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ABSTRACT

Classical machine learning models such as deep neural networks are usually trained
by using Stochastic Gradient Descent-based (SGD) algorithms. The classical SGD
can be interpreted as a discretization of the stochastic gradient flow. In this paper
we propose a novel, robust and accelerated stochastic optimizer that relies on two
key elements: (1) an accelerated Nesterov-like Stochastic Differential Equation
(SDE) and (2) its semi-implicit Gauss-Seidel type discretization. The convergence
and stability of the obtained method, referred to as NAG-GS, are first studied
extensively in the case of the minimization of a quadratic function. This analysis
allows us to come up with an optimal learning rate in terms of the convergence rate
while ensuring the stability of NAG-GS. This is achieved by the careful analysis of
the spectral radius of the iteration matrix and the covariance matrix at stationarity
with respect to all hyperparameters of our method. Further, we show that NAG-
GS is competitive with state-of-the-art methods such as momentum SGD with
weight decay and AdamW for the training of machine learning models such as
the logistic regression model, the residual networks models on standard computer
vision datasets, Transformers in the frame of the GLUE benchmark and the recent
Vision Transformers.

1 INTRODUCTION

Nowadays, machine learning, and more particularly deep learning, has achieved promising results
on a wide spectrum of AI application domains. In order to process large amounts of data, most
competitive approaches rely on the use of deep neural networks. Such models require to be trained
and the process of training usually corresponds to solving a complex optimization problem. The
development of fast methods is urgently needed to speed up the learning process and obtain efficiently
trained models. In this paper, we introduce a new optimization framework for solving such problems.
Main contributions of our paper:

• We propose a new accelerated gradient method of Nesterov type for convex and non-convex
stochastic optimization based on the Gauss-Seidel discretization;

• We analyze the properties of the proposed method both theoretically for the quadratic case
and empirically on large variety of optimization problems;

• We show that our method is robust to the selection of learning rate values, memory-efficient
compared with AdamW and competitive with baseline methods in various benchmarks.

Organization of our paper:

• Section 1.1 gives the theoretical background for our method.

• In Section 2, we propose an accelerated system of Stochastic Differential Equations (SDE)
and a corresponding solver based on a specific discretization method. This method, called
NAG-GS (Nesterov Accelerated Gradient with Gauss-Seidel Splitting), is initially discussed
in terms of convergence for quadratic functions. Additionally, we apply NAG-GS to solve
a 1-dimensional non-convex SDE and provide strong numerical evidence of its superior
acceleration compared to classical SDE solvers in Section 2 of the supplementary materials.
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• In Section 3, NAG-GS is tested to tackle stochastic optimization problems of increasing
complexity and dimension, starting from the logistic regression model to the training of
large machine learning models such as ResNet-20, VGG-11 and Transformers.

1.1 PRELIMINARIES

We start here with some general considerations in the deterministic setting for obtaining accelerated
Ordinary Differential Equations (ODE) that will be extended in the stochastic setting in Section 2.1.
We consider iterative methods for solving the unconstrained minimization problem:

min
x∈V

f(x), (1)

where V is a Hilbert space, and f : V → R∪{+∞} is a properly closed convex extended real-valued
function. In the following, for simplicity, we shall consider the particular case of Rn for V and
consider function f smooth on the entire space. We also suppose V is equipped with the canonical
inner product ⟨x, y⟩ =∑n

i=1 xiyi and the correspondingly induced norm ∥x∥ =
√
⟨x, x⟩. Finally,

we will consider in this section the class of functions S1,1L,µ which stands for the set of strongly convex
functions of parameter µ > 0 with Lipschitz-continuous gradients of constant L > 0. For such
class of functions, it is well-known that the global minimizer exists uniquely Nesterov (2018). One
well-known approach to deriving the Gradient Descent (GD) method is discretizing the so-called
gradient flow:

ẋ(t) = −∇f(x(t)), t > 0. (2)

The simplest forward (explicit) Euler method with step size αk > 0 leads to the GD method

xk+1 ← xk − αk∇f(xk).

In the field of numerical analysis, it is widely recognized that this method is conditionally A-stable.
Moreover, when considering f ∈ S1,1L,µ with 0 ≤ µ ≤ L ≤ ∞, the utilization of a step size αk = 1/L
leads to a linear convergence rate. It is important to highlight that the highest rate of convergence is

attained when αk = 2
µ+L . In such a scenario, we have ∥xk − x⋆∥2 ≤

(
Qf−1
Qf+1

)2k
∥x0 − x⋆∥2,

where Qf is defined as Qf = L
µ and is commonly referred to as the condition number of function f

Nesterov (2018). Another approach that can be considered is the backward (implicit) Euler method,
which is represented as:

xk+1 ← xk − αk∇f(xk+1), (3)
This method is unconditionally A-stable. In a nutshell, A-stability in numerical ordinary differential
equations characterizes a method’s performance in the asymptotic regime, as time approaches infinity.
An unconditionally A-stable method is one where the integration step can be arbitrarily large, yet the
global error of the method converges to zero. We give more details about the notion in Appendix
1.3. Here-under, we summarize the methodology proposed by Luo & Chen (2021) to come up with a
general family of accelerated gradient flows by focusing on the following simple problem:

min
x∈Rn

f(x) =
1

2
xTAx (4)

for which the gradient flow in equation 2 reads simply as:

ẋ(t) = −Ax(t), t > 0, (5)

where A is a n-by-n symmetric positive semi-definite matrix ensuring that f ∈ S1,1L,µ where µ and L
respectively correspond to the minimum and maximum eigenvalues of matrix A, which are real and
positive by hypothesis. Instead of directly resolving equation 5, authors of Luo & Chen (2021) opted
to address a general linear ODE system as follows:

ẏ(t) = Gy(t), t > 0. (6)

The main concept is to search for a system equation 6 with an asymmetric block matrix G that
transforms the spectrum of A from the real line to the complex plane, reducing the condition
number from κ(A) = L

µ to κ(G) = O
(√

L
µ

)
. Subsequently, accelerated gradient methods can be
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constructed from A-stable methods to solve equation 6 with a significantly larger step size, improving

the contraction rate from O

((
Qf−1
Qf+1

)2k)
to O

((√
Qf−1√
Qf+1

)2k
)

. Moreover, to handle the convex

case µ = 0, the authors in Luo & Chen (2021) combine the transformation idea with a suitable time
scaling technique. In this paper we consider one transformation that relies on the embedding of A
into some 2× 2 block matrix G with a rotation built-in Luo & Chen (2021):

GNAG =

[
−I I

µ/γ −A/γ −µ/γI
]

(7)

where γ is a positive time scaling factor that satisfies

γ̇(t) = µ− γ(t), γ(0) = γ0 > 0. (8)

Note that, given A positive definite, we can easily show that for the considered transformation, we
have that R(λ) < 0, that is the real part of λ is strictly negative, and this for all λ ∈ σ(G) with
σ(G) denotes the spectrum of G, i.e. the set of all eigenvalues of G. Further, we will denote by
ρ(G) := max

λ∈σ(G)
|λ| the spectral radius of matrix G. Let us now consider the NAG block Matrix and

let y = (x, v), the dynamical system given in equation 6 with y(0) = y0 ∈ R2n reads:

dx

dt
= v − x,

dv

dt
=

µ

γ
(x− v)− 1

γ
Ax

(9)

with initial conditions x(0) = x0 and v(0) = v0. Before going further, let us remark that this linear
ODE can be expressed as the following second-order ODE by eliminating v:

γẍ+ (γ + µ)ẋ+Ax = 0, (10)

where Ax is therefore the gradient of f w.r.t. x. Thus, one could generalize this approach for
any function f ∈ S1,1L,µ by replacing Ax by ∇f(x), respectively, within equation 7, equation 9
and equation 10. Finally, some additional and useful insights are discussed in supplementary
materials, Section 1.

2 MODEL AND THEORY

2.1 ACCELERATED STOCHASTIC GRADIENT FLOW

In the previous section, we presented a family of accelerated Gradient flows obtained by an appropriate
spectral transformation G of matrix A, see equation 9. One can observe the presence of a gradient
term of the smooth function f(x) at x in the second differential equation equation 10. Let us recall
that Ax can be replaced by ∇f(x) for any function f ∈ S1,1L,µ. In the frame of this paper, function
f(x) may correspond to some loss function used to train neural networks. For such a setting, we
assume that the gradient input∇f(x) is contaminated by noise due to a finite-sample estimate of the
gradient. The study of accelerated Gradient flows is now adapted to include and model the effect
of the noise; to achieve this we consider the dynamics given in equation 6 perturbed by a general
martingale process. This leads us to consider the following Accelerated Stochastic Gradient (ASG)
flows:

dx

dt
= v − x,

dv

dt
=

µ

γ
(x− v)− 1

γ
Ax+

dZ

dt
,

(11)

which corresponds to an (Accelerated) system of SDE’s, where Z(t) is a continuous Ito martingale.
We assume that Z(t) has the simple expression dZ = σdW , where W = (W1, ...,Wn) is a
standard n-dimensional Brownian Motion. As a simple and first approach, we consider the volatility
parameter σ constant. In the next section, we present the discretizations considered for ASG flows
given in equation 11.
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2.2 DISCRETIZATION: GAUSS-SEIDEL SPLITTING AND SEMI-IMPLICITNESS

In this section, we present the main strategy to discretize the Accelerated SDE’s system from
equation 11. The main motivation behind the discretization method is to derive integration schemes
that are, in the best case, unconditionally A-stable or conditionally A-stable with the highest possible
integration step. In the classical terminology of (discrete) optimization methods, this value ensures
convergence of the obtained methods with the largest possible step size and consequently improves
the contraction rate (or the rate of convergence). In Section 1.1, we have briefly recalled that the
most well-known unconditionally A-stable scheme was the backward Euler method (see equation 3),
which is an implicit method and hence can achieve faster convergence rate. However, this requires
to either solve a linear system or, in the case of a general convex function, to compute the root of a
non-linear equation, both situations leading to a high computational cost. This is the main reason why
few implicit schemes are used in practice for solving high-dimensional optimization problems. But
still, it is expected that an explicit scheme closer to the implicit Euler method will have good stability
with a larger step size than the one offered by a forward Euler method. Furthermore, assuming a
Gaussian noise process, proposing a solver capable of handling a broad range of step size values
is crucial. Specifically, allowing for a larger ratio α/b (with b as the mini-batch size) increases the
likelihood of converging to wider local minima, ultimately enhancing the generalization performance
of the trained model, see Section 1 of supplementary materials for additional details on that matter.
Motivated by the Gauss–Seidel (GS) method for solving linear systems, we consider the matrix
splitting G = M +N with M being the lower triangular part of G and N = G−M , we propose
the following Gauss-Seidel splitting scheme for equation 6 perturbated with noise:

yk+1 − yk
αk

= Myk+1 +Nyk +

[
0

σWk+1−Wk

αk

]
(12)

which for G = GNAG (see (7)), gives the following semi-implicit scheme with step size αk > 0:
xk+1 − xk

αk
= vk − xk+1,

vk+1 − vk
αk

=
µ

γk
(xk+1 − vk+1)−

1

γk
Axk+1 + σ

Wk+1 −Wk

αk
.

(13)

Note that due to the properties of Brownian motion, we can simulate its values at the selected points
by: Wk+1 = Wk +∆Wk, where ∆Wk are independent random variables with distributionN (0, αk).
Furthermore, ODE (8) corresponding to the parameter γ is also discretized implicitly:

γk+1 − γk
αk

= µ− γk+1, γ0 > 0. (14)

As already mentioned earlier, heuristically, for general f ∈ S1,1L,µ with µ ≥ 0, we just replace Ax

in equation 13 with∇f(x) and obtain the following NAG-GS scheme:

xk+1 − xk

αk
= vk − xk+1,

vk+1 − vk
αk

=
µ

γk
(xk+1 − vk+1)−

1

γk
∇f(xk+1)+

+ σ
Wk+1 −Wk

αk
.

(15)

Finally, we introduce a method called the NAG-GS method (see Algorithm 1). In this method,
we take into account the presence of unknown noise when computing the gradient ∇f(xk+1).
We denote this noisy gradient as ∇f̃(xk+1) in Algorithm 1. Notably, in order to achieve strict
equivalence with the scheme described in Equation (15), we have the relationship ∇f̃(xk+1) =
∇f(xk+1) + σµ(1− 1

bk
)(Wk+1 −Wk), where bk is defined as bk := αkµ(αkµ+ γk+1)

−1.

Remark 1 (Complexity of NAG-GS algorithm compared to AdamW). According to Algorithm 1,
NAG-GS algorithm requires one auxiliary vector that matches the dimension of the trained parameters.
In contrast, AdamW requires two auxiliary vectors of the same dimension. Hence, NAG-GS is expected
to be more efficient than AdamW due to its lower computational complexity and memory requirements,
enabling faster training and improving scalability for optimizing deep learning models with large
datasets and resource-constrained environments.
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Algorithm 1 Nesterov Accelerated Gradients with Gauss–Seidel splitting (NAG-GS).

Input: Choose point x0 ∈ Rn, some µ ≥ 0, γ0 > 0.
Set v0 := x0.
for k = 1, 2, . . . do

Choose step size αk > 0.
▷ Update parameters and state x:
Set ak := αk(αk + 1)−1.
Set γk+1 := (1− ak)γk + akµ.
Set xk+1 := (1− ak)xk + akvk.
▷ Update state v:
Set bk := αkµ(αkµ+ γk+1)

−1.
Set vk+1 := (1− bk)vk + bkxk+1 − µ−1bk∇f̃(xk+1).

end for

Moreover, the step size update can be performed with different strategies, for instance, one may
choose the method proposed by Nesterov (Nesterov, 2018, Method 2.2.7) which specifies to compute
αk ∈ (0, 1) such that Lα2

k = (1− αk)γk + αkµ. Note that for γ0 = µ, hence the sequences γk = µ

and αk =
√

µ
L for all k ≥ 0. In Section 2.3, we discuss how to compute the step size for Algorithm 1.

Let us mention that full-implicit discretizations have been considered and studied by the authors,
these will be briefly discussed in supplementary materials, Section 1.2. However, their interests are,
at the moment, limited for ML applications since the obtained implicit schemes use second-order
information about f , such schemes are typically intractable for real-life ML models.

2.3 CONVERGENCE ANALYSIS OF QUADRATIC CASE

We propose to study how to select a maximum step size that ensures an optimal contraction rate
while guaranteeing the convergence, or the stability of NAG-GS method once used to solve SDE’s
system 11. Ultimately, we show that the choice of the optimal step size is actually mostly influenced
by the values of µ, L and γ. These (hyper)parameters are central and in order to show this, we
study two key quantities, namely the spectral radius of the iteration matrix and the covariance matrix
associated with the NAG-GS method summarized by Algorithm 1. Note that this theoretical study
only concerns the case f(x) = 1

2x
TAx. Considering the size limitation of the paper, we present

below only the main theoretical result and place its proof in supplementary materials, Section 1.1.4.:

Theorem 1. For GNAG equation 7, given γ ≥ µ, and assuming 0 < µ = λ1 ≤ . . . ≤ λn = L <∞;

if 0 < α ≤ µ+γ+
√

(µ−γ)2+4γL

L−µ , then the NAG-GS method summarized by Algorithm 1 is convergent
for the n-dimensional case, with n > 2.

Remark 2. It is important to mention that the optimal contraction rate of NAG-GS aiming at

minimizing a strongly convex quadratic function is reached for α =
µ+γ+

√
(µ−γ)2+4γL

L−µ .

All the steps of the convergence analysis are fully detailed in supplementary materials, Section 1.1,
and organized as follows:

• Sections 1.1.1. and 1.1.2. in supplementary materials respectively provide the full analysis
of the spectral radius of the iteration matrix associated with the NAG-GS method and the
covariance matrix at stationarity w.r.t. hyperparameters µ, L, γ and σ, for the case of the
dimension n = 2. The theoretical results obtained are summarized in Section 1.1.3 in
supplementary materials to come up with an optimal step size in terms of contraction rate.
The extension to n > 2 is detailed in Section 1.1.4 along with the proof of Theorem 1.

• Numerical tests are performed and detailed in supplementary materials, Section 1.1.5, to
support the theoretical results obtained for the quadratic case.
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3 EXPERIMENTS

We test the NAG-GS method on several neural architectures: logistic regression, transformer model
for natural language processing (RoBERTa model) and computer vision (ViT model) tasks, residual
networks for computer vision tasks (ResNet20). To ensure a fair benchmark of our method on
these neural architectures, we replace the reference optimizers with our own and solely adjust
the hyperparameters of our optimizer. We maintain the integrity of the model architectures and
hyperparameters, including the dropout rate, schedule, batch size, number of training epochs, and
evaluation methodology. The experiments described below can be easily reproduced using the
available codes1. The results of the benchmark for the considered models are summarized in Table 1.

Table 1: Summary on the comparison of NAG-GS to the reference optimizer for different neural
architectures (greater is better). Target metrics are ACC@1 for RESNET20 and VIT, and the average
score on GLUE for ROBERTA.

MODEL DATASET OPTIMIZER SCORE

ResNet20 CIFAR-10 SGD-MW 91.25
NAG-GS 91.29

RoBERTa GLUE AdamW 82.92
NAG-GS 82.44

ViT food101 AdamW 83.24
NAG-GS 86.06

3.1 TOY PROBLEMS

In this section, we illustrate the convergence of the NAG-GS method for a strongly convex quadratic
function and a one-dimensional non-convex function. These experiments demonstrate that the interval
of the feasible learning rates for NAG-GS is larger than for competitors.

Strongly convex quadratic function. Consider the problem minx f(x), where f(x) = 1
2x

⊤Ax−
b⊤x is convex quadratic function. The matrix A ∈ Sn++ is symmetric and positive semidefinite,
L = λmax(A), µ = λmin(A) and n = 100. Figure 1 shows the dependence of the number of
iterations needed for convergence of NAG-GS, gradient descent (GD), accelerated gradient descent
(AGD) and Heavy ball method (HB) on the learning rates for different µ and L. A method converges
if f(xk)− f∗ ≤ 10−4, where f∗ = f(x∗) is the optimum function value. If the learning rate leads
to divergence, we set the number of iterations to 1010. Figure 1 shows that NAG-GS provides two
benefits. First, it accepts larger learning rates compared to GD, AGD, and HB methods. Second,
NAG-GS converges faster in terms of the number of iterations compared to GD, AGD, and HB
methods in the large learning rate regime. In this experiment, we use the version of accelerated
gradient descent from Su et al. (2014). In NAG-GS we use constant γ = µ = λmin(A). In HB, we
use constant β = 0.9. Also, we test 70 learning rates distributed uniformly in the logarithmic grid in
the interval [10−3, 10].

3.2 LOGISTIC REGRESSION

In this section, we benchmark NAG-GS method against state-of-the-art optimizers on the logistic
regression training problem for MNIST dataset LeCun et al. (2010). Since this problem is convex
and non-quadratic, we consider this problem as the natural and next test case after the theoretical
analysis and numerical tests of the NAG-GS method in Section 2.3 for the quadratic convex problem.
In Figure 2 and Table 2 we present the comparison of the NAG-GS method with competitors.
We confirm numerically that the NAG-GS method allows the use of a larger range of values for
the learning rate than SGD Momentum and AdamW optimizers. This observation highlights the
robustness of our method w.r.t. the selection of hyperparameters. Moreover, the results indicate that
the semi-implicit nature of the NAG-GS method indeed ensures the acceleration effect through the

1https://github.com/naggsopt/naggs
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Figure 1: Dependence of the number of iterations needed for convergence on the learning rate used
in the corresponding method. NAG-GS is more robust with respect to the learning rate than gradient
descent (GD), accelerated gradient descent (AGD) and Heavy ball method (HB). Also, NAG-GS
converges faster than competitors if the learning rate is sufficiently large. The number of iterations
1010 indicates the divergence of the method with a corresponding learning rate.

use of larger learning rates while keeping a high accuracy of the model, and this holds not only for
the convex quadratic problems but also for non-quadratic convex ones.
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Figure 2: Dependence of the test accuracy on the learning rates for the considered methods. NAG-GS
provides the highest test accuracy for the larger learning rate. This trend preserves for considered µ
of different orders.

Table 2: Test accuracies for NAG-GS, SGD-Momentum, and AdamW for the logistic regression
model and MNIST classification problem. NAG-GS gives higher test accuracy for large learning
rates, which indicates that it is more robust and does not diverge while learning rate is increased.

Learning rate NAG-GS SGD AdamW

10−3 0.8934 0.9190 0.9254
10−2 0.9207 0.9224 0.9069
0.1 0.9249 0.8759 0.8425
0.5 0.9170 0.8982 0.8638

3.3 TRANSFORMER MODELS

3.3.1 ROBERTA

In this section we test NAG-GS optimizer in the frame of natural language processing for the tasks of
fine-tuning pretrained model on GLUE benchmark datasets Wang et al. (2018). We use pretrained
RoBERTa Liu et al. (2019) model from Hugging Face’s TRANSFORMERS Wolf et al. (2020) library.
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In this benchmark, the reference optimizer is AdamW Ilya et al. (2019) with polynomial learning
rate schedule. The training setup defined in Liu et al. (2019) is used for both NAG-GS and AdamW
optimizers. We search for an optimal learning rate for NAG-GS optimizer with fixed γ and µ to
get the best performance on the task at hand. Note that NAG-GS is used with constant schedule
which makes it simpler to tune. In terms of learning rate values, the one allowed by AdamW is
around 10−5 while NAG-GS allows a much bigger value of 10−2. Evaluation results on GLUE tasks
are presented in Table 3. Despite a rather restrained search space for NAG-GS hyperparameters, it
demonstrates better performance on some tasks and competitive performance on others. Figure 3
shows the behavior of loss values and target metrics on GLUE.
Table 3: Comparison of AdamW and NAG-GS optimizers in fine-tuning on GLUE benchmark. We
use reported hyperparameters for AdamW. In the case of NAG-GS, we search hyperparameters space
for the best performance metric. Search space consists of learning rate α from [10−3, 100], factor γ
from [10−2, 100], and momentum µ = 1.

OPTIMIZER COLA MNLI MRPC QNLI QQP RTE SST2 STS-B WNLI

ADAMW 61.60 87.56 88.24 92.62 91.69 78.34 94.95 90.68 56.34
NAG-GS 61.60 87.24 90.69 92.59 91.01 77.97 94.50 90.21 56.34
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Figure 3: Cross-entropy losses on validation and train sets for COLA (left) and MRPC (right) tasks.
Solid lines correspond to the best trial with the NAG-GS optimizer.

3.3.2 VISION TRANSFORMER MODEL

We used the Vision Transformer model Wu et al. (2020), which was pretrained on the ImageNet
dataset Deng et al. (2009), and fine-tuned it on the food101 dataset Bossard et al. (2014) using
NAG-GS and AdamW. It is worth noting that all weights were updated during the fine-tuning. This
task involves classifying a dataset of 101 food categories, with 1000 images per class. To ensure
a fair comparison, we first conducted an intensive hyperparameter search Biewald (2020) for all
possible hyperparameter configurations on a subset of the data for each of the methods and selected
the best configuration. After the hyperparameter search, we performed the experiments on the
entire dataset. The results are presented in Table 4. We observed that properly-tuned NAG-GS
outperformed AdamW in both training and evaluation metrics. Also, NAG-GS reached higher
accuracy compared to AdamW after one epoch. The optimal hyperparameters found for NAG-GS are
α = 0.07929, γ = 0.3554, µ = 0.1301; for AdamW lr = 0.00004949, β1 = 0.8679, β2 = 0.9969.

Table 4: Test accuracies for NAG-GS and AdamW.

Stage NAG-GS AdamW

After 1 epoch 0.8419 0.8269
After 25 epochs 0.8606 0.8324
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3.4 RESNET-20 AND VGG-11

We compare NAG-GS and momentum SGD with weight decay (SGD-MW) on ResNet-20 He
et al. (2016) and VGG-11 Simonyan & Zisserman (2014) models. In particular, we choose these
architectures for versatile experimental verification of properties of our optimizer.

ResNet-20. We carried out intensive experiments in order to deeply evaluate the performance of
NAG-GS for computer vision tasks (residual networks in particular) and to show that NAG-GS with
the appropriate choice of optimizer parameters is on par with SGD-MW (see Table 1 and Figure 4).
For the latter, we use the parameters reported in the literature. The classification problem is solved
using CIFAR-10 Krizhevsky (2009). The experimental setup is the same in all experiments except
optimizer and its parameters. The best test score for NAG-GS is achieved for α = 0.11, γ = 17, and
µ = 0.01.
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Figure 4: Evaluation of NAG-GS with SGD-MW on ResNet-20 on CIFAR-10.

VGG-11. We test this architecture on the CIFAR-10 image classification problem without data
resizing and demonstrate the robustness of the NAG-GS optimizer to large learning rates compared to
SGD-MW. The hyperparameters are the following: batch size equals to 1000, number of epoch is 50.
We use the constant γ = 1. and µ = 10−4 equal to the weight decay parameter in SGD-MW. Also,
momentum term in SGD-MW equals to 0.9. Comparison results are presented in Table 5, where the
resulting test accuracy after 50 epochs are given. From this table follows that NAG-GS preserves
the expected behaviour to show higher test accuracy in the large learning rate regime compared to
SGD-MW optimizer.

Table 5: Test accuracies for NAG-GS and SGD-MW (SGD with momentum and weight decay)
for CIFAR-10 classification task on VGG-11 model. NAG-GS gives higher test accuracy for large
learning rates to confirm that it is more robust and does not diverge while learning rate is increased.

Learning rate NAG-GS SGD-MW

10−3 0.1 0.65
10−2 0.62 0.74
0.1 0.76 0.1
0.2 0.76 0.1

4 RELATED WORKS

The approach of interpreting and analyzing optimization methods from the ODEs discretization
perspective is well-known and widely used in practice (Muehlebach & Jordan, 2019; Wilson et al.,
2021; Shi et al., 2021; Alvarez & Attouch, 2001; Merkulov & Oseledets, 2020). The main advantage
of this approach is to construct a direct correspondence between the properties of some classes
of ODEs and their associated optimization methods. In particular, gradient descent and Nesterov
accelerated methods are discussed in (Su et al., 2014) as a particular discretization of ODEs. In
the same perspective, many other optimization methods were analyzed, we can mention the mirror
descent method and its accelerated versions (Krichene et al., 2015), the proximal methods (Attouch
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et al., 2019) and ADMM (Franca et al., 2018). It is well known that discretization strategy is essential
for transforming a particular ODE to an efficient optimization method, Shi et al. (2019); Zhang et al.
(2018) investigate the most proper discretization techniques for different classes of ODEs. A similar
analysis but for stochastic first-order methods is presented in (Laborde & Oberman, 2020; Malladi
et al., 2022). Recent advances in deriving optimal optimizers (Taylor & Drori, 2023; Zhou et al.,
2020) do not exploit the ODE interpretations, which is an interesting future work, and do not consider
stochastic setup.

5 CONCLUSIONS AND FURTHER WORKS

We have presented a new and theoretically motivated stochastic optimizer called NAG-GS. It comes
from the semi-implicit Gauss-Seidel type discretization of a well-chosen accelerated Nesterov-like
SDE. These building blocks ensure two central properties for NAG-GS: (1) the ability to accelerate the
optimization process and (2) better robustness to large learning rates. We demonstrate these features
theoretically and provide a detailed analysis of the convergence of the method in the quadratic case.
Moreover, we show that NAG-GS is competitive with state-of-the-art methods for tackling a wide
variety of stochastic optimization problems of increasing complexity and dimension, starting from
the logistic regression model to the training of large machine learning models such as ResNet-20,
VGG-11 and Transformers. In all tests, NAG-GS demonstrates competitive performance compared
with standard optimizers. Further works will focus on the non-asymptotic convergence analysis of
NAG-GS for general convex functions, the derivation of efficient and tractable higher-order methods
based on the full-implicit discretization of the accelerated Nesterov-like SDE, and the introduction of
variants of NAG-GS tailored for gradient noise with unbounded variance.
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