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ABSTRACT

Industrial acoustic signals encode machine state, yet prevailing data-driven ap-
proaches are task-specific supervised pipelines that generalize poorly beyond
their design conditions. Progress is further limited by the scarcity of large-scale
datasets and pretrained models tailored to active shop floor audio. To address
this, we introduce DINOS (Diverse INdustrial Operation Sounds), a dataset of
74,149 recordings totaling over 1,093 hours collected from active manufacturing
lines across diverse processes and operating regimes. We also provide IMPACT
(Industrial Machine Perception via Acoustic Cognitive Transformer), a reference
model pretrained on DINOS to standardize evaluation. Our benchmark is struc-
tured in four machine-specific steps: (1) baseline discrimination, (2) moderate
operational complexity, (3) scalability to unseen equipment, and (4) domain shift
and sensor modality adaptation. Across tasks, models pretrained or fine-tuned
on DINOS outperform general-purpose audio models, demonstrating the value of
domain-specific pretraining for industrial acoustic perception.

1 INTRODUCTION

Acoustic signals generated by industrial equipment carry critical operational insights for anomaly
detection, predictive maintenance, and process optimization, which are essential components for
improving system reliability and operational efficiency in manufacturing (Lee et al., 2024). While
data-driven approaches have advanced this field, most of them rely on task-specific supervised
learning, requiring domain-specific labeling efforts that limit their scalability across diverse industrial
environments. Furthermore, the scarcity of publicly available large-scale datasets and pretrained
models tailored to real-world industrial sounds hinders community-driven research, reproducibility,
and further progress. Foundation models, which have achieved notable success in natural language
processing (Devlin et al., 2019; Brown et al., 2020) and computer vision (Dosovitskiy et al., 2020;
Radford et al., 2021; Kirillov et al., 2023), offer a promising path forward. Through large-scale
self-supervised learning, these models can learn versatile representations that transfer effectively to
downstream tasks with minimal labeled data (Zhang et al., 2024).

In the audio domain, similar approaches have emerged (Hershey et al., 2017; Huang et al., 2022;
Elizalde et al., 2023), yet they primarily focus on general audio like music, YouTube videos, and
conversational speech. However, industrial sounds differ from general-purpose audio. They often
include stable tonal harmonics tied to machine kinematics, specific broadband noise profiles generated
by physical processes, and unique temporal structures such as operational periodicity or diagnostically
significant transients arising from faults (Randall, 2021; Bies et al., 2023; Antoni, 2007). As a result,
models trained on general-purpose audio fail to capture these structured acoustic signatures, leading
to reduced diagnostic sensitivity in industrial monitoring. To address these challenges, this paper
presents two resources to shift this landscape (Figure 1).

First, we release DINOS (Diverse INdustrial Operation Sounds), a large-scale open-access dataset
covering diverse acoustic scenarios in manufacturing contexts. It comprises 74,149 recordings
totaling over 1,093 hours across diverse manufacturing processes. In contrast to earlier datasets (e.g.,
MIMII (Purohit et al., 2019), ToyADMOS (Koizumi et al., 2019)), which focus on limited machine
types or controlled faults in miniature parts, DINOS reflects operational diversity and real-world
conditions. We employ two sensor types—microphone and stethoscope sensors—to capture both
distinctive and blended acoustic characteristics of machines.
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Figure 1: System Overview. The pipeline begins with dataset curation for DINOS, collecting
industrial sounds from live shop floors using stethoscope and microphone sensors. Unlabeled data are
used for pretraining and fine-tuning of models. Benchmarking evaluates performance on labeled data.

Second, we introduce IMPACT (Industrial Machine Perception via Acoustic Cognitive Transformer),
a reference pretrained model based on a transformer architecture using self-supervised learning on
DINOS. It provides a baseline for industrial sound foundation models. Additionally, we present
benchmarking systems and results evaluating established sound foundation models. The benchmark
follows a four-step progression: (1) baseline performance on simple tasks; (2) sensitivity to periodic
patterns under moderate operational complexity; (3) scalability via limited-data training on new
equipment; and (4) adaptability on unseen domains Models pretrained or fine-tuned on DINOS
outperform general-purpose counterparts, demonstrating the need for domain-specific datasets and
models in industrial acoustics. Through DINOS and IMPACT, we aim to facilitate community-driven
research in industrial sound analysis.

Our contributions are summarized as follows:

• Release of DINOS, the first large-scale dataset of real shop floor machine sounds.

• A standardized benchmark framework spanning classification and anomaly detection tasks.

• IMPACT, a reference model pretrained on DINOS for standardized comparison.

• Baseline results across multiple models to support reproducibility and future research.

The remainder of the paper is structured as follows: Section 2 reviews related work, Section 3 details
our dataset collection, Section 4 model training methodology, Section 5 presents benchmarking
details and results, and Section 6 concludes with discussions on implications and future directions.

2 RELATED WORK

2.1 FROM GENERAL-PURPOSE AUDIO TO INDUSTRIAL ACOUSTICS

From classical to deep learning Acoustic machine condition monitoring has long been a key
topic in industrial machine monitoring. Early approaches relied on hand-crafted features such as
Mel-Frequency Cepstral Coefficients (MFCCs) with Gaussian Mixture Models (GMMs) or one-class
Support Vector Machines (SVMs) (Chu et al., 2009; Sivasankaran & Prabhu, 2013; Heittola et al.,
2013). With deep learning, autoencoders became a dominant framework; (Marchi et al., 2017)
showed that recurrent autoencoders can model normal machine patterns and detect anomalies via
reconstruction error. When labeled fault types are available, supervised learning has been applied
to tasks such as tool-wear detection (Yun et al., 2023) and diagnostics for Additive Manufacturing
(AM) (Lee et al., 2024). These methods often achieve high accuracy within the training domain
but require substantial annotation and are typically trained per machine, limiting scalability and
generalization to new operating conditions.

General-purpose audio corpora In general acoustic analysis, large public datasets have driven
progress in general acoustic analysis. AudioSet (Gemmeke et al., 2017) provides over two million
labeled 10-second clips from YouTube across 527 categories. ESC-50 and UrbanSound8K (Piczak,
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2015; Salamon et al., 2014) focus on environmental sounds, with UrbanSound8K containing 8,732
short urban clips (≤4 s) in 10 classes. However, these corpora emphasize everyday audio (speech,
music, ambient noise) and lack the structured signatures characteristic of industrial acoustics.

General-purpose pretrained audio models As in vision and language, audio analysis has shifted
from hand-crafted features to pretrained and self-supervised learning (SSL) models using large
datasets. CNN-based VGGish (Hershey et al., 2017) and PANNs (Kong et al., 2020) learn general-
purpose embeddings from large corpora. Transformer-based models advanced this trend: AST (Gong
et al., 2021) applies patch-based self-attention to spectrograms, outperforming CNNs on ESC-50
(95.6% accuracy) and achieving competitive results on AudioSet (mAP 0.485). AudioMAE (Huang
et al., 2022) introduced masked autoencoding for transfer across tasks. Speech models such as
wav2vec 2.0 (Baevski et al., 2020) and HuBERT (Hsu et al., 2021) demonstrate strong representation
learning with limited supervision. Yet these models are trained on everyday audio, which mismatches
the physics and temporal structure of industrial sounds.

Domain-specific datasets for machine anomaly detection Open industrial datasets emerged with
MIMII (Purohit et al., 2019) and ToyADMOS (Koizumi et al., 2019). MIMII records four machine
types (valves, pumps, fans, slide rails) under normal and anomalous conditions; ToyADMOS uses
miniature machines with synthetic faults to provide labeled anomalies. MIMII-DG (Dohi et al., 2022)
introduces domain shifts to probe robustness. Despite their impact on Anomalous Sound Detection
(ASD), research, these datasets cover limited machine classes, often rely on artificial anomalies, and
remain insufficient in diversity and scale to support pretraining for real shop floor acoustics.

Domain-specific foundation models beyond industry Motivated by the limitations of general
models, several works developed specialized foundation models for non-industrial audio domains.
For instance, OPERA (Zhang et al., 2024) pretrained a transformer model on 400 hours of respiratory
audio from coughs and breathing events, outperforming general-purpose models on 16 out of 19
medical acoustic tasks and illustrating the benefits of domain-specific pretraining. Similar domain-
focused efforts have appeared in ecology and environmental monitoring (Chasmai et al., 2024; Piczak,
2015). However, to our knowledge, no prior foundation model has been trained specifically on real
industrial sounds collected from active shop floors.

2.2 LIMITATIONS AND CONTRIBUTIONS

In summary, the field faces three pressing limitations. First, existing industrial sound datasets are
narrow in scope, limited in scale, and insufficient for training foundation models. Second, no publicly
available foundation model exists for industrial machine sound, leaving researchers to rely on task-
specific solutions or general audio embeddings ill-suited to the domain. Third, current methods often
fail to generalize across machines or environments due to strong domain dependence. To address these
challenges, we present three contributions: (1) DINOS, a large-scale dataset from diverse industrial
machines at live production sites; (2) a standardized benchmark framework with results for industrial
machine monitoring; and (3) IMPACT, a reference pretrained model on DINOS designed to facilitate
reproducible comparison. Together, these contributions aim to establish a scalable foundation for
industrial machine listening and enable broader adoption of domain-specific research.

3 DINOS: DATASET CONSTRUCTION

3.1 DATA ACQUISITION

We collect industrial machine sound data using two sensor types: a microphone (Fifine K053) and a
customized stethoscope sensor (Fifine K053 + MDF Instruments). The microphone captures both ma-
chine sounds and surrounding noise near a machine, which in confined industrial spaces often causes
reverberation and crosstalk. In contrast, the stethoscope sensor effectively attenuates high-frequency
ambient noise and better isolates localized machine sounds (Kim et al., 2025). By leveraging their
complementary properties, we capture both global and localized acoustic characteristics of industrial
machines. All recordings are made at 48,000 Hz, mono, 16-bit resolution to ensure high-fidelity
signal acquisition.
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Figure 2: Target Machines and Sensor Placements. microphone: blue circle; stethoscope: red
circle. (a) Yornew VMC-300 CNC: Microphone beside spindle; stethoscope on beneath table. (b)
BaltiCold Spray LTD, CSM 108.2: Stethoscope and microphone on feeder. (c) Haas VF-2 CNC:
Stethoscope on lower right base. (d) Renishaw AM400: Stethoscope inside powder handling panel.

3.2 DATA SOURCE AND DISTRIBUTION

Figure 2 illustrates representative sensor mounting. Specifically, mounting the stethoscope sensor
on rigid structures improves coupling and avoids the damping and spectral distortion that can arise
when attaching to flexible sheet-metal panels, yielding more consistent machine-specific acoustic
signatures. The resulting dataset (Table 1) spans diverse manufacturing processes, materials, and
operating conditions.

For cutting, we record sound from two CNC machines: Haas VF-2 and Yornew VMC-300. VF-2
includes three operational states (inactivity, machining, warm-up). Yornew machines aluminum
(Al-6060) under varying feed rates and spindle speeds to induce chatter—a self-excited vibration
that degrades surface finish and tool life by exciting the system’s natural frequencies. We also record
metal-processing audio from an APEC SK2540 CNC machine.

For metal AM processes, we record idle and operational states from Renishaw Laser Powder Fed
Fusion (LPBF) and FormAlloy Directed Energy Deposition (DED) systems, capturing acoustic
signatures of fan activation, axis motion, and laser operation. The Renishaw recordings come from
two physically distinct units of the same model, denoted RenishawR and RenishawL; they were
recorded and curated as separate datasets. A subset of RenishawR is included in the pretraining
corpus, whereas RenishawL is reserved exclusively for the benchmarking tasks to ensure strict
separation between pretraining and evaluation. For Cold Spray equipment, we record both normal
operation and multiple anomalies, including gas-flow loss, powder clogging, and powder depletion.
Finally, a microphone on a multi-machine shop floor records ambient industrial acoustics, including
concurrent machine operations, fan rotation, and intermittent high-pressure air bursts.

Table 1: DINOS Dataset. DINOS comprises 74,149 samples totaling over 1,093 hours, providing a
comprehensive reference for developing and benchmarking diagnostic and monitoring systems across
diverse industrial acoustic environments. (Durations indicate per-sample length)

Category Sensor type Samples Duration Distribution (Samples) Category Sensor type Samples Duration Distribution (Samples)
CNC (SK2540) Stethoscope 21,570 59 s Pretraining (1,851) AM-LPBF (RenishawL) Stethoscope 524 1 s Benchmarking (524)
AM-LPBF (RenishawR) Stethoscope 21,600 59 s Pretraining (1,851) CNC (VMC-300) Stethoscope 461 1 s Benchmarking (461)
AM-DED (FormAlloy) Stethoscope 21,600 59 s Pretraining (1,851) CNC (VMC-300) Microphone 461 1 s Benchmarking (461)
Shop floor Microphone 1,851 59 s Pretraining (1,851) AM-ColdSpray Stethoscope 2,455 1 s Benchmarking (2,455)
CNC (VF-2) Stethoscope 1,118 1 s Benchmarking (1,118) AM-ColdSpray Microphone 2,509 1 s Benchmarking (2,509)

4 IMPACT: REFERENCE INDUSTRIAL SOUND FOUNDATION MODEL

4.1 PRETRAINING DATASETS

To empirically validate the effectiveness of DINOS and support its contribution, we train three
IMPACT variants under an identical pretraining pipeline and input preprocessing. Prior to pretraining
for all three versions, samples are processed using Root Mean Square (RMS) normalization (xrms =√

1
n

∑n
i=1 x

2
i ) and Z-score normalization (z = x−µ

σ ) methods, and then segmented into 1-second
clips while maintaining the sampling rate, resolution, and bit depth.
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IMPACT-DCASE. Trained exclusively on the DCASE2025 Challenge Task 2 datasets (Harada et al.,
2021; Dohi et al., 2022), this variant serves as a baseline reflecting performance achievable with
publicly available industrial-sound corpora.

IMPACT-DINOS. Trained solely on our DINOS dataset, this is the primary model in this work. To
avoid sampling bias, we selected an equal number of recordings from four DINOS categories (1,851
per category; 7,404 recordings in total), amounting to 121 hours of audio (Table 1). We included
contact stethoscope recordings to emphasize localized, structure-borne machine signatures and shop
floor microphone recordings to capture blended, dynamic industrial acoustics.

IMPACT-Hybrid. Trained on the union of the DCASE2025 data and DINOS, this variant tests
whether combining heterogeneous sources improves generalization.

4.2 ARCHITECTURE

As shown in Figure 3, IMPACT adopts a student–teacher masked-autoencoding framework inspired by
EAT (Chen et al., 2024). Each 1-s sound clip is converted to a log-Mel spectrogram x∈R1×128×128.

CNN encoder and patching. A CNN encoder maps x to F∈RC×64×64 with C=32. We partition
F into non-overlapping 16×16 patches to obtain a 4×4 grid (thus N=16 patches). Each patch is
flattened and linearly projected to a d-dimensional token (d=384), then augmented with fixed 2D
positional encodings. Let Z∈RN×d denote the token sequence.

Student branch. The student operates on a masked version Z̃ by replacing 40% of tokens with a
learned mask token. Let hCLS

s ∈Rd be the student’s [CLS] token from the last Transformer layer.

Teacher branch. The teacher processes the unmasked spectrogram through the same encoder
and Transformer. Let H(ℓ)

t ∈RN×d be the token matrix at Transformer layer ℓ ∈ {1, . . . , L}. We
first average across layers to obtain H̄t = 1

L

∑L
ℓ=1 H

(ℓ)
t ∈RN×d, then mean-pool over tokens to

obtain the teacher’s global vector gt =
1
N

∑N
i=1 H̄t,i ∈Rd. The utterance-level alignment loss is

Lu = ∥hCLS
s − gt∥22.

CNN decoder. For frame-level reconstruction, student tokens are projected as z′i = ϕ(Wp zi +
bp)∈R256 and z̃i = Wd z

′
i+bd∈R128, where ϕ is ReLU. Arranging {z̃i}16i=1 on the 4×4 grid yields

a feature map U∈R128×4×4, which is passed through the CNN decoder layers. Let x̂s∈R1×128×128

be the student reconstruction; the teacher branch symmetrically produces x̂t. The frame-level loss is
defined as a distillation loss between reconstructions, Lf = ∥x̂s − x̂t∥22.

Objective and EMA update. The total loss is Ltotal = Lf + λLu with λ=0.20. Teacher
parameters are updated via an exponential moving average of the student after each training step with
decay τ=0.9999; no gradients flow into the teacher.

5 BENCHMARKING

5.1 BENCHMARK DATASETS

Table 2 summarizes four machine-specific datasets spanning 27 downstream tasks. No benchmark
sample is included in the pretraining data. Each dataset targets a distinct evaluation objective: (i)
RenishawL—binary activity detection (on/off); (ii) VF2—classification of overall machining activity
(on/off) and the warm-up cycle; (iii) Yornew—fine-grained 12-way classification over machining
states that vary by cutting depth (CD), material removal rate (MRR), revolutions per minute (RPM),
and chatter; and (iv) ColdSpray—eight-way classification derived from four operational states
(normal, depleted powder, powder clogging, no gas supply) measured with two sensor modalities
(microphone and stethoscope), enabling both within- and cross-modality evaluation. We also define
anomalous sound detection (ASD) tasks: for Yornew, chatter-present states are labeled abnormal and
chatter-absent states normal; for ColdSpray, the three fault conditions are grouped as the abnormal
class against normal.
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Figure 3: Architecture of IMPACT. Overall pipeline with student-teacher branches. The student is
trained using a reconstruction and alignment objective, while the teacher is updated via EMA. The
detailed hyperparameters are presented in Appendix A.1.3.

For every task, we adopt a Monte Carlo cross-validation scheme: 15% of the samples are randomly
selected for training and the remaining 85% for evaluation. To reduce variance and sampling bias,
we repeat this procedure ten times with independent random splits (stratified by class). We maintain
strict separation between pretraining data, benchmark training sets, and benchmark evaluation sets.
Final metrics are reported as the mean and standard deviation across the ten runs.

Table 2: Benchmarking Dataset. The dataset comprises 27 downstream tasks covering binary
and multi-class classification across four machine types. It is designed to evaluate robustness to
operational variation, sensor modality, and domain shift.

Machine ID Description / Parameter Samples Machine ID Description / Parameter Samples
RenishawL T1 On 386 Yornew T15 CD: 3.0, MRR: 76.2, RPM: 12K, Chatter: N 78
RenishawL T2 Off 138 Yornew T16 CD: 3.0, MRR: 76.2, RPM: 12K, Chatter: Y 76
VF2 T3 On 260 Yornew T17 CD: 3.0, MRR: 76.2, RPM: 8K, Chatter: N 76
VF2 T4 Off 504 ColdSpray T18 Normal (stethoscope) 1,214
VF2 T5 Warm-up 354 ColdSpray T19 Depleted powder (stethoscope) 472
Yornew T6 CD: 0.3, MRR: 7.62, RPM: 8K, Chatter: N 78 ColdSpray T20 Powder clogging (stethoscope) 385
Yornew T7 CD: 0.3, MRR: 7.62, RPM: 12K, Chatter: N 78 ColdSpray T21 No gas supply (stethoscope) 384
Yornew T8 CD: 0.3, MRR: 7.62, RPM: 4K, Chatter: N 78 ColdSpray T22 Normal (microphone) 1,268
Yornew T9 CD: 0.5, MRR: 12.7, RPM: 12K, Chatter: N 74 ColdSpray T23 Depleted powder (microphone) 472
Yornew T10 CD: 0.5, MRR: 12.7, RPM: 8K, Chatter: N 76 ColdSpray T24 Powder clogging (microphone) 385
Yornew T11 CD: 0.5, MRR: 12.7, RPM: 4K, Chatter: N 78 ColdSpray T25 No gas supply (microphone) 384
Yornew T12 CD: 1.0, MRR: 25.4, RPM: 4K, Chatter: Y 78 Yornew T26 Normal/Abnormal 618 / 304
Yornew T13 CD: 1.0, MRR: 25.4, RPM: 8K, Chatter: N 78 ColdSpray T27 Normal/Abnormal 2482 / 2482
Yornew T14 CD: 1.0, MRR: 25.4, RPM: 12K, Chatter: Y 74

5.2 BENCHMARK BASELINES & METRICS

Along with the IMPACT models, we benchmark four widely used pretrained audio models, one
toolkit, one fine-tuned variant, and two domain-specific models. OpenSMILE (Eyben et al., 2010) is
a feature-extraction toolkit for speech and audio; we use the ComParE configuration, a standardized
set commonly employed in paralinguistics and affective computing tasks (Schuller et al., 2016).
CLAP (Elizalde et al., 2023) is a multimodal model trained on paired audio–text data across diverse
sources. VGGish (Hershey et al., 2017) is a CNN-based model derived from the VGG family and
pretrained on YouTube audio via AudioSet, providing general-purpose embeddings widely used
for audio classification. AudioMAE (Huang et al., 2022) is a transformer-based self-supervised
model pretrained via masked autoencoding (on AudioSet/ESC-50/Speech Commands/VoxCeleb)
and has shown strong transfer across downstream audio tasks; we additionally include a fine-tuned
AudioMAE variant trained on a subset of DINOS to assess the utility of domain-specific data. For
domain-specific comparison, we evaluate OPERA (Zhang et al., 2024), a family of specialized
foundation models for respiratory acoustics, using its two transformer variants (OPERA-CT and
OPERA-GT; contrastive vs. generative objectives). Both OPERA models are designed to process
stethoscope recordings, which aligns with a portion of our data acquisition.

6
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We adopt two evaluation protocols by task type. For classification (T1–T25), we use a standard
linear-probing setup: a single fully connected layer trained on top of frozen features, reporting
mAP. For anomaly detection (T26–T27), we use a reconstruction-based method with an autoencoder
head and report the Area Under the Receiver Operating Characteristic curve (AUROC). To ensure
consistent comparison, all inputs follow a unified preprocessing pipeline with padding/truncation
to the required length; when a baseline mandates a specific front end or input length, we follow
its original implementation, keeping all other training details aligned with the respective official
procedures.

5.3 BENCHMARK DETAILS AND RESULTS

We evaluate all models on 27 downstream tasks across four industrial machines (Table 2). Evaluation
follows two protocols by task type: mAP for classification tasks (T1–T25) and AUROC for anomalous
sound detection (ASD) tasks (T26–T27). Aggregate results are shown in Table 3, and per-task results
in Table 4.

RenishawL (T1–T2): On/Off Classification of LPBF System. This binary classification task
establishes a baseline for evaluating each model’s ability to distinguish between distinct machine states.
Most deep learning-based models achieved near-perfect performance (mAP ≈ 1.0000), whereas the
conventional feature-based OpenSMILE produced poor results (mAP = 0.5000), demonstrating the
advantage of learned representations.

VF2 (T3–T5): CNC operation mode classification. This multi-class setting evaluates active, idle,
and warm-up states under moderate operational complexity. IMPACT-DCASE achieves the highest
average mAP (0.9771), but the margin among IMPACT variants is small (< 0.004). Transformer-based
models all exceed 0.93 mAP on average, while the CNN baseline VGGish lags behind (mAP =
0.8736). This suggests that transformer architectures are generally more effective than CNNs for
industrial sound analysis. At the same time, models pretrained on general audio corpora such as
CLAP and AudioMAE-PreT. also reach strong performance, indicating that periodic states with
moderate complexity including on/off/warm-up cycles can be learned from broad-domain pretraining,
while domain-specific pretraining such as DINOS provides additional, consistent improvements.

Yornew (T6–T17, T26): Fine-Grained State Recognition and Anomaly Detection. These tasks
assess the model’s capacity to discriminate among 12 distinct CNC machining configurations and to
detect chatter as an anomaly. The benchmark evaluates scalability to new equipment, not included
in DINOS, by examining the handling of overlapping frequencies, transient variations, and limited
samples. For the fine-grained classification task (T6–T17), IMPACT-Hybrid achieved the highest
performance (mAP = 0.8971), implying the synergistic benefits of combining the DINOS and DCASE
datasets for complex discrimination challenges. The performance of OPERA is also notable; given
that the Yornew data were also collected with a stethoscope, this model likely benefits from an
inductive bias tailored to structure-borne vibrations. Additionally, the superiority of OPERA-GT
over OPERA-CT in this low-data scenario suggests that generative approaches, which capture the
intrinsic data structure, may be more data-efficient. For anomaly detection (T26), the chatter detection
task provides a practical evaluation of diagnostic capability across operational conditions. Here,
IMPACT-DINOS yielded the best results (AUROC = 0.8041), indicating that pretraining on a focused,
domain-specific dataset may enhance sensitivity in anomaly detection scenarios by minimizing
interference from broader data sources.

ColdSpray (T18–T25, T27): Generalization to Unseen Machines. These tasks evaluate general-
ization to an unseen industrial domain—one that involves physics and phenomena entirely absent
from the DINOS dataset—through classification of normal versus multiple fault states across both
stethoscope and microphone sensors, as well as anomaly detection by grouping faults as abnormal, to
assess adaptability to shifts in machine physics and sensor modalities. IMPACT-Hybrid achieves the
second highest mAP (0.9277) and the highest AUROC (0.8041), showing robustness to domain and
modality shifts. A particularly insightful finding comes from the OPERA models, which show strong
performance on both sensor types. Their success, despite being trained on medical respiratory data, is
likely because they are highly adept at capturing acoustic patterns related to fluid dynamics. The fault
conditions in the ColdSpray process—such as powder clogging or gas supply loss—are fundamentally
fluid flow anomalies, analogous to the respiratory events OPERA was trained to recognize. This
unexpected success underscores the importance of curating pretraining datasets that cover not just
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diverse machines, but also a wide range of underlying physical acoustic sources. Further evidence for
the importance of data is the significant mAP gain of AudioMAE-FineT (from 0.7370 to 0.8370) after
exposure to DINOS, affirming the dataset’s role in adapting models to complex industrial sounds.

Table 3: Overall Model Performance per Machine. mAP is reported for classification tasks and
AUROC for anomaly detection tasks. Bold indicates best performance.

Machine OpenSMILE CLAP VGGish OPERA-CT OPERA-GT AudioMAE-PreT. AudioMAE-FineT. IMPACT-DCASE IMPACT-DINOS IMPACT-Hybrid
RenishawL (mAP) 0.5000 ± 0.0000 1.0000 ± 0.0000 0.9891 ± 0.0108 1.0000 ± 0.0000 1.0000 ± 0.0000 0.9959 ± 0.0024 0.9866 ± 0.0194 1.0000 ± 0.0000 1.0000 ± 0.0000 1.0000 ± 0.0000
VF2 (mAP) 0.3556 ± 0.0349 0.9364 ± 0.0145 0.8736 ± 0.0208 0.9596 ± 0.0162 0.9594 ± 0.0126 0.9418 ± 0.0166 0.9655 ± 0.0196 0.9771 ± 0.0078 0.9746 ± 0.0108 0.9737 ± 0.0104
Yornew (mAP) 0.0832 ± 0.0003 0.8043 ± 0.0368 0.5461 ± 0.0256 0.8039 ± 0.0189 0.8516 ± 0.0275 0.5743 ± 0.0167 0.6890 ± 0.0338 0.8316 ± 0.0408 0.8841 ± 0.0231 0.8971 ± 0.0250
ColdSpray (mAP) 0.1271 ± 0.0045 0.8137 ± 0.0060 0.7771 ± 0.0079 0.9415 ± 0.0063 0.9297 ± 0.0062 0.7370 ± 0.0141 0.8370 ± 0.0100 0.8344 ± 0.0049 0.9125 ± 0.0070 0.9277 ± 0.0072
Yornew (AUROC) 0.5645 ± 0.0065 0.8778 ± 0.0292 0.7403 ± 0.0153 0.8828 ± 0.0140 0.8523 ± 0.0220 0.6224 ± 0.0148 0.7000 ± 0.0363 0.7777 ± 0.0238 0.9121 ± 0.0206 0.9077 ± 0.0181
ColdSpray (AUROC) 0.4635 ± 0.0119 0.7163 ± 0.0105 0.6824 ± 0.0083 0.7724 ± 0.0074 0.7220 ± 0.0112 0.4371 ± 0.0129 0.6316 ± 0.0186 0.7176 ± 0.0123 0.7852 ± 0.0064 0.8041 ± 0.0144

Table 4: Per-Class Model Performance for Downstream Tasks. mAP scores for classification
(T1-T25) and AUROC for anomaly detection (T26-T27). Bold indicates best performance.

Task OpenSMILE CLAP VGGish OPERA-CT OPERA-GT AudioMAE-PreT. AudioMAE-FineT. IMPACT-DCASE IMPACT-DINOS IMPACT-Hybrid
T1 0.7357 ± 0.0000 1.0000 ± 0.0000 0.9857 ± 0.0150 1.0000 ± 0.0000 1.0000 ± 0.0000 0.9987 ± 0.0009 0.9882 ± 0.0173 1.0000 ± 0.0000 1.0000 ± 0.0000 1.0000 ± 0.0000
T2 0.2643 ± 0.0000 1.0000 ± 0.0000 0.9926 ± 0.0181 1.0000 ± 0.0000 1.0000 ± 0.0000 0.9931 ± 0.0036 0.9850 ± 0.0197 1.0000 ± 0.0000 1.0000 ± 0.0000 1.0000 ± 0.0000
T3 0.2904 ± 0.0861 0.9720 ± 0.0074 0.9003 ± 0.0281 0.9856 ± 0.0040 0.9824 ± 0.0050 0.9366 ± 0.0202 0.9714 ± 0.0358 0.9828 ± 0.0045 0.9810 ± 0.0136 0.9802 ± 0.0108
T4 0.4596 ± 0.0134 0.9211 ± 0.0337 0.8809 ± 0.0283 0.9477 ± 0.0219 0.9469 ± 0.0239 0.9163 ± 0.0259 0.9567 ± 0.0173 0.9686 ± 0.0139 0.9662 ± 0.0167 0.9662 ± 0.0160
T5 0.3168 ± 0.0000 0.9161 ± 0.0118 0.8395 ± 0.0249 0.9455 ± 0.0242 0.9490 ± 0.0143 0.9725 ± 0.0085 0.9683 ± 0.0157 0.9797 ± 0.0067 0.9767 ± 0.0092 0.9746 ± 0.0079

T6 0.0839 ± 0.0021 0.9093 ± 0.0956 0.7451 ± 0.0872 0.8947 ± 0.0632 0.9613 ± 0.0309 0.5663 ± 0.0761 0.8744 ± 0.0751 0.9796 ± 0.0326 0.9850 ± 0.0132 0.9860 ± 0.0165
T7 0.0835 ± 0.0038 0.6842 ± 0.0839 0.2148 ± 0.0546 0.7349 ± 0.0772 0.7505 ± 0.0621 0.3421 ± 0.1334 0.5098 ± 0.1502 0.6573 ± 0.0937 0.7675 ± 0.0831 0.7863 ± 0.0683
T8 0.0847 ± 0.0001 0.5057 ± 0.0932 0.2868 ± 0.0703 0.6324 ± 0.0611 0.6554 ± 0.0526 0.1983 ± 0.0559 0.3880 ± 0.0746 0.5373 ± 0.0545 0.6705 ± 0.0719 0.7007 ± 0.0741
T9 0.0802 ± 0.0008 0.8383 ± 0.0808 0.6204 ± 0.0464 0.7486 ± 0.0707 0.8358 ± 0.0609 0.7242 ± 0.0990 0.4217 ± 0.1017 0.8687 ± 0.0713 0.9385 ± 0.0522 0.9410 ± 0.0318
T10 0.0823 ± 0.0000 0.8515 ± 0.0884 0.6762 ± 0.1153 0.9389 ± 0.0132 0.9452 ± 0.0348 0.6566 ± 0.1059 0.5898 ± 0.1319 0.9185 ± 0.0557 0.9547 ± 0.0372 0.9644 ± 0.0421
T11 0.0847 ± 0.0000 0.8524 ± 0.1008 0.4504 ± 0.1164 0.8358 ± 0.1397 0.8751 ± 0.1293 0.5614 ± 0.0890 0.6929 ± 0.1539 0.8475 ± 0.1214 0.9483 ± 0.1453 0.9553 ± 0.1279
T12 0.0847 ± 0.0000 0.8706 ± 0.1282 0.5404 ± 0.1074 0.9198 ± 0.0367 0.9509 ± 0.0392 0.6029 ± 0.0500 0.8896 ± 0.1115 0.9203 ± 0.0819 0.9898 ± 0.0200 0.9886 ± 0.0217
T13 0.0847 ± 0.0000 0.9574 ± 0.0193 0.7908 ± 0.0377 0.9354 ± 0.0525 0.9557 ± 0.0282 0.7754 ± 0.1239 0.9167 ± 0.0740 0.9785 ± 0.0138 0.9819 ± 0.0105 0.9924 ± 0.0056
T14 0.0802 ± 0.0006 0.9654 ± 0.0210 0.6397 ± 0.0942 0.8970 ± 0.0549 0.9450 ± 0.0445 0.5045 ± 0.1076 0.6069 ± 0.1165 0.8788 ± 0.1238 0.9872 ± 0.0128 0.9898 ± 0.0100
T15 0.0847 ± 0.0000 0.7856 ± 0.0655 0.5248 ± 0.0482 0.5963 ± 0.0836 0.6489 ± 0.0580 0.6484 ± 0.0308 0.6452 ± 0.0426 0.6773 ± 0.0742 0.6987 ± 0.0908 0.7044 ± 0.0771
T16 0.0823 ± 0.0000 0.5714 ± 0.0954 0.5592 ± 0.0744 0.6315 ± 0.0825 0.7168 ± 0.1006 0.5199 ± 0.0807 0.8164 ± 0.0286 0.7527 ± 0.0956 0.7544 ± 0.0682 0.7820 ± 0.0688
T17 0.0823 ± 0.0000 0.8600 ± 0.0451 0.5046 ± 0.0667 0.8815 ± 0.0653 0.9785 ± 0.0206 0.7918 ± 0.0848 0.9160 ± 0.0747 0.9628 ± 0.0343 0.9322 ± 0.0840 0.9741 ± 0.0351

T18 0.2445 ± 0.0000 0.9426 ± 0.0092 0.8499 ± 0.0209 0.9836 ± 0.0061 0.9782 ± 0.0048 0.8640 ± 0.0103 0.9755 ± 0.0049 0.9502 ± 0.0095 0.9915 ± 0.0035 0.9932 ± 0.0033
T19 0.0951 ± 0.0000 0.9586 ± 0.0121 0.9093 ± 0.0138 0.9828 ± 0.0080 0.9812 ± 0.0057 0.7424 ± 0.0272 0.9453 ± 0.0156 0.9200 ± 0.0115 0.9863 ± 0.0071 0.9925 ± 0.0046
T20 0.0776 ± 0.0000 0.8959 ± 0.0148 0.7744 ± 0.0262 0.9642 ± 0.0087 0.9543 ± 0.0159 0.7376 ± 0.0617 0.9513 ± 0.0114 0.9243 ± 0.0113 0.9803 ± 0.0108 0.9851 ± 0.0114
T21 0.0774 ± 0.0000 0.9308 ± 0.0241 0.8387 ± 0.0388 0.9886 ± 0.0055 0.9795 ± 0.0123 0.9854 ± 0.0057 1.0000 ± 0.0001 0.9951 ± 0.0034 0.9996 ± 0.0010 0.9991 ± 0.0013
T22 0.2548 ± 0.0018 0.9171 ± 0.0059 0.8827 ± 0.0106 0.9734 ± 0.0043 0.9691 ± 0.0044 0.8446 ± 0.0232 0.9321 ± 0.0108 0.9399 ± 0.0079 0.9731 ± 0.0025 0.9766 ± 0.0025
T23 0.1129 ± 0.0361 0.4718 ± 0.0302 0.4735 ± 0.0224 0.8401 ± 0.0199 0.7842 ± 0.0296 0.3452 ± 0.0203 0.4459 ± 0.0478 0.5578 ± 0.0340 0.6844 ± 0.0238 0.7443 ± 0.0341
T24 0.0776 ± 0.0000 0.3930 ± 0.0207 0.4948 ± 0.0356 0.7995 ± 0.0334 0.7910 ± 0.0245 0.3770 ± 0.0135 0.4460 ± 0.0493 0.3882 ± 0.0228 0.6852 ± 0.0392 0.7311 ± 0.0263
T25 0.0774 ± 0.0000 1.0000 ± 0.0000 0.9938 ± 0.0081 1.0000 ± 0.0000 1.0000 ± 0.0000 0.9999 ± 0.0001 1.0000 ± 0.0001 1.0000 ± 0.0000 1.0000 ± 0.0000 1.0000 ± 0.0000
T26 0.5645 ± 0.0065 0.8778 ± 0.0292 0.7403 ± 0.0153 0.8828 ± 0.0140 0.8523 ± 0.0220 0.6224 ± 0.0148 0.7000 ± 0.0363 0.7777 ± 0.0238 0.9121 ± 0.0206 0.9077 ± 0.0181
T27 0.4635 ± 0.0119 0.7163 ± 0.0105 0.6824 ± 0.0083 0.7724 ± 0.0074 0.7220 ± 0.0112 0.4371 ± 0.0129 0.6316 ± 0.0186 0.7176 ± 0.0123 0.7852 ± 0.0064 0.8041 ± 0.0144

6 CONCLUSION, LIMITATIONS, AND FUTURE WORK

The benchmark results demonstrate that general-purpose sound models struggle with industrial
acoustic tasks, while domain-specific pretraining on DINOS yields substantial improvements. The
effectiveness of DINOS in capturing these characteristics is evident from the performance gains in
AudioMAE after fine-tuning on DINOS and the comparative results across IMPACT variants. These
findings indicates the limitations of general models in handling unique features of industrial sound,
including stable tonal harmonics linked to machine kinematics, broadband noise from physical pro-
cesses, and temporal structures such as operational cycles or fault-induced transients. It demonstrates
the necessity of datasets composed of real-world industrial sounds from live production environments
to enable models to learn robust, transferable representations. The contributions of this work lie
in releasing DINOS, a large-scale dataset derived from actual manufacturing sites; establishing a
benchmark protocol that evaluates model performance using sounds from real equipment across
diverse tasks; and introducing IMPACT variants as reference pretrained models to serve as a baseline
for future research in industrial acoustic perception.

Despite these contributions, this study has several limitations. Although IMPACT-DINOS and
IMPACT-Hybrid demonstrate robust results, the OPERA models show notable performance in Cold-
Spray tasks despite being trained on medical respiratory data. This suggests that simply varying
machine types is insufficient. Instead, datasets should be further constructed with a deeper under-
standing of the mechanisms by which industrial sounds are generated. For instance, friction-induced
sounds from CNC machining, impact-driven sounds from bending and stamping processes, pulse-like
sounds from welding, electromagnetic hums from motors and power systems, fluid flow noise from
pneumatic or spraying operations, and transient sounds from fracture, rupture, or deformation all
represent distinct acoustic signatures. Expanding DINOS with such physically grounded categories
will allow models to generalize across machines not only by type but also by the underlying physical
phenomena that govern sound generation.
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Another limitation concerns sensor diversity. DINOS currently relies on microphones and stethoscope
sensors, but industrial environments often employ varied sensing modalities, including accelerometers,
laser microphones, or current probes. Sound characteristics are highly sensitive to sensor type and
placement, and broader sensor coverage would enhance the robustness and transferability of learned
representations. Additionally, data bias remains a challenge. The dataset captures a subset of
production environments with relatively controlled noise conditions, while real-world manufacturing
involves unpredictable background noise, spatial reverberations, and shifting acoustic conditions.
Future datasets should incorporate multi-sensor recordings collected across diverse environments,
complemented by domain randomization and augmentation techniques to mitigate such biases.

At the same time, we recognize that the current benchmarking method, while valuable as an early-
stage investigation, is limited in both the number of tasks and the scale of labeled samples. To
build a richer and more comprehensive benchmarking suite, future work will focus on systematically
expanding task diversity and data coverage. A key direction is the integration of automatic labeling
systems that leverage machine operating information (e.g., controller logs, sensor metadata, and
process parameters) to generate labels with minimal manual intervention. Such a framework would
allow continuous and scalable dataset updates, enabling DINOS to grow into a progressively richer
resource for industrial acoustic perception research.

From a modeling perspective, although IMPACT is more lightweight than other baselines (18M
parameters compared to VGGish at 62M and AudioMAE at 86M), it remains challenging to deploy on
severely resource-constrained embedded devices. Model compression, quantization, and architecture
distillation will be essential to enable real-time inference at the edge. Moreover, the current approach
processes audio in fixed 1-second segments, which may fail to capture events that occur either
over very short durations or across longer cycles. Developing architectures that can flexibly handle
variable-length inputs would improve applicability to diverse monitoring tasks.

Finally, data sharing in industrial domains remains highly restricted due to security and intellectual
property concerns, limiting access to diverse, large-scale datasets. To address this bottleneck, future
work should pursue hybrid data strategies that combine real-world industrial recordings with physics-
informed synthetic audio generated from digital twin systems. Such an approach would expand
dataset diversity while preserving confidentiality. We also encourage community-driven contributions
to expand DINOS with additional machine types, sensing modalities, and operational scenarios,
fostering collective progress in industrial acoustic perception.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Jérôme Antoni. Cyclic spectral analysis in practice. Mechanical Systems and Signal Processing, 21
(2):597–630, 2007.

Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed, and Michael Auli. wav2vec 2.0: A framework
for self-supervised learning of speech representations. Advances in neural information processing
systems, 33:12449–12460, 2020.

David A Bies, Colin H Hansen, Carl Q Howard, and Kristy L Hansen. Engineering noise control.
CRC press, 2023.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Mustafa Chasmai, Alexander Shepard, Subhransu Maji, and Grant Van Horn. The inaturalist sounds
dataset. Advances in Neural Information Processing Systems, 37:132524–132544, 2024.

Wenxi Chen, Yuzhe Liang, Ziyang Ma, Zhisheng Zheng, and Xie Chen. Eat: Self-supervised
pre-training with efficient audio transformer. arXiv preprint arXiv:2401.03497, 2024.

Selina Chu, Shrikanth Narayanan, and C-C Jay Kuo. Environmental sound recognition with time–
frequency audio features. IEEE Transactions on Audio, Speech, and Language Processing, 17(6):
1142–1158, 2009.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 conference of
the North American chapter of the association for computational linguistics: human language
technologies, volume 1 (long and short papers), pp. 4171–4186, 2019.

Kota Dohi, Tomoya Nishida, Harsh Purohit, Ryo Tanabe, Takashi Endo, Masaaki Yamamoto, Yuki
Nikaido, and Yohei Kawaguchi. Mimii dg: Sound dataset for malfunctioning industrial machine
investigation and inspection for domain generalization task. arXiv preprint arXiv:2205.13879,
2022.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Benjamin Elizalde, Soham Deshmukh, Mahmoud Al Ismail, and Huaming Wang. Clap learning
audio concepts from natural language supervision. In ICASSP 2023-2023 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1–5. IEEE, 2023.

Florian Eyben, Martin Wöllmer, and Björn Schuller. Opensmile: the munich versatile and fast
open-source audio feature extractor. In Proceedings of the 18th ACM international conference on
Multimedia, pp. 1459–1462, 2010.

Jort F Gemmeke, Daniel PW Ellis, Dylan Freedman, Aren Jansen, Wade Lawrence, R Channing
Moore, Manoj Plakal, and Marvin Ritter. Audio set: An ontology and human-labeled dataset for
audio events. In 2017 IEEE international conference on acoustics, speech and signal processing
(ICASSP), pp. 776–780. IEEE, 2017.

Yuan Gong, Yu-An Chung, and James Glass. Ast: Audio spectrogram transformer. arXiv preprint
arXiv:2104.01778, 2021.

Noboru Harada, Daisuke Niizumi, Daiki Takeuchi, Yasunori Ohishi, Masahiro Yasuda, and Shoichiro
Saito. ToyADMOS2: Another dataset of miniature-machine operating sounds for anomalous
sound detection under domain shift conditions. In Proceedings of the Detection and Classification
of Acoustic Scenes and Events Workshop (DCASE), pp. 1–5, Barcelona, Spain, November 2021.
ISBN 978-84-09-36072-7.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Toni Heittola, Annamaria Mesaros, Antti Eronen, and Tuomas Virtanen. Context-dependent sound
event detection. EURASIP Journal on audio, speech, and music processing, 2013:1–13, 2013.

Shawn Hershey, Sourish Chaudhuri, Daniel PW Ellis, Jort F Gemmeke, Aren Jansen, R Channing
Moore, Manoj Plakal, Devin Platt, Rif A Saurous, Bryan Seybold, et al. Cnn architectures for
large-scale audio classification. In 2017 ieee international conference on acoustics, speech and
signal processing (icassp), pp. 131–135. IEEE, 2017.

Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov,
and Abdelrahman Mohamed. Hubert: Self-supervised speech representation learning by masked
prediction of hidden units. IEEE/ACM transactions on audio, speech, and language processing,
29:3451–3460, 2021.

Po-Yao Huang, Hu Xu, Juncheng Li, Alexei Baevski, Michael Auli, Wojciech Galuba, Florian Metze,
and Christoph Feichtenhofer. Masked autoencoders that listen. Advances in Neural Information
Processing Systems, 35:28708–28720, 2022.

Eunseob Kim, Jurim Jeon, Youngwon Kim, Huitaek Yun, Jason Wellman, Young Woon Choi,
Sang Won Lee, Martin Byung-Guk Jun, and Jiho Lee. Control-resilient roller wear prediction
for thin wire flattening process via an internal sound-guided dynamic conditional network. In-
ternational Journal of Precision Engineering and Manufacturing-Green Technology, pp. 1–16,
2025.

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. In Proceedings
of the IEEE/CVF international conference on computer vision, pp. 4015–4026, 2023.

Yuma Koizumi, Shoichiro Saito, Hisashi Uematsu, Noboru Harada, and Keisuke Imoto. Toyadmos:
A dataset of miniature-machine operating sounds for anomalous sound detection. In 2019 IEEE
Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), pp. 313–317.
IEEE, 2019.

Qiuqiang Kong, Yin Cao, Turab Iqbal, Yuxuan Wang, Wenwu Wang, and Mark D Plumbley. Panns:
Large-scale pretrained audio neural networks for audio pattern recognition. IEEE/ACM Transac-
tions on Audio, Speech, and Language Processing, 28:2880–2894, 2020.

Jiho Lee, Semih Akin, Yuseop Sim, Hojun Lee, Eunseob Kim, Jungsoo Nam, Kyeongeun Song, and
Martin BG Jun. A stethoscope-guided interpretable deep learning framework for powder flow
diagnosis in cold spray additive manufacturing. Manufacturing Letters, 41:1515–1525, 2024.

Erik Marchi, Fabio Vesperini, Stefano Squartini, and Björn Schuller. Deep recurrent neural network-
based autoencoders for acoustic novelty detection. Computational intelligence and neuroscience,
2017(1):4694860, 2017.

Karol J Piczak. Environmental sound classification with convolutional neural networks. In 2015
IEEE 25th international workshop on machine learning for signal processing (MLSP), pp. 1–6.
IEEE, 2015.

Harsh Purohit, Ryo Tanabe, Kenji Ichige, Takashi Endo, Yuki Nikaido, Kaori Suefusa, and Yohei
Kawaguchi. Mimii dataset: Sound dataset for malfunctioning industrial machine investigation and
inspection. arXiv preprint arXiv:1909.09347, 2019.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PmLR, 2021.

Robert Bond Randall. Vibration-based condition monitoring: industrial, automotive and aerospace
applications. John Wiley & Sons, 2021.

Justin Salamon, Christopher Jacoby, and Juan Pablo Bello. A dataset and taxonomy for urban sound
research. In Proceedings of the 22nd ACM international conference on Multimedia, pp. 1041–1044,
2014.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Björn Schuller, Stefan Steidl, Anton Batliner, Julia Hirschberg, Judee K Burgoon, Alice Baird, Aaron
Elkins, Yue Zhang, Eduardo Coutinho, and Keelan Evanini. The interspeech 2016 computational
paralinguistics challenge: deception, sincerity and native language. 2016.

Sunit Sivasankaran and KMM Prabhu. Robust features for environmental sound classification. In
2013 IEEE International Conference on Electronics, Computing and Communication Technologies,
pp. 1–6. IEEE, 2013.

Huitaek Yun, Hanjun Kim, Young Hun Jeong, and Martin BG Jun. Autoencoder-based anomaly
detection of industrial robot arm using stethoscope based internal sound sensor. Journal of
Intelligent Manufacturing, 34(3):1427–1444, 2023.

Yuwei Zhang, Tong Xia, Jing Han, Yu Wu, Georgios Rizos, Yang Liu, Mohammed Mosuily, J Ch,
and Cecilia Mascolo. Towards open respiratory acoustic foundation models: Pretraining and
benchmarking. Advances in Neural Information Processing Systems, 37:27024–27055, 2024.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 TECHNICAL APPENDICES AND SUPPLEMENTARY MATERIAL

A.1.1 MACHINE DESCRIPTION

AM-LPBF: AM400 (Renishaw). The AM400 is a laser powder bed fusion (LPBF) metal Additive
Manufacturing (AM) system developed by Renishaw. LPBF is a metal 3D printing process that
uses a laser to selectively melt metal powder in layers under an inert gas atmosphere. It supports
materials such as Inconel 718 (RenishawL) and 316 stainless steel (RenishawR). The build chamber
is maintained under inert argon gas to prevent oxidation. The official build volume is 250 × 250 ×
300 mm.

AM-DED: L2 Series (FormAlloy). The L2 Series by FormAlloy is a directed energy deposition
(DED) system designed for high-deposition-rate metal additive manufacturing. DED is a metal 3D
printing method that melts and deposits material simultaneously using a laser and metal powder or
wire. It processes materials such as A709 structural steel and 316H stainless steel using a coaxial laser
and powder nozzle system. In this system, three powder feeders are used simultaneously to perform
layered deposition. The laser power can reach up to 8 kW. It supports multi-material deposition,
enabling the fabrication of complex, compositionally graded parts.

CNC: VMC300 (Yornew). The Yornew VMC-300 is a compact 5-axis CNC vertical milling center
designed for prototyping and educational use. In this dataset, the machine is operated as a 3-axis
CNC by detaching the A and C axes and is used to machine aluminum (Al-6060) material. A 1/4-inch
diameter two-flute end mill (YG-1; 01047) is applied to the milling experiments. The machine
provides a working volume of 300 × 150 × 100 mm, with a maximum spindle speed of 24,000 rpm.
The maximum feed rate is 2,000 mm/min, and the spindle motor is rated at 750 W.

CNC: VF-2 (Haas). The Haas VF-2 is a high-performance 3-axis vertical machining center widely
used in industrial and academic environments. For this study, a 1/2-inch two-flute end mill tool is
utilized to machine ABS plastic. The VF-2 offers a working envelope of 762 × 406 × 508 mm, with a
maximum spindle speed of 8,100 rpm and feed rates up to 16.5 m/min. The machine is equipped
with an automatic tool changer (ATC) that supports up to 20 tools.

CNC: SK2540 (APEC CNC). Metal processing is performed on the real shop floor using the
SK2540 model. This machine supports a working area of 4000 × 2500 × 1000 mm. It provides a
rapid traverse rate of 60 m/min (XY) and 40 m/min (Z), and a 5 m/s² acceleration on all axes. The
spindle operates at up to 24,000 rpm with a maximum spindle power of 75 kW, making it suitable for
high-speed, high-precision aerospace aluminum machining tasks.

Coldspray: CSM 108.2 (BaltiCold Spray LTD). The CSM 108.2 is a cold spray system used for
solid-state deposition of metallic powders. In the described experiment, copper (Cu) powders with a
particle size range of 10–45 µm and a mean diameter (d50) of 17 µm are used. The powder is sprayed
at room temperature using nitrogen gas at a constant gauge pressure of 0.7 MPa without preheating.
The deposition process enables bonding without melting, preserving the original microstructure of
the material. This system is commonly used for research on coating performance and defect detection
under controlled conditions.

A.1.2 FREQUENCY ANALYSIS

Figure 4 presents the mean frequency spectra with standard deviation represented as error bars,
obtained by applying FFT to every 2048-sample segment of the full acoustic recordings from each
manufacturing process.

Figure 4(a) illustrates the analysis of the Renishaw additive manufacturing process, where segments
corresponding to active deposition are labeled as “on,” and all other segments as “off.” A clear
spectral peak emerges around 3000 Hz, indicating the dominant operating frequency during the build
phase. Figure 4(b) shows the frequency spectra of the VF-2 CNC machine under three distinct states:
cutting, idle, and warm-up. Warm-up data are collected during non-cutting operations in which axis
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Figure 4: Mean frequency spectra with standard deviation error bars for various machine
operating states and sensor configurations. (a) Frequency response of the Renishaw AM machine
during operational and idle states, measured using a stethoscope acoustic sensor. (b) Spectra of the
VF-2 CNC machine during operational, idle, and warm-up phases, also captured using a stethoscope.
(c–d) Mean and variability of frequency spectra from the Yornew CNC machine at different cutting
parameters and chatter conditions, recorded using (c) a stethoscope-type sensor and (d) a standard mi-
crophone. (e–f) Spectral characteristics of cold spray process anomalies—normal operation, powder
absence, feed jamming, and gas cutoff—measured using (e) a stethoscope and (f) a microphone. All
plots show the mean magnitude in decibels (dB) with standard deviation represented as error bars
across frequency bins up to 6 kHz.

movements and spindle speed control are executed independently; the X-axis moved 304.8 mm,
while the Y and Z axes moved 127 mm, alongside controlled acceleration of the spindle. Idle and
non-cutting segments are categorized as “off,” which included background noise such as pump and
tool changer operation. Cutting data are recorded during the machining of ABS workpieces.

Figures 4(c) and 4(d) display acoustic data collected from the Yornew CNC machine cutting aluminum,
using a stethoscope sensor and a conventional microphone, respectively. These plots reveal both
global and local signal features: globally, the overall magnitude varies according to MRR, while
locally, distinct spectral peaks increase with spindle speed and relate to the number of tool flutes. This
indicates that both broadband and frequency-specific information encode key process parameters.
These multi-sensor measurements are used to assess IMPACT’s ability to classify dynamic changes
in process conditions based on both sensor domains.

Figures 4(e) and 4(f) focus on the Cold Spray process, where acoustic signals from the stethoscope
and microphone sensors are analyzed to evaluate IMPACT’s capability to distinguish abnormal states
independently. Compared to the normal case, the “no powder” condition produced high-frequency
components near 1500 Hz and 3500 Hz, attributed to direct collisions between the vibration valve and
powder feeder in the absence of powder. In the “jamming” state, insufficient damping from powder
resulted in stronger structural vibration, leading to overall higher magnitude spectra. In contrast,
the “no gas” condition—where powder ejection fails due to lack of compressed air—produced
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significantly lower spectral magnitudes. The low-frequency amplification and high-frequency noise
suppression characteristics of the stethoscope sensor are evident when comparing Figures 4(c) to 4(d)
and Figures 4(e) to 4(f), respectively.

A.1.3 IMPACT ARCHITECTURE AND HYPERPARAMETERS

The IMPACT model (Table 5) comprises three components: a CNN encoder, a Transformer encoder,
and a CNN decoder.

Patch embedding: after converting each clip to a log-Mel spectrogram of size 1× 128× 128 (FFT
2048, window 2048, hop 376, 128 Mel bands, top_dB 80), a Conv2d-based patch embed (kernel/stride
16×16) produces a 4×4 token grid (N=16) with embedding dimension d=384; a learnable [CLS]
token is prepended and fixed 2D sinusoidal positional encodings are added to patch tokens.

CNN encoder: a single Conv2d+BN+ReLU (in: 1 ch, out: 32 ch, kernel 3×3, stride 2, padding 1)
maps the input to 32× 64× 64.

Transformer encoder: 8 layers with d=384, 16 heads, GELU activation.

CNN decoder: tokens are first projected 384→256 (encoder-to-decoder bridge) and then 256→128
per token before deconvolution; the deconvolution stack upsamples 128×4×4 → 128×8×8 →
64×16×16 → 32×32×32 → 16×64×64 → 1×128×128 using ConvTranspose2d+BN+ReLU
(kernel 4×4, stride 2, pad 1) and a final ConvTranspose2d to 1 channel.

Training details (summary): mask ratio 0.4; utterance loss weight λ=0.2; teacher updated by
per-step EMA with decay τ=0.9999; optimizer AdamW (lr 5×10−5, wd 10−5), batch size 128,
10 epochs; gradient clipping at 0.5; optional mixed precision. Frame-level loss is MSE between
student and teacher reconstructions; utterance-level loss is MSE between the student’s [CLS] and the
teacher’s global representation. All preprocessing and training were performed in PyTorch 2.8.0 on
an Ubuntu 22.04.5 LTS system, equipped with an AMD Ryzen Threadripper Pro 7975WX, 128 GB
RAM, and NVIDIA RTX A6000 Ada.

Table 5: IMPACT architecture and hyperparameters.
CNN Encoder Input Channels Output Channels Kernel Stride Padding

Conv2d + BN + ReLU 1 32 3× 3 2 1

Transformer Encoder #Layers Dimension #Heads Activation —

Transformer 8 384 16 GELU —

CNN Decoder Input Channels Output Channels Kernel Stride Padding

Linear (FC): 256→128 — — — — —
ConvTranspose2d + BN + ReLU 128 128 4× 4 2 1
ConvTranspose2d + BN + ReLU 128 64 4× 4 2 1
ConvTranspose2d + BN + ReLU 64 32 4× 4 2 1
ConvTranspose2d + BN + ReLU 32 16 4× 4 2 1
ConvTranspose2d (Output) 16 1 4× 4 2 1

Linear probing head Input Dim Output Dim — — —

Linear (FC) + ReLU 384 256 — — —
Linear (FC) + ReLU 256 #classes — — —

Reconstruction head Input Dim Output Dim — — —

Linear (FC) + ReLU 384 256 — — —
Linear (FC) + ReLU 256 128 — — —
Linear (FC) + ReLU 128 384 — — —

A.1.4 ABLATION STUDY ON MASKING RATIO AND LOSS WEIGHT

To analyze the sensitivity of IMPACT to its key hyperparameters, we conducted an ablation study
varying the masking ratio (MR ∈ {0.3, 0.4, 0.5, 0.6}) and the utterance-level loss weight λ ∈
{0.1, 0.2, 0.3}. Performance is reported in terms of mAP for classification tasks on ColdSpray,
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RenishawL, Yornew, and VF2 datasets. As shown in Table 6, a masking ratio of 0.4 and 0.5
consistently yields the best performance, while 0.3 and 0.6 degrade results. Increasing λ improves
performance up to 0.2, after which the effect saturates or slightly declines. The radar plot in
Figure 5 visualizes these trends across machines, showing that the configuration (MR = 0.4, λ = 0.2)
provides the most balanced and robust results across all benchmark datasets. We therefore adopt this
configuration in all main experiments.

Table 6: Ablation Study Results. Mean ± Std for classification (mAP) and anomaly detection
(AUROC) across datasets.

Dataset / Metric MR=0.3 MR=0.4 MR=0.5 MR=0.6

λ = 0.1 λ = 0.2 λ = 0.3 λ = 0.1 λ = 0.2 λ = 0.3 λ = 0.1 λ = 0.2 λ = 0.3 λ = 0.1 λ = 0.2 λ = 0.3

RenishawL (mAP) 1.0000 ± 0.0000 1.0000 ± 0.0000 1.0000 ± 0.0000 1.0000 ± 0.0000 1.0000 ± 0.0000 1.0000 ± 0.0000 1.0000 ± 0.0000 1.0000 ± 0.0000 1.0000 ± 0.0000 1.0000 ± 0.0000 1.0000 ± 0.0000 1.0000 ± 0.0000
VF2 (mAP) 0.9756 ± 0.0078 0.9761 ± 0.0080 0.9775 ± 0.0087 0.9703 ± 0.0124 0.9746 ± 0.0108 0.9761 ± 0.0110 0.9383 ± 0.0184 0.9764 ± 0.0095 0.9746 ± 0.0112 0.9674 ± 0.0142 0.9708 ± 0.0123 0.9762 ± 0.0101

Yornew (mAP) 0.8817 ± 0.0258 0.8839 ± 0.0239 0.8853 ± 0.0266 0.8792 ± 0.0249 0.8841 ± 0.0231 0.8867 ± 0.0233 0.8453 ± 0.0235 0.8850 ± 0.0220 0.8888 ± 0.0220 0.8323 ± 0.0290 0.8823 ± 0.0247 0.8882 ± 0.0230
ColdSpray (mAP) 0.8941 ± 0.0069 0.8954 ± 0.0071 0.8975 ± 0.0071 0.9043 ± 0.0085 0.9125 ± 0.0070 0.9079 ± 0.0070 0.8841 ± 0.0077 0.9046 ± 0.0078 0.9075 ± 0.0098 0.8853 ± 0.0092 0.8713 ± 0.0067 0.8823 ± 0.0101

Yornew (AUROC) 0.9057 ± 0.0174 0.9073 ± 0.0184 0.9124 ± 0.0202 0.9060 ± 0.0174 0.9121 ± 0.0206 0.9102 ± 0.0208 0.9107 ± 0.0193 0.9174 ± 0.0191 0.9084 ± 0.0186 0.9027 ± 0.0190 0.9168 ± 0.0180 0.9165 ± 0.0189
ColdSpray (AUROC) 0.7671 ± 0.0082 0.7647 ± 0.0081 0.7632 ± 0.0064 0.7848 ± 0.0098 0.7852 ± 0.0064 0.7730 ± 0.0097 0.7862 ± 0.0129 0.7723 ± 0.0088 0.7733 ± 0.0080 0.7739 ± 0.0102 0.7615 ± 0.0166 0.7721 ± 0.0117

Figure 5: Radar plot of the ablation study results for IMPACT under different masking ratios (MR)
and loss weightings (λ). Performance is reported across six benchmark metrics: RenishawL (mAP),
VF2 (mAP), Yornew (mAP, AUROC), and ColdSpray (mAP, AUROC). Each curve corresponds to a
specific (MR, λ) configuration, with the highlighted red curve (MR = 0.4, λ = 0.2) representing the
best-performing setting. Results show that performance remains consistently high across settings,
while intermediate masking and balanced weighting provide the most robust results across all
machines and task types.
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Ethics Statement This work adheres to the ICLR Code of Ethics. All data used in this study were
collected from industrial machinery in controlled laboratory and production environments without
involvement of human subjects, thereby avoiding issues related to personal privacy or consent. The
released dataset is anonymized and contains only machine acoustic signals, ensuring no sensitive
or personally identifiable information. To mitigate risks of misuse, we document intended research
purposes and clearly describe the scope of applications in Sections “Dataset” and “Benchmarking.”
We acknowledge potential dual-use concerns where diagnostic models may be deployed in safety-
critical systems; to address this, we emphasize reproducibility, transparency, and proper evaluation
protocols, and we encourage further community auditing. No conflicts of interest or external
sponsorships influenced this work.

Reproducibility Statement We aim to make this work easy to reproduce. Dataset sources, sensor
configurations, and per-category counts are summarized in Table 1, while the downstream benchmark
tasks and sample counts are detailed in Table 2. The IMPACT architecture is depicted in Figure 3, and
its layer-wise specifications and training hyperparameters are enumerated in Table 5 (see Appendix,
“IMPACT architecture and hyperparameters”). Our preprocessing pipeline (RMS and Z-score nor-
malization) and pretraining corpora for each variant are described in Section “IMPACT: Reference
Industrial Sound Foundation Model” under “Pretraining datasets.” Benchmark protocols—including
the Monte Carlo cross-validation procedure (15% train / 85% eval, 10 independent stratified splits)
and evaluation metrics—are given in Section “Benchmarking,” with aggregate results in Table 3 and
per-task results in Table 4. We additionally report controlled sensitivity analyses in the ablation study
(Table 6) and visualize cross-task trends in Figure 5. To facilitate verification and extension, we will
release a repository containing the IMPACT implementation, training and evaluation scripts, and the
exact benchmark splits, along with documentation describing data preprocessing and configuration
files used to produce the reported numbers.
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