Abstract: The goal of learning from demonstration is to learn a policy for an agent (imitator) by mimicking the behavior in the demonstrations. Prior works on learning from demonstration assume that the demonstrations are collected by a demonstrator that has the same dynamics as the imitator. However, in many real-world applications, this assumption is limiting — to improve the problem of lack of data in robotics, we would like to be able to leverage demonstrations collected from agents with different dynamics. However, this can be challenging as the demonstrations might not even be feasible for the imitator. Our insight is that we can learn a feasibility metric that captures the likelihood of a demonstration being feasible by the imitator. We develop a feasibility MDP (f-MDP) and derive the feasibility score by learning an optimal policy in the f-MDP. Our proposed feasibility measure encourages the imitator to learn from more informative demonstrations, and disregard the far from feasible demonstrations. Our experiments on four simulated environments and on a real robot show that the policy learned with our approach achieves a higher expected return than prior works. We show the videos of the real robot arm experiments on our website.

Keywords: Imitation Learning, Learning from Agents with Different Dynamics

1 Introduction

Imitation learning aims to learn a well-performing policy from demonstrations. Standard imitation learning algorithms usually assume that the demonstrator (the agent that generates the demonstrations) and the imitator (the agent that is learning a policy) share the same dynamics, i.e., the transition functions are the same [1, 2, 3, 4]. Specifically, in a given state, with the same action, both the demonstrator and the imitator transition to the same distribution of next states. However, this assumption limits the usage of already collected demonstrations. Imagine a setting, where a set of demonstrations are already collected for a 7 Degrees of Freedom (DoF) robot arm shown in Fig. 1 to place a book on the empty area of the shelf (on the left) without colliding with the books that are already on the right side of the shelf. Later, we might decide to buy a different arm with 3 DoF (e.g., only the joints circled in green are used in the figure). Ideally, we would like to learn a policy for this new robot arm that can do the same task—placing the book on the empty side of the shelf—using the same originally collected demonstrations. In general, we would like to enable using and reusing data collected on robots with different dynamics or embodiments to address the problem of lack of in-domain data in robotics. The 3 DoF robot arm should still be able to learn a policy based on feasible or nearly feasible demonstrations from an agent with different dynamics, e.g., using the trajectories that go over the bookshelf in Fig. 1. Motivated by this example, we relax this assumption so that the demonstrations can be collected from demonstrators with different dynamics from the imitator, e.g., demonstrators that share the same state space with the imitator but have different embodiments, body schemas, joints, or rigid body structures.

Prior works in imitation learning from demonstrators with different dynamics typically rely on state-only demonstrations and learn a policy to maximally follow the sequence of states in demonstrations [5, 6]. Such learning techniques assume that all of the demonstrations are useful for the imitator. However, it is possible that demonstrations drawn from agents with other dynamics can be useless or
Figure 1: An example of imitating demonstrators with feasibility. The left image shows that a set of demonstrations (blue and red trajectories) are available for the 7 DoF robot arm. We aim to learn a policy for the 3 DoF robot (joints are circled in green) by learning from the demonstrations of the 7 DoF robot (blue is feasible and red is infeasible). We learn a feasibility score to reweight each demonstration to conduct imitation learning.

Even harmful for the imitator because they may not be feasible for the imitator. Going back to the example in Fig. 1, the red trajectories that move around the stack of books are not feasible for the 3 DoF robot arm. Imitating such trajectories may cause the 3 DoF robot arm to maximally follow these trajectories and even collide with the existing stack of books. Therefore, it is crucial to identify trajectories that are far from feasible for the imitator, and avoid imitating them, which could lead to potential negative consequences, and instead learn more from useful demonstrations, e.g., the blue trajectories that go over the shelf that are still feasible for a robot with 3 DoF.

To avoid the influence of useless or harmful demonstrations from agents with different dynamics, we first define feasibility score, which measures how feasible a trajectory is for the imitator, and select trajectories with high feasibility to imitate. For example, the blue trajectories should have higher feasibility than the red trajectories in Fig. 1. Cao and Sadigh [7] estimate the feasibility score by computing the distances of demonstrations and corresponding trajectories but the performance highly relies on the accuracy of the inverse dynamics model, which can be difficult to learn. Our key idea is to directly learn a feasibility score for the imitator based on the collected demonstrations. Specifically, we model the imitator environment as an MDP and build a feasibility Markov Decision Process (f-MDP) based on the imitator’s MDP and the trajectories provided by the demonstrator. The optimal policy for the f-MDP maximally follows the behavior of the demonstrations but is limited by the imitator’s environment. This optimal policy helps to assign a feasibility score over the demonstrations. We conduct imitation learning on the demonstrations re-weighted by the feasibility score to learn the final policy for the imitator. We experiment with several simulation environments and on a robot manipulation task with a Panda Franka arm. We show that the policy learned from demonstrations re-weighted by our feasibility achieves higher performance compared to other methods.

2 Related Works

Imitation Learning. Imitation learning seeks a policy that best imitates demonstrations. Current imitation learning methods can be roughly divided into Behavior Cloning (BC), Inverse Reinforcement Learning (IRL) and Generative Adversarial Imitation Learning (GAIL). BC directly learns the policy from a sequence of state-action pairs via supervised learning [8], where dataset aggregation [9] or policy aggregation [10, 11] are proposed to address the compounding errors problem. IRL first learns a reward function that best matches demonstrations and then finds a policy through reinforcement learning to maximize the recovered reward [1, 12, 2, 13]. GAIL learns the expert policy by matching the occupancy measure between the policy and the demonstrations [4]. However, most imitation learning works require that the demonstrations consist of a sequence of states and actions. When only state observations are available, new imitation learning algorithms are proposed to address the lack of actions. Torabi et al. [14] recover the actions between consecutive states through an inverse dynamics model. GAIL-based works directly match the state occupancy measure between the demonstrations and the policy [15, 16, 17]. However, imitation learning methods learned from either state-action or state-only demonstrations assume that the demonstrator and the imitator have the same dynamics. Since demonstrations from different dynamics may not be feasible for the imitator, directly imitating cannot achieve the same optimal behavior, and may cause unknown suboptimal outcomes. Thus, standard imitation learning algorithms do not fit our problem setting.
Learning From Demonstrations with Different Dynamics. Early works model this problem as a correspondence problem between the demonstrator and the imitator, and map states and actions in demonstrations to the imitator’s states and actions [18, 19]. Engert et al. [20] align the state trajectory distributions to address the correspondence problem. Calinon et al. [21] model the demonstrations as a Gaussian mixture model within a projected lower-dimensional subspace. Epner et al. [22] learn a task description. Domain randomization methods learn the correspondence as an invariant latent space by randomizing domains [23, 24, 25]. Zhang et al. [26] learns a translation mapping to model the correspondence. However, modeling correspondence requires that there exists a strict correspondence between the MDP of the demonstrator and the imitator. Recent works instead only assume the shared state space between the demonstrator and the imitator, and address the different dynamics problem by encouraging the imitator to maximally follow the state trajectory of the demonstrator [5, 27, 28, 6]. However, all these works ignore an important challenge—that is the demonstrations may be far from feasible for the imitator. Enforcing the imitator to follow such trajectories may lead to unknown behavior. We focus on this challenge and develop a feasibility score to down-weight demonstration trajectories that are far from feasible for the imitator. Compared to the works that learn feasibility to filter infeasible trajectories [7], we do not require the inverse dynamics model but only the imitator environment, which can make our setting more generalizable to different environments.

3 Problem Statement

In our problem setting, an imitator aims to learn from demonstrations collected from N demonstrators with various dynamics. We formalize the demonstrators and the imitator each as a standard Markov decision process (MDP). For each demonstrator j, (1 ≤ j ≤ N), the MDP is formalized as \(\mathcal{M}_j = (\mathcal{S}_j, \mathcal{A}_j, p^j, \mathcal{R}_j, \rho_0, \gamma) \). The MDP for the imitator is \(\mathcal{M}_i = (\mathcal{S}_i, \mathcal{A}_i, p^i, \mathcal{R}_i, \rho_0, \gamma) \). \(\mathcal{S}_j \) is the shared state space for all environments. \(\mathcal{A}_j \) and \(\mathcal{A}_i \) are the action spaces and \(p^j : \mathcal{S} \times \mathcal{A}_j \times \mathcal{S} \rightarrow [0, 1] \) and \(p^i : \mathcal{S} \times \mathcal{A}_i \times \mathcal{S} \rightarrow [0, 1] \) are the transition probabilities for each demonstrator and the imitator respectively. Note that in our problem setting, we use the transition function \(p \) to denote dynamics and thus the demonstrators and the imitator have different dynamics. \(\rho_0 \) is the shared initial state distribution for all MDPs. \(\mathcal{R} : \mathcal{S} \times \mathcal{S} \rightarrow \mathbb{R} \) is the reward function. Note that we make the assumption that the reward function is based on state transitions and is shared between the demonstrators and the imitator, which is a common assumption used in prior work [5, 7], and is usually satisfied since the demonstrators and the imitator conduct the same task in the same context. \(\gamma \) is the shared discount factor. A policy for the imitator \(\pi^i : \mathcal{S} \times \mathcal{A}_i \rightarrow [0, 1] \) defines a probability distribution over the space of actions in a given state. An optimal policy \(\pi^* \) maximizes the expected return \(\eta_{\pi^i} = \mathbb{E}_{s_0 \sim \rho_0, \pi^i} \left[\sum_{t=0}^{\infty} \gamma^t \mathcal{R}(s_t, a_t, s_{t+1}) \right] \), where \(t \) indicates the time step.

We aim to learn a policy \(\pi^i \) for the imitator, given a set of demonstrations from different demonstrators \(\Sigma^j = \{ \xi^j_0, \ldots, \xi^j_d \} \), where each trajectory is a sequence of states \(\xi = \{ s^d_0, s^d_1, \ldots, s^d_d \} \). We assume that the optimal policy can be learned by imitating the useful demonstrations, which is a general assumption adopted by prior imitation learning works [8, 4, 5, 7]. The violation of the assumption, as shown in prior works, leads to learning a suboptimal policy. Note that we discard actions from the demonstrations instead of imitating the state-action trajectories because different action spaces between the demonstrators and the imitator make it impossible to imitate the actions.

Challenges. The core challenges of imitation learning from demonstrations with different dynamics are: (1) How to select and focus on imitating useful demonstrations from different dynamics, (2) How to avoid the harmful demonstrations misleading the imitator. Prior works have studied and made progress for the first challenge [5, 6], but the second challenge is still under-studied. Strong assumptions such as access to or learning an accurate inverse dynamics model are needed to filter out harmful demonstrations [7]. We address the second challenge by learning a feasibility score that measures how likely it is for a demonstration to be feasible for the imitator with minimal assumptions: only using the environment of the imitator, i.e., we can collect interaction data in the environment but we do not know the exact reward and transition function of the imitator.

4 Feasibility-Based Imitation Learning

In this section, we introduce the feasibility measurement using a feasibility Markov Decision Process (f-MDP) and then introduce our overall algorithm. The feasibility of a trajectory depends on the
One-step f-MDP

1. Recall that our goal is to learn a policy \(\pi^f : \mathcal{S} \rightarrow \mathcal{A} \) for the imitator to maximally achieve the state transitions in the demonstrations. This means that if the state transition \((s^d_t, s^d_{t+1}) \) from a demonstration is feasible, the next state produced by \(\pi^f \), i.e., \(s^d_{t+1} = p^f(s^d_t, \pi^f(s^d_t)) \) should be equal to \(s^d_{t+1} \). Otherwise, we would like the policy to output an action that ensures the next state \(s^d_{t+1} \) is as close as possible to the next state from the demonstration \(s^d_{t+1} \). Therefore, the distance between \(s^d_{t+1} \) and \(s^d_{t+1} \) can serve as a measure of feasibility, where a smaller distance corresponds to a higher likelihood of feasibility.

2. To learn the policy described above, we design a feasibility MDP (f-MDP), where we ensure that the optimal policy of the f-MDP satisfies the above requirement. f-MDP is defined as \(M^f = (\mathcal{S}, \mathcal{A}, p^f, R^f, \rho^f, \gamma^f) \). The state space, the action space and the transition probability are all the same as the imitator’s, while the reward function, the initial state distribution and the discount factor are different. We will now discuss our choices for these in detail.

One-step f-MDP

1. First, recall that our goal is to learn a policy for the imitator to maximally achieve the state transitions in the demonstrations. So the policy should be learned in an environment with the same state-action space and transition probability as the imitator. We would like the reward of the f-MDP to encourage maximally achieving the state transitions in the demonstrations. Let us first collect all the state transitions \(T = \{(s^d_t, s^d_{t+1})\} \) in all of the demonstrations. We define the Former Set to be the set of states in the demonstrations that one can transition from: \(T_F = \{s^d_t : (s^d_t, s^d_{t+1}) \in T\} \). The initial state distribution \(\rho^f_0 \) can be defined uniformly over the Former Set as Uniform(\(T_F \)). Here, we assume that all the states in the Former Set can be visited by the imitator. We define the reward of a One-step f-MDP so that it matches the one-step transitions from the Former Set:

\[
s^d_0 \sim \text{Uniform}(T_F), \quad s = s^d_t, \quad s' = p^f(s, a), \quad R^f(s, a, s') = -f_{\text{dis}}(s^d_t, s^d_{t+1}),
\]

where \((s^d_t, s^d_{t+1}) \) is a state transition in the demonstrations and \(a \in \mathcal{A} \) is sampled from the action space of the f-MDP, which is also the action space of the imitator. \(f_{\text{dis}} \) is a function that measures the distance between the states (e.g., the L2 distance). We define the reward to penalize the L2-distance between \(s^d_t \) and \(s^d_{t+1} \).

Trajectory f-MDP

The one-step f-MDP suffers from an important shortcoming: the assumption that all states in the Former Set must be visited by the imitator can be violated, because the demonstrators have different dynamics from the imitator and some states in the demonstrations can never be achieved by the imitator. So we cannot simply set Uniform(\(T_F \)) as the initial state distribution for the f-MDP.

We instead collect the initial state \(s^d_0 \) of all the demonstration trajectories, \(T_0 = \{s^d_0\} \), and define the initial state distribution of the Trajectory f-MDP as Uniform(\(T_0 \)). Since each state in \(T_0 \) is an initial feasible of each state transition in the trajectory, i.e., if \((s_t, s_{t+1}) \) is feasible for all time steps. A state transition \((s_t, s_{t+1}) \) is feasible when there exists an action \(a_t \in \mathcal{A} \) such that \(p^d(s_t, a_t, s_{t+1}) = 1 \) for deterministic transitions or \(p^d(s_t, a_t, s_{t+1}) > 0 \) for stochastic transitions. In the following paragraphs, we discuss the deterministic MDP setting and discuss the stochastic setting in Appendix A.

Let \(f : \mathcal{S} \times \mathcal{S} \rightarrow \mathcal{A} \) be a perfect inverse dynamics model for the imitator that takes a state transition \((s_t, s_{t+1}) \in \mathcal{S} \times \mathcal{S}\) as the input and outputs the action \(a_t \in \mathcal{A} \) that achieves the transition if feasible or outputs ‘Infeasible’. However, having access to the inverse dynamics model is often non-trivial and in addition a binary feasibility measurement such as \(f \) discards all infeasible demonstrations without considering any useful information from slightly infeasible trajectories.

Our goal is to learn a policy \(\pi^f : \mathcal{S} \rightarrow \mathcal{A} \) for the imitator to maximally achieve the state transitions in the demonstrations. This means that if the state transition \((s^d_t, s^d_{t+1}) \) from a demonstration is feasible, the next state produced by \(\pi^f \), i.e., \(s^d_{t+1} = p^f(s^d_t, \pi^f(s^d_t)) \) should be equal to \(s^d_{t+1} \). Otherwise, we would like the policy to output an action that ensures the next state \(s^d_{t+1} \) is as close as possible to the next state from the demonstration \(s^d_{t+1} \). Therefore, the distance between \(s^d_{t+1} \) and \(s^d_{t+1} \) can serve as a measure of feasibility, where a smaller distance corresponds to a higher likelihood of feasibility.

To learn the policy described above, we design a feasibility MDP (f-MDP), where we ensure that the optimal policy of the f-MDP satisfies the above requirement. f-MDP is defined as \(M^f = (\mathcal{S}, \mathcal{A}, p^f, R^f, \rho^f, \gamma^f) \). The state space, the action space and the transition probability are all the same as the imitator’s, while the reward function, the initial state distribution and the discount factor are different. We will now discuss our choices for these in detail.

One-step f-MDP

First, recall that our goal is to learn a policy for the imitator to maximally achieve the state transitions in the demonstrations. So the policy should be learned in an environment with the same state-action space and transition probability as the imitator. We would like the reward of the f-MDP to encourage maximally achieving the state transitions in the demonstrations. Let us first collect all the state transitions \(T = \{(s^d_t, s^d_{t+1})\} \) in all of the demonstrations. We define the Former Set to be the set of states in the demonstrations that one can transition from: \(T_F = \{s^d_t : (s^d_t, s^d_{t+1}) \in T\} \). The initial state distribution \(\rho^f_0 \) can be defined uniformly over the Former Set as Uniform(\(T_F \)). Here, we assume that all the states in the Former Set can be visited by the imitator. We define the reward of a One-step f-MDP so that it matches the one-step transitions from the Former Set:

\[
s^d_0 \sim \text{Uniform}(T_F), \quad s = s^d_t, \quad s' = p^f(s, a), \quad R^f(s, a, s') = -f_{\text{dis}}(s^d_t, s^d_{t+1}),
\]
With our Trajectory f-MDP design, feasible trajectories still receive the maximal reward of
f where state transitions with larger feasibility will be sampled more often. Using the sampling
where the probability of a state-transition $p(s_t, a, s_{t+1}) = -f_{\text{dis}}(s_{t+1}, s_t^d)$, (2)
We use L2 distance for f_{dis} in our experiments. Similar to the one-step f-MDP $a \in A'$ is sampled
from the action space of the imitator.

Learning Feasibility. With the Trajectory f-MDP defined above, for each demonstration trajectory
ξ, the highest reward achieved in this f-MDP reflects the feasibility score of the trajectory. We use
reinforcement learning to learn the optimal policy of the Trajectory f-MDP, π^* corresponding to the
demonstration ξ. We then derive the feasibility of each demonstration trajectory ξ as follows:

$$ w(\xi) = \exp \left(-\frac{\sum_{t=1}^{N} (\gamma t f_{\text{dis}}(s_t, s_{t+1}^d) - C)}{\sigma} \right). \quad (3) $$

s_t is the state at step t in the rollout derived by the policy π^*. We use an exponential function of the
cumulative reward since the cumulative reward is always negative and the exponential function can
bound the feasibility in the range of $[0, 1]$. The parameter C is used to shift the function to avoid the
situation where the cumulative reward is extremely negative, while the parameter σ controls how low
the reward can be, and when a demonstration can be fully filtered out by assigning a feasibility of
close to 0. In practice, C is usually set as the maximal cumulative reward over all demonstrations to
ensure the maximal feasibility is 1.

For the feasibility of each state transition (s_t^d, s_{t+1}^d), we use the feasibility of the trajectory it belongs
to: $w((s_t^d, s_{t+1}^d)) = w(\xi_t)$, where $(s_t^d, s_{t+1}^d) \in \xi_t$. We do not use the state distance at each time step
between s_{t+1}^d and s_t^d as in the one-step f-MDP because such measurement suffers from the fact that
within a trajectory, the reward of later steps are influenced by former steps. For example, if s_t diverges
from s_t^d, s_{t+1}^d will diverge more from s_{t+1}^d. So the per-step reward is an unfair measure of feasibility
for the state transition (s_t^d, s_{t+1}^d) at different time steps t. Therefore, we use the accumulative reward
of the whole trajectory as our feasibility measure, where all the state transitions share the same value.

We note that the length of a rollout in the f-MDP is the same as the corresponding demonstration,
which can be very long. Thus, the reward measure defined in Eqn. (2) suffers from compounding
errors. Specifically, if the state in the rollout starts to diverge from the demonstration trajectory at t,
meaning that $\|s_t - s_t^d\| > 0$, the steps after time step t even diverge more from the demonstration.
This makes the trajectory reward for all the infeasible trajectories very low and does not enable
discriminating among different infeasible trajectories. Therefore, we set a discount factor of $\gamma < 1$
to discount or even ignore the trajectory reward at later steps.

With our Trajectory f-MDP design, feasible trajectories still receive the maximal reward of 0 since
each state in the rollout will perfectly match the demonstration thus having a feasibility of 1 as
designed in Eqn. (3). Instead, infeasible trajectories receive negative rewards leading to smaller
feasibility, which reflects how far away the demonstration is from the closest feasible trajectory.

One may worry about the time complexity of our approach since we need to learn an optimal
policy for the f-MDP of each demonstrator. However, the f-MDP is a lot simpler compared to the
imitator’s MDP since the initial distribution is reduced from the distribution of all possible states in
the demonstration set to a discrete distribution over the initial states of the demonstrations. This can
simplify the time complexity of finding the optimal policy for the f-MDPs.

Algorithm. Using the feasibility metric in Eqn. (3), we assign each state transition with the same
feasibility of the trajectory it belongs to. Directly weighing the imitation loss as [29] may lead to
gradients that are close to 0 if a batch of data all have low feasibility. This can make the algorithm
inefficient by wasting samples from many iterations. Instead, for a more efficient training, we define a
discrete probability distribution p_u over the collection of state transitions in all the demonstrations: T,
where the probability of a state-transition (s_t^d, s_{t+1}^d) as $p_u((s_t^d, s_{t+1}^d)) = \frac{w((s_t^d, s_{t+1}^d))}{\sum_{(s_t^d, s_{t+1}^d)} w((s_t^d, s_{t+1}^d))}$,
where state transitions with larger feasibility will be sampled more often. Using the sampling
distribution p_u, we can embed our method into any imitation learning algorithm to enable learning
from demonstrations with different dynamics. We show the algorithm block in the Appendix.

Sampling More Demonstrations with the Feasibility Score. When the existing useful demon-
strations are too scarce to learn a well-performing imitation learning policy, we can acquire more
Figure 3: Illustration of different dynamics in (a) Swimmer: varying the joint limit of the front and back joints (α_f and α_b). (b) Walker2d: varying the friction of the feet (β). (c) HalfCheetah: varying the joint control force of the front and back joints by multiplying a factor γ_f and γ_b with the front and back joint force respectively (d-f) show the expected return in these three environments.

\[p_j = \frac{1}{|\Xi_j|} \sum_{\xi^j \in \Xi_j} w(\xi^j) \sum_{j=1}^{N} \frac{1}{|\Xi_j|} \sum_{\xi^j \in \Xi_j} w(\xi^j). \]

5 Experimental Results

We experiment with three MuJoCo environments, a simulated Franka Panda Arm, and a real Franka Panda Arm. We also show results on various compositions of demonstrations of different dynamics and the performance gain when we are given a larger budget to collect demonstrations. We compare our approach with a standard imitation learning algorithm: GAIL [1], imitation learning from demonstrations with different dynamics methods without feasibility: SAIL [5], and with feasibility: ID-Feas [7], which uses an inverse dynamics model to estimate feasibility.

5.1 MuJoCo Experiments

Swimmer. The swimmer agent has three links and two joints. The goal of the agent is to move forward by rotating the joints. As shown in Fig. 3(a), we create different dynamics by setting the joint limit of the front and the back joints, denoted by (α_f, α_b). The original Swimmer environment has (α_f, α_b) = (100°, 100°). We create four demonstrator environments (α_f, α_b): (i) (100°, 12°), (ii) (100°, 20°), (iii) (100°, 100°), and (iv) (10°, 100°). We also create the imitator environment by setting (α_f, α_b) = (100°, 10°). The demonstrators (i) and (ii) are closer to the imitator while the demonstrators (iii) and (iv) are farther.

Walker2d. The Walker2d is an agent with two legs where each leg consists of 3 joints. We create different dynamics by using different frictions β for the feet, i.e., the link that touches the ground. The
Table:

<table>
<thead>
<tr>
<th>Method</th>
<th>Expected Return</th>
<th>Success Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ours</td>
<td>-5000</td>
<td>0.00</td>
</tr>
<tr>
<td>ID-Feas</td>
<td>-265</td>
<td>0.25</td>
</tr>
<tr>
<td>SAIL</td>
<td>-288</td>
<td>0.25</td>
</tr>
<tr>
<td>GAIL</td>
<td>-287</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td>-286</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td>-284</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td>-282</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td>-281</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td>-280</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td>-279</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td>-278</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td>-274</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td>-273</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td>-272</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td>-270</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td>-269</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td>-262</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td>-260</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td>-259</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td>-258</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td>-257</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td>-256</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td>-255</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td>-254</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td>-253</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td>-252</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td>-251</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td>-250</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td>-249</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td>-289</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td>-285</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td>-277</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td>-276</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td>-263</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td>-261</td>
<td>0.25</td>
</tr>
</tbody>
</table>

Figure 4: (a) Illustration of different dynamics in the real robot arm environment. (b-c) The bar plots show the expected return and success rate compared to other methods. (d) Sampled trajectories using different methods.

original Walker2d uses $\beta = 0.9$. We create two settings to show high friction and low friction of the imitator with a mix of frictions for the demonstrators. In the first setting, there are four demonstrators: (i) $\beta = 19.9$, (ii) $\beta = 9.9$, (iii) $\beta = 0.9$, and (iv) $\beta = 0.7$. The imitator has $\beta = 24.9$. In the second setting, there are four demonstrators: (i) $\beta = 29.9$, (ii) $\beta = 19.9$, (iii) $\beta = 1.1$, and (iv) $\beta = 0.7$. The imitator has $\beta = 0.9$.

HalfCheetah. The HalfCheetah is an agent with two legs at the front and back of the body, where each leg consists of three joints. We create different dynamics by varying the control force limit of joints of the front leg and back leg, where we multiply a factor γ_f with the original control force limit of the front leg and multiply γ_b with the limit of the back leg. We create two settings, where the demonstrators have low and high similarity with each other. In the first setting, there are four demonstrators with (γ_f, γ_b): (i) $(0.05, 1)$, (ii) $(0.5, 1)$, (iii) $(1, 0.5)$, and (iv) $(1, 0.05)$. The imitator has $(\gamma_f, \gamma_b) = (0.01, 1)$. In the second setting, there are four demonstrators with (γ_f, γ_b): (i) $(0.01, 1)$, (ii) $(0.05, 1)$, (iii) $(1, 0.05)$, and (iv) $(1, 0.01)$. The imitator has $(\gamma_f, \gamma_b) = (0.01, 1)$.

The detailed composition of demonstrations for all three environments is included in the Appendix. For all the Mujoco environments, we evaluate the expected return of each policy by rolling out 100 trajectories in the environment with the policy and compute the average expected return of the 100 trajectories. We run each experiment for 5 times and show the mean and the standard deviation.

Results. We show the expected return with respect to the number of steps for the three different environments in Fig. 3. We show the results of the second setting for the Walker2d and the HalfCheetah in the Appendix. We observe that our proposed feasibility achieves the best performance among all the methods. The highest p-value comparing our method to baselines is 0.116 with ID-Feas for the Swimmer environment, $2.55e^{-14}$ with GAIL for the Walker2d environment, and 0.188 with ID-Feas for the HalfCheetah environment. In particular, our method outperforms ID-Feas, which indicates that the proposed feasibility more accurately filters out far from feasible demonstrations. SAIL performs even worse than GAIL, this is because SAIL can more strictly follow the state sequences of demonstrations than GAIL including those far from feasible demonstrations. Our demonstration set is composed of a high percentage of demonstrations from unrelated dynamics, which can mislead SAIL’s learned policy.

5.2 Simulated and Real Franka Panda Arm Experiments

Setup. We create a simulated robot arm based on a Panda Robot Arm implemented in the PyBullet [30] and a real robot arm environment using a Franka Panda Arm. We include the results for the simulated robot arm in the Appendix. As shown in Fig. 4(a), we create a task of moving a book to the shelf but the closest region on the shelf is full. So we need to move the book to the empty area of the shelf without colliding with the shelf and the existing books on the shelf. We create two dynamics for the robot arm: using a 7-DoF control which can move freely in the 3D space, and using a 3-DoF control, which is limited to moving on the red plane area. We collect demonstrations from both 7-DoF and 3-DoF controllers and aim to learn an optimal policy for the 3-DoF robot.

For evaluation, we use two metrics: (1) The expected return based on a reward penalizing collision with the shelf and existing books and rewarding the successfully moving the book to the empty area of the shelf within the time limit. More detail on the reward is in the Appendix. (2) The success rate of finishing the task over 100 trials.

1https://www.franka.de
We observe that the proposed approach outperforms the baseline methods both in expected return and success rate as shown in Fig. 4. The highest p-value for the expected return is 2.432×10^{-8} and for the success rate is 3.534×10^{-8} (both with ID-Feas), which are statistically significant.

5.3 Analysis

We conduct experiments with varying compositions of demonstrations and investigate the performance of different approaches when we have the budget to acquire additional demonstrations. We show the results of varying the number of demonstrations from all demonstrators in the Appendix.

Varying the Number of Demonstrations from each Unrelated Demonstrator. For each experiment setting in each Mujoco environment, we have two demonstrators with similar dynamics to the imitator and two demonstrators with far apart dynamics. We vary the number of demonstrations from the far apart demonstrators to investigate their influence on the different methods. We conduct experiments on the first setting for all three Mujoco environments and report the results in Fig. 5(a), 5(b) and 5(c). With an increasing number of demonstrations from the far apart demonstrators, the expected return of all the methods increases, while our method shows the best performance consistently across different numbers of demonstrations. This demonstrates that our feasibility can effectively filter out far from feasible demonstrations and ensure the policy learns from useful demonstrations.

Performance with a Budget of Additional Demonstrations. We now consider a setting, where we start with a limited set of demonstrations, but acquire more demonstrations under a limited budget. Our feasibility metric can assess how likely it is for a demonstrator to produce feasible demonstrations, and hence can help us select which demonstrator to query for more demonstrations. We start with one demonstration from each demonstrator in the Swimmer environment and evaluate the performance as we add demonstrations. For our method and ID-Feas, we can acquire demonstrations proportional to the computed feasibility score. We compare the expected return with demonstrations selected based on feasibility (Ours, ID-Feas) to the expected return with demonstrations uniformly acquired from each demonstrator (Ours-Uniform, ID-Feas-Uniform). We further compare with SAIL and GAIL, where no feasibility is defined and we uniformly acquire demonstrations. As shown in Fig. 5(d), Ours outperforms ID-Feas, which demonstrates that the proposed feasibility can better reflect how likely each demonstrator produces feasible demonstrations and acquire more demonstrations from helpful demonstrators. Ours outperforms all the other methods especially Ours-Uniform, which indicates that the demonstrations acquired based on the feasibility gain more useful information.

6 Conclusion

Summary. We propose an algorithm to learn a feasibility metric to imitate demonstrations drawn from agents with different dynamics. Our feasibility metric captures how likely it is for each demonstration to be feasible for the imitator. We develop a feasibility MDP (F-MDP) and derive the feasibility by learning the optimal policy for the F-MDP. We show that the policy learned from the demonstrations reweighted by the proposed feasibility score outperforms other imitation learning methods in various environments and different compositions of demonstrations.

Limitations and Future Work. Our work only addresses the problem of filtering out far from feasible demonstrations, but does not solve the problem of learning a policy from those feasible or nearly feasible demonstrations from different dynamics. There are situations where demonstrations are feasible but not optimal for the imitator, especially when the ability of the demonstrator is more restricted than the imitator. In the future, we aim to study these more general settings.
References

