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ABSTRACT

In many real-world node classification scenarios, nodes are highly class-
imbalanced, where graph neural networks (GNNs) can be readily biased to ma-
jor class instances. Albeit existing class imbalance approaches in other domains
can alleviate this issue to some extent, they do not consider the impact of mes-
sage passing between nodes. In this paper, we hypothesize that overfitting to
the neighbor sets of minor class due to message passing is a major challenge for
class-imbalanced node classification. To tackle this issue, we propose GraphENS,
a novel augmentation method that synthesizes the whole ego network for minor
class (minor node and its one-hop neighbors) by combining two different ego
networks based on their similarity. Additionally, we introduce a saliency-based
node mixing method to exploit the abundant class-generic attributes of other nodes
while blocking the injection of class-specific features. Our approach consistently
outperforms the baselines over multiple node classification benchmark datasets.

1 INTRODUCTION

Node classification on graphs has attracted significant attention as the importance of large-scale
graphs analysis increases in various domains such as bioinformatics and commercial graphs to name
a few (Perozzi et al., 2016; Hamilton et al., 2017; Ying et al., 2018; Mohammadrezaei et al., 2018).
For example, in retail services, acquiring the qualitative node representations for items or customers
is critical for improving the quality of recommendation systems (Perozzi et al., 2016; Ying et al.,
2018). Detecting abnormal users in social networks, as another example, is also closely related
to classifying the property of each node (Mohammadrezaei et al., 2018). Recently, Graph Neural
Networks (GNNs) have demonstrated their effectiveness on learning node representations (Hamilton
et al., 2017; Kipf & Welling, 2017; Velickovic et al.). However, the nodes in many real-world graphs
are inherently class-imbalanced (Mohammadrezaei et al., 2018; Wang et al., 2020a), hence GNNs
are prone to be biased toward major classes, as in general class-imbalance tasks. This bias forces
networks to poorly classify the nodes of minor classes, resulting in destructive impacts and a large
cost to their services.

While the peculiar characteristics of imbalanced node classification and specialized solutions suit-
able for it have hardly been investigated, applying generic imbalance handling methods (Chawla
et al., 2002; Cui et al., 2019; Cao et al., 2019; Kang et al., 2020; Menon et al., 2021) directly to
the graph domain has several non-trivial challenges. One of the distinct natures of graph data is
that adjacent nodes are involved in constructing the representation of each node, which makes the
model more confused to learn the unbiased representation of minor class nodes. Here, we hypoth-
esize that it is in fact more serious to overfitting to neighbors of minor nodes than to overfitting to
the node feature itself. This ‘neighbor memorization’ is the critical obstacle to naively adopt the
class-imbalance approaches of other domains such as re-weighting and re-sampling used in image
classification. Specifically, re-weighting approaches (Cui et al., 2019; Tan et al., 2020; Cao et al.,
2019; Menon et al., 2021; Hong et al., 2021), applying penalties according to the number of data,
simply assign large weight to minor nodes, hence there is no change in neighbor sets of minor nodes
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observed during training. Re-sampling methods (Chawla et al., 2002; Kang et al., 2020; Zhang et al.,
2021; Wang et al., 2021), sampling data to balance the number of data for each class, are also vulner-
able to overfit on minor nodes with their neighbors. Another challenge of the re-sampling method,
especially for oversampling variants, is determining how to connect the newly sampled nodes to
the original graph. For example, simply connecting an oversampled node with all neighbors of
the original node will change the edges of neighbor nodes as well and hence significantly alter the
message passing to the neighbors, which might impair their class semantics. To mitigate this issue,
GraphSMOTE (Zhao et al., 2021) exploits edge predictor to decide the connectivity with the neigh-
bors of two minor nodes used in oversampling. Nevertheless, GNNs trained with GraphSMOTE still
suffer from neighbor memorization when the number of minor nodes is limited.

In this paper, we propose GraphENS, a novel augmentation approach that synthesizes the whole ego
network for minor class (minor node and its one-hop neighbors) by interpolating two different ego
networks in the data; to enlarge the limited neighbor views of minor instances in the data, our method
combines the ego network of anchoring minor node with that of randomly selected node from all
classes, where it interpolates ego networks based on KL-divergence between model predictions of
ego networks in order to keep the semantics of minor classes. Synthesized ego networks are attached
to the original graph to construct a class-balanced graph, and GNNs are trained with the enlarged
graph. GraphENS enables the model to learn the minor class nodes with feasible neighbors by
generating the virtual ego networks.

To further prevent the synthesis of deleterious ego networks, we introduce a saliency-based node
mixing approach to generate the central node of ego network. Our method separates class-generic
node features from class-specific node features by using saliency information of each feature and
exploits only class-generic attributes to combine with node feature of anchoring minor node. We
validate our method on various benchmark datasets including citation networks (Sen et al., 2008),
and Amazon product co-purchasing networks (Shchur et al., 2018) with diverse architectures such
as GCN (Kipf & Welling, 2017), GAT (Velickovic et al.), and GraphSAGE (Hamilton et al., 2017),
and confirm that our approach consistently outperforms baseline methods over various settings.

In summary, our contribution is threefold:

• We demonstrate that in class-imbalanced node classification, GNNs severely overfit to
neighbor sets of minor class nodes, rather than to minor nodes themselves. This ‘neigh-
bor memorization’ problem becomes severe when the number of minor nodes is extremely
small.

• Our method effectively alleviates the neighbor memorization problem in class-imbalanced
graphs by synthesizing feasible ego networks based on the similarity between source ego
networks. We also block the injection of harmful features in generating the mixed nodes
using node feature saliency.

• Through extensive experiments, we show that our approach consistently outperforms base-
lines on multiple benchmark datasets including real-world imbalanced datasets. Even in
highly imbalanced synthetic graphs, our method exhibits superior performance.

2 RELATED WORK AND PRELIMINARY

2.1 CLASS IMBALANCE PROBLEM

The goal of class-imbalance handling in classification is to construct an unbiased classifier to the
label distribution of the training set. There are three main streams: loss modification, post-hoc
correction, and re-sampling approaches. Loss modification methods alter the objective function to
assign more weights (Japkowicz & Stephen, 2002; Cui et al., 2019) or margins (Tan et al., 2020; Cao
et al., 2019; Menon et al., 2021) on minor classes. Post-hoc correction strategies (Kang et al., 2020;
Tian et al., 2020; Menon et al., 2021; Hong et al., 2021) remedy logits to compensate minor classes
in the inference. Re-sampling approaches augment minor class data by sampling strategies (Kang
et al., 2020; Liu et al., 2020; Ren et al., 2020) or generation (Chawla et al., 2002; Kim et al., 2020a;
Chu et al., 2020; Zhang et al., 2021; Wang et al., 2021). Among minor class generation approaches,
SMOTE (Chawla et al., 2002) is a widely used method to mix minor data with the nearest data of
the identical class. Synthesizing minor class data from data of other classes (Kim et al., 2020a; Chu
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et al., 2020; Wang et al., 2021) is introduced to exploit the rich information of other classes. Kim
et al. (2020a) produces new minor class data by taking gradient steps to translate major class data
into minor class data. Wang et al. (2021) synthesizes minor class data by combining features of
minor class data with feature displacements of other data. To extend these approaches to the graph
domain, structural aspects of graph have to be considered when generating minor instances.

In node classification, imbalance handling works (Zhou et al., 2018; Wang et al., 2020b; Shi et al.,
2020; Zhao et al., 2021; Qu et al., 2021) are proposed to exploit structural information in graphs.
DR-GCN (Shi et al., 2020) produces the virtual minor nodes generated by additional conditional
GAN and regularizes the features of virtual nodes close to adjacent nodes. GraphSMOTE (Zhao
et al., 2021) generates synthetic minor nodes by interpolating two minor class nodes and a (pre-
trained) edge predictor determines the connectivity of synthesized nodes between synthesized nodes
and neighbors of two source minor nodes. ImGAGN (Qu et al., 2021) synthesizes minor nodes
by interpolating features among whole minor nodes with the generated weight matrix. Then the
synthesized nodes are connected to the original minor nodes if weights in the matrix are larger
than a fixed threshold. As GraphSMOTE and ImGAGN only utilize nodes of the identical minor
class to generate minor nodes, the sample diversity of synthesized nodes would be significantly
constrained. Moreover, ImGAGN mainly targets binary classification and its extension to multi-class
classification is non-trivial since an independent generator is required per each class. Compared to
these approaches, our GraphENS utilizes whole nodes to synthesize minor nodes, thus our method
outperforms baselines when the number of minor classes is low in Section 5.3 (Table 4).

2.2 GRAPH NEURAL NETWORKS FOR NODE CLASSIFICATION

We briefly introduce GNNs for node classification tasks. Let us first define graph G(V,E) where
V is the set of nodes and E is the set of edges between two nodes. Let X ∈ R|V |×d be the node
features whose the i-th row represents the d-dimensional feature of the i-th node. N (v) is the set
of adjacent nodes that are directly connected to v: {u ∈ V |{u, v} ∈ E}. In node classification,
each node in the graph corresponds to a class y ∈ {1, . . . , C} where C is the number of classes.
In this paper, we consider several variants of GNNs that consists of three differentiable functions:
1) message function ml, 2) permutation invariant message aggregation function φl, and 3) node
update function hl. Let x(l)v be the latent vector of node v at layer l. To simplify notations for the
recursive definition of GNNs, we use x(0)v to denote the input node feature. At each GNN layer,
node features are updated as x(l+1)

v = hl(x
(l)
v , φl({ml(x

(l)
v , x

(l)
u , ev,u)|u ∈ N (v)}) to consider

adjacent node embeddings. By passing these aggregated node features to a linear classifier as input,
we obtain the prediction ŷ = f(xv) for node v where ŷc = P (y = c|xv). As a representative
example, a layer of Graph Convolutional Network (GCN) (Kipf & Welling, 2017) is defined as
x
(l+1)
v = Θ

∑
u∈N (v)∪{v}

ev,u√
d̂ud̂v

x
(l)
u where d̂v = 1 +

∑
u∈N (v) ev,u with ev,u is the edge weight

of edge {u, v} ∈ E and Θ is a filter parameters. There are several variants depending on how these
key components are designed, but they are beyond scope of our work.

3 NEIGHBOR MEMORIZATION PROBLEM

In this section, we define and investigate the neighbor memorization problem uniquely appear-
ing in the node classification task of a class-imbalanced graph. Conventional imbalance handling
approaches such as re-weighting and oversampling enable the model to train in a class-balanced
manner. However, these methods are vulnerable to overfit toward minor classes (Zhou et al., 2020)
since they solely assign large weights on limited minor instances in the training phase. In the node
classification task, the unique characteristics of this task, which have not been considered until now,
should be considered: not only overfitting to the minor node feature vminor, but also overfitting to
N (vminor) can be an issue. That is, the model is exposed to highly restricted neighboring structures
for minor classes. Here, since GNN models are based on message passing that receives informa-
tion from (a number of) neighboring nodes, we hypothesize that the overfitting and memorizing
N (vminor) can be more serious than overfitting to vminor, and we experimentally verify that below.

Experimental setup We first conduct experiments to observe overfitting to minor classes on class-
imbalanced graphs. GNNs are trained with two widely used methods - re-weighting and over-
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Figure 1: The results for overfitting to minor classes, node memorization, and neighbor memorization. Dash
lines are learning curves including all classes and solid lines are learning curves for the minor class in (a)
and (b). In (c), the blue/red bars indicate the accuracy of seen/unseen nodes with seen neighbors in the node-
replacing experiments. In (d), the blue/red bars denote the accuracy of seen nodes with seen/unseen neighbors
in the neighbor-replacing experiments. Note that RW and OS represent re-weighting and oversampling.

sampling on a node classification benchmark dataset, PubMed (Sen et al., 2008). We process the
PubMed dataset to follow a long-tailed distribution by well-known construction rule in the vision
domain (Cui et al., 2019). The imbalance ratio between the numbers of the most frequent class
and the least frequent class is set as 100. We fix architecture as the 2-layer GraphSAGE having 256
hidden dimension and train models for 2000 epochs. We select the model by the validation accuracy.

Overfitting to minor classes The learning curves of imbalance handling approaches are presented
in Figure 1 (a) and (b). The solid lines and the dash lines are the curves of minor class accuracy and
overall accuracy, respectively. We observe that the test accuracy of the minor class is much lower
than the overall accuracy while the training accuracy of the minor class is extremely high. This
result implies that the existing approaches are prone to memorize minor class nodes. Note that we
only present the learning curves for the first 200 epochs to show the tendency of the early phase
more clearly. We confirm the test accuracy differences between minor classes and all classes are
almost maintained until the last epoch for both methods. The learning curve for entire epochs is in
Appendix A.2 (Figure 4). In the following paragraph, we investigate more specifically whether this
overfitting is mainly due to memorizing node features or their neighbor structures.

Neighbor memorization problem To investigate how seriously GNN is prone to be overfitting to
self node features or aggregated features from neighbors, we design two ‘replacing’ experiments.
In the first replacing experiment, we scrutinize ‘node memorization’ where GNNs memorize seen
minor node features excessively. We intentionally replace a seen minor node with an unseen minor
node given a fixed seen neighbors (node-replacing experiment). Toward this, we randomly sample
three nodes from the identical minor class: we sample vanchor (recipient), vseen (donator) from the
training set and vunseen (donator) from the test set. We then replace the feature of vanchor with that
of vunseen in the original graph and evaluate the classification accuracy of replaced vanchor. That
is, the replaced feature of vanchor is not exposed during training, but its neighbor view does. For
comparison, we replace the feature of vanchor with of vseen as a baseline; it is the case of seen node
features and neighbors but it has the artifact of grafting. We measure the accuracy for all minor test
nodes and experiments are repeated 50 times. In Figure 1(c), the blue and red bars represent the
results of vanchor with seen node features and vanchor with unseen node features, respectively.

Now, we conduct a similar experiment for ‘neighbor memorization’. We would like to estimate
how much GNN relies on seen topological structures. To this end, we measure the performance
degradation when the seen neighbor set is replaced by an unseen neighbor set given a fixed seen self-
node feature (neighbor-replacing experiment). We sample vseen (donator) and vanchor (recipient)
from the training set and vunseen (recipient) from the test set as before, but vanchor now has a
different role compared to the node-replacing experiment: it serves as providing a seen neighbor
set. Specifically, we replace the feature of vunseen with that of vseen, which represents the situation
where a seen node is embedded into unseen neighbors. Then, we evaluate the classification accuracy
of replaced vunseen. For a baseline, the node feature of vanchor is replaced by that of vseen and
measures the accuracy of replaced vanchor; it is the case of seen node feature with a seen neighbor
set. In Figure 1(d), the blue bar denotes the performance of seen node feature with seen neighbor set
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Figure 2: Overall pipeline of GraphENS. vminor is a node sampled from the minor class to be augmented
(oversampled). vtarget is a node sampled from the entire class and exploited to synthesize the ego network.

and the red bar represents the performance of seen node feature with an unseen neighbor set. The
overall procedure is described by Figure 8 in Appendix D.

We demonstrate that conventional imbalance handling approaches severely suffer from a neighbor
memorization problem in Figure 1(c) and (d)*. The performance drop of conventional algorithms
in the neighbor-replacing experiment is steeper than in the node-replacing setting. These results
imply that the neighbor memorization problem is a critical obstacle in properly handling the class-
imbalanced problem in node classification tasks.

From the learning curves and replacing experiments, we find that conventional approaches to handle
imbalanced data largely rely on neighbor information. This neighbor memorization problem results
in poor generalization performance on the minor class, so it must be appropriately addressed in
class-imbalanced node classification. Recent work, GraphSMOTE (Zhao et al., 2021), connects a
mixed node to neighbors of both the source node and target node in the same class, and then removes
the unreliable edges by the feature similarity-based edge predictor. However, since GraphSMOTE
only utilizes the neighbors of the seed nodes in the identical class, it still prone to memorize the
neighbors of minor classes when the number of minor class nodes is extremely limited.

4 GRAPHENS

We now describe our novel class-imbalance handling strategy for node classification, GraphENS that
synthesizes an ego network for generated minor nodes considering the prediction similarity of the
ego network instances, in order to alleviate the neighbor memorization described above. GraphENS
is mainly composed of two core components. Both components exploit the features from two nodes:
the minor class node vminor and the target node vtarget from entire classes* to synthesize an ego
network of minor class. The first component is to augment the neighbor set by combining neighbors
of a minor node vminor with those of the target node vtarget. To prevent the generation of harmful
ego networks, GraphENS regulates the combination ratio depending on the KL divergence between
ego networks centered on vminor and vtarget, respectively (Section 4.1). The second component
of GraphENS defines the node feature saliency for GNNs that represents the importance of each
node feature in classifying the node property. Equipped with this node feature saliency, GraphENS
mixes vminor and vtarget to generate a central node and combine with the ego network synthesized
above (Section 4.2). This feature saliency information is utilized to filter out the class-specific
node features in the node feature mixing process to preserve the semantics of the minor class. The
overall procedure of GraphENS is described in Figure 2. Our full algorithm is also provided in the
Appendix E (Algorithm 1). We discuss the details of each component in the following subsections.

*To reduce the negative effect of oversampling on message-passing, we make the message passing work
only on incoming edges to the oversampled nodes.

*Detailed explanation and justification for this strategy for target node selection are discussed in Section 5.2.
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4.1 NEIGHBOR SAMPLING

Neighbor sampling is a method to determine which nodes to be connected to a new mixed node,
vmixed (how to synthesize a mixed node is described in Section 4.2). The goal of neighbor sampling
is to expose minor nodes to various environments to mitigate neighbor memorization problem while
preventing the generation of harmful connections. To provide diverse neighbor sets, we construct
‘adjacent node distribution’ for a mixed node from two ego networks of vminor and vtarget and
stochastically sample the neighbors from this distribution. At the same time, regarding the avoidance
of detrimental connectivity, we devise a scheme that reflects N (vtarget) more in constructing the
adjacent node distribution when the ego network of vtarget is more similar to that of vminor. Note
that the ego network Gv of node v consists of {Nv ∪ v} nodes and edges directly connected to the
central node v. The overall scheme of neighbor sampling is in Figure 2 (a).

Constructing adjacent node distribution Now, we build the similarity-aware adjacent node dis-
tribution for vmixed by mixing adjacent node distributions of vminor and vtarget. Here, the adja-
cency node distribution for a real node v, p(u|v), is defined as p(u|v) = 1

|N (v)| if u ∈ V, {u, v} ∈ E,
and p(u|v) = 0 otherwise. To construct a ‘probable’ adjacent node distribution, the mixing ratio
is determined based on the similarity between the ego networks of Gvminor and Gvtarget . Toward
this, we utilize logits ov = f(G)v for a node v given the full graph G as input of GNN f since
GNN aggregates neighbor information with self node feature. It is worth noting that the logits can
be obtained without additional cost (we can bring the model confidences at the previous epoch).
To further reflect the neighbor information explicitly and avoid the overconfidence problem, we
aggregate adjacent logits and utilize these logits to compute the similarity. Specifically, the ag-
gregated logit of node v is computed as ôv = 1

|N (v)|+1

∑
u∈(N (v)∪v) ou. Then, we calculate the

KL-divergence between ôminor and ôtarget to estimate the distance between Gvminor and Gvtarget :
φ = KL (σ(ôminor)‖σ(ôtarget)) where σ is a softmax function. Now, the normalized distance is
used as the mixing ratio for the minor adjacent node distribution, and it is calculated as φ̂ = 1

1+e−φ
.

Finally, the adjacent node distribution for the synthesized vmixed is defined as

p(u|vmixed) = φ̂ p(u|vminor) + (1− φ̂) p(u|vtarget). (1)

Note here that the mixing ratio of the target node decreases as the distance from the minor node
increases and the mixing ratio of anchoring minor node is guaranteed to be at least 0.5.

Sampling neighbors Given the adjacent node distribution p(u|vmixed) in Equation 1, we sample
neighbors from this distribution without replacement. The number of neighbors is sampled from the
degree distribution of a given graph to keep degree statistics with the original graph. Not only that,
we make the message passing work only on the incoming edges to vmixed since undirected edges
affect message passing in the original graph.

4.2 SALIENCY-BASED NODE MIXING

We now describe how our method synthesizes new central node vmixed of Gvmixed by interpolating
two nodes vminor and vtarget. Note that our method does not restrict the target node to be from mi-
nor classes to utilize the abundant class-generic information of other classes. To extract only generic
attributes independent of class, we first define the node feature saliency to identify the importance of
each node feature. Armed with this node feature saliency, GraphENS synthesizes new minor node
vmixed using minor node features and generic features of target node via convex combination.

Feature saliency Albeit GraphENS does not depend on specific ways of calculating the impor-
tance of each node attribute, we simply adopt an approach that evaluates the importance of node
features based on gradients. In particular, motivated by the works using the gradient of the loss
function with respect to input features in image classifications (Simonyan et al., 2013; Shrikumar
et al., 2017), we define the feature saliency as follows.

We first compute the gradient of classification loss L(G,y) with respect to the input node feature
matrix ∂L

∂X ∈ R|V |×d via backpropagation. Then, the saliency value of i-th feature s(v,i) is obtained

by the magnitude of the gradient regarding i-th attribute in node v as s(v,i) =

∣∣∣∣[∂L(G,y)
∂X

]
(v,i)

∣∣∣∣ . The
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feature saliency vector Sv = [s(v,1), ..., s(v,d)]
T is derived without any modification to the GNN

architecture. Our gradient-based feature saliency can be derived without additional backpropagation
as we simply exploit the gradient values computed from the previous training iteration.

Node mixup We introduce our simple mixup-like augmentation to oversample the minor nodes
without label mixing. Since we select target nodes vtarget from all classes unlike SMOTE (Chawla
et al., 2002), filtering (or masking) out class-specific attributes of the target node is required to
prevent the generation of noisy samples. To this end, we explicitly utilize the feature saliency infor-
mation of the target node.

First, we determine the masking ratio K% using a normalized distance φ̂ (from Section 4.1). As
φ̂ implies the distance between two ego networks centralized by vminor and vmajor, we adaptively
assign K% proportional to normalized distance φ̂; K = kφ̂ where k is a hyperparameter. The
intuition behind here is if target node vtarget is significantly differ from minor node vminor, we
mask more salient features of vtarget. Specifically, given the feature saliency vector Svtarget , a
binary mask MK ∈ Rd, which masks the K% of node attributes to 0, is sampled from multinomial
distribution by applying softmax to Svtarget . Our final synthesized minor nodes vmixed can be
formulated as follows given a random mixing ratio λ ∼ Beta(α, α):

vmixed = (1− ΛK)� vminor + ΛK � vtarget, where ΛK = λ ·MK . (2)

We also evaluate our method but without using saliency on multiple datasets in Section 5.4 (Table 3).

5 EXPERIMENT

5.1 EXPERIMENT SETUP

Datasets We validate GraphENS on five benchmark datasets: Cora, CiteSeer, PubMed for citation
networks (Sen et al., 2008), AmazonPhoto and AmazonComputers for co-purchase graphs (Shchur
et al., 2018). For citation networks, we follow splits in Yang et al. (2016). In supervised learning
setting, we construct long-tailed citation networks following Cui et al. (2019) to validate models
at a high imbalance ratio, which denotes the ratio between the most frequent class and the least
frequent class. Nodes are removed until the class distribution follows a long-tailed distribution with
keeping the connection in graphs at most. We sort the classes from major class to minor class and
then remove nodes for each class started from major classes. When eliminating nodes, we remove
nodes having low degrees and the corresponding edges of those nodes. We also evaluate imbalance
handling methods on natural imbalanced datasets such as AmazonPhoto and AmazonComputers.
To make validation/test sets balanced, we sample the same number of nodes from each class for
validation/test sets. Then, the remaining nodes are assigned to the training set. We fix the least
number of train nodes for all classes as 20. In semi-supervised setting, we set the imbalance ratio as
10. The detailed setup is provided in Appendix F.5.

Baselines We test our methods over three architectures as GCN (Kipf & Welling, 2017),
GAT (Velickovic et al.), and GraphSAGE (Hamilton et al., 2017). We adopt re-weight as cost-
sensitive loss (Japkowicz & Stephen, 2002) inversely proportional to the number of class data.
Oversampling is the approach that samples each class node until the number of each class data
reaches the maximum number of class data. For oversampling, we duplicate the edges of the orig-
inal node when adding an oversampled node to the original graph. cRT (Kang et al., 2020) and
PC Softmax (Hong et al., 2021) are recent effective baselines for decoupling and post-hoc correc-
tion approaches, respectively. DR-GCN generates virtual minor nodes and forces virtual nodes to
be similar to the neighbors of a source node. Although DR-GCN has an additional component to
exploit entire unlabeled nodes for semi-supervised learning, we do not consider this component for
a fair comparison. GraphSMOTE (Zhao et al., 2021) has two versions, depending on whether the
predicted edges are discrete or continuous values. We adopt a discrete version of GraphSMOTE
since it exhibits superior performance on multiple benchmark datasets. Implementation details of
ours and description of evaluation protocol are deferred to Appendix F.
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Table 1: Comparison of our method GraphENS with other baselines in extremely class-imbalanced settings
(Imbalance ratio:100). We report the averaged accuracy, balanced accuracy, and F1-score with the standard
errors for 5 repetitions on three benchmark datasets for node classification tasks.

Method Cora-LT CiteSeer-LT PubMed-LT
Acc. bAcc. F1 Acc. bAcc. F1 Acc. bAcc. F1

G
C

N

Vanilla 73.66 ±0.28 62.72 ±0.39 63.70 ±0.43 53.90 ±0.70 47.32 ±0.61 43.00 ±0.70 70.76 ±0.74 57.56 ±0.59 51.88 ±0.53

Re-Weight 75.20 ±0.19 68.79 ±0.18 69.27 ±0.26 62.56 ±0.32 55.80 ±0.28 53.74 ±0.28 77.44 ±0.21 72.80 ±0.38 73.66 ±0.27

Oversampling 77.44 ±0.09 70.73 ±0.10 72.40 ±0.11 62.78 ±0.37 56.01 ±0.35 53.99 ±0.37 76.70 ±0.48 68.49 ±0.28 69.50 ±0.38

cRT 76.54 ±0.22 69.26 ±0.48 70.95 ±0.50 60.60 ±0.25 54.05 ±0.22 52.36 ±0.22 75.10 ±0.23 67.52 ±0.72 68.08 ±0.85

PC Softmax 76.42 ±0.34 71.30 ±0.45 71.24 ±0.52 65.70 ±0.42 61.54 ±0.45 61.49 ±0.49 76.92 ±0.26 75.82 ±0.25 74.19 ±0.25

DR-GCN 73.90 ±0.29 64.30 ±0.39 63.10 ±0.57 56.18 ±1.10 49.57 ±1.08 44.98 ±1.29 72.38 ±0.19 58.86 ±0.15 53.05 ±0.13

GraphSMOTE 76.76 ±0.31 69.31 ±0.37 70.21 ±0.64 62.58 ±0.30 55.94 ±0.34 54.09 ±0.37 75.98 ±0.22 70.96 ±0.36 71.85 ±0.32

GraphENS 77.76 ±0.09 72.94 ±0.15 73.13 ±0.11 66.92 ±0.21 60.19 ±0.21 58.67 ±0.25 78.12 ±0.06 74.13 ±0.22 74.58 ±0.13

G
A

T

Vanilla 73.60 ±0.26 62.75 ±0.37 63.53 ±0.35 56.76 ±0.39 50.15 ±0.34 46.59 ±0.44 71.26 ±0.77 58.86 ±0.82 54.91 ±1.12

Re-Weight 77.26 ±0.09 70.97 ±0.11 71.37 ±0.33 63.54 ±0.39 56.98 ±0.35 55.30 ±0.42 78.14 ±0.09 75.80 ±0.14 76.07 ±0.12

Oversampling 77.50 ±0.12 71.16 ±0.14 72.58 ±0.19 62.94 ±0.26 56.16 ±0.22 54.29 ±0.27 76.96 ±0.24 70.71 ±0.20 72.29 ±0.20

cRT 76.74 ±0.30 69.19 ±0.52 70.60 ±0.57 60.80 ±0.53 54.18 ±0.55 52.33 ±0.70 73.76 ±0.23 65.69 ±0.25 66.40 ±0.27

PC Softmax 76.62 ±0.15 73.14 ±0.19 72.69 ±0.19 62.20 ±0.42 59.49 ±0.40 59.51 ±0.51 78.70 ±0.60 75.40 ±0.72 75.96 ±0.62

DR-GCN 74.42 ±0.55 64.17 ±1.00 64.20 ±0.67 56.74 ±0.74 50.02 ±0.75 45.82 ±1.03 71.52 ±0.25 59.18 ±1.06 54.879 ±2.33

GraphSMOTE 76.92 ±0.31 70.03 ±0.51 70.47 ±0.55 64.04 ±0.38 57.33 ±0.39 55.43 ±0.49 77.12 ±0.49 73.59 ±1.16 74.40 ±0.72

GraphENS 78.10 ±0.13 73.45 ±0.19 73.48 ±0.19 66.90 ±0.29 60.20 ±0.30 58.70 ±0.26 78.24 ±0.15 74.27 ±0.35 74.68 ±0.30

G
ra

ph
SA

G
E

Vanilla 72.08 ±0.53 61.97 ±0.67 61.97 ±0.75 50.76 ±0.46 44.56 ±0.49 40.43 ±0.93 64.54 ±0.35 53.07 ±0.55 48.80 ±1.13

Re-Weight 74.38 ±0.40 68.24 ±0.35 69.28 ±0.36 59.60 ±0.79 52.73 ±0.91 50.12 ±1.01 69.78 ±0.38 67.06 ±1.79 65.69 ±0.88

Oversampling 74.88 ±0.64 66.20 ±1.38 66.36 ±1.11 58.64 ±1.17 51.76 ±1.17 49.42 ±1.40 69.36 ±0.12 62.15 ±0.83 62.46 ±0.74

cRT 73.52 ±0.45 63.65 ±0.77 64.65 ±0.72 51.10 ±0.40 45.04 ±0.39 42.02 ±0.53 67.50 ±0.28 56.76 ±0.65 54.04 ±1.73

PC Softmax 74.04 ±0.62 65.87 ±0.75 66.96 ±0.72 61.78 ±0.28 56.98 ±0.35 56.91 ±0.46 74.98 ±0.55 74.28 ±0.31 73.32 ±0.40

DR-GCN 73.28 ±0.46 63.32 ±0.68 62.95 ±1.12 50.80 ±0.50 44.51 ±0.41 39.02 ±0.65 64.90 ±0.52 52.84 ±0.42 47.56 ±0.43

GraphSMOTE 74.34 ±0.30 64.76 ±0.49 65.88 ±0.50 58.98 ±0.39 52.11 ±0.38 50.27 ±0.74 70.02 ±0.21 63.04 ±0.67 63.43 ±0.54

GraphENS 77.26 ±0.13 70.07 ±0.28 70.25 ±0.31 63.98 ±0.38 57.33 ±0.42 55.23 ±0.43 79.60 ±0.19 74.90 ±0.49 75.83 ±0.43

Table 2: Results on AmazonPhoto and AmazonComputers in
comparison to baselines. The experiment was repeated 5 times and
standard errors are reported. Note that the Acc. is equal to bAcc.
as the test sets are balanced.

Method
AmazonPhoto AmazonComputers

(Imbalance ratio: 82) (Imbalance ratio: 244)
Acc.(bAcc.) F1 Acc.(bAcc.) F1

G
ra

ph
SA

G
E

Vanilla 82.86 ±0.30 78.72 ±0.52 68.47 ±2.19 64.01 ±3.18

Re-Weight 92.94 ±0.13 92.95 ±0.13 90.04 ±0.29 90.11 ±0.28

Oversampling 92.46 ±0.47 92.47 ±0.48 89.79 ±0.16 89.85 ±0.17

cRT 91.24 ±0.28 91.17 ±0.29 86.02 ±0.55 86.00 ±0.56

PC Softmax 93.32 ±0.25 93.32 ±0.25 86.59 ±0.92 86.62 ±0.91

GraphSMOTE 92.65 ±0.31 92.61 ±0.32 89.31 ±0.34 89.39 ±0.35

GraphENS 93.82 ±0.13 93.81 ±0.12 91.94 ±0.17 91.94 ±0.17

Table 3: Ablation study. SM, NS, and
PS denote saliency masking, neighbor sam-
pling, and prediction similarity, respectively.

Method
CiteSeer-semi AmazonPhoto

(Imbalance ratio: 10) (Imbalance ratio: 82)

G
ra

ph
SA

G
E

Acc bAcc. F1 Acc. bAcc. F1
GraphENS

(w/o SM,NS)
41.82 39.31 32.15 93.17 93.17 93.15

GraphENS
(w/o SM)

49.24 48.77 45.85 93.54 93.54 93.53

GraphENS
(w/o PS)

49.66 47.96 45.93 93.28 93.28 93.26

GraphENS 51.12 48.91 46.78 93.82 93.82 93.81

5.2 TARGET NODE SELECTION

bAcc. [%] F1-score [%]60

65

70

75 Cora-LT

bAcc. [%] F1-score [%]50

55

60

65 CiteSeer-LT
Entire class
Same class

Target Node vtarget Selection
Figure 3: Target node experiments (GAT).

Our method utilizes the target node vtarget from all classes,
not only from the identical minor class of vminor. The inten-
tion of constructing the target node pool from entire classes
is to guarantee sufficient diversity of synthesized ego net-
works. If the target nodes are restricted to a minor class
at highly imbalanced scenarios, identical neighbor nodes
would be redundantly duplicated. This issue makes it hard
to mitigate the neighbor memorization problem. To demonstrate this hypothesis, we conduct an
experiment and compare our design choice (all classes) to select a target from the identical class as
the minor node vminor. In the Figure 3, we confirm that exploiting entire classes for the target node
achieves superior performances. From this design choice of the target node, our method can utilize
the manifold assumption that ‘similar predictions of neural networks indicate the close proximity
in the manifold’, which are commonly utilized in semi-supervised learning (Van Engelen & Hoos,
2020). We aim to enlarge and smooth the decision boundary of the minor class by interpolating the
minor nodes and the target node of the entire classes (but excluding target-specific attributes using
saliency) as investigated in Verma et al. (2019). Moreover, our method considers the prediction of
the ego network (not a single node) to reflect the structural aspects of graph.

To select a target node, we sample a target class from the multinomial distribution with
(logN1, logN2, . . . , logNC) where Ni is the number of the i-th class data and C is the number
of classes. Then, we randomly select a target node from the training nodes of the sampled class.
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Table 4: Comparison of our method GraphENS with other baselines in semi-supervised learning settings. We
report the averaged accuracy, balanced accuracy, and F1-score with the standard errors for 5 repetitions.

Method Cora-Semi CiteSeer-Semi PubMed-Semi
Acc. bAcc. F1 Acc. bAcc. F1 Acc. bAcc. F1

G
C

N

Vanilla 68.38 ±0.79 62.04 ±0.75 60.92 ±1.20 39.32 ±0.68 41.18 ±0.62 34.58 ±0.43 59.32 ±2.24 63.50 ±2.39 58.30 ±2.50

Re-Weight 71.06 ±1.13 65.08 ±1.43 65.09 ±1.59 38.10 ±1.23 39.87 ±1.17 32.13 ±1.44 68.10 ±2.47 69.82 ±2.02 67.70 ±2.30

Oversampling 65.20 ±1.15 60.61 ±0.95 59.57 ±1.71 43.56 ±3.62 42.27 ±3.08 36.68 ±4.81 64.94 ±3.24 68.48 ±2.13 63.79 ±3.56

cRT 68.96 ±0.60 62.65 ±1.00 61.74 ±1.43 41.42 ±0.42 42.17 ±0.44 36.38 ±0.62 58.38 ±2.31 63.10 ±2.73 57.95 ±2.60

PC Softmax 70.96 ±1.13 65.34 ±1.31 64.63 ±1.69 45.64 ±1.32 46.57 ±0.86 41.55 ±0.81 61.96 ±2.95 66.54 ±1.98 60.06 ±3.24

DR-GCN 66.84 ±1.92 59.94 ±2.57 58.21 ±3.94 42.52 ±1.36 41.16 ±1.39 35.89 ±1.97 59.64 ±2.13 64.32 ±2.17 59.09 ±2.21

GraphSMOTE 69.20 ±1.83 63.43 ±2.13 62.35 ±2.89 44.76 ±3.17 43.50 ±2.43 38.36 ±3.24 62.94 ±2.36 67.29 ±1.78 62.08 ±2.76

GraphENS 72.68 ±0.76 67.67 ±0.65 67.94 ±0.94 53.18 ±2.90 52.20 ±2.17 49.48 ±3.28 69.98 ±2.41 72.06 ±1.53 69.53 ±2.31

5.3 MAIN RESULTS

Neighbor sampling mitigates neighbor memorization We investigate neighbor memorization
over conventional algorithms in Section 3. We validate ours with respect to overfitting to minor
classes, node memorization, and neighbor memorization. Although our training accuracy of the
minor class is similar to re-weighting and oversampling, the test accuracy of our method is much
higher than baselines, which indicates that our approach mitigates overfitting to minor classes in
Figure 1 (a) and (b). Our method significantly decreases the performance degradation when a seen
neighbor set is replaced by an unseen neighbor set, implying that our approach can generalize well
for unseen neighbor views compared to baselines (Figure 1 (d)). Neighbor sampling thus effectively
alleviates the neighbor memorization by exposing minor nodes to diverse circumstances.

Supervised Learning We evaluate GraphENS on highly class-imbalanced situations as most real-
world graphs. First, we test our method on three long-tailed citation networks: Cora-LT, CiteSeer-
LT, and PubMed-LT. In Table 1, our method brings better imbalance handling performance in most
cases compared to other baselines. To verify the effectiveness of our method on real-world imbal-
anced graphs, we also test GNNs trained with GraphENS on naturally class-imbalanced benchmark
datasets without any modifications in graphs. Our method outperforms other contenders by signif-
icant margins in AmazonComputers (Table 2). Note that our method consistently exhibits higher
accuracy and F1 score in other architectures (Table 6 in Appendix B.1).

Semi-supervised learning To validate our approaches when labeled nodes are extremely re-
stricted, we conduct experiments in a semi-supervised setting on citation networks (Table 4). Our
approach significantly outperforms baselines for all datasets. Ours also exhibits consistent supe-
rior performances in other GNN architectures (Table 7). Note that since GraphENS exploits entire
classes to synthesize minor nodes, our method can avoid the generation of redundant nodes when
the number of minor nodes is extremely low. Hence, our method significantly improves the perfor-
mance against existing oversampling-based approaches- GraphSMOTE, Oversampling. Ours brings
further performance gain by utilizing unlabeled nodes to generate ego networks (Appendix B.2).

5.4 ABLATION STUDY

We verify two key components of our method: ‘prediction similarity’ on neighbor sampling and
‘saliency masking’ on node mixing. To this end, we introduce baselines: 1) ‘GraphENS w/o PS’ de-
termines prediction similarity uniformly random, 2) ‘w/o SM’ mixes nodes without saliency mask-
ing (MK = 1), and 3) ‘w/o SM,NS’ generates mixed minor nodes without masking and connecting
to neighbors of the target. We find that removing each module drops accuracy (Table 3). Thus, we
believe each module effectively contributes to restraining the generation of harmful ego networks.

6 CONCLUSION

We investigated that existing imbalance handling algorithms suffer from neighbor memorization
problem in class-imbalanced node classification. Thus, we proposed a novel augmentation method,
GraphENS, to synthesize an ego network for minor classes with neighbor sampling and saliency-
based node mixing. We verified that our method effectively mitigates neighbor memorization by
synthesizing diverse but probable minor ego networks. GraphENS demonstrated its effectiveness in
that it outperforms baselines over multiple benchmark datasets with various GNN architectures.
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A AUXILIARY RESULTS FOR NEIGHBOR MEMORIZATION PROBLEM

In this section, we present experimental results which are not reported in the Section 3 due to the
space constraints.

A.1 FURTHER INVESTIGATION FOR NEIGHBOR MEMORIZATION

In Section 3, we verify our hypothesis - easy to overfit to neighbor structures - on the basis of the
most simple imbalance handling approaches. To further strengthen our claim, we intensively exam-
ine the neighbor memorization problem with other recent baselines over five benchmark datasets. As
can be seen from Table 5, we observe that baselines consistently suffer from neighbor memorization
issues in most cases. In addition, our approach shows significantly superior generalization perfor-
mance than baselines on both node and neighbor replacing experiments except for node-replacing
experiments on PubMed-LT.

Table 5: The results of node replacing (node memorization) and neighbor replacing (neighbor memorization)
experiments on five benchmark datasets. We report the averaged accuracy for 5 repetitions.

Method Cora-LT CiteSeer-LT PubMed-LT AmazonPhoto AmazonComputers
Acc. Acc. Acc. Acc. Acc.

(Seen / Unseen) Node Neighbor Node Neighbor Node Neighbor Node Neighbor Node Neighbor

G
C

N

Re-Weight 96.80 / 89.74 96.80 / 83.94 99.10 / 81.73 99.10 / 88.01 95.00 / 86.40 95.00 / 79.58 96.80 / 96.71 96.80 / 89.10 98.43 / 98.06 98.43 / 96.56
Oversampling 98.10 / 89.96 98.10 / 84.67 99.26 / 83.09 99.26 / 89.01 93.62 / 85.76 93.62 / 78.71 96.75 / 96.37 96.75 / 89.45 98.77 / 98.49 98.77 / 96.85
PC Softmax 96.91 / 89.78 96.91 / 81.42 86.44 / 79.58 86.44 / 62.48 92.57 / 89.07 92.57 / 84.08 90.74 / 90.72 90.74 / 86.82 69.43 / 69.64 69.43 / 70.19
GraphSMOTE 96.78 / 89.35 96.78 / 83.99 94.39 / 75.48 94.39 / 85.06 94.24 / 85.94 94.24 / 77.42 90.69 / 90.54 90.69 / 86.22 96.66 / 96.12 96.66 / 96.54
GraphENS 97.94 / 90.48 97.94 / 91.06 98.84 / 87.52 98.84 / 92.99 96.43 / 87.42 96.43 / 89.19 97.73 / 97.20 97.73 / 91.28 99.45 / 99.13 99.45 / 98.48

We conducted experiments with 2-layer GCN having 256 hidden dimensions and adopted PC Soft-
max and GraphSMOTE as recent algorithms since PC Softmax and GraphSMOTE outperform cRT
and DR-GCN in the main experiments, respectively. Note that for these experiments we group
classes with less than 100 training nodes as minor classes.

A.2 LEARNING CURVE OF THE TRAINING PHASE

To show the early trend of the training process, we only show the learning curve for the first 200
epochs in our main paper. We observe that the gap between training and test accuracy is almost
maintained over entire epochs in Table 4.
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Figure 4: The learning curves over the training phase.
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B ADDITIONAL EXPERIMENTS ON MULTIPLE SETTINGS

B.1 RESULTS OF AMAZONPHOTO AND AMAZONCOMPUTERS

Due to space constraints, we only present the experiment with GraphSAGE in the main paper,
which exhibits the best vanilla performances, on two co-purchase graph datasets - AmazonPhoto,
AmazonComputers. We also test our method with two different GNN architectures - GCN, GAT. As
shown in Table 6, GraphENS shows the best performances over baselines in most cases. Detailed
experimental settings are described in Section F.

Interestingly, we observe that cRT and PC Softmax show inferior performance than other algorithms
on AmazonComputers (Table 6). We conjecture that these approaches fail to learn discriminative
representations of minor classes due to message-passing in a highly imbalanced graph. Decoupling
methods such as cRT and PC Softmax are proposed based on the observation that retraining the
classifier with class-balanced sampling after training on imbalanced datasets show comparable per-
formance with baselines (Kang et al., 2020). In other words, learning distinctive representation is
not significantly affected by class imbalance. However, oversmoothing caused by message passing
impedes learning distinctive representation of minor classes in highly imbalanced datasets. It is con-
sistent with the observation that decoupling methods fail at the extremely high imbalance ratio (Ren
et al., 2020).

Table 6: Accuracy/F1-score on AmazonPhoto and AmazonComputers benchmark datasets in comparison
to other baselines. The experiment was performed five times and the averaged accuracy and F1-score with
standard error are reported. Note that the accuracy is equal to balance accuracy since the test sets are balanced.

Method
AmazonPhoto AmazonComputers

(Imbalance ratio: 82) (Imbalance ratio: 244)

Acc.(bAcc.) F1 Acc.(bAcc.) F1

G
C

N

Vanilla 81.91 ±0.25 77.50 ±0.28 58.42 ±0.29 51.21 ±0.39

Re-Weight 92.73 ±0.12 92.72 ±0.13 90.65 ±0.25 90.70 ±0.23

Oversampling 92.62 ±0.23 92.61 ±0.23 90.60 ±0.26 90.67 ±0.26

cRT 90.43 ±0.16 90.20 ±0.21 78.06 ±1.30 77.60 ±1.35

PC Softmax 91.05 ±0.18 91.09 ±0.18 75.89 ±3.92 74.87 ±4.56

GraphSMOTE 92.58 ±0.11 92.58 ±0.11 91.00 ±0.21 91.05 ±0.21

GraphENS 93.67 ±0.18 93.67 ±0.17 91.28 ±0.18 91.28 ±0.17

G
A

T

Vanilla 81.41 ±0.43 76.76 ±0.48 60.19 ±4.25 54.60 ±5.15

Re-Weight 92.80 ±0.07 92.80 ±0.07 90.80 ±0.19 90.85 ±0.20

Oversampling 92.69 ±0.18 92.68 ±0.19 90.54 ±0.20 90.56 ±0.22

cRT 89.92 ±0.21 89.69 ±0.25 81.56 ±2.73 81.57 ±2.96

PC Softmax 90.48 ±0.11 90.49 ±0.12 79.41 ±3.91 78.80 ±4.28

GraphSMOTE 92.63 ±0.11 92.63 ±0.11 90.77 ±0.17 90.80 ±0.19

GraphENS 93.10 ±0.19 93.10 ±0.20 91.11 ±0.28 91.07 ±0.28

B.2 RESULTS OF SEMI-SUPERVISED LEARNING

In Section 5.3, we report the results of GCN on three citation networks - Cora, CiteSeer, PubMed.
We here additionally offer the result table of two different GNN architectures - GAT, GraphSAGE.
GraphENS outperforms baselines in most cases (Table 7).

To ensure that our method brings improvement for any data split (other than public split), we assess
GraphENS on randomly selected train nodes while keeping the public split of validation/test nodes
unmodified (Table 8). We confirm that the improvements of our method is not depending on a
particular data split. We also attempt to extend GraphENS to utilize unlabeled nodes and validate
this extended method. First, we regard unlabeled data as the (C + 1)-th class (C is the number of
classes) and this class could be sampled when selecting a target node. Since the number of unlabeled
data is large, the labeled class could be sampled less frequently if we utilize the number of unlabeled
data in the multinomial distribution in Section 5.2. Thus, we treat the unlabeled class as the class
having the same number of data with the least frequent class and sample a target class from the
distribution with (logN1, logN2, . . . , logNC , logNC+1) where Ni is the number of the i-th class
data. Note that we utilize model prediction on unlabeled nodes for neighbor sampling and saliency
maps of source nodes for saliency masking. To keep class-specific information of source nodes,
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Table 7: Comparison of our method GraphENS with other baselines in semi-supervised learning settings
(public split). We report the averaged accuracy, balanced accuracy, and F1-score with the standard errors for 5
repetitions on three benchmark datasets for node classification tasks.

Method Cora-Semi CiteSeer-Semi PubMed-Semi
Acc. bAcc. F1 Acc. bAcc. F1 Acc. bAcc. F1

G
A

T

Vanilla 69.56 ±0.69 63.57 ±1.07 63.27 ±1.11 42.86 ±0.86 43.28 ±1.12 39.30 ±1.28 66.78 ±1.81 70.80 ±1.36 66.46 ±1.72

Re-Weight 73.24 ±1.57 67.68 ±1.62 67.36 ±1.75 52.58 ±0.79 51.92 ±0.49 50.22 ±0.48 67.28 ±1.71 70.63 ±1.01 67.07 ±1.65

Oversampling 65.92 ±1.68 59.33 ±2.02 58.44 ±2.41 43.48 ±2.35 42.39 ±1.79 38.12 ±3.08 64.22 ±3.02 66.50 ±3.39 63.24 ±4.02

cRT 69.68 ±0.80 63.44 ±0.82 62.98 ±1.12 46.40 ±1.93 45.87 ±1.27 43.71 ±1.66 65.72 ±2.49 69.82 ±1.88 65.26 ±2.40

PC Softmax 71.06 ±1.37 65.89 ±1.63 65.35 ±1.91 53.40 ±1.21 52.66 ±1.10 50.58 ±1.83 68.88 ±2.18 71.65 ±1.40 68.67 ±2.01

DR-GCN 68.84 ±0.71 62.87 ±0.86 62.20 ±1.25 46.06 ±1.52 46.26 ±1.37 42.05 ±2.08 65.48 ±2.76 69.31 ±2.19 65.03 ±2.51

GraphSMOTE 70.20 ±1.05 64.99 ±1.51 64.59 ±1.67 46.42 ±2.27 46.63 ±1.74 41.92 ±2.26 66.42 ±3.06 68.86 ±2.00 65.26 ±3.70

GraphENS 74.38 ±0.60 69.64 ±0.86 69.99 ±0.73 56.60 ±0.95 55.67 ±0.67 54.80 ±0.85 70.48 ±1.79 72.08 ±1.38 70.32 ±1.71

G
ra

ph
SA

G
E

Vanilla 64.68 ±0.69 57.62 ±0.94 56.35 ±1.22 40.56 ±1.51 41.42 ±1.50 35.47 ±2.15 61.30 ±2.51 65.37 ±2.07 60.99 ±2.48

Re-Weight 66.00 ±1.01 60.70 ±1.05 60.18 ±1.12 46.14 ±2.70 46.00 ±1.68 41.60 ±2.83 66.40 ±2.01 69.16 ±1.45 65.85 ±2.37

Oversampling 62.04 ±1.18 53.66 ±1.45 50.55 ±3.10 38.14 ±1.51 38.00 ±0.75 31.57 ±1.04 64.74 ±3.13 67.71 ±2.45 64.72 ±3.02

cRT 65.28 ±0.87 58.33 ±1.24 56.71 ±1.60 42.90 ±1.28 43.41 ±0.86 38.17 ±1.60 60.98 ±1.93 65.36 ±1.64 59.93 ±2.38

PC Softmax 66.84 ±1.03 60.76 ±1.61 60.05 ±1.91 46.76 ±1.77 46.69 ±1.13 41.31 ±1.65 63.84 ±2.72 67.36 ±2.27 63.57 ±2.33

DR-GCN 65.74 ±0.95 58.96 ±1.30 57.43 ±1.62 48.44 ±2.30 46.75 ±1.77 42.78 ±3.42 62.26 ±2.64 66.91 ±2.28 61.00 ±3.21

GraphSMOTE 62.34 ±1.34 55.07 ±1.96 52.80 ±3.30 36.76 ±2.67 37.21 ±1.54 26.33 ±2.04 63.46 ±2.61 67.47 ±1.46 62.78 ±2.68

GraphENS 71.18 ±0.72 66.50 ±0.75 66.56 ±0.63 53.48 ±1.50 52.57 ±0.73 50.56 ±1.45 69.44 ±2.16 70.67 ±1.64 69.59 ±2.01

exploitation of saliency maps of source nodes is required. In Table 8, the adoption of unlabeled data
in GraphENS improves the performance significantly in most cases. We believe that our approach
could exploit rich information even in unlabeled nodes to produce safe and diverse ego networks.

Table 8: Evaluation of GraphENS with other baselines in semi-supervised learning settings (random split).
We report the averaged accuracy, balanced accuracy, and F1-score with the standard errors for 5 repetitions on
three benchmark datasets for node classification tasks. † denotes the results when utilizing unlabeled nodes.

Method Cora-Semi CiteSeer-Semi PubMed-Semi
Acc. bAcc. F1 Acc. bAcc. F1 Acc. bAcc. F1

G
C

N

Vanilla 63.98 ±1.32 58.28 ±1.59 55.97 ±2.33 40.76 ±2.68 40.54 ±2.22 35.11 ±3.33 57.48 ±2.67 62.35 ±1.41 55.27 ±3.58

Re-Weight 67.56 ±1.32 63.05 ±1.80 61.43 ±2.59 42.90 ±2.97 41.42 ±3.06 35.22 ±4.15 66.98 ±2.36 69.54 ±1.83 66.35 ±2.32

Oversampling 61.86 ±1.04 56.52 ±0.86 53.43 ±1.21 36.34 ±1.70 35.93 ±1.57 27.75 ±3.19 63.76 ±1.99 68.45 ±1.64 62.37 ±2.35

cRT 63.94 ±1.14 57.16 ±1.49 54.45 ±2.23 41.16 ±2.73 41.78 ±2.36 36.08 ±3.24 57.34 ±2.93 62.21 ±2.12 55.39 ±3.63

PC Softmax 69.20 ±1.02 64.68 ±1.76 63.80 ±2.05 45.24 ±2.85 44.34 ±2.33 40.38 ±2.86 64.78 ±0.75 66.89 ±1.37 64.82 ±0.74

CPGNN 65.30 ±0.58 58.30 ±0.82 54.79 ±0.84 41.38 ±2.32 41.47 ±1.73 34.85 ±2.88 62.18 ±1.80 68.41 ±1.38 60.56 ±2.10

DR-GCN 64.22 ±1.34 58.28 ±1.80 55.93 ±2.64 35.80 ±1.94 36.51 ±2.03 27.62 ±3.16 61.78 ±3.27 66.13 ±2.40 59.67 ±4.64

GraphSMOTE 64.70 ±1.76 58.71 ±2.20 56.31 ±3.29 39.74 ±2.62 38.27 ±2.04 31.45 ±3.39 64.00 ±1.41 67.90 ±1.12 63.44 ±1.51

GraphENS 69.78 ±1.01 65.01 ±1.67 64.69 ±1.60 52.42 ±1.09 49.55 ±1.18 46.27 ±1.54 68.54 ±1.15 70.68 ±1.22 68.19 ±0.93

GraphENS† 70.76 ±0.86 66.78 ±1.31 66.20 ±1.54 53.58 ±1.26 51.69 ±1.03 49.42 ±1.71 69.54 ±2.32 70.38 ±1.97 69.00 ±2.07

G
A

T

Vanilla 67.80 ±1.30 64.08 ±1.44 63.02 ±1.66 43.42 ±1.69 42.39 ±2.02 38.30 ±2.13 66.16 ±1.75 70.37 ±1.16 65.67 ±1.69

Re-Weight 69.40 ±1.42 65.14 ±1.92 63.90 ±2.43 50.56 ±1.72 47.83 ±1.67 45.28 ±2.45 68.94 ±2.04 71.57 ±1.33 68.78 ±1.84

Oversampling 65.36 ±1.09 59.72 ±1.28 57.54 ±1.43 40.58 ±3.80 38.23 ±3.25 31.47 ±5.16 64.72 ±2.33 67.10 ±2.35 63.18 ±2.47

cRT 67.56 ±1.65 62.10 ±2.27 61.15 ±2.61 45.58 ±1.89 43.45 ±2.26 40.15 ±2.36 65.96 ±2.94 70.10 ±2.17 65.27 ±3.02

PC Softmax 69.30 ±1.17 66.05 ±1.47 65.06 ±1.61 50.08 ±2.13 48.61 ±2.15 47.19 ±2.09 68.42 ±1.16 71.83 ±0.86 68.28 ±1.06

DR-GCN 66.76 ±1.77 61.47 ±2.43 59.95 ±3.07 41.28 ±3.14 40.71 ±2.37 33.96 ±3.66 66.96 ±1.80 69.02 ±1.52 66.11 ±2.10

GraphSMOTE 68.23 ±1.31 63.67 ±1.67 62.50 ±2.15 45.26 ±2.71 43.42 ±3.06 39.46 ±3.65 65.16 ±1.43 69.32 ±0.71 64.39 ±1.58

GraphENS 69.62 ±0.91 65.27 ±1.55 64.16 ±1.87 53.90 ±1.25 51.74 ±0.82 49.47 ±1.57 70.24 ±1.45 71.00 ±1.13 69.93 ±1.21

GraphENS† 69.02 ±1.29 64.66 ±1.75 63.74 ±2.13 56.32 ±2.00 53.69 ±1.71 51.76 ±2.24 70.18 ±2.14 70.52 ±1.70 69.42 ±1.84

G
ra

ph
SA

G
E

Vanilla 62.30 ±0.99 56.24 ±1.65 52.84 ±2.47 40.16 ±0.92 39.59 ±1.10 34.12 ±0.53 62.30 ±3.61 66.57 ±3.15 61.02 ±4.14

Re-Weight 62.92 ±0.40 55.94 ±0.72 54.06 ±0.66 41.10 ±3.39 39.86 ±3.09 33.80 ±4.16 65.90 ±2.19 69.27 ±1.40 65.59 ±2.21

Oversampling 61.40 ±0.83 52.99 ±1.23 49.57 ±1.63 39.04 ±2.00 38.89 ±1.99 32.17 ±2.88 59.26 ±2.26 63.59 ±2.55 58.06 ±2.78

cRT 63.20 ±1.27 57.21 ±1.69 54.71 ±2.57 40.34 ±0.56 40.59 ±0.84 36.18 ±0.76 62.90 ±2.25 67.13 ±1.78 61.52 ±2.80

PC Softmax 65.32 ±1.16 60.52 ±1.52 58.91 ±1.94 44.02 ±2.49 44.34 ±1.78 38.99 ±3.25 63.18 ±3.00 66.94 ±2.51 61.19 ±4.44

DR-GCN 61.82 ±0.62 55.14 ±0.79 51.93 ±1.01 42.86 ±2.03 41.72 ±1.38 37.49 ±2.64 62.50 ±1.98 65.65 ±2.25 61.73 ±1.91

GraphSMOTE 60.84 ±1.56 53.38 ±1.87 49.31 ±3.27 39.28 ±2.04 39.27 ±2.16 32.31 ±2.98 61.34 ±2.73 66.07 ±1.93 58.71 ±4.10

GraphENS 65.84 ±0.74 62.29 ±1.69 61.52 ±1.79 51.12 ±1.93 48.91 ±1.94 46.78 ±2.02 67.62 ±1.77 68.27 ±1.26 67.37 ±1.60

GraphENS† 67.72 ±1.04 64.18 ±1.31 63.14 ±1.47 50.92 ±2.13 49.94 ±1.60 47.06 ±2.23 67.48 ±1.19 68.04 ±0.76 67.64 ±0.99
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C IN-DEPTH ANALYSIS

C.1 CLASS-WISE PERFORMANCE ANALYSIS

To clearly present alleviation of overfitting to minor classes, we provide the test accuracy curves for
each class. Note that PubMed-LT has three classes and the number of nodes for each class is as
follows: ( Minor 1: 72, Minor 2: 726, Major: 7260 ). The experiment settings are identical to Section 3.

In Figure 5 (a), while the training accuracies for minor classes (Minor 1, Minor 2) are highly similar
over entire methods, GraphENS exhibits significantly superior test accuracies for minor classes (Fig-
ure 5 (b,c)). Albeit our method slightly sacrifices the test accuracy of the major class, we confirmed
that our approach substantially mitigates overfitting to the minor classes.
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Figure 5: The train accuracy curves for all methods and test accuracy curves for each class on PubMed-LT
dataset. Solid lines represents Minor 1 class, dashed lines are Minor 2, and finely-dotted lines are Major class,
respectively.

C.2 VISUALIZATION OF THE HIDDEN REPRESENTATIONS

In this subsection, we shed light on why our algorithm works. Our method aims to enlarge and
smooth the decision boundary of the minor class. First, to extend the boundary of the minor class,
GraphENS utilizes the manifold assumption that “similar predictions of neural networks indicate the
close proximity in the manifold” (Van Engelen & Hoos, 2020; Iscen et al., 2019) as a key inductive
bias. By synthesizing the minor ego network using the target node of the entire class, our method
widens the decision boundary effectively in that we interpolate the ego networks based on prediction
similarity. In the vision domain, M2m (Kim et al., 2020b), one of the imbalance-handling methods,
also translates major class data into minor class to prevent overfitting on minor classes exploiting
our assumption implicitly. This extrapolation scheme for the minor class becomes more significant
when the number of data is highly scarce.

(a) Re-weighting

L0 (most frequent class)
L1
L2
L3
L4
L5
L6 (fewest class)

(b) GraphENS

Figure 6: The decision boundaries of Re-weighting and our method are visualized by using 2D hidden repre-
sentations of GNN.
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Another advantage of our method for node classification is that the generalization performance of
GNNs can be improved by smoothing the decision boundary. As investigated in Verma et al. (2019),
convex combinations of node features encourage the smoothness of the boundary. To verify the
smoothness and enlargement of minor classes, we visualize the decision boundaries of Re-weighting
and our method by using 2D bottleneck hidden representations of GNN in Figure 6. Note that we
conduct experiments on Cora-LT with 2 layers of GraphSAGE. Compared to Re-weighting, we ob-
serve that our boundaries are smoother and the fewest class occupies more region with significantly
large margin. Therefore, along with the main results, this result implies that our method could
improve generalization performance by enlarging the decision boundary of minor classes smoothly.

C.3 OVERSAMPLING RATIO

We investigate the performance tendency according to oversampling scale, which determines the
number of generated minor nodes. Specifically, the number of oversampled nodes is computed as
oversampling ratio * (the number of nodes in the largest class - the number of nodes in the minor
class)). In Figure 7, we observe that the performance decreases as the scale is (1) under 0.6 or (2)
over 1.0. We conjecture that the induced bias of major classes is not sufficiently corrected at low
oversampling scales (1). In the regime of (2), a high oversampling scale impedes the learning of
major class representations, resulting in performance degradation. Thus, the oversampling scale
between 0.8 and 1.0 is a preferable option and we adopted 1.0 as the scale in our main experiments,
following conventional oversampling methods.
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Figure 7: Performance analysis according to the oversampling ratio with AmazonPhoto dataset with Graph-
SAGE.
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D ILLUSTRATIONS OF REPLACING EXPERIMENTS

To facilitate understanding of node/neighbor replacing experiments, we describe the experiments
with illustrations. In Figure 8, to observe node memorization, we replace the node feature of vanchor
with vseen in (a) and vanchor with vunseen in (b). The performance gap between vanchor in (a) and
(b) is computed. Similar to node-replacing experiments, to see neighbor memorization, we replace
the node feature of vseen with vanchor in (c) and vseen with vunseen in (d). The accuracy difference
between vseen in (c) and vunseen in (d) is calculated. The results of replacing experiments are in
Figure 1.

Figure 8: Overall pipeline of node-replacing and neighbor-replacing experiments.
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E MAIN ALGORITHM

Algorithm 1 GraphENS
1: Input: Dataset (G(V,E), y), model fθ , class distribution pclass(C), class-conditional node distribution
pnode(u|c), degree distribution pdegree(D), number of classes C, number of samples to be oversampled
Nos
c , feature masking hyperparameter k, learning rate η, temperature τ

2: Initialize: Model fθ .
3: for t = 1, 2, . . . , T do
4: Vnew, Enew ← V , E
5: for c = 1, 2, · · · , C do
6: for i = 1, 2, · · · , Nos

c do
7: ctarget ∼ pclass(C) . Sampling target class
8: vtarget ∼ pnode(u|ctarget)
9: vminor ∼ pnode(u|c)

10: λ ∼ Beta(2, 2)
11: if t ≤ 10 then . Warmup
12: vmixed← (1− λ)vminor + λvtarget
13: vn1 , vn2 , · · · , vn|N(vminor)|

← Neighbors of vminor
14: Ênew ← {{vn1 , vmixed}, {vn2 , vmixed}, · · · , {vn|N(vminor)|

, vmixed}}
15: else
16: φ←KL(ôt−1

vminor‖ô
t−1
vtarget)

17: φ̂← 1
1+e−φ

18:
19: . Saliency-based node mixing
20: K ← kφ̂
21: Compute MK from multinomial distribution using St−1,K
22: ΛK ← λ ·MK

23: vmixed← (1− ΛK)� vminor + ΛK � vtarget
24:
25: . Neighbor sampling
26: p(u|vmixed)← φ̂p(u|vminor) + (1− φ̂)p(u|vtarget)
27: r ∼ pdegree(D)
28: {vn1 , vn2 , · · · , vnr} ∼ p(u|vmixed)
29: Ênew ← {{vn1 , vmixed}, {vn2 , vmixed}, · · · , {vnr , vmixed}}
30: end if
31: Vnew ← Vnew ∪ {vmixed}
32: Enew ← Enew ∪ Ênew
33: end for
34: end for
35: o← fθ(Vnew, Enew)
36: Lnew ← CrossEntropy(o,y)
37: θ ← θ − η(∇θLnew)
38: for v ∈ V do
39: ôtv ← 1

|N (v)|+1

∑
u∈(N (v)∪v) Softmax(ou/τ) . Confidence aggregation

40: end for
41: St← Computing feature saliency with the gradient of Lnew (Equation. (2))
42: end for
43: Output: fθ
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F DETAILED EXPERIMENT SETTINGS

In this section, we address all the details of experiments we conducted.

F.1 DATA STATISTICS

Table 9: Data summary - Label distribution of training datasets [%]
Dataset Domain L0 L1 L2 L3 L4 L5 L6 L7 L8 L9

Cora-Semi Citation Network 23.26 23.26 23.26 23.26 2.33 2.33 2.33 - - -
Cora-LT 54.04 25.04 11.57 5.39 2.38 1.11 0.48 - - -
CiteSeer-Semi Citation Network 30.30 30.30 30.30 3.03 3.03 3.03 - - - -
CiteSeer-LT 60.72 24.06 9.49 3.76 1.47 0.49 - - - -
PubMed-Semi Citation Network 83.33 8.33 8.33 - - - - - - -
PubMed-LT 90.10 9.01 0.89 - - - - - - -
AmazonPhoto Co-Purchase Graph 31.58 26.64 11.70 11.06 9.92 7.59 1.12 0.39 - -
AmazonComputers Co-Purchase Graph 44.26 17.07 16.94 10.35 4.95 2.45 1.96 1.49 0.34 0.18

F.2 ARCHITECTURE

We evaluate our method with three representative GNN architectures - GCN (Kipf & Welling, 2017),
GAT (Velickovic et al.), and GraphSAGE (Hamilton et al., 2017). In this section, we describe
the detailed architecture of each GNN. For GCN, our model consists of l GCN layers with ReLU
activation, followed by dropout Srivastava et al. (2014) with 0.5 dropping rate and a linear classifier.
For GAT, our model comprises l GAT layers, which involves an ELU activation Clevert et al. (2016),
followed by dropout with 0.5 dropping rate and a linear classifier. We also adopt multi-head attention
with 8 heads and apply dropout with 0.6 dropping rate to its attention. GraphSAGE is composed
of l SAGE layers with ReLU activation, followed by dropout with 0.5 dropping rate and a linear
classifier. We search the architecture to maximize the validation accuracy for all algorithms. The
search spaces of reported results are the number of layers l ∈ {1, 2, 3} and hidden dimension d ∈
{64, 128, 256}.

F.3 EVALUATION PROTOCOL

We adopt Adam (Kingma & Ba, 2015) optimizer with the initial learning rate as 0.01 and train GNNs
for 2000 epochs. The best models are selected with validation accuracy. We design a scheduler as
a learning rate is halved if there is no improvement on validation loss for 100 iterations. We choose
weight decay to all convolutional layers except for a linear classifier with 0.0005. We select the best
model using validation accuracy over the training phase.

F.4 IMPLEMENTATION DETAILS

In this subsection, we explain the hyperparameters of our experiments. For all datasets, we use
Beta(2, 2) distribution to sample λ. Feature masking hyperparameter k and temperature τ are tuned
among {1, 5, 10} and {1, 2}, respectively. We employ warmup since our approach utilizes model
confidence, so models need to be trained to some extent. The number of epochs for warmup is tuned
among {1, 5}.

F.5 THE DETAILED SETUP FOR SEMI-SUPERVISED LEARNING

We validate imbalance handling approaches on the citation networks such as Cora, CiteSeer, and
PubMed. We follow the split in Yang et al. (2016) and set the imbalance ratio as 10. Specifically,
for Cora and CiteSeer, three classes have only two labeled nodes while other classes have 20 labeled
nodes since the number of labeled nodes in each class is 20 in Yang et al. (2016). For PubMed, only
two classes have two labeled nodes as PubMed consists of three classes.
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