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Reproducibility Summary

Scope of Reproducibility — This paper1 presents an empirical study on the learning dynam‐
ics of neural networks for classification tasks through the use of frequency analysis. Our
goal is to reproduce experimental results presented by the authors in the paper, which
consist of frequency analysis conducted on both synthetic datasets and the ImageNet‐10
dataset.

Methodology — To reproduce the results, we utilized the paper’s authors’ existing code
from their repository and modified the code for better clarity and code optimizations.
In addition, we added additional code for new experiments, implemented new custom
Pytorch transformations by their descriptions in the paper, andwere able to successfully
create a Python package that could be built and installed locally by source. The codewas
ran locally using several computer architectures, including an NVIDIA 1000 series GPU
on Ubuntu 22.04, as well as a 16GB M1 Macbook Pro.

Results —We were able to reproduce much of the results from the paper, including the
ADCS visualizations, F1‐score calculations from training on a synthetic dataset. In addi‐
tion to this, we also achieved new results by experimenting with a new dataset and intro‐
ducing new data augmentation techniques. While we were unable to completely repli‐
cate the authors’ precision and recall visualizations, we recreated those experiments
based on our best guesses of the authors’ descriptions in the paper. We were able to
organize the code used to achieve these results within simple Jupyter notebooks and a
Python package. Due tomanymissing implementation details, specifically with regards
to producing their synthetic datasets as well as the lack of clarity on the transformations
utilized for their experiments with the ImageNet dataset, we were not able to reproduce
all the original results, such as the DFM calculations and relative confusion matrices.

What was easy — The training code provided by the paper was, for the most part, well‐
written and straightforward to use and edit. In the paper, the authors provided specific
details regarding themajormodels used to produce their experimental results. The code
as well as the descriptions of the frequency distribution comparison metric ADCS were
especially well‐presented, andwe had almost no trouble producing similar results to the
authors for those experiments.

Copyright © 2023 NULL and NULL, released under a Creative Commons Attribution 4.0 International license.
Correspondence should be addressed to NULL (NULL)
The authors have declared that no competing interests exists.
Both the code and the datasets utilized are available at https://github.com/rescience-c/template.
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What was difficult — Some of the libraries required for the authors’ code were incompat‐
able due to new releases, and we had to downgrade some versions. A few dependecies
were also not installed in the setup process and had to be added by us. The existing
codebase contained many unused functions and hardcoded variable values that had
to be modified during training as well. In addition, there was a lack of clarity on the
transformations utilized for their experiments with the ImageNet‐10 dataset. This was
especially troublesome due to the fact that using our own attempted guesses at the trans‐
formations utilized, we produced results that were quite different from the original au‐
thors’. In addition, the DFM experiments were simply too computationally expensive
for us to reproduce in the time frame given.

Communication with original authors — An attempt of communication with the first author
of the paper is made, though no replies have been received yet as of the submission of
the paper.

1 Introduction

Though deep neural networks (DNNs) are now being widely used to tackle problems in
many fields, the underlying predictive processes of DNNs are still not completely under‐
stood due to the DNNs’ black‐box nature. This issue is becoming especially problematic
with the increasinglymassive neural network architectures that are being developed and
trained2. While these large neural networks generally have stronger predictive power
than their predecessors, their sheer number of parameters (often in the scale of mil‐
lions) limit the understanding of the neural network’s learning process. The lack of
understanding of what happens within the black‐box of learning algorithms has led
to more insidious problems, such as racial bias within healthcare management algo‐
rithms3, as well as outright tragedies, such as the 2018 accident involving a self‐driving
Uber car which killed a pedestrian4. These “AI accidents” are often caused by undis‐
covered biases within the trained neural network, and is a major drive behind today’s
research in explainable AI5.

In the past, researchers have worked on explaining the predictions of neural networks
in terms of their input, using Saliency6, Gradient‐weighted Class Activation Mapping7,
and Layer‐wise Relevance Propagation8. However, while these techniques highlight ar‐
eas of the input images that contribute to model predictions, they are still unable to
explain the degradation of the performance of neural networks on out‐of‐distribution
data. Therefore, researchers are beginning to look into understanding the learning dy‐
namics of neural networks through frequency data. Prior works has found that neural
networks tend to learn lower frequencies first in regression tasks9. However, at the time
of publication of the original authors’ work, there has been little research conducted on
the frequency learning behaviour of neural networks in image classification. The au‐
thors previously produced a brief paper explaining frequency shortcuts10, which are
the sets of class‐based frequency patterns that neural networks may be using to learn to
classify images. Frequency shortcuts are dangerous and can lead to a lack of generaliza‐
tion, as frequency shortcut learning can lead to a model learning to categorize images
based on a particular color, texture, or shape, instead of more generalizable proper‐
ties of the class. Therefore, in this new paper with results which we are attempting to
replicate, the authors conducted an empirical study on the learning dynamics of neural
networks for image classification. The authors relate their observations to simplicity
bias and short‐cut learning, biased behaviours commonly seen in the training of deep
neural networks1.
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2 Scope of reproducibility

The main goal of this report is to reproduce the experimental results that were men‐
tioned within the paper by Wang et al.1 in order to investigate the reproducibility of the
paper as well as to verify the claims made by the paper’s authors. The paper conducts
experiments on a custom synthetic dataset, as well as the commonly used ImageNet‐
10 dataset and its various data augmented variations. An overview of the experiments,
grouped by the dataset on which they are conducted, is presented as follows:

Experiments on Synthetic Data:

• F1‐scores by class for thefirst 500 training iterations of themodelsAlexNet, ResNet18,
and VGG16.

• Relative confusion matrices of AlexNet and VGG16 trained on the four synthetic
datasets and tested on the different band‐stop test sets.

• ADCS computation and visualization of the four synthetic datasets by class.

Experiments on ImageNet10:

• ADCS computation and visualization of the ImageNet‐10 dataset by class.

• Precision and recall scores by class for the first 1200 training iterations of themod‐
els ResNet18, ResNet50, and VGG16, computed on the low‐passed and high‐passed
test sets of ImageNet‐10.

• Computation of the top‐1% and top‐10% DFMs of each class for models trained on
ImageNet‐10.

• Classification results of models tested on ImageNet‐10 DFM‐filtered versions, with
only the top‐1% and top‐10% dominant frequencies retained.

In the end, wewere able to complete all experiments related to the computation of ADCS,
and were able to successfully complete the computation of F1‐scores by class for the
first 500 training iterations of the different models utilized by the authors of the paper.
However, we had problems replicating the authors’ results for their precision and recall
scores when training the models on ImageNet‐10 for the first 1200 iterations, and were
unable to compete DFM computation due to computational constraints.

3 Methodology

3.1 Datasets

Synthetic Datasets — The authors of the original paper1 created synthetic datasets to test
how freqeuncy shortcuts affect neural networks in a directway. Fourmain datasetswere
created, and each contains a frequency bias in a different band based on the Fourier
spectrum. The dataset B1 is biased toward the lowest band, the datasets B2 and B3

towards mid range bands, and the dataset B4 towards the highest band. Each dataset
consists of 4 classes and is made up of 32×32 images. The classes are structured so that
C3 is made up of images with the same frequency band that the respective dataset is
biased towards, which makes it the simplest in terms of frequency. C0 contains special
patterns that are removed from other classes, which also makes it simpler in terms of
frequency than classes C1 and C2. Based on the idea that neural networks are prone to
a simplicity bias11, the authors hypothesized that the classes C0 and C3 would be easier
for the networks to learn.
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ImageNet10 — ImageNet‐1012, which is a smaller version of thepopular ImageNet13 dataset,
is a dataset containing 224×224 images featuring 10 classes of every day objects such as
wagons, zebras, and trucks. The relatively smaller ImageNet‐10 was chosen as opposed
to the full version in order to reduce computation time, simplify the analysis process,
and to allow for a more thorough analysis of the dataset. This dataset was used to exam‐
ine how frequency shortcuts affect the way neural networks learn using an approximate
set of real‐world data.

3.2 Models

ResNet — ResNets14 are a class of popular convolutional neural network architectures
that use residual nets. Various versions of ResNet, such as ResNet18 and ResNet50 were
used in the paper. ResNet18 was also tested with three different common data augmen‐
tation methods, AutoAugment15, AugMix16, and SIN17. These augmentation methods
were tested by the authors to determine how effective data augmentation techniques
are at avoiding frequency shortcuts in neural network training.

VGG-16 — VGG‐1618 is another popular convolutional neural network architecture that
has shown to be effective at classifying images from the ImageNet dataset.

AlexNet — AlexNet19 is a large, deep convolutional neural network that was used in addi‐
tion to ResNets and VGG‐16 to test and examine the effects of frequency shortcut learn‐
ing on synthetic and real datasets.

3.3 Hyperparameters
Following the directions of the original paper, an initial learning rate of 0.01 was used
for all model training, and the learning rate was reduced by a factor of 10 if the vali‐
dation loss score did not improve after 10 epochs. Batch sizes of 64, 32, and 16 were
used depending on the model and dataset, as larger batch sizes would lead to our GPUs
running out of memory and crashing during training. For training where the F1‐scores,
precision, or recall were tracked, the termination conditionwas set to when the training
hit either 500 or 1,200 steps. For regular training, the termination condition was set to a
max number of 100 epochs when training on Synthetic datasets, and 200 epochs when
training on the ImageNet‐10 dataset. More details involving our specific hyperparame‐
ters for various training configuration are saved in config files in our repository.

3.4 Metrics

Accumulative Difference of Class-wise average Spectrum (ADCS) — The ADCS (or Accumulative
Difference of Class‐wise average Spectrum) is a metric devised by the authors of the
paper, which is utilized to examine the frequency characteristics of individual classes
within a dataset1. The metric computes the average amplitude spectrum difference per
channel for each unique class within a dataset, and then averages it into a one‐channel
ADCS. For a class ci in the set of classes C = {c0, c1, . . . , cn}, the ADCS for ci at a fre‐
quency (u, v) is computed as

ADCSci(u, v) =
∑

∀cj ̸=ci∈C

sign[Eci(u, v)− Ecj (u, v)]

where Eci(u, v) is the average Fourier spectrum for class ci and is computed as

Eci(u, v) =
1

|Xi|
∑
x∈Xi

|Fx(u, v)|
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In the above formula, x denotes an image from a setXi of images that are contained in
the class ci, and Fx(u, v) is the Fourier transform of the image.

The ADCS metric is useful for analysing the class‐based frequency patterns that exist
in a dataset, and it can be used to show how neural networks may become biased by
identifying these classes based on their respective frequency trends during training. The
ADCS metric ranges from 1 − |C| to |C| − 1, where |C| is the number of unique classes
within a dataset. A higher value for a specific frequency represents that the class has
more energy at that frequency than other classes, and a lower value represents it has
lower energy.

F1-Score — For experiments on the early training stages of neural networks which were
trained on the four Synthetic datasets, F1‐scores are calculated at each step. The F1‐
scores are calculated by class in order to observe differences in the neural network train‐
ing progress when different classes display different frequency patterns, which were
discovered via the computation of ADCS. The exact F1‐score calculation is

F1 =
2× precision× recall
precision+ recall

It is a highly useful tool for getting a single metric that represents how accurate a model
is at classifying data of a certain class.

Precision and Recall — For experiments on the early training stages of neural networks
which were trained on the low‐pass and high‐pass versions of the ImageNet‐10 dataset,
precision and recall are calculated at each step. The precision and recall metrics are
similarly calculated by class in order to observe differences in the neural network train‐
ing progress when different classes display different frequency patterns, which were
discovered via the computation of ADCS.

Relative Confusion Matrix — Relative confusion matrices were used to compare the classifi‐
cation results of neural networks tested onoriginal datasets and their band‐stop versions
in order to examine how neural networks find shortcuts in their training process1. The
relative confusion matrix is calculated as

∆(ci, cj) =
Predbs(ci, cj)− Predorig(ci, cj)

N(ci)
× 100

where Predbs(ci, cj) and Predorig(ci, cj) are the number of samples from class ci that are
predicted by the model to be from class cj , using the band‐stopped test set and the
original test set respectively, and N(ci) is the number of samples in class ci. When
∆(ci, cj) ≥ 0, this indicates that the performance of the model improves or remains
the same on the band‐stopped test sets, and when ∆(ci, cj) < 0, this indicates that the
performance of the model decreases for the band‐stopped test sets.

Top-X% Frequencies and DFMs — Dominant‐frequency maps, or DFMs, are computed us‐
ing the ranked top‐X% important frequencies for classification1. The top‐X% impor‐
tant frequencies were ranked by utilizing the change in loss value when testing a model
on images of a certain class with the concerned frequency removed from all channels.
Then, the DFMs are utilized to filter the original dataset, and the true positive rate (TPR)
and false positive rate (FPR)metrics are calculated to evaluate the discrimination power
of those frequencies for different classes. Those classes that are found to have higher
TPR and FPR are those that the neural networkmodel tends to learn and apply frequency
shortcuts in its training progress.
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4 Results

4.1 Reproduction of ADCS Results Using Synthetic Datasets
For our replication, we computed graphics that visualize the ADCS of the classes within
the four full synthetic datasets (i.e., no filtering of frequency data by fourier spectrum
bands). The computed graphics are presented below:

Figure 1. ADCS heatmaps computed for synthetic datasets by class: lower values (blue) indicate
that the class has lower energy for those frequencies while higher values (red) indicate that the
class has higher energy for those frequencies.

Based on the graphics published within the supplemental data of the original paper, we
can see that we have obtained similar results to the authors, though the results are not
the exact same, despite the fact that the computation of ADCS should be deterministic.
It should also be noted that we have used the Synthetic dataset that was provided by
the authors rather than generating our own version of the Synthetic dataset based on
the descriptions of the authors in the paper. This indicates that there could either be
some discrepancies in the synthetic dataset provided by the author, or that there are
missing implementation details for the computation of ADCS values using the synthetic
datasets. The figure produced in the original paper is presented below for reference and
comparison.

ReScience C 4.1 – NULL and NULL 2023 6

https://rescience.github.io/


[Re] What do neural networks learn in image classification? A frequency shortcut perspective UNDER REVIEW

Figure 2. Original ADCS heatmaps computed for synthetic datasets: it could be seen that there
are discrepancies in our replicated results from the original paper, such as more higher energies
detected for Class C3 in our results in comparison to the original authors’.

While the authors provided code for ADCS computation, the code as was provided had
hardcoded values designed for ADCS computation on the ImageNet‐10 dataset. There‐
fore, we extensively refactored the original code and reformatted it as part of our custom
Pythonpackagennfreq. The reformatted code is part of the subpackagesnnfreq.adcs
and nnfreq.data. In addition, we created a Jupyter notebook which produces all the
experimental results that are documented in this paper.

4.2 Reproduction of ADCS Results Using ImageNet-10
Similar to our reproductionofADCS results using synthetic datasets, we computed graph‐
ics visualizing the ADCS of the classes within the ImageNet‐10 dataset to see how our
results compare to the ADCS visualizations from the same dataset in the original paper.
The computed graphics for this experiment are presented below:
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Figure 3. ADCS computed for the original ImageNet‐10 dataset.

The original graphics from the paper are also presented below for further reference and
comparison.

(a) Original ADCS heatmaps computed for the “humming bird” and “zebra” classes within the original
ImageNet‐10 dataset (class 2 and class 7 respectively).

(b) Original ADCS heatmaps computed for all other classes within the original ImageNet‐10 dataset.

Figure 4. Original heatmaps computed for the original ImageNet‐10 dataset.

Overall, we achieved similar results when recomputing the ADCS of the ImageNet‐10
dataset. Within the original paper, the author’s claim that the classes “humming bird”
and “zebra” posess distinctive frequency characteristics that can be readily exploited by
models to distinguish them from other classes at early training stages1. This claim can
be verified based on our replicated results presented in Figure 3, where classes 2 (repre‐
sents class “humming bird”) and 7 (represents class ”zebra”) appear to have energymore
biased to either the lower end or higher end for all frequencies.
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In addition to the results we replicated from the original paper, we also created a new ex‐
periment by computing an ADCS visualization on Stylized‐ImageNet17, which is a mod‐
ified dataset based on ImageNet that contains stylized versions of the original images.
Compared to the results of the ImageNet10 dataset, the frequency patterns are not as
clearly defined. This suggests that using the Stylized‐ImageNet‐10 dataset rather than
the original ImageNet‐10 dataset to train deep neural networks would decrease the neu‐
ral networks’ ability to learn shortcuts in the early stages of the training process. How‐
ever, there are still existing frequential patterns, which suggests that the data augmen‐
tations performed on the original ImageNet‐10 dataset can not eliminate all frequency
shortcut learning.

Figure 5. ADCS computed for Stylized‐ImageNet

4.3 Reproduction of F1-Score Heatmaps Using Synthetic Datasets
The authors of the original paper recorded the F1‐scores of various models during their
training on the synthetic datasets. These F1‐scores were logged for the first 500 steps of
training, and they were recorded by class. As discussed in the synthetic dataset section
of this paper, the authors expected that all of themodels would better categorize images
in classes C3 and C0, as images from those classes are simpler in terms of frequential
analysis. We were able to recreate the original paper’s experiments on all of the mod‐
els and synthetic datasets they tested, which includes ResNet18, VGG‐16, and AlexNet
trained on the four synthetic datasets. Our results differed due to variations in step size
and random training variation. However, we discovered the same trends as the original
paper, and we reached the same conclusion that C3 and C0 are easier to classify than
the other synthetic classes. The results for AlexNet are shown below, and the results for
ResNet18 and VGG‐16 showed a similar class‐based pattern.
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Figure 6. F1 scores computed by class for the first 500 steps of AlexNet trained on the four synthetic
datasets. It is clear visually that the model classifies C3 most effectively and C0 second most
effectively.

4.4 Reproduction of Precision and Recall Heatmaps Using ImageNet-10
The authors of the original paper also stated that they recorded the precision and recall
scores of variousmodels for the first 1200 steps of the training on high‐pass and low‐pass
versions of the ImageNet‐10 dataset. Unfortunately, we were not able to find the code
they used to create high‐pass and low‐pass versions of original ImageNet‐10 dataset, and
descriptions in the paper were unclear on that front. Therefore, wemade our best guess
with the implementation of high‐pass and low‐pass filtering.

For our low‐pass filter implementation, we created images with a black background and
a white circle in the foreground, where the size of the circle is a parameter that can be
passed as an argument, either in the form of a percentage of the size of the image or a
fixed radius. Then, a fourier transform is applied to each channel of the input image,
and the output results are multiplied with the filter. Finally, an inverse fourier trans‐
form is applied to each channel of the product to regenerate the filtered image. The
same process is followed to create high‐passed input images, except in the last step,
we also subtract the low passed image from the original image to obtain our final out‐
put. The algorithm used to implement these filters could be found in the subpackage
nnfreq.transforms.

However, our produced results differ quite differently from the original authors’ results.
Our results are presented below, followed by the original authors’ results:

ReScience C 4.1 – NULL and NULL 2023 10

https://rescience.github.io/


[Re] What do neural networks learn in image classification? A frequency shortcut perspective UNDER REVIEW

(a) Low‐passed ImageNet‐10

(b) High‐passed ImageNet‐10

Figure 7. Precision and recall scores of the first 1200 training iterations of ResNet18 on the low‐
passed and high‐passed versions of the ImageNet‐10 dataset.

It is clear that our results presented in figure 7 are quite different from the results pre‐
sented by the authors in the original paper, whichwehave also presented below infigure
8. Based on the labelling on the original authors’ graphics, it is likely that the discrep‐
ancy is due to the fact that the original authors have used a band‐pass filter rather than
a low‐pass and high‐pass filter separately. However, further correspondence is likely
needed with the authors in order to confirm the exact nature of the filters they have
used.
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Figure 8. Precision and recall scores computed by class for the first 1200 steps of ResNet18 trained
on the high‐pass and low‐pass versions of the ImageNet‐10 dataset from the original paper.

5 Conclusion

Our experiments generally support the claims and results from the original paper. Through
our analysis of the ADCS metric for various classes, our results support the authors’
claims that certain classes within a dataset can contain frequency biases, which can
lead to neural networks finding frequency shortcuts that they thenuse to classify images.
Based on a visual inspection of our ADCS visualzations, it is clear that datasets, such as
ImageNet‐10 and Stylized‐ImageNet, contain class‐based frequency patterns. Our new
experiments on Stylized‐ImageNet showed certain transformation and manipulations
of datasets can help reduce frequency patterns, but they cannot fully prevent the pat‐
terns.

Similarly, our results in reproducing the F1‐scores for various deep neural networks
trained on the synthetic frequency‐based datasets supports the authors’ claims that neu‐
ral networks will learn to recognize frequency biases in classes. As classes with simpler,
more defined frequency patterns were more quickly picked up by neural networks and
classifiedmore accurately, this shows that themodels were likely using frequency short‐
cuts to categorize images, which leads to a lack of generalization. Unfortunately, due to
lack of clarity on the exact nature of the filter they have used for computing the preci‐
sion and recall scores of the models trained on ImageNet‐10 in the first 1200 iterations,
as of right now, it cannot be concluded that our results support the same claim. How‐
ever, it is likely that utilizing the same filters as the original authors will enable us to
reach similar results.

In conclusion, our replication shows that frequency shortcuts can occur from training
on a wide array of datasets, and they are likely leading to misconceptions about how
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effective models actually are at generalizing. We conclude by reinstating the original
authors’ reccomendation that further research is done on the topic in order to better
understand how frequency shortcuts are affecting deep neural networks, and further
research needs to be performed to determine better ways to avoid frequency shortcut
learning.
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