Under review as a conference paper at ICLR 2026

IMPLICIT 4D GAUSSIAN SPLATTING FOR FAST MoO-
TION WITH LARGE INTER-FRAME DISPLACEMENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent 4D Gaussian Splatting (4DGS) methods often fail under fast motion with
large inter-frame displacements, where Gaussian attributes are poorly learned dur-
ing training, and fast-moving objects are often lost from the reconstruction. In this
work, we introduce Spatiotemporal Position Implicit Network for 4DGS, coined
SPIN-4DGS, which learns Gaussian attributes from explicitly collected spatiotem-
poral positions rather than modeling temporal displacements, thereby enabling
more faithful splatting under fast motions with large inter-frame displacements.
To avoid the heavy memory overhead of explicitly optimizing attributes across all
spatiotemporal positions, we instead predict them with a lightweight feed-forward
network trained under a rasterization-based reconstruction loss. Consequently,
SPIN-4DGS learns shared representations across Gaussians, effectively capturing
spatiotemporal consistency and enabling stable high-quality Gaussian splatting
even under challenging motions, while also reducing storage overhead by avoid-
ing the need for explicit parameter storage. Across extensive experiments, SPIN-
4DGS consistently achieves higher fidelity under large displacements, with clear
improvements in PSNR and SSIM on challenging sports scenes from the CMU
Panoptic dataset. For example, SPIN-4DGS notably outperforms the strongest
baseline, D3DGS, by achieving +1.83 higher PSNR on the Basketball scene.
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Figure 1: Faithful reconstruction of fast motion with large inter-frame displacements. Existing
4DGS approaches often produce blurred or incomplete reconstructions of fast-moving objects. In
contrast, ours successfully reconstructs clear and accurate details, such as the basketball in the scene.

1 INTRODUCTION

Rendering fast motions with large inter-frame displacements remains challenging for dynamic scene
reconstruction, despite its importance for a wide range of real-world applications. Recent advances
in 4D Gaussian Splatting (4DGS) have shown remarkable efficiency and visual quality, making it a
promising framework for dynamic scene reconstruction. In particular, existing 4DGS methods (Yang
et al., 2023; Duan et al., 2024; Wu et al., 2024; Xu et al., 2024) achieves strong results on dynamic
scenes with small displacements (e.g., Neu3D (Li et al., 2022)) across video frames.

However, as motions become faster and inter-frame shifts grow larger (e.g., Panoptic Sports (Joo
et al., 2015)), existing 4DGS methods, including explicit 4D parametrization (Yang et al., 2023;
Duan et al., 2024) and deformable approaches (Wu et al., 2024; Xu et al., 2024; Kwak et al., 2025),
often fail to capture the rapid dynamics, producing blurred or even vanished objects. To be specific,
in deformable approaches, Gaussians are defined in a static canonical space and transformed over
time through learned deformations. However, they often fail to assign initial Gaussians for fast-
moving objects in the canonical space, causing those objects to remain unseen during deformation
training. On the other hand, although explicit parameterization roughly tracks Gaussian positions
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(a) Left: 15K training iteration, Right: 30K training iteration. (b) Canonical space

Figure 2: Failure modes on fast motions with large inter-frame displacements. We visualize
failure modes of existing frameworks; (2a) explicit parameterization and (2b) deformable methods.
Figure (2a) shows drastic degradation on training iterations (i.e., 15K — 30K), and (2b) shows the
canonical space of deformable initialization fails to assign Gaussians for fast motions.

that correspond to fast motions at the early stage of training, their attributes, including color, opacity,
scale, and rotation, rapidly collapse in later training, leading to drastic degradation. As a result, both
approaches show failure modes with blurred or even vanished motions, as shown in Figure 2.

To this end, we focus on addressing the failure in learning Gaussian attributes for fast-moving objects
with large displacements. Although positions remain sufficiently accurate to capture motion, other
attributes collapse more easily. This degradation arises because reconstruction loss is dominated by
background Gaussians; fast-moving Gaussians at new positions incur higher reconstruction errors,
while static backgrounds are easier to fit. As a result, both deformable and explicit 4DGS approaches
tend to bias learning toward background fitting, eventually leading dynamic objects to disappear.
In addition, such large displacements can cause cross-frame interference during frame-by-frame
rasterization. Although a 4D Gaussian (Wu et al., 2024) can be sliced differently at each time,
its parameters are shared, so optimizing for one frame makes other slices suboptimal unless we
separate Gaussians by explicit spatiotemporal positions (z,y, z,t). This observation motivates us
to leverage the explicit spatiotemporal positions of fast-moving Gaussians as inputs for generating
their attributes, thereby achieving more faithful splatting under large displacements.

In this paper, we introduce SPIN-4DGS (Spatiotemporal Position Implicit Network for 4DGS),
a lightweight yet effective framework designed to handle fast motions with large inter-frame dis-
placements. To be specific, we first estimate high-quality spatiotemporal positions (x,y, z,t) of
Gaussians that can serve as the inputs for later attribute prediction, initially gathering them across
the entire scene before refining them in a frame-wise manner. Then, we leverage these positions to
predict Gaussian attributes through a lightweight feed-forward network, avoiding the heavy memory
overhead of explicitly optimizing attributes over all spatiotemporal positions. This design learns a
shared implicit representation across all Gaussians and decodes attributes directly from positions un-
der rasterization loss. As a result, learned attributes remain consistent across positions, and dynamic
objects can stay stable even under large displacements. Meanwhile, attributes are stored implicitly in
network parameters, rather than explicitly for each Gaussian, which significantly improves memory
efficiency on a large number of spatiotemporal positions.

To validate the effectiveness of the proposed SPIN-4DGS, we perform experiments on various sports
scenes from the CMU Panoptic Sports dataset, where human motions are rapid and small objects
move across large inter-frame displacements. Across six sports scenes, SPIN-4DGS achieves the
best performances, significantly outperforming all baselines. For example, SPIN-4DGS achieves
a +1.83 PSNR dB improvement compared to the strongest baseline, D3DGS (Luiten et al., 2024),
with a higher SSIM of 0.92 on the Basketball scene. Specifically, qualitative results in Figure 4 and
Table 1 demonstrate that prior methods often blur Gaussians or fail to capture fast-moving objects
(e.g., Basketball), whereas SPIN-4DGS preserves them with sharp and stable reconstructions. In-
terestingly, we further observe that SPIN-4DGS significantly improves performance when reusing
pre-trained Gaussian positions from strong baselines, such as 4DGS (Yang et al., 2023) and D3DGS.

Overall, our work introduces SPIN-4DGS, the first framework that learns Gaussian attributes di-
rectly from spatiotemporal positions, enabling stable and high-quality 4DGS under large inter-frame
displacements. In addition, our design preserves the rendering efficiency of prior 4DGS methods
while improving storage and training stability, thereby enhancing the efficiency—quality balance
required for practical deployment. We believe SPIN-4DGS mitigates a fundamental challenge of
4DGS by enabling stable learning in various real-world scenarios and opens a new direction for
advancing dynamic scene representation.
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Figure 3: Illustration of the overall framework of SPIN-4DGS. SPIN-4DGS consists of two
stages of (a) Spatiotemporal Position Estimation and (b) Implicit Network for 4DGS. Specifically,
(a) we slice Gaussians along the temporal axis to obtain spatiotemporal position sets and refine them
with rasterization loss. Then, (b) the refined positions are normalized and passed through a 4D
Hash encoder and multi-branch decoders to predict Gaussian attributes (scale, rotation, color, and
opacity).

2 METHOD

In this section, we present the Spatiotemporal Position Implicit Network for 4DGS (SPIN-4DGS), a
framework for reconstructing dynamic scenes under motions with large inter-frame displacements.
We first review 3D Gaussian Splatting as preliminaries in section 2.1. Then, section 2.2 describes
how we obtain explicit spatiotemporal Gaussian positions, and section 2.3 details how their attributes
are predicted via a feed-forward implicit network. The overall framework is illustrated in Figure 3.

2.1 PRELIMINARY: 3D GAUSSIAN SPLATTING

3D Gaussian Splatting (3DGS; Kerbl et al. (2023)) provides a differentiable volume rendering rep-
resentation. It introduces anisotropic Gaussians where the parameters (i.e., position, scale, rotation,
color, and opacity) of each Gaussian are defined and optimized for tile-based rendering. Structure-
from-Motion (SfM; Schonberger & Frahm (2016)) techniques estimate the initial positions and col-
ors of Gaussians from input images. For a given arbitrary point x € R? in the 3D scene, Gaussian
is defined as follows:

G3P(x) = exp (—;(x — ) B A (x— p)) , (1)

where G3P(x) denotes the value of the Gaussian at arbitrary point x. The parameters of each
Gaussian include the position p € R?, opacity o € R, color ¢ € R? represented using spherical
harmonics coefficients, and the covariance matrix ¥ € R3*3, which is defined in terms of a diagonal
scale matrix S = diag(s1, s2, s3) and a rotation matrix R € SO(3), obtained from quaternions. To
ensure that the covariance matrix remains 3 positive semi-definite, it is computed as follows:

p=RSS'R'. )

To render via rasterization, the 3D Gaussians are first projected onto the 2D image plane. This is
done by applying the viewing transformation W and the Jacobian matrix (Zwicker et al., 2001) J to
compute the 2D covariance matrix 3op as follows:

Sop =JWE3p W'JT 3)
During the rendering process, pixel values are computed via alpha blending. The alpha value (i.e.,
opacity) of each Gaussian is obtained by projecting the 3D Gaussian G; into 2D as G?P. Specifi-
cally, for each pixel, the alpha value o, and the resulting color C are computed as
i—1
o) = 0; G2P (x) ZCZ H 1—af), 4)
J=1
where o; is the intrinsic opacity of the i-th Gaussian, ¢; its color, and N the total number of Gaussians
contributing to the pixel.
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2.2 SPATIOTEMPORAL GAUSSIAN POSITIONS

In this section, our goal is to construct a Gaussian point set that fully spans the trajectory of dynamic
objects, ensuring sufficient coverage for faithful reconstruction. Prior methods perform reasonably
well in regions where Gaussians are densely clustered, but under large inter-frame displacements,
they often fail to maintain enough points around fast-moving objects. Even when positions are
sufficiently available, attributes remain challenging. To be specific, when Gaussians spanning the
entire trajectory are optimized jointly, frame-specific supervision signals interfere with one another.
Because rasterization is performed frame by frame, updates that make a Gaussian optimal for one
timestamp can render it suboptimal for others. This cross-frame interference can potentially weaken
the learning signal and degrade the quality of the reconstruction.

To overcome these issues, we construct Gaussian sets independently at each time step, explicitly
separating them by spatiotemporal positions. This formulation avoids interference across frames
and enables more reliable attribute learning for fast-moving objects under large displacements.

uy = fo(x,y,2,t), c; = g4(x,y,2,t) € {0,...,255}°, te{l,...,T}. ®)

Here, Fy and g, are explicit functions of the temporal axis predicting the position and color cor-
responding to each frame t. For example, the explicit approaches (Duan et al., 2024; Yang et al.,
2023) construct points by performing time slicing along the temporal axis, whereas a deformable
approach (Wu et al., 2024; Xu et al., 2024; Bae et al., 2024) network can learn to construct them
as time-varying structures. For SPIN-4DGS, we estimate spatiotemporal positions by an explicit
method (Yang et al., 2023) as a default. Lastly, we further refine the estimated position by utiliz-
ing rasterization loss with corresponding colors at every frame to densify salient points and prune
unnecessary ones.

Up Reﬁne(ut,ct;t), t=0,...,T. (6)

After refinement, the Gaussian points at each timestamp ¢ are fixed as explicit spatiotemporal posi-
tions and directly fed into our implicit network to learn the corresponding attributes.

2.3 IMPLICIT NETWORK FOR 4D GAUSSIAN SPLATTING

In this section, we describe the proposed implicit network for predicting 4D Gaussian parameters,
including opacity o € R*, spherical harmonics coefficients sh € R*®, scale s € R?, and rotation
(unit quaternion) r € R%, from inputs of spatiotemporal Gaussian positions (u,t) € R*.

Input position normalization. At each frame ¢, the spatiotemporal Gaussian positions serve as
inputs to a feed-forward network for learning implicit representations of other Gaussian parameters.
Since the raw 3D Gaussian positions u € R? on the scene are unbounded, we apply a normalization
step to stabilize learning and preserve representational capacity. Specifically, following the scene
contraction strategy of Mip-NeRF (Barron et al., 2021), we first compress the coordinates into a
finite ball and then map them to the normalized range [0, 1], as defined in equation 7.

s el <1,

contract(p) = < 1 > u > 1 f = 1 contract(p) + 3 € (0,1, (7)
EERTIRATEN BT K )
leell / llgell

To keep spatial and temporal scales comparable, we normalize time to [0, 1] to match the scale of
the spatial embedding. Concretely, we use the current timestamp divided by the total duration:
t— 7frﬂin ~ _
thom = ——, — € [Oa 1] and x = [/J‘Ta tnorm

] T
tmax - tmin

€ [0,1]% 8)
Our network adopts an encoder-decoder architecture, where the encoder f,,. maps the normalized
input X to a latent embedding f.,,.(X) which the decoder takes as input.

Encoder architecture for shared latent representation. We directly extend the widely used 3D
Instant-NGP (Miiller et al., 2022) multi-hash grid to 4D by appending the temporal axis, producing
a compact latent vector for each input. Given the normalized input X = [, tyomm | | > We map it
into a unified 4D embedding via a single spatio-temporal encoder. In contrast to low-rank decom-
positions (e.g., planar), which may reduce computation but degrade expressiveness as the number of
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Gaussians grows and incur extra cost from per-level hash management, we avoid such factorizations
and employ the 4D hash encoder (Chen et al., 2025) directly as follows:

2 = fone(X) € REF )

where L denotes the number of hash levels and F' the number of channels per level. We concatenate
features across all levels to form z € RLF | which we use as the latent representation.

Decoder architecture for attribute prediction. Given a latent vector z, we use a multi-branch de-
coder to produce Gaussian parameters, scale, rotation, spherical harmonics coefficients, and opacity.
Each attribute is predicted by a separate head (three-layer MLP) taking the shared encoder output
z € REF as input. All decoder heads use GELU (Hendrycks & Gimpel, 2016) activations instead
of ReLU (Agarap, 2018).

(éafaSila 6) = (fscale(z)7 frol(z)7 fsh(z)v fopacity(z))~ (10)

We convert the raw outputs into valid parameter ranges using attribute-specific activations and post-
processing:

(s,r,sh,0) = (exp(8), Hﬁf\lz’ sh, 0(0)). (11)
We also follow the Gaussian post-processing (Kerbl et al., 2023) pipeline, with a few additional
steps for stable training.

Scale post-processing. To prevent gradient explosion from exponential growth, we clip the pre-
scale in the backward pass: § < clip(§, max = 20). We also initialize the final-layer bias to —5 to
start from a small scale, i.e., exp(—5) ~ 0.0067, and keep it trainable.

Rotation initialization. To bias the predicted quaternion toward the identity at the start of training,
we set the final-layer bias to (1,0, 0, 0), i.e., the first element to 1.0 and the remaining elements to 0,
so that the initial output satisfies & =~ (1, 0,0, 0). This initialization lets the network learn rotations
progressively while preserving a stable initial structure.

Opacity post-processing. To stabilize early training and encourage a near-transparent start, we set
the final-layer bias to logit(0.1) ~ —2.197 (trainable), initializing 6 at ~ 0.1. The network then
learns to increase opacity only where needed, focusing on informative points.

Color post-processing. The decoder directly regresses color coefficients from encoder embed-
dings, with no special initialization, to capture the high-dimensional color required for SH-based
rendering.

Loss objectives. Finally, frame images are rendered via rasterization, and we optimize the model
using the standard 3DGS reconstruction loss as follows:

L= (1 — )\) L1+ X Lpssim- (12)

where ) is a hyperparameter; we set A = 0.2, as following prior works (Kerbl et al., 2023).

3 EXPERIMENTS

In this section, we demonstrate the effectiveness of the proposed method, SPIN-4DGS. Specifically,
we choose to employ the recent explicit parameterization method for 4DGS (Yang et al., 2023),
which is publicly available, only in the early training stage to estimate spatiotemporal Gaussian
positions. These positions are then used in our framework to learn new Gaussian attributes. We
then evaluate its ability to capture fast motion on various sports scene benchmarks from the CMU
Panoptic Sports dataset (Joo et al., 2015), comparing it with existing 4DGS baselines.

Implementation details. The network uses a hidden dimension of 64, and the encoder is configured
with L = 16 levels and F' = 4 features per level; the hash map size 21. Parameter groups in
both the encoder and the decoder utilize separate learning rates, as Gaussian attributes (e.g., scale
and rotation) are sensitive, and a uniform learning rate often leads to unstable optimization. The
encoder learning rate is initialized to 8 X 10~3; decoder learning rates are 1 x 103 for color,
3 x 10~* for scale, 3 x 1075 for rotation, and 8 x 10~* for opacity. position parameters use the
same learning rate as 3DGS. We use Adam (Kinga et al., 2015) with a linear warm-up and cosine
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decay schedule, under which every parameter’s learning rate decays to 1 x 10~7. Experiments
were conducted on an RTX 4090 GPU (24 GB), and the implementation utilized PyTorch (Paszke
et al., 2019) 2.1 with CUDA 11.8. By default, we train for 40K iterations with a batch size of 3.
We perform quantitative evaluations using PSNR (Peak Signal-to-Noise Ratio), SSIM (Wang et al.
(2004); Structural Similarity Index), and LPIPS (Zhang et al. (2018); Learned Perceptual Image
Patch Similarity), and additionally report frames per second (FPS) to assess rendering speed.

Datasets. We employ the CMU Panoptic Sports dataset (Joo et al., 2015) to validate scenarios of
fast motions with large inter-frame displacements in our experiments. Specifically, the Panoptic
Sports dataset is a challenging benchmark containing six sports scenes: juggle, basketball, boxing,
football, softball, and tennis. Each scene is recorded at 30 FPS for 5 seconds (150 frames per scene).
A total of 31 cameras were used, and the native resolution of 640 x 360 was retained. Evaluation
was referenced to four fixed test cameras (IDs of 0, 10, 15, and 30).

4DGS baselines. We compare our method with recent 4DGS baselines across various strate-
gies, including (a) explicit parameterizations for 4DGS: 4DGS (Yang et al., 2023), (b) deformable
4DGS: Grid4D (Xu et al., 2024), 4D Gaussian (Wu et al., 2024), and (c) deformable with external
supervision: D3DGS (Luiten et al., 2024), TC3DGS (Javed et al., 2024). We note that D3DGS
and TC3DGS are designed to handle large inter-frame displacements, such as the Panoptic Sports
dataset. All baselines are evaluated following the dynamic scene setups specified in their papers.

Table 1: Comparisons on dynamic sports scenes in the CMU Panoptic Sports dataset. We
evaluate ours with existing 4DGS baselines on benchmarks containing fast motions with large inter-
frame displacements. We report PSNR and SSIM for six sports scene sequences across all baselines.

Method 4DGS Category Basketball Boxes Football Juggle Softball Tennis Avg.
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM FPS  Storage

Grid4D Deformable 2582 089 2681 091 2761 091 2809 092 2691 091 27.10 091 27.06 091 146 333
4DGaussian ~ Deformable 2728 090 2732 091 2871 091 2694 091 2724 091 2766 091 2753 091 40 62
TC3DGS External supervision  27.92  0.89 2828 0.89 2800 089 29.15 090 2796 0.89 2597 089 27.838 0.89 890 49
D3DGS External supervision  28.22 091 2946 091 2849 091 2948 091 2843 091 2811 091 2870 091 760 1994
4DGS Explicit 27.89 092 2817 093 2835 093 2868 093 2867 093 2850 093 2838 093 197 1293
Ours 3005 092 2991 093 2999 093 3031 093 3024 093 3014 093 3011 093 104 1261

4DGaussian 4DGS D3DGS Ours GT

Figure 4: Visualizations on dynamic sports scenes in the CMU Panoptic Sports dataset. Com-
pared to prior 4D Gaussian baselines, where fast-moving objects (e.g., ball, bat, racket) often disap-
pear or become corrupted, our method successfully preserves these objects throughout the sequence,
producing more faithful and consistent reconstructions.

3.1 EXPERIMENTAL RESULTS ON PANOPTIC SPORTS

In this section, we evaluate our method with various 4DGS baselines on six dynamic sports scenes
(Basketball, Boxes, Football, Juggle, Softball, and Tennis) from the CMU Panoptic Sports dataset,
which involve rapid human motions and small objects undergoing large inter-frame displacements.
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Table 2: Ablation study on spatiotemporal positions. We perform ablation studies on (a) varying
the early training duration used to estimate spatiotemporal Gaussian positions from the explicit
baseline, 4DGS (Yang et al., 2023), evaluated without subsequent refinement, and (b) varying the
number of frame-wise refinement iterations applied after position estimation.

(a) Effect of early training duration (b) Effect of refinement iterations
Iteration PSNR SSIM LPIPS Time Iteration PSNR SSIM  LPIPS ~ Time
0.5K 29.86 092 0.14 33m
15K 29.57 092 0.15 10m 1K 2089  0.92 0.14 55m

30K 2939 0091 0.15 30m 2K 30.05 092 0.14 1h 40m

As reported in Table 1, SPIN-4DGS achieves the best PSNR on all six scenes with an average of
30.11 dB, outperforming the strongest explicit baseline 4DGS (28.38 dB) by +1.73 dB and the de-
formable baseline D3DGS (28.70 dB) by +1.41 dB. SSIM also remains consistently high at 0.93,
confirming stable reconstruction quality. In particular, our method even surpasses models trained
with external supervision such as segmentation maps (e.g., D3DGS, TC3DGS), showing that high
fidelity can be achieved without costly priors. Beyond averages, the improvements are most signif-
icant on challenging scenes with extreme motion. On Basketball, SPIN-4DGS improves PSNR by
over +1.83 dB against the best baseline, D3DGS (Luiten et al., 2024), while on Tennis, where rack-
ets move rapidly and cover large displacements, the margin also surpasses +1.64 dB against the best
baseline, 4DGS (Yang et al., 2023). Overall, those results highlight the robustness of our approach
to challenging fast-motion scenarios where prior methods often fail.

Qualitative comparisons in Figure 4 further illustrate these differences. Deformable baseline (i.e.,
4DGaussian, first column) results blur fine-grained structures, explicit 4DGS (second) results fre-
quently lose moving objects entirely, and even externally supervised (i.e., D3DGS, third) results
suffer degradation on small, fast objects like a tennis racket. In contrast, SPIN-4DGS preserves
sharp and stable reconstructions across all frames, closely matching the ground truth.

While lightweight deformable baselines exhibit higher FPS, their reconstructions frequently col-
lapse on fast-moving objects, as shown in Figure 4, making them less competitive for challenging
scenarios like sports scenes with rapid motions and small objects. We therefore emphasize com-
parisons with the stronger baselines, 4DGS and D3DGS. Both require substantial storage (1293MB
and 1994MB, respectively), whereas SPIN-4DGS achieves higher fidelity with a smaller footprint
of 1261MB. Moreover, while our FPS is relatively lower than 4DGS, it remains within the prac-
tical real-time range and is achieved with remarkably better reconstruction quality. We argue that
these results demonstrate a more balanced trade-off between efficiency and fidelity; SPIN-4DGS
provides more accurate and temporally consistent reconstructions under large inter-frame displace-
ments, without incurring excessive storage or rendering cost.

3.2 ABLATION STUDY AND ANALYSIS

We conduct a series of ablation experiments to demonstrate the proposed method further. First, we
analyze the impacts of estimated spatiotemporal position quality and refinement in Table 2 and 3.
We also examine a position-reuse setting in Table 4, where positions from existing 4DGS models
are provided, to validate the effectiveness of our attributes learning scheme. Finally, we validate the
effect of each component of our implicit network in Table 5.

Ablation on spatiotemporal positions. We investigate how the quality of estimated spatiotemporal
positions and the amount of refinement affect the final reconstruction. Results are summarized in
Table 2, evaluated on the Basketball sequence.

(a) Effect of early training duration. Using positions extracted after 15K iterations of 4DGS (Yang
et al., 2023) already achieves strong performance (29.57 PSNR, 0.92 SSIM) with only 10 minutes
of cost. Extending training to 30K iterations not only triples the runtime but also slightly degrades
the quality, indicating that long optimization is unnecessary once positions are sufficiently stable.

(b) Effect of refinement iterations. We then vary the number of frame-wise refinement steps after
position estimation. Increasing refinement from 0.5K to 2K iterations improves PSNR from 29.86
to 30.05, confirming that moderate refinement shows consistent benefits. In practice, we also prune
redundant Gaussians during refinement, which reduces background clutter and focuses updates on
salient regions, further enhancing efficiency.
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GT w/o Slicing Ours
Figure 5: Qualitative comparison of spatiotemporal slicing. Without slicing, Gaussians simul-
taneously represent multiple time steps, causing their contributions to overlap and conflict during

rasterization. This results in blurred faces and distorted fast-moving objects. Our slicing explicitly
separates Gaussians over time, enhancing qualities with temporally consistent reconstructions.

Effects of input position formulation. Typle 3: Ablation on spatiotemporal slicing. We
We further analyze the effect of spatiotem-  compare a unified 4D formulation (i.e., w/o slicing),
poral slicing in Table 3 and Figure 5. Fora  where Gaussian positions are optimized jointly across

fair comparison, we fix the batch size to 1 space-time, against our spatiotemporal slicing strategy
and run all experiments on the football se-  that assigns positions per frame.

quence, varying only the position design.

We compare two settings: (a) w/o spa- Spatiotemporal Slicing  PSNRT  SSIM{  Time|  Train Cost|
tiotemporal slicing, where all Gaussians X 2748 089 1h20m  18GB
are optimized jointly without slicing, and v 2896 092  25m 9GB

(b) spatiotemporal slicing (ours), where
positions are sliced frame by frame and aligned along the time axis.

Without slicing, as shown in Table 3, Gaussians are optimized jointly in a unified 4D space. In this
formulation, a single Gaussian must simultaneously explain multiple timestamps. However, raster-
ization is performed frame by frame, so optimization that reduces the loss for one frame inevitably
makes the Gaussian suboptimal for others. This cross-frame interference weakens the supervision
signal, slows convergence, and increases both training time and memory usage. In contrast, spa-
tiotemporal slicing explicitly separates Gaussians by (z,y, z,t) and filters out irrelevant points at
each frame. This avoids interference across frames and ensures that optimization is focused on the
relevant Gaussians for each time step. As a result, slicing achieves both higher reconstruction fidelity
and significantly lower training cost.

Qualitative comparisons in Figure 5 confirm these findings. Under the unified 4D formulation, at-
tributes collapse as Gaussians attempt to describe other timestamps, producing blurred faces and
distorted fast-moving objects (e.g., football in the scene). Our sliced formulation decouples Gaus-
sians over time, showing sharper details and temporally consistent reconstructions.

Table 4: Compatibility with existing 4DGS baselines. = We reuse pre-trained positions from
D3DGS (Luiten et al., 2024) and 4DGS (Yang et al., 2023), replacing their attribute optimization
with our proposed implicit network training. SPIN-4DGS consistently improves PSNR/SSIM across
all scenes, highlighting the compatibility and effectiveness of the proposed implicit 4DGS scheme.

Method Basketball Boxes Football Juggle Softball Tennis
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
4DGS 27.89 092 2817 093 2835 093 2868 093 2867 093 2850 0.93
4DGS + Ours 29.57 092 29.63 092 2942 092 2998 092 2994 093 2983 0.93
D3DGS 2822 091 2946 091 2849 091 2948 092 2843 091 2811 091

D3DGS +Ours  30.50 094 3026 094 2921 094 31.04 095 3092 095 3051 0.95

Impacts of implicit 4DGS scheme. We further validate the impacts of the proposed implicit
4DGS scheme by reusing positions from strong baselines and retraining only attributes with our
framework. In this setting, we extract pre-trained spatiotemporal positions from D3DGS (Luiten



Under review as a conference paper at ICLR 2026

et al., 2024) and 4DGS (Yang et al., 2023), but discard all their learned attributes. SPIN-4DGS then
learns new attributes through its implicit network, while keeping the imported positions learnable to
allow for refinement during training. This setup highlights not only the effectiveness of our attribute
learning design but also its plug-and-play compatibility with existing 4DGS pipelines, where our
scheme consistently enhances reconstruction quality regardless of the underlying position estimator.

As shown in Table 4, SPIN-4DGS consistently improves performance even when initialized with
external positions. With D3DGS positions, our method improves PSNR by +2.49 dB and SSIM to
0.95 on the Softball scene. Notably, while D3DGS collapses on Tennis (28.11/0.91), SPIN-4DGS
still achieves 30.51/0.95 with sharp reconstructions. Even with 4DGS positions, our framework still
achieves consistent gains overall, demonstrating the effectiveness of the proposed scheme. While
SSIM occasionally drops slightly in some cases, we find that this minor loss is easily resolved by
our refinement step, showing that performance remains robust and stable.

We find that high-quality positions alone are insufficient for stable reconstructions, as attributes play
a critical role in maintaining fidelity under large inter-frame displacements. We also observe that
our implicit 4DGS formulation generalizes seamlessly across different baselines, showing strong
compatibility and consistent improvements regardless of the source of positions. Taken together,
these results highlight SPIN-4DGS as an effective and extensible 4DGS scheme that can enhance a
wide range of dynamic scene reconstruction tasks.

Table 5: Ablation on our implicit network design components. Starting from the original 4D
Hash encoder (Chen et al., 2025) encoder, we analyze the effects of making positions trainable,
applying input position normalization, and changing activation functions. Each modification pro-
gressively enhances reconstruction quality. All experiments are performed on the Basketball scene.

Network Compoenents ‘ Results

Trainable position Normalization Activation Hash Map Size ‘ PSNRT SSIM?T LPIPS|

ReLU 21 18.64 0.78 0.45
4 ReLU 21 19.17 0.78 0.46
4 v ReLU 21 29.89 0.92 0.16
4 v GELU 21 30.05 0.92 0.14
v v GELU 23 30.25 0.93 0.13

Component analysis. We conduct an ablation study on the design components of our implicit net-
work, summarized in Table 5. Starting from the original 4D Instant-NGP (Chen et al., 2025) encoder
with fixed positions and ReL.U activations, reconstruction quality is notably poor (18.64 PSNR, 0.78
SSIM, 0.45 LPIPS). Making positions trainable alone achieves only marginal improvement, indicat-
ing that position refinement is insufficient without additional modifications. Applying input position
normalization shows a significant gain, boosting PSNR by over +10 dB and reducing LPIPS from
0.45 to 0.16, highlighting its importance for stabilized training. Replacing ReLU with GELU further
improves fidelity, enlarging the hash map size further achieves the best overall performances (30.25
PSNR, 0.93 SSIM, 0.13 LPIPS). These results confirm that each component contributes to stability
and accuracy, with their combination being crucial for achieving high-quality reconstructions.

4 CONCLUSION

In this work, we addressed the challenge of dynamic scene reconstruction under fast motions with
large inter-frame displacements. Existing 4DGS methods, including deformable and explicit ap-
proaches, often fail to maintain Gaussian attributes in such regimes, resulting in blurred or vanished
objects. We introduced SPIN-4DGS, a new framework that learns Gaussian attributes directly from
explicit spatiotemporal positions via a feed-forward network, rather than relying on temporal dis-
placement modeling. By decoupling Gaussian position estimation from Gaussian attribute learning,
SPIN-4DGS offers a simple yet effective design principle for representing dynamic scenes under
fast motions. SPIN-4DGS achieved high-quality reconstructions of fast-moving objects under large
inter-frame displacements, as demonstrated through extensive experiments across dynamic sports
scenes in the CMU Panoptic Sports dataset. Overall, we believe SPIN-4DGS advances 4D Gaussian
Splatting toward practical deployment in challenging real-world scenarios.
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A RELATED WORK

Learning temporal dynamics for 3D Gaussian. Recent advances have shown significant progress
in extending 3D Gaussian representations into the 4D domain by learning temporal dynamics. Early
attempts (Luiten et al., 2024; Javed et al., 2024) incrementally propagated 3D Gaussians from the
first frame, demonstrating the potential of 4D Gaussian splatting, but suffering from sequential in-
efficiency and overfitting due to numerous per-frame iterations. However, their reliance on external
supervision, such as segmentation masks, substantially increases training costs and computational
overhead. Meanwhile, inspired by NeRF approaches (Cao & Johnson, 2023; Fridovich-Keil et al.,
2023; Park et al., 2021), deformable frameworks (Wu et al., 2024; Yang et al., 2024; Lu et al., 2024;
Zhu et al., 2024; Lin et al., 2024; Xu et al., 2024; Lu et al., 2024) instead construct a canonical space
to initialize Gaussians and then learn temporal displacements in rotation, scale, and position. Despite
their robustness on motions with small inter-frame displacements, these methods still underperform
on rapid motions with large displacements, as Gaussians that represent fast motion are often omitted
during canonicalization and thus remain unseen in the subsequent deformation process. In contrast,
we address these challenges without external supervision, showing that high-fidelity capture of fast
motion can be achieved solely from raw video inputs.

Explicit 4D Gaussian Parameterizations. Another promising direction is to focus on directly pa-
rameterizing Gaussians in 4D from scratch (Yang et al., 2023; Lee et al., 2024; Duan et al., 2024),
rather than optimizing each frame separately in the 3D domain. Such explicit 4D modeling unifies
space and time into a continuous field and encodes dynamics as 4D Gaussian splats, which can
be temporally sliced for rendering, in contrast to deformable-based approaches. For instance, Ro-
torGS (Duan et al., 2024) performs temporal slicing of 4D Gaussians at each timestamp to obtain
dynamic 3D Gaussians, which are then projected to the image plane. While explicit 4D parameteri-
zations achieve higher frame rates (FPS) and improved rendering quality, they require longer training
times and larger storage requirements. Moreover, under fast motion with large displacements, we
observed that corresponding Gaussian attributes gradually blur due to cross-frame interference. A
single 4D Gaussian must simultaneously explain all timestamps; however, rasterization is performed
frame by frame, so optimization for one frame inevitably affects the others. This inherent conflict
in the rasterization process makes it challenging to maintain temporal consistency in dynamic re-
gions. In contrast, our method avoids such cross-frame degradation by directly decoding Gaussians
at explicit spatiotemporal positions in a feed-forward manner. This design explicitly separates large-
displacement Gaussians at each timestamp, which prevents cross-frame degradation and leads to
both stable training and consistent rendering quality.

B MORE QUALITATIVE RESULTS

Qualitative results on spatiotemporal position refinement. Figure 6 visualizes the ablation
study on the position refinement in Table 2. With only 0.5K points, SPIN-4DGS already captures
stable object structures without collapse, while increasing the refinement iterations to 1K and 2K
further improves fine details such as ball edges and racket nets. These results show that SPIN-4DGS
not only enhances reconstruction quality under minimal refinement but also scales effectively with
additional iterations to capture finer details.

Qualitative results on compatibility with existing 4DGS baselines. Figure 7 presents qualita-
tive results for the compatibility study in Table 4. Across scenes, our method reconstructs stable
backgrounds and more temporally consistent details, while the original baselines often blur or lose
fast-moving objects. These results confirm that the proposed scheme integrates effectively with
existing 4DGS approaches and potentially improves their reconstruction fidelity under large inter-
frame displacements.

C LLM PoLIicYy

LLMs were used only for editing (grammar and typographical errors) and did not contribute to idea
generation, analysis, experimental design, or interpretation.
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Softball Tennis

Football

0.5K 1K 2K

Figure 6: Visualizations on spatiotemporal position refinement. We visualize the effect of vary-
ing refinement iterations (0.5K, 1K, 2K) corresponding to Table 2b. Even with only 0.5K iterations,
SPIN-4DGS retains consistent object structures without collapse, while progressively increasing the
number of iterations recovers fine details such as ball edges and racket nets.

4DGS 4DGS+Ours D3DGS D3DGS+Ours GT

Figure 7: Visualizations on compatibility with existing 4DGS baselines. We visualize the results
of compatibility ablation study in Table 4, where pre-trained positions from 4DGS and D3DGS are
reused while attributes are retrained with SPIN-4DGS. Our method consistently produces clear and
more stable reconstructions than the original baselines.
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