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Abstract: The goal of learning from demonstrations is to learn a policy for an
agent (imitator) by mimicking the behavior in the demonstrations. Prior works
on learning from demonstrations assume that the demonstrations are collected by
a demonstrator that has the same dynamics as the imitator. However, in many
real-world applications, this assumption is limiting — to improve the problem
of lack of data in robotics, we would like to be able to leverage demonstrations
collected from agents with different dynamics. This can be challenging as the
demonstrations might not even be feasible for the imitator. Our insight is that
we can learn a feasibility metric that captures the likelihood of a demonstration
being feasible by the imitator. We develop a feasibility MDP (f-MDP) and derive
the feasibility score by learning an optimal policy in the f-MDP. Our proposed
feasibility measure encourages the imitator to learn from more informative demon-
strations, and disregard the far from feasible demonstrations. Our experiments on
four simulated environments and on a real robot show that the policy learned with
our approach achieves a higher expected return than prior works. We show the
videos of the real robot arm experiments on our website.
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1 Introduction

Imitation learning aims to learn a well-performing policy from demonstrations. Standard imitation
learning algorithms usually assume that the demonstrator (the agent that generates the demonstrations)
and the imitator (the agent that is learning a policy) share the same dynamics, i.e., the transition
functions are the same [1, 2, 3, 4]. Specifically, in a given state, with the same action, both the
demonstrator and the imitator transition to the same distribution of next states. However, this
assumption limits the usage of already collected demonstrations. Imagine a setting, where a set of
demonstrations are collected on a 7 Degrees of Freedom (DoF) robot arm shown in Fig. 1 to place a
book on the empty area of the shelf (on the left) without colliding with the books that are already
placed on the right side of the shelf. Later, we might decide to buy a different arm with 3 DoF (e.g.,
only the joints circled in green as shown in the figure are used). We would like to learn a policy for
this 3 DoF robot arm that can achieve the same task—placing the book on the empty region of the
shelf—using the originally collected demonstrations on the 7 DoF arm. In general, our goal is to
enable using and reusing data collected on robots with different dynamics or embodiments to tackle
the problem of lack of in-domain data in robotics. The 3 DoF robot arm should still be able to learn a
policy based on feasible or nearly feasible demonstrations from an agent with different dynamics,
e.g., using the trajectories that go over the bookshelf in Fig. 1. Motivated by this example, we relax
the assumption of shared dynamics between the imitator and demonstrator so that the data can be
collected from demonstrators with the same state space but different dynamics from the imitator, e.g.,
demonstrators with different embodiments, body schemas, joints, or rigid body structures.

Prior works in imitation learning from demonstrators with different dynamics typically rely on
state-only demonstrations and learn a policy to maximally follow the sequence of states in demonstra-
tions [5, 6]. Such learning techniques assume that all of the collected demonstrations are useful for
the imitator. However, it is possible that demonstrations drawn from agents with other dynamics can
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Figure 1: An example of imitating demonstrators with feasibility. The left image shows that a set of demonstra-
tions (blue and red trajectories) are available for the 7 DoF robot arm. We aim to learn a policy for the 3 DoF
robot (joints are circled in green) by learning from the demonstrations of the 7 DoF robot (blue is feasible and
red is infeasible). We learn a feasibility score to reweight each demonstration to conduct imitation learning.

be useless or even harmful for the imitator because they may not be feasible for the imitator. Going
back to the example in Fig. 1, the red trajectories that move around the stack of books are not feasible
for the 3 DoF robot arm. Imitating such trajectories may cause the 3 DoF robot arm to maximally
follow these trajectories and even collide with the existing stack of books. Therefore, it is crucial to
identify and avoid trajectories that are far from feasible for the imitator, and instead learn more from
useful demonstrations, e.g., the blue trajectories that go over the shelf that are still feasible for a robot
with 3 DoF.

To avoid the influence of useless or harmful demonstrations from agents with different dynamics,
we rely on a feasibility score, which measures how feasible a trajectory is for the imitator, and
select trajectories with high feasibility to imitate. For example, the blue trajectories should have
higher feasibility than the red trajectories in Fig. 1. Prior work such as Cao and Sadigh [7] estimate
the feasibility score by computing the distances of demonstrations and corresponding trajectories
but the performance highly relies on the accuracy of the inverse dynamics model, which can be
difficult to learn. Our key idea is to directly learn a feasibility score for the imitator based on the
collected demonstrations. Specifically, we model the imitator environment as an MDP and build
a feasibility Markov Decision Process (f-MDP) based on the imitator’s MDP and the trajectories
provided by the demonstrator. The optimal policy for the f-MDP maximally follows the behavior
of the demonstrations but is limited by the imitator’s environment. This optimal policy helps assign
a feasibility score over the demonstrations. We conduct imitation learning on the demonstrations
re-weighted by the feasibility score to learn the final policy for the imitator. We experiment with
several simulation environments and a manipulation task with a Panda Franka arm. We show that
the policy learned from demonstrations re-weighted by our feasibility achieves higher performance
compared to other methods.

2 Related Works

Imitation Learning. Imitation learning seeks a policy that best imitates demonstrations. Current
imitation learning methods can be roughly divided into Behavior Cloning (BC), Inverse Reinforcement
Learning (IRL) and Generative Adversarial Imitation Learning (GAIL). BC directly learns the policy
from a sequence of state-action pairs via supervised learning [8], where dataset aggregation [9] or
policy aggregation [10, 11] are proposed to address the compounding errors problem. IRL first learns
a reward function that best matches demonstrations and then finds a policy through reinforcement
learning to maximize the recovered reward [1, 12, 2, 13]. GAIL learns the expert policy by matching
the occupancy measure between the policy and the demonstrations [4].

However, most imitation learning works require that the demonstrations consist of a sequence of
states and actions. When only state observations are available, new imitation learning algorithms are
proposed to address the lack of actions. Torabi et al. [14] recover the actions between consecutive
states through an inverse dynamics model. GAIL-based works directly match the state occupancy
measure between the demonstrations and the policy [15, 16, 17]. However, imitation learning methods
learned from either state-action or state-only demonstrations assume that the demonstrator and the
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imitator have the same dynamics. Since demonstrations from different dynamics may not be feasible
for the imitator, directly imitating cannot achieve the same optimal behavior, and may cause unknown
suboptimal outcomes. Thus, standard imitation learning algorithms do not fit our problem setting.

Learning from Demonstrations with Different Dynamics. Early works model this problem as a
correspondence problem between the demonstrator and the imitator, and map states and actions in
demonstrations to the imitator’s states and actions [18, 19]. Englert et al. [20] align the state trajectory
distributions to address the correspondence problem. Calinon et al. [21] model the demonstrations as
a Gaussian mixture model within a projected lower-dimensional subspace. Eppner et al. [22] learn a
task description. Domain randomization methods learn the correspondence as an invariant latent space
by randomizing domains [23, 24, 25]. Zhang et al. [26] learns a translation mapping to model the
correspondence. However, modeling correspondence requires that there exists a strict correspondence
between the MDP of the demonstrator and the imitator. Recent works instead only assume the shared
state space between the demonstrator and the imitator, and address the different dynamics problem by
encouraging the imitator to maximally follow the state trajectory of the demonstrator [5, 27, 28, 6].
However, all these works ignore an important challenge—that is the demonstrations may be far from
feasible for the imitator. Enforcing the imitator to follow such trajectories may lead to unknown
behavior. We focus on this challenge and develop a feasibility score to down-weight demonstration
trajectories that are far from feasible for the imitator. Compared to the works that learn feasibility to
filter infeasible trajectories [7], we do not require the inverse dynamics model, which can make our
setting more generalizable to different environments.

3 Problem Statement

In our problem setting, an imitator aims to learn from demonstrations collected fromN demonstrators
with various dynamics. We formalize the demonstrators and the imitator each as a standard Markov
decision process (MDP). For each demonstrator j, (1 ≤ j ≤ N), the MDP is formalized as
Md

j = 〈S,Adj , pdj ,R, ρ0, γ〉. The MDP for the imitator is Mi = 〈S,Ai, pi,R, ρ0, γ〉. S is the
shared state space for all environments. Adj andAi are the action spaces and pdj : S×Adj×S → [0, 1]

and pi : S ×Ai × S → [0, 1] are the transition probabilities for each demonstrator and the imitator
respectively. Note that in our problem setting, we use the transition function p to denote dynamics
and the demonstrators and the imitator may have different dynamics and action spaces. ρ0 is the
shared initial state distribution for all MDPs. R : S × S → R is the reward function. Note that we
make the assumption that the reward function is based on state transitions and is shared between
the demonstrators and the imitator, which is a common assumption used in prior work [5, 7], and is
usually satisfied since the demonstrators and the imitator conduct the same task in the same context.
γ is the shared discount factor. A policy for the imitator πi : S ×Ai → [0, 1] defines a probability
distribution over the space of actions in a given state. An optimal policy π∗ maximizes the expected
return ηπi = Es0∼ρ0,πi [

∑∞
t=0 γ

tR(st, at, st+1)], where t indicates the time step.

We aim to learn a policy πi for the imitator, given a set of demonstrations from different demonstrators
Ξj = {ξj1, . . . , ξ

j
D}j∈{1...N} where each trajectory is a sequence of states ξ = {sd0, sd1, . . . , sdH}. We

assume that the optimal policy can be learned by imitating the useful demonstrations, which is a
general assumption adopted by prior imitation learning works [8, 4, 5, 7]. The violation of this
assumption, as shown in prior works, leads to learning a suboptimal policy. Note that we discard
actions from the demonstrations instead of imitating the state-action trajectories because different
action spaces between the demonstrators and the imitator make it impossible to imitate the actions.

Challenges. The core challenges of imitation learning from demonstrations with different dynamics
are: (1) How to imitate useful demonstrations with different dynamics, (2) How to avoid harmful
demonstrations misleading the imitator. Prior works have studied and made progress for the first
challenge [5, 6], but the second challenge is still under-studied. Strong assumptions such as access to
or learning an accurate inverse dynamics model are needed to filter out harmful demonstrations [7].
We address the second challenge by learning a feasibility score that measures how likely it is for a
demonstration to be feasible for the imitator with minimal assumptions: only using the environment
of the imitator, i.e., we can collect interaction data in the environment but we do not know the exact
reward and transition function of the imitator.
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Figure 2: The illustration and comparison of one-step f-MDP and trajectory f-MDP. The blue state transition
and trajectory are from the demonstrations while the orange state transition and trajectory are rollouts in the
f-MDP. One-step f-MDP collects the states in the Former Set and uses the uniform distribution over the states
as the initial state distribution. Trajectory f-MDP collects the initial state of all the demonstrations and uses a
uniform distribution over them as the initial state distribution.

4 Feasibility-Based Imitation Learning

The feasibility of a trajectory depends on the feasibility of each state transition in the trajectory, i.e.,
if (st, st+1) is feasible for all time steps. A state transition (st, st+1) is feasible when there exists
an action ait ∈ Ai such that pi(st, ait, st+1) = 1 for deterministic transitions or pi(st, ait, st+1) > 0
for stochastic transitions. In this section, we discuss the deterministic MDP setting and discuss the
stochastic setting in Appendix.

Feasibility can be directly measured by a perfect inverse dynamics model f : S × S → A that
takes a state transition (st, st+1) ∈ S × S as the input and outputs the action at ∈ A that achieves
the transition if feasible or outputs ‘Infeasible’. However, having access to this model is often
non-trivial and such a binary feasibility measurement as f discards all infeasible demonstrations
without considering any useful information from slightly infeasible trajectories.

Our goal is to learn a policy πi : S → Ai for the imitator to maximally achieve the state transitions in
the demonstrations. This means that if the state transition (sdt , s

d
t+1) from a demonstration is feasible,

the next state produced by πi, i.e., sit+1 = pi(sdt , π
i(sdt )) should be equal to sdt+1. Otherwise, we

would like the policy to output an action that ensures the next state sit+1 is as close as possible to the
next state from the demonstration sdt+1. Therefore, the distance between sit+1 and sdt+1 can serve as a
measure of feasibility, where a smaller distance corresponds to a higher likelihood of feasibility. To
learn this policy, we design a feasibility MDP (f-MDP), where we ensure that the optimal policy of
the f-MDP satisfies the above requirement. f-MDP is defined as Mf = 〈S,Ai, pi,Rf , ρf0 , γf 〉. We
will now discuss our choices for the components of f-MDP.

One-step f-MDP. First, recall that our goal is to learn a policy for the imitator to maximally achieve
the state transitions in the demonstrations. So the policy should be learned in an environment with the
same state-action space and transition probability as the imitator. We would like the reward of the f-
MDP to encourage maximally achieving the state transitions in the demonstrations. Let us first collect
all the state transitions T = {(sdt , sdt+1)} in all of the demonstrations. We define the Former Set to be
the set of states in the demonstrations that one can transition from: TF = {sdt : (sdt , s

d
t+1) ∈ T}. The

initial state distribution ρf0 can be defined uniformly over the Former Set as Uniform(TF ). Here, we
assume that all the states in the Former Set can be visited by the imitator. We define the reward of a
One-step f-MDP so that it matches the one-step transitions from the Former Set:

sdt ∼ Uniform(TF ), s = sdt , s′ = pi(s, a), Rf (s, a, s′) = −fdis(s
′, sdt+1), (1)

where (sdt , s
d
t+1) is a state transition in the demonstrations and a ∈ Ai is sampled from the action

space of the f-MDP. fdis is a function that measures the distance between the states (e.g., the L2
distance). We define the reward to penalize the distance between s′ and sdt+1.

Trajectory f-MDP. The one-step f-MDP suffers from an important shortcoming: the assumption that
all states in the Former Set must be visited by the imitator can be violated, because the demonstrators
have different dynamics from the imitator and some demonstration states can never be reached by the
imitator. So we cannot set Uniform(TF ) as the initial state distribution for the f-MDP. We instead
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collect the initial state sd0 of all the demonstrations, T0 = {sd0}, and define the initial state distribution
of the Trajectory f-MDP as Uniform(T0). Since all the demonstrators and the imitator share the initial
state distribution, all states in T0 can be visited by the imitator. We define the reward as:

sd0 ∼ Uniform(T0), s0 = sd0, st+1 = pi(st, a), Rf (st, a, st+1) = −fdis(st+1, s
d
t+1), (2)

We use the L2 distance for fdis in our experiments. Similar to the one-step f-MDP a ∈ Ai is sampled
from the action space of the imitator.

Learning Feasibility. Given the Trajectory f-MDP defined above, for each demonstration trajectory
ξ, the highest reward achieved in this f-MDP reflects the feasibility score of the trajectory. We use
reinforcement learning to learn the optimal policy of the Trajectory f-MDP, π∗. We then derive the
feasibility of each demonstration trajectory ξ as a function of the trajectory f-MDP reward:

w(ξ) = exp

(
−
∑N
t=1(γf )tfdis(st, s

d
t )− C

σ

)
. (3)

st is the state at step t in the rollout derived by the policy π∗. We use an exponential function of the
cumulative reward since the cumulative reward is always negative and the exponential function can
bound the feasibility in the range of [0, 1]. The parameter C is used to shift the function to avoid the
situation where the cumulative reward is extremely negative, while the parameter σ controls how low
the reward can be, and when a demonstration can be fully filtered out by assigning a feasibility of
close to 0. In practice, C is usually set as the maximal cumulative reward over all demonstrations to
ensure the maximal feasibility is 1.

For the feasibility of each state transition (sdt , s
d
t+1), we use the feasibility of the trajectory it belongs

to: w((sdt , s
d
t+1)) = w(ξi), where (sdt , s

d
t+1) ∈ ξi. We do not use the state distance at each time step

between st+1 and sdt+1 as in the One-step f-MDP because such measurement suffers from the fact that
within a trajectory, the reward of later steps are influenced by former steps. For example, if st diverges
from sdt , st+1 will diverge more from sdt+1. So the per-step reward is an unfair measure of feasibility
for the state transition (sdt , s

d
t+1) at different time steps t. Therefore, we use the accumulative reward

of the whole trajectory as our feasibility measure, where all the state transitions share the same value.

The discount factor γf is usually set as γf < 1 to reduce compounding errors. Specifically, the
length of a rollout in the f-MDP is the same as the corresponding demonstration, which can be very
long. If the state in the rollout starts to diverge from the demonstration trajectory at t, meaning that
‖st − sdt ‖ > 0, the steps after time step t even diverge more from the demonstration. This makes the
trajectory reward for all the infeasible trajectories very low and does not allow for discriminating
among different infeasible trajectories. Therefore, we set a discount factor of γf < 1 to discount or
even ignore the trajectory reward at later steps.

Leveraging our Trajectory f-MDP design, feasible trajectories still receive the maximal reward of 0
since each state in the rollout will perfectly match the demonstration thus having a feasibility of 1
as in Eqn. (3). Instead, infeasible trajectories receive negative rewards leading to smaller feasibility
scores, which reflects how far away the demonstration is from the closest feasible trajectory.

One may worry about the time complexity of our approach since we need an additional RL training
to learn an optimal policy for the f-MDP. However, the f-MDP is a lot simpler compared to the
imitator’s MDP since the initial distribution is reduced from the distribution of all possible states in
the demonstration set to a discrete distribution over the initial states of the demonstrations. This can
simplify the time complexity of finding the optimal policy for the f-MDPs.

Algorithm. Using the feasibility metric in Eqn. (3), we assign each state transition with the same
feasibility of the trajectory it belongs to. Directly weighing the imitation loss as [29] may lead to
gradients that are close to 0 if a batch of data all have low feasibility. This can make the algorithm
inefficient by wasting samples from many iterations. Instead, for a more efficient training, we define a
discrete probability distribution pw over the collection of state transitions in all the demonstrations: T ,

where the probability of a state-transition (sdt , s
d
t+1) as pw((sdt , s

d
t+1)) =

w((sdt ,s
d
t+1))∑(

sd
t′

,sd
t′+1

)
∈T

w((sd
t′ ,s

d
t′+1

))
.

State transitions with larger feasibility will be sampled more often. Using the sampling distribu-
tion pw, we can embed our method into any imitation learning algorithm to enable learning from
demonstrations with different dynamics. We show the algorithm block in the Appendix.
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(e) Swimmer Results
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(f) Walker2d Results
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(g) HalfCheetah Results
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(h) Hopper Results

Ours ID-Feas SAIL GAIL
Figure 3: Illustration of different dynamics in (a) Swimmer: varying the joint limit of the front and back joints
(αf and αb). (b) Walker2d: varying the friction of the feet (β). (c) HalfCheetah: varying the joint control force
of the front and back joints by multiplying a factor γf and γb with the front and back joint force. (d) Hopper:
varying the gravitational constant respectively (e-h) show the expected return in these four environments.

Sampling More Demonstrations with the Feasibility Score. When the existing useful demonstra-
tions are too scarce to learn a well-performing imitation learning policy, we need to acquire more
demonstrations from the demonstrators. But collecting new demonstrations can be expensive, so we
often can only acquire a limited budget of demonstrations. We thus need to collect the most useful
demonstrations within this limited budget. The proposed feasibility metric provides a criterion to
decide the similarity between the imitator and each demonstrator. If a demonstrator has a higher
similarity, we sample more from this demonstrator because its demonstrations are more likely to be
feasible. Specifically, we create a probability distribution pj over all demonstrators:

pj =

1
|Ξj |

∑
ξj∈Ξj w(ξj)∑N

j=1
1
|Ξj |

∑
ξj∈Ξj w(ξj)

. (4)

We repeatedly and independently query the demonstrator j according to pj and collect a demonstration.
The proposed sampling strategy samples more demonstrations from closer demonstrators. We
empirically show that the sampling strategy derived from our feasibility performs better than uniform
sampling or using other feasibility metrics as in [7].

5 Experimental Results

We experiment with four MuJoCo environments, a simulated Franka Panda Arm, and a real Franka
Panda Arm. We also show results on various compositions of demonstrations of different dynamics
and the performance gain when we are given a larger budget to collect demonstrations. We compare
our approach with a standard imitation learning algorithm: GAIL [4], imitation learning from
demonstrations with different dynamics methods without a measure of feasibility: SAIL [5], and with
a feasibility score: ID-Feas [7], which uses an inverse dynamics model to estimate feasibility.

5.1 MuJoCo Experiments

Swimmer. The swimmer agent has three links and two joints. The goal of the agent is to move
forward by rotating the joints. As shown in Fig. 3(a), we create different dynamics by setting the
joint limit of the front and the back joints, denoted by (αf , αb). The original Swimmer environment
has (αf , αb) = (100◦, 100◦). We create four demonstrator environments (αf , αb): (i) (100◦, 12◦),
(ii) (100◦, 20◦), (iii) (100◦, 100◦), and (iv) (10◦, 100◦). We also create the imitator environment by
setting (αf , αb) = (100◦, 10◦). The demonstrators (i) and (ii) are closer to the imitator in terms of
their dynamics, while the demonstrators (iii) and (iv) are farther.
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Figure 4: (a) Illustration of different dynamics in the real robot arm environment. (b-c) The bar plots show the
expected return and success rate compared to other methods. (d) Sampled trajectories using different methods.

Walker2d. The Walker2d is an agent with two legs where each leg consists of 3 joints. We create
different dynamics by using different frictions β for the feet, i.e., the link that touches the ground. The
original Walker2d uses β = 0.9. We create two settings to show high friction and low friction of the
imitator with a mix of frictions for the demonstrators. In the first setting, there are four demonstrators:
(i) β = 19.9, (ii) β = 9.9, (iii) β = 0.9, and (iv) β = 0.7. The imitator has β = 24.9. In the second
setting, there are four demonstrators: (i) β = 29.9, (ii) β = 19.9, (iii) β = 1.1, and (iv) β = 0.7. The
imitator has β = 0.9.

HalfCheetah. The HalfCheetah is an agent with two legs at the front and back of the body, where
each leg consists of three joints. We create different dynamics by varying the control force limit
of joints of the front leg and back leg, where we multiply a factor γf with the original control
force limit of the front leg and multiply γb with the limit of the back leg. We create two settings,
where the demonstrators have low and high similarity with each other. In the first setting, there
are four demonstrators with (γf , γb): (i) (0.05, 1), (ii) (0.5, 1), (iii) (1, 0.5), and (iv) (1, 0.05). The
imitator has (γf , γb) = (0.01, 1). In the second setting, there are four demonstrators with (γf , γb):
(i) (0.01, 1), (ii) (0.05, 1), (iii) (1, 0.05), and (iv) (1, 0.01). The imitator has (γf , γb) = (0.01, 1).

Hopper. The Hopper is an agent with one leg consisting of 3 joints. We create different dynamics
by using different gravitational constants g. The original Hopper uses g = 9.81. We create four
demonstrator environments: (i) g = 20.0, (ii) g = 9.81, (iii) g = 5.0, and (iv) g = 2.0. We also
create the imitator environment by setting g = 15.0.

The detailed composition of demonstrations for all four environments is included in the Appendix.
For all the Mujoco environments, we evaluate the expected return of each policy by rolling out 100
trajectories in the environment with the policy and compute the average expected return of the 100
trajectories. We run each experiment for 5 times and show the mean and the standard deviation.

Results. We show the expected return with respect to the number of steps for the four different envi-
ronments in Fig. 3. We show the results of the second setting for the Walker2d and the HalfCheetah
in the Appendix. We observe that our proposed feasibility achieves the best performance among
all the methods. The highest p-value comparing our method to baselines is 0.116 with ID-Feas for
Swimmer, 2.55e− 14 with GAIL for Walker2d, 0.188 with ID-Feas for HalfCheetah, and 0.026 with
GAIL for Hopper. In particular, our method outperforms ID-Feas, which indicates that the proposed
feasibility more accurately filters out far from feasible demonstrations. SAIL performs even worse
than GAIL, this is because SAIL can more strictly follow the state sequences of demonstrations than
GAIL including those far from feasible demonstrations. Our demonstration set is composed of a high
percentage of demonstrations from unrelated dynamics, which can mislead SAIL’s learned policy.

5.2 Simulated and Real Robot Arm Experiments

Setup. We create a simulated robot arm based on a Panda Robot Arm implemented in the PyBul-
let [30] and a real robot arm environment using a Franka Panda Arm1. We include the results for
the simulated robot arm in the Appendix. As shown in Fig. 4(a), we create a task of moving a book
to the shelf but the closest region on the shelf is full. So we need to move the book to the empty
area of the shelf without colliding with the shelf and the existing books on the shelf. We create two
dynamics for the robot arm: using a 7-DoF control which can move freely in the 3D space, and using

1https://www.franka.de
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Figure 5: (a-d) The expected return when increasing the number of demonstrations from agents with unrelated
dynamics. The results in Fig. 3 correspond to using 500 demonstrations from each unrelated dynamics. In both
of these settings, there will also be a fixed number of demonstrations from agents with related dynamics as
shown in Appendix.

a 3-DoF control, which is limited to moving on the red plane area. We collect demonstrations from
both 7-DoF and 3-DoF controllers and aim to learn an optimal policy for the 3-DoF robot.

For evaluation, we use two metrics: (1) The expected return based on a reward penalizing collision
with the shelf and existing books while rewarding the successfully moving the book to the empty
area of the shelf within the time limit. More detail on the reward is in the Appendix. (2) The success
rate of finishing the task over 100 trials.

We observe that the proposed approach outperforms the baseline methods both in expected return and
success rate as shown in Fig. 4. The highest p-value for the expected return is 2.432× 10−7 and for
the success rate is 3.534× 10−8 (both with ID-Feas), which are statistically significant.

5.3 Analysis

We conduct experiments with varying compositions of demonstrations and investigate the performance
of different approaches when we have the budget to acquire additional demonstrations. We show the
results of varying the number of demonstrations from all demonstrators in the Appendix.

Varying the Number of Demonstrations from each Unrelated Demonstrator. For the first three
experiment settings in the Mujoco environment, we have two demonstrators with similar dynamics to
the imitator and two demonstrators with far apart dynamics. We vary the number of demonstrations
from the far apart demonstrators to investigate their influence on the different methods. We conduct
experiments on the first setting for the Swimmer, Walker2D, HalfCheetah, and Hooper and report the
results in Fig. 5(a), 5(b), 5(c) and 5(d). With an increasing number of demonstrations from the far
apart demonstrators, the expected return of all the methods decreases, while our method shows the
best performance consistently across different numbers of demonstrations. This demonstrates that
our feasibility can effectively filter out far from feasible demonstrations and ensure the policy learns
from useful demonstrations.

6 Conclusion

Summary. We propose an algorithm to learn a feasibility metric to imitate demonstrations drawn
from agents with different dynamics. Our feasibility metric captures how likely it is for each
demonstration to be feasible for the imitator. We develop a feasibility MDP (f-MDP) and derive the
feasibility by learning the optimal policy for the f-MDP. We show that the policy learned from the
demonstrations reweighted by the proposed feasibility score outperforms other imitation learning
methods in various environments and different compositions of demonstrations.

Limitations and Future Work. Our work only addresses the problem of filtering out far from
feasible demonstrations, but does not solve the problem of learning a policy from those feasible
but suboptimal or nearly feasible demonstrations from different dynamics. There are situations
where demonstrations are feasible but not optimal for the imitator, especially when the ability of the
demonstrator is more restricted than the imitator. In the future, we aim to study these more general
settings.
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