions, our method improves PSNR by +2.49 dB and SSIM to
0.95 on the Softball scene. Notably, while D3DGS collapses on Tennis (28.11/0.91), SPIN-4DGS
still achieves 30.51/0.95 with sharp reconstructions. Even with 4DGS positions, our framework still
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achieves consistent gains overall, demonstrating the effectiveness of the proposed scheme. While
SSIM occasionally drops slightly in some cases, we find that this minor loss is easily resolved by
our refinement step, showing that performance remains robust and stable.

We find that high-quality positions alone are insufficient for stable reconstructions, as attributes play
a critical role in maintaining fidelity under large inter-frame displacements. We also observe that
our implicit 4DGS formulation generalizes seamlessly across different baselines, showing strong
compatibility and consistent improvements regardless of the source of positions. Taken together,
these results highlight SPIN-4DGS as an effective and extensible 4DGS scheme that can enhance a
wide range of dynamic scene reconstruction tasks.

Table 5: Ablation on our implicit network design components. Starting from the original 4D
hash encoder (Chen et al., 2025), we analyze the effects of making positions trainable, applying
input position normalization, and changing activation functions. Each modification progressively
enhances reconstruction quality. All experiments are performed on the Basketball scene.

Network Components ‘ Results
Trainable position Normalization Activation Hash Map Size ‘ PSNR{ SSIM?T LPIPS|
ReLU 21 18.64 0.78 0.45
v ReLU 21 19.17 0.78 0.46
4 v ReLU 21 29.89 0.92 0.16
4 v GELU 21 30.05 0.92 0.14
v v GELU 23 30.25 0.93 0.13

Component analysis. We conduct an ablation study on the design components of our implicit
network, summarized in Table 5. Starting from the original 4D hash encoder (Chen et al., 2025)
encoder with fixed positions and ReL.U activations, reconstruction quality is notably poor (18.64
PSNR, 0.78 SSIM, 0.45 LPIPS). Making positions trainable alone achieves only marginal improve-
ment, indicating that position refinement is insufficient without additional modifications. Applying
input position normalization shows a significant gain, boosting PSNR by over +10 dB and reduc-
ing LPIPS from 0.45 to 0.16, highlighting its importance for stabilized training. Replacing ReLU
with GELU further improves fidelity, enlarging the hash map size further achieves the best overall
performances (30.25 PSNR, 0.93 SSIM, 0.13 LPIPS). These results confirm that each component
contributes to stability and accuracy, with their combination being crucial for achieving high-quality
reconstructions.

5 CONCLUSION

In this work, we addressed the challenge of dynamic scene reconstruction under fast motions with
large inter-frame displacements. Existing 4DGS methods, including deformable and explicit ap-
proaches, often fail to maintain Gaussian attributes in such regimes, resulting in blurred or vanished
objects. We introduced SPIN-4DGS, a new framework that learns Gaussian attributes directly from
explicit spatiotemporal positions via a feed-forward network, rather than relying on temporal dis-
placement modeling. By decoupling Gaussian position estimation from Gaussian attribute learning,
SPIN-4DGS offers a simple yet effective design principle for representing dynamic scenes under
fast motions. SPIN-4DGS achieved high-quality reconstructions of fast-moving objects under large
inter-frame displacements, as demonstrated through extensive experiments across dynamic sports
scenes in the CMU Panoptic Sports dataset. Overall, we believe SPIN-4DGS advances 4D Gaussian
Splatting toward practical deployment in challenging real-world scenarios.
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A MORE ABLATION STUDIES

Perceptual quality comparison. In terms of perceptual quality (LPIPS), SPIN-4DGS also deliv-
ers competitive performance across all six scenes on the CMU dataset. As shown in Table 6, our
method achieves a mean LPIPS of 0.14, substantially improving over the strongest baseline D3DGS
(0.18) while remaining close to the explicit baseline 4DGS (0.13). These results indicate that SPIN-
4DGS effectively suppresses blur and collapse artifacts around fast-moving objects without sacri-
ficing perceptual fidelity, and together with the PSNR/SSIM gains further confirm the robustness of
our method under challenging fast-motion scenarios.

Table 6: Perceptual quality comparison. We report LPIPS across six sports scenes on the CMU
Panoptic Sports dataset. Lower scores indicate better perceptual quality.

Model 4DGS Category Basketball Boxes Football Juggle Softball Tennis Avg.
D3DGS  External supervision 0.18 0.17 0.19 0.15 0.19 0.17  0.18
4DGS Explicit 0.14 0.12 0.13 0.12 0.12 013 0.13
Ours - 0.14 0.14 0.14 0.13 0.13 0.13 0.14

Training budget. Compared to the strongest baseline D3DGS, SPIN-4DGS offers a better trade-
off between reconstruction quality and training time, as summarized in Table 7. With a lightweight
15K-iteration configuration without refinement, SPIN-4DGS already attains 28.82 dB on Basketball,
outperforming D3DGS (28.22 dB) while reducing training time from 100 to 45 minutes. Adding
a short refinement stage (15K position iterations and 0.5K refinement iterations) further improves
PSNR to 29.13 dB in 73 minutes, still faster than D3DGS. With more compute, longer refinement
yields additional gains: 15K + 2K reaches 29.51 dB in 142 minutes, and the full 40K + 2K set-
ting achieves 30.05 dB in 195 minutes, i.e., +1.83 dB over D3DGS. Overall, our two-stage design
can match or surpass D3DGS with a substantially smaller training budget (even without external
supervision), while providing a smooth path to higher fidelity when more budget is available.

Table 7: Training time breakdown and PSNR on the Basketball scene. We compare PSNR,
position-estimation time, refinement cost, network training time, and total training time across dif-
ferent SPIN-4DGS configurations and the D3DGS baseline. All time measurements are reported in
minutes.

Method  Setting PSNR Position Refine Network Total time

D3DGS Default 28.22 — — — 100

Ours 15K, No refine 28.82 10 0 35 45
15K, Refine (0.5K) 29.13 10 33 30 73
15K, Refine (2K) 29.51 10 100 32 142
40K, Refine (2K) 30.05 10 100 85 195

Neu3DV benchmark. We additionally evaluate SPIN-4DGS on the Neu3DV(Li et al., 2022b)
benchmark, which features complex backgrounds and smaller motions. In this experiment, we keep
the default SPIN-4DGS training setup without the refinement stage, training only on pre-refinement
spatiotemporal positions, with the hash map size hyperparameter set to 23 throughout training. As
summarized in Table 8, SPIN-4DGS attains the highest average PSNR of 32.19 dB, slightly outper-
forming the strongest explicit baseline 4DGS (32.01 dB) by +0.18 dB and clearly improving over
deformable methods such as Grid4D (31.49 dB) by +0.70 dB and 4DGaussian (31.01 dB) by +1.18
dB. Moreover, SPIN-4DGS improves over the externally supervised D3DGS baseline (31.04 dB) by
1.15 dB in mean PSNR, and SSIM also remains consistently high at 0.95, matching or surpassing
the best competing methods. Qualitative comparisons in Figure 9 show that moving objects (e.g., the
tongs and knife) appear blurred or smeared with 4DGS, whereas SPIN-4DGS reconstructs them with
much sharper details, confirming stable reconstruction quality on complex, slower-motion scenes.

MeetRoom benchmark. We further evaluate SPIN-4DGS on the three scenes (Discussion, Trim-
ming, VR Headset) from the MeetRoom benchmark (Li et al., 2022a), which contain cluttered indoor
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Table 8: Comparisons on the Neu3DV scenes. We report PSNR (and SSIM when available) for
SPIN-4DGS and baselines across six sequences.

Coffee Martini ~ Cook Spinach ~ Cut Roasted Beef = Flame Salmon Flame Steak Sear Steak Avg.
Method 4DGS Category

PSNRT SSIM{ PSNRT SSIMT PSNRT SSIMT PSNRf SSIM {1 PSNRf SSIMt PSNRT SSIMT PSNRf SSIM?T
Grid4D (Xu et al., 2024) Deformable 2830 090 3258 095 3322 0.95 29.12 091 3256 096 3316 096 3149 094
4DGaussian (Wu et al., 2024) Deformable 27.34 090 3250 094 3226 094 27.99 090 3254 095 3344 095 3101 093
D3DGS (Luiten et al., 2024) External supervision  27.32 - 32.97 - 31.75 - 27.26 - 33.24 - 33.68 - 31.04 -
4DGS (Yang et al., 2024a) Explicit 28.33 - 32.93 - 33.85 - 29.38 - 34.03 - 33.51 - 32.01 -
4DGS(re-impl.) (Lee et al., 2025) Explicit 27.92 092 3358 096 33.96 0.96 2872 092 3396 096 3361 096 3196 0.95
Ours - 2842 092 3361 096 34.05 0.96 2897 092 339 096 34.14 096 32.19 0.95

backgrounds and relatively small motions. Using the same configuration as in our main experiments,
we train SPIN-4DGS only on the pre-refinement spatiotemporal positions, with the hash-map size
fixed to 23 throughout training. Table 9 shows that SPIN-4DGS consistently achieves higher PSNR
than all baselines, including StreamRF (26.72 dB), 3DGStream (30.79 dB), and 4DGS (30.47 dB).
Overall, it provides an average improvement of +1.6 dB over the explicit 4DGS baseline. In par-
ticular, on the Trimming scene, SPIN-4DGS attains 32.41 dB, improving over the explicit 4DGS
baseline (30.16 dB) by more than 2 dB, while also maintaining a high SSIM of 0.96. Qualitative
comparisons in Figure 10 illustrate these effects: while 4DGS-based baselines often fail to faithfully
reconstruct objects due to noise and artifacts in both the foreground and background, SPIN-4DGS
yields sharper object reconstructions and substantially cleaner backgrounds. These results suggest
that our model remains robust even in indoor scenes with cluttered backgrounds and relatively small
motions.

Table 9: Comparisons on the MeetRoom scenes. We report PSNR and SSIM for SPIN-4DGS
and baselines across three sequences and their average. Note that only average PSNR scores are
available for StreamRF and 3DGStream.

Discussion Trimming VR Headset AVG
Method Category
PSNRT SSIM? PSNRT SSIM{T PSNRT SSIMt PSNRfT SSIM?T
StreamRF (Li et al., 2022a) Implicit - - - - - - 26.72 -
3DGStream (Sun et al., 2024) Explicit - - - - 30.79 -

4DGS (Yang et al., 2024a) Explicit ~ 31.51 096 30.16 094 2974 095 3047 095
Ours - 3230 096 3241 096 3142 095 32.04 0.96

Comparison to frame-wise 3DGS. To verify the benefits of our temporally shared implicit repre-
sentation over frame-wise 3DGS (i.e., a collection of 3DGS on each frame), we directly compared
SPIN-4DGS with frame-wise 3DGS (Kerbl et al., 2023) and D3DGS (Luiten et al., 2024) on the
CMU Panoptic Sports benchmark, where we referred to the results reported in the D3DGS (Luiten
etal., 2024). Table 10 shows that SPIN-4DGS achieves the best performance on all six CMU Panop-
tic Sports scenes, surpassing both frame-wise 3DGS and D3DGS. Quantitatively, SPIN-4DGS im-
proves PSNR by 1.9dB on average frame-wise 3DGS and with gains of up to +3.03dB on Basketball.
These substantial gains suggest that our temporally shared implicit field can better exploit temporal
regularities and cross-frame correlations, yielding a more coherent 4D representation than a set of
independently optimized frame-wise 3DGS models.

B MORE QUALITATIVE RESULTS

Qualitative results on spatiotemporal position refinement. Figure 6 visualizes the ablation
study on the position refinement in Table 2. With only 0.5K refinement iterations, SPIN-4DGS
already captures stable object structures without collapse, while increasing iterations to 1K and 2K
further improves fine details such as ball edges and racket nets. Specifically, our refinement stage
employs Gaussian densification, which both allocates new Gaussians in regions that lack detail and
prunes redundant ones, incrementally filling in missing structures while reducing the number of
unnecessary Gaussians. This process can alleviate the dependence on initially collected positions,
allowing SPIN-4DGS to train on a reliable input point set. These results indicate that SPIN-4DGS is
effective even with minimal refinement budgets and that additional iterations mainly serve to sharpen
fine details rather than prevent collapse.
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Table 10: Comparison with frame-wise 3DGS on the CMU Panoptic Sports benchmark. We
report PSNR across six sports, showing that SPIN-4DGS consistently outperforms both 3DGS and
D3DGS across all sequences.

Model  Basketball Boxes Football Juggle Softball Tennis Avg.

3DGS 27.02 2874  28.49 28.19  28.77 28.03  28.21
D3DGS 28.22 2946  28.49 2948  28.43 28.11  28.70
Ours 30.05 2991  29.99 30.31 3024  30.14 30.11

Tennis

Softball

Football

0.5K 1K 2K

Figure 6: Visualizations on spatiotemporal position refinement. We visualize the effect of vary-
ing refinement iterations (0.5K, 1K, 2K) corresponding to Table 2b. Even with only 0.5K iterations,
SPIN-4DGS retains consistent object structures without collapse, while progressively increasing the
number of iterations recovers fine details such as ball edges and racket nets.

Qualitative results with various baselines. Figure 7 shows qualitative comparisons on the CMU
Panoptic Sports dataset for two baseline methods in Table 1: MoDec-GS and 4D-Rotor-Gaussians.
For MoDec-GS, while the background remains relatively stable, the player becomes heavily blurred
and fast-moving objects (e.g., basketball, tennis racket) are often not reconstructed correctly, similar
to prior deformable 4DGS approaches. 4D-Rotor-Gaussians retains these objects more reliably, but
still exhibits noticeable blur and geometry instability of the player under fast motion. In contrast,
SPIN-4DGS reconstructs both the moving objects and the player with sharp and temporally stable
geometry, yielding visually cleaner and more consistent results than both baselines.

Qualitative results on compatibility with existing 4DGS baselines. Figure 8 presents qualita-
tive results for the compatibility study in Table 4. Across scenes, our method reconstructs stable
backgrounds and more temporally consistent details, while the original baselines often blur or lose
fast-moving objects. These results confirm that the proposed scheme integrates effectively with
existing 4DGS approaches and potentially improves their reconstruction fidelity under large inter-
frame displacements.

C DISCUSSIONS

Recent trends in 4DGS. Recent concurrent 4DGS methods (Dai et al., 2025; Oh et al., 2025; Lyu
et al., 2025) have been introduced, often sharing similar architectural components but pursuing dif-
ferent goals and design constraints than ours. 4DGV (Dai et al., 2025) focuses on reducing model
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Softball Juggle Tennis Basketball

Football

MoDec-GS 4D-Rotor-Gaussians Ours GT

Figure 7: Visualization on dynamic sports scenes in the CMU Panoptic Sports dataset. We
visualize the methods evaluated in Table 1, including MoDec-GS and 4D-Rotor-Gaussians. These
4DGS baselines often exhibit geometry instability and fast-motion artifacts, whereas SPIN-4DGS
preserves the object and player geometry sharply throughout the sequence.

4DGS 4DGS+Ours D3DGS D3DGS+Ours GT

Figure 8: Visualizations on compatibility with existing 4DGS baselines. We visualize the results
of compatibility ablation study in Table 4, where pre-trained positions from 4DGS and D3DGS are
reused while attributes are retrained with SPIN-4DGS. Our method consistently produces clear and
more stable reconstructions than the original baselines.

size for complex dynamic scenes by leveraging external 2D segmentation, thereby relying on exter-
nal supervision. Hybrid 3D-4DGS (Oh et al., 2025) builds upon 4DGS and mitigates redundancy in
static regions by converting Gaussians that barely change over time into 3D ones; however, dynamic
Gaussians are still shared across multiple frames, leaving cross-frame interference unresolved for
fast motions. SCas4D (Lyu et al., 2025), built on Dynamic3DGS, accelerates online 4D reconstruc-
tion via cluster-wise shared transformations, but this design couples all Gaussians within a cluster
to a single motion model and makes the method sensitive to the initial K-means clustering. By
contrast, SPIN-4DGS directly predicts frame-wise attributes from explicit spatiotemporal positions
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Cook Spinach

Cut Roasted Beef

4DGS Ours GT

Figure 9: Qualitative comparison on the Neu3DV benchmark. We visualize representative
results from two Neu3DV scenes (e.g., Cook Spinach and Cut Roasted Beef) reported in Table 8.
4DGS blurs the boundaries of moving objects (e.g., tongs and knife), whereas SPIN-4DGS achieves
significantly cleaner and higher-fidelity reconstructions.

Trimming

VR Headset

4DGS Ours GT

Figure 10: Qualitative comparison on the MeetRoom benchmark. We visualize representative
results from two MeetRoom scenes (e.g., Trimming and VR Headset) reported in Table 9. The 4DGS
exhibit noticeable background noise and often fail to reconstruct the foreground objects faithfully,
whereas SPIN-4DGS achieves sharper object reconstruction with substantially cleaner backgrounds.

with an implicit decoder, avoiding cross-frame interference and enabling stable reconstruction of
fast motions without requiring external supervision or cluster-based initialization.

Key differences from prior 4DGS. The key conceptual difference between SPIN-4DGS and prior
4DGS methods is how temporal appearance is parameterized. SPIN-4DGS rasterizes each frame
from explicit spatiotemporal positions and predicts Gaussian attributes as a function of the spa-
tiotemporal coordinates via fg(u,t). This design keeps positions explicit, allows only light per-
sample adjustments during training, and decouples attribute optimization across timesteps, so dif-
ferent samples can receive different attributes without directly sharing a single attribute vector over
time.

In contrast, standard explicit 4DGS (e.g., 4DGS, 4D-Rotor-Gaussians) generate each frame by time-
slicing a 4D primitive, and deformable 4DGS transform canonical Gaussians over time; in both
cases, multiple timesteps share the same underlying Gaussian attributes. As a result, a single set of
Gaussian attributes (or transforms) simultaneously influences multiple frames, and updates driven
by one frame can easily degrade others under large inter-frame displacements, leading to temporal
collapse of fast-moving objects. Our temporal parameterization breaks this coupling at the attribute
level and instead places the temporal representation in fy rather than in a pointwise deformation
field. As shown in Table 1, this leads to more stable training under large inter-frame displacements
and yields higher reconstruction quality (PSNR/SSIM) on fast-motion scenes.

Moreover, several deformable 4DGS methods deliberately avoid time-varying color and opacity,
as allowing these attributes to change over time often produces unstable or implausible surfaces
in novel views and makes tracking difficult. By predicting color and opacity from spatiotempo-
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ral coordinates through fy while keeping the underlying Gaussian support stable, SPIN-4DGS can
model genuinely time-varying appearance without sacrificing temporal stability, which is crucial for
fast-moving objects with large inter-frame displacements.

Limitations. We empirically observe that our method is most effective when a sufficiently dense
set of spatiotemporal positions is available. In large-scale outdoor or highly cluttered scenes with
sparse initial positions, achieving high reconstruction quality may require longer refinement (den-
sify/prune) schedules to allocate more Gaussians, thereby increasing the overall training cost. In
addition, for small objects or regions with very few initial points, we empirically observe that even
multiple refinement iterations struggle to generate or recover sufficient missing points.

LLM policy. LLMs were used only for editing (grammar and typographical errors) and did not
contribute to idea generation, analysis, experimental design, or interpretation.
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