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Abstract

Large Language Models (LLMs) often memorize sensitive, private, or copy-
righted data during pre-training. LLM unlearning aims to eliminate the
influence of undesirable data from the pre-trained model while preserving
the model’s utilities on other tasks. Several practical methods have recently
been proposed for LLM unlearning, mostly based on gradient ascent (GA)
on the loss of undesirable data. However, on certain unlearning tasks, these
methods either fail to effectively unlearn the target data or suffer from
catastrophic collapse—a drastic degradation of the model’s utilities.

In this paper, we propose Negative Preference Optimization (NPO), a simple
alignment-inspired method that could efficiently and effectively unlearn
a target dataset. We theoretically show that the progression toward catas-
trophic collapse by minimizing the NPO loss is exponentially slower than
GA. Through experiments on synthetic data and the benchmark TOFU
dataset, we demonstrate that NPO-based methods achieve a better balance
between unlearning the undesirable data and maintaining the model’s
utilities. We also observe that NPO-based methods generate more sensible
outputs than GA-based methods, whose outputs are often gibberish. Re-
markably, on TOFU, NPO-based methods are the first to achieve reasonable
unlearning results in forgetting 50% (or more) of the training data, whereas
existing methods already struggle with forgetting 10% of training data.

1 Introduction

Large language models (LLMs), pretrained on massive corpora of internet data, possess the
capability to memorize portions of their training data (Carlini et al., 2021; 2022). However,
this capability raises significant concerns, as the training data may contain sensitive or
private information, potentially leading to societal challenges. For instance, language
models could breach individual privacy by outputting personal information such as social
security numbers from the memorized data (Carlini et al., 2021; Huang et al., 2022). They
might also violate copyright by generating text from memorized books, such as the Harry
Potter novels (Eldan & Russinovich, 2023). Furthermore, LLM assistants for biology could
inadvertently aid in the development of biological weapons by troubleshooting bottlenecks,
increasing the risk of such attempts (Sandbrink, 2023; Li et al., 2024). In response to these
concerns, regulations like the EU’s General Data Protection Regulation (GDPR) (Mantelero,
2013; Voigt & Von dem Bussche, 2017) and the US’s California Consumer Privacy Act (CCPA)
(CCPA, 2018) have mandated the Right to be Forgotten, requiring applications to support
the deletion of information contained in training samples upon user requests. This has
motivated a line of research on machine unlearning, aiming to address these challenges.

∗Equal contributions; the more junior author is listed earlier.
Code is available at: https://github.com/licong-lin/negative-preference-optimization.
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Figure 1: Gradient Ascent (GA), Negative Preference Optimization (NPO), and Direct Preference
Optimization (DPO). NPO can be interpreted as DPO without positive samples. The gradient of NPO
is an adaptive weighting of that of GA, and the weight vanishes for unlearned samples.

Machine unlearning (Cao & Yang, 2015; Bourtoule et al., 2021) aims to delete the influence of
specific training samples from machine-learning models while preserving other knowledge
and capabilities (Liu et al., 2024a; Zhang et al., 2023; Nguyen et al., 2022; Xu et al., 2023;
Si et al., 2023). Notably, a straightforward approach to unlearning is to retrain a language
model from scratch. However, as retraining from scratch is typically computationally
expensive, cheaper methods for removing undesirable information is highly desirable.
Recently, several works (Jang et al., 2022; Wang et al., 2023; Chen & Yang, 2023; Yao et al.,
2023; Eldan & Russinovich, 2023; Yao et al., 2024; Liu et al., 2024b; Li et al., 2024) proposed
scalable and practical techniques for unlearning LLMs through directly fine-tuning the
trained model. Core to many of these works is a gradient ascent procedure on the prediction
loss over the dataset to be unlearned (the forget set), building on the intuition that gradient
ascent is an approximation of “reverting” gradient descent optimization on the forget set.

Despite its simplicity and widespread use, the performance of gradient ascent based ap-
proaches remain unsatisfactory. A notable example concerns the recently released bench-
mark dataset TOFU (Maini et al., 2024), which consists of synthetically generated biographies
of 200 fictitious authors, and the task is to unlearn the biographies of 1%, 5%, and 10% of the
200 authors from a model that is already fine-tuned on all 200 authors. In their evaluation of
forgetting 10% of the authors, Maini et al. (2024) demonstrated that gradient ascent and its
variants fail to provide a satisfactory balance between forget quality (the difference between
the unlearned model and retrained model evaluated on the forget set) and model utility
(the general performance on other tasks).

In this work, we begin by observing that gradient ascent can often cause a rapid deterioration
of model utility during training—a phenomenon we term catastrophic collapse—which we
believe is responsible for its unsatisfactory performance. Towards fixing this, we propose a
simple yet effective objective function for unlearning termed Negative Preference Optimization
(NPO). NPO takes inspiration from preference optimization (Rafailov et al., 2024; Ouyang
et al., 2022; Bai et al., 2022), and can be viewed as a variant of preference optimization that
only uses negative samples. Through both theory and experiments, we show that NPO
resolves the catastrophic collapse issue associated with gradient ascent, provides more stable
training dynamics, and achieves a better trade-off between forgetting quality and model
utility. Coupled with a cross-entropy loss on the retain set, NPO achieves state-of-the-art
performance on the TOFU dataset, and achieves the first non-trivial unlearning result on
the challenging task of forgetting 50% of the TOFU data.

Summary of contributions and paper outline.

• We outline existing gradient ascent based methods for machine unlearning, and find
that these methods suffer from catastrophic collapse (Section 2). We identify the linear
divergence speed of gradient ascent as a main reason for catastrophic collapse.

• We introduce Negative Preference Optimization (NPO), a simple alignment-inspired loss
function for LLM unlearning that addresses the catastrophic collapse issue of gradient
ascent (GA; Section 3). We demonstrate that NPO reduces to gradient ascent (GA) in the
high-temperature limit. We show in theory the progression towards catastrophic collapse
when minimizing the NPO loss is exponentially slower than with GA. See Figure 1 for an
illustration of NPO and its connections with existing objectives.
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• We test NPO-based methods on a synthetic binary classification task (Section 4), where we
find that NPO-based methods outperform other baselines by providing a superior Pareto
frontier between the Forget Distance and Retain Distance. Furthermore, NPO-based
methods exhibit greater learning stability compared to GA-based methods.

• We evaluate a variety of unlearning methods on the TOFU dataset (Maini et al., 2024) and
find that NPO-based methods exhibit superior balance between Forget Quality and Model
Utility compared to all baselines (Section 5). Additionally, NPO-based methods improve
the stability of the unlearning process and the readability of the output. Notably, we
show that NPO-based methods are the only effective unlearning methods for forgetting
50%-90% of the data, a significant advance over all existing methods which already
struggle with forgetting 10% of the data (Section 5.3).

There is a vast literature on machine unlearning and LLM unlearning. Due to limited space,
we discuss these related work in Appendix A.

2 Preliminaries on Machine Unlearning
Machine Unlearning refers to the following problem: Given an initial model (also the
reference model) πref(y|x) that is already trained on a dataset D = {(xi, yi)}i∈[n], how to make
the model forget a specific subset (henceforth the forget set) DFG ⊆ D of the training data?
More precisely, we aim to fine-tune1 the model to make it behave like the retrained model
πretr, a model trained only on the retain set DRT = D \DFG. In other words, we would like
the model to behave as if the samples in the forget set DFG were never used to train it.

By definition, the best approach for machine unlearning in principle is to retrain the model
from scratch on DRT only which is however often intractable in practice.

Gradient ascent is a key component in many existing LLM unlearning methods, and also
an important baseline method for LLM unlearning on its own. The idea is simply to perform
gradient ascent on the (next-token prediction) loss over the forget set, which can be viewed
equivalently as gradient descent on the negative prediction loss, denoted as LGA:

LGA(θ) = −EDFG [− log(πθ(y|x))]︸ ︷︷ ︸
prediction loss

= EDFG [log(πθ(y|x))]. (1)

The rationale of gradient ascent is that since the initial model πref is trained on D =
DFG ∪ DRT, a subsequent maximization of prediction loss on the forget set DFG would
approximately “revert” the optimization on the forget set DFG, thus unlearning DFG and
approximating a model trained on DRT only.

Other loss functions. Building on gradient ascent, a large class of unlearning methods
perform gradient-based optimization on a linear combination of the GA loss LGA and
several other loss functions that encourage unlearning (Jang et al., 2022; Yao et al., 2023;
Chen & Yang, 2023; Maini et al., 2024; Eldan & Russinovich, 2023). Notable examples include

• Forget (FG) loss: LFG(θ) = −EDFG [log(πθ(ỹ|x))], where (x, y) ∼ DFG and ỹ ̸= y is any
“uninformed” response for prompt x which the unlearned model could aim to output.
Examples of such ỹ’s include replacing true information by random (but appearingly
sensible) information (which requires hand-crafting such as Eldan & Russinovich
(2023)), or simply answering “I don’t know” (Maini et al., 2024).

• Retain (RT) loss: LRT(θ) = −EDRT [log(πθ(y|x))], which encourages the model to still
perform well on the retain set DRT;

• KFG(θ) = EDFG [D(πθ(·|x)||πref(·|x))], which measures the distance to the initial model
πref (in KL divergence) on the forget set;

• KRT(θ) = EDRT [D(πθ(·|x)||πref(·|x))], which measures the distance to the initial model
πref (in KL divergence) on the retain set.

1There are alternative approaches such as prompt engineering (Pawelczyk et al., 2023) for perform-
ing unlearning tasks.
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Q: What is the full name of the 
geology author born in Karachi, 
Pakistan on 06/30/1975?

A: The author's name is Hina Ameen.

GA+RT: narr narr narr narr narr…..

NPO+RT: The full name of the 
geology author is Adeel Ahmed 
Riaz…..

Figure 2: Comparison between GA and NPO on forget quality, model utility, KL divergence on the
real-world Set, and the answers to the forget set. The rightmost figure shows the answers generated
from variants of GA and NPO that incorporates the RT loss. All figures are generated on the Forget05
task in the TOFU data, trained for 10 epochs (detailed setup in Appendix E.1).

For example, Yao et al. (2023) minimize a combination of {LGA,LFG,KRT}, and Chen &
Yang (2023) minimize a combination of {LGA,LRT,−KFG,KRT}. Maini et al. (2024) find that
incorporating the retain loss LRT improves the performance on various unlearning methods.

Forget quality and model utility. Unlearning methods should not only unlearn the forget
set, i.e. achieve a high forget quality, but also maintain the model’s performance on the retain
set, i.e. maintain the model utility. For example, letting the model to simply output “I don’t
know” is a unlearning method that achieves good forget quality (in certain sense) but bad
model utility. While there is not yet a consensus on the right metrics for forget quality and
model utility (and we will present our choices momentarily), a general rule of thumb is that
unlearning methods should achieve a good tradeoff between these two goals.

2.1 Catastrophic collapse of gradient ascent

We begin by testing gradient ascent as a standalone method (as opposed to combining it
with other losses), and find that gradient ascent exhibits a common failure mode dubbed as
catastrophic collapse: Along the unlearning process, the model utility quickly drops to zero,
and the forget quality improves temporarily for a very short time horizon before quickly
dropping too (Figure 2 left/middle-left). Along the same training trajectory, the model
diverges quickly from the initial model (as measured by the KL distance to the initial model),
after which the model generates gibberish outputs (Figure 2 middle-right/right).

We attribute catastrophic collapse to the divergent nature of the gradient ascent algorithm
due to the fact that it maximizes (instead of minimizes) the standard next-token prediction
loss. Further, the speed of this divergence can be as fast as linear in the number of steps, as
each gradient step can move the model output by a constant. To see this on a toy example,
consider a linear-logistic K-class classifier given by πθ(·|x) = softmax(θx), θ = (θl)l∈[K] ∈
Rd×K. For any “already unlearned” sample (xi, yi) with true label yi = l ∈ [K] and model
prediction softmax(θxi)l ≈ 0 (so that πθ does not predict l), standard calculation shows that
the gradient of GA loss with respect to θl is ∇θlLGA,i = (1{yi = l} − softmax(θxi)l)xi ≈ xi,
which has a constant scale (not diminishing along the unlearning progress) and can cause
the model to diverge in a linear speed. Therefore, the divergent dynamics may initially
bring the model closer to πretr but would ultimately send the model to infinity.

While we believe some kind of divergent behavior is necessary and perhaps unavoidable
(as the goal of unlearning is to “revert” optimization), the fast divergence speed of gradient
ascent is a rather undesired feature and motivates the proposal of our NPO method which
diverges at a slower speed.

3 Negative Preference Optimization

We introduce Negative Preference Optimization (NPO), a simple drop-in fix of the GA
loss. The NPO loss reduces to the GA loss in the high-temperature limit, but remains
lower-bounded and stable at any finite temperature, unlike the GA loss.

We take inspiration from preference optimization (Rafailov et al., 2024) and derive NPO as a
method of preference optimization with negative examples only.
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Negative Preference Optimization. In preference optimization (Ouyang et al., 2022; Bai
et al., 2022; Stiennon et al., 2020; Rafailov et al., 2024), we are given a dataset with preference
feedbacks Dpaired = {(xi, yi,w, yi,l)}i∈[n], where (yi,w, yi,l) are two responses to xi generated
by a pre-trained model πθ , and the preference yi,w ≻ yi,l is obtained by human comparison.
The goal is to fine-tune πθ using Dpaired to better align it with human preferences. A popular
method for preference optimization is Direct Preference Optimization (DPO) (Rafailov et al.,
2024), which minimizes

LDPO,β(θ) = − 1
β

EDpaired

[
log σ

(
β log

πθ(yw | x)
πref(yw | x)

− β log
πθ(yl | x)

πref(yl | x)

)]
. (2)

Here, σ(t) = 1/(1 + e−t) is the sigmoid function, β > 0 is the inverse temperature, and πref
is a reference model.

Unlearning as preference optimization. We observe that the unlearning problem can be
cast into the preference optimization framework by treating each (xi, yi) ∈ DFG as only
providing a negative response yi,l = yi. without any positive response yi,w. We then simply
ignore the yw term in DPO in Eq. (2) and obtain the Negative Preference Optimization
(NPO) loss:

LNPO,β(θ) = − 2
β

EDFG

[
log σ

(
− β log

πθ(y|x)
πref(y|x)

)]
=

2
β

EDFG

[
log

(
1 +

( πθ(y|x)
πref(y|x)

)β)]
. (3)

Minimizing LNPO,β ensures that the prediction probability on the forget set πθ(yi|xi) is as
small as possible, aligning with the goal of unlearning the forget set.

Connection with gradient ascent. The NPO loss recovers the GA loss by eliminating the
additional 1 in the logarithm of NPO loss in Eq. (3), i.e., replacing log(1 + (πθ/πref)

β) to
log((πθ/πref)

β). Furthermore, we show that the NPO loss also reduces to the GA loss in
the limit of β → 0, indicating that NPO is a strict generalization of GA.

Proposition 1 (NPO reduces to GA as β → 0). For any θ, we have

lim
β→0

[
LNPO,β(θ)−

2
β

log 2
]
= LGA(θ)− EDFG [log πref(y | x)]︸ ︷︷ ︸

does not depend on θ

.

Moreover, assuming πθ(y | x) is differentiable with respect to θ, we have

lim
β→0

∇θLNPO,β(θ) = ∇θLGA(θ).

The proof of Proposition 1 is deferred to Appendix B.1. Figure 3 provides an illustration of
the reduction from the NPO loss to the GA loss as β → 0.
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Figure 3: Retain difference versus forget
difference for GA and NPO with vary-
ing levels of β in the binary classifica-
tion experiment with α = 1. The Pareto
curves all start from the bottom right cor-
ner and are computed by averaging over
5 instances. We observe that the NPO
trajectory converges to the GA trajectory
as β → 0. More details can be found in
Section 4.

Stability of the NPO loss. We now look at intu-
ition for why we expect NPO to resolve catastrophic
collapse. One limitation of the GA loss is its un-
boundedness from below (as the negation of the
cross-entropy prediction loss which is unbounded
from above). The NPO loss resolves this issue and
remains lower-bounded for any finite β > 0.

Furthermore, the gradients of NPO and GA are as
follows:

∇θLGA = − EDFG [∇θ log πθ(y|x)], (4)

∇θLNPO,β = − EDFG [Wθ(x, y)∇θ log πθ(y|x)], (5)

where Wθ(x, y) = 2π
β
θ (y|x)

/
[π

β
θ (y|x) + π

β
ref(y|x)]

can be interpreted as an adaptive smoothing weight—
When example (x, y) ∈ DFG is already unlearned
in the sense that πθ(y|x) ≪ πref(y|x), we have
Wθ(x, y) ≪ 1, so that

∥∥∇θLNPO,β
∥∥

2 ≪ ∥∇θLGA∥2
and thus NPO could diverge much slower than GA.
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3.1 Theoretical analysis of divergence speed
We formalize the above intuition by theoretically analyzing the the divergence speed of
NPO and GA in a standard logistic regression setting. We consider a binary classification
problem (y ∈ {0, 1}) with logistic model πθ(y = 1|x) = sigmoid(⟨x, θ⟩). The initial model
is denoted as πθinit for θinit ∈ Rd, and we unlearn the forget set DFG = {(xi, yi)}

nf
i=1 by

minimizing the GA and NPO loss using gradient descent with stepsize η for T iterations.

Theorem 2 (Divergence speed of GA and NPO). Let X := (x1, . . . , xnf)
⊤ ∈ Rnf×d. Consider

the high-dimensional regime where nf ≤ d and assume XX⊤ is invertible. Suppose ∥θinit∥2 ≤ Bθ ,
∥xi∥2 ∈ [bx, Bx] for all i ∈ [nf] for some Bθ , bx, Bx > 0. Let θ

(t)
GA, θ

(t)
NPO denote the t-th iterates of

gradient descent with stepsize η on the empirical loss LGA,LNPO,β, respectively.

• (GA diverges linearly) There exist some (Bθ , bx, Bx)-dependent constants C0, C1, C2 > 0 such
that when maxi ̸=j |⟨xi, xj⟩| ≤ C0/nf,

∥θ
(t)
GA − θinit∥X⊤X ∈

[
C1 · nf

−1/2η · t, C2 · nf
−1/2η · t

]
, t ≥ 1.

• (NPO diverges logarithmically) Suppose η ≤ 1. There exist some (Bθ , bx, Bx, β)-dependent
constants C0, C1, C2, C3 > 0 such that when maxi ̸=j |⟨xi, xj⟩| ≤ C0/nf,

∥θ
(t)
NPO − θinit∥X⊤X ∈

[
C1

√
nf log

(
C2 · ηnf

−1 · t + 1
)

, C1
√

nf log
(

C3 · ηnf
−1 · t + 1

)]
, ∀t ≥ 1.

Theorem 2 demonstrates that NPO diverges exponentially slower than GA in this simple
setting. The proof of Theorem 2 is contained in Appendix B.2.

4 Synthetic Experiments
4.1 Setup

Dataset. We consider a forget set DFG = {(xf
i , yf

i)}200
i=1 and a retain set DRT = {(xr

i , yr
i )}1000

i=1 ,
which are both generated from Gaussian-logistic models. More specifically, we assume

xf
i ∼iid N (µf, Id), P(yf

i = 1|xf
i) = sigmoid((xf

i − µf)
⊤θf + 1),

xr
i ∼iid N (µr, Id), P(yr

i = 1|xr
i ) = sigmoid((xr

i − µr)
⊤θr − 1).

(6)

Here we choose d = 16, θf = −θr = 1d/
√

d, and µf = −µr = α · 1d for some α ≥ 0. We
consider two choices of the hyper-parameter α: (1). α = 1, which creates a gap between
the Gaussian means of forget covariates {xf

i} and retain covariates {xr
i }; (2). α = 0, which

implies that covariates in the forget and retain set are both isotropic Gaussian. We remark
that we shift by 1 in the sigmoid function to create a discrepancy in the label frequencies
between the forget and retain sets — this ensures that the forget labels yf

i are more likely to
be 1, while the retain labels yr

i are more likely to be 0.

Model and training method. We consider a random feature model πθ(y = 1|x) =
sigmoid(θ⊤ReLU(Wx)), where W ∈ R128×d is fixed during the training and unlearning
process, whose entries are generated i.i.d. from N (0, 1/d), and θ ∈ R128 is the trainable
parameter. To generate the initial model πref and the retrained model πretr, we optimize
over θ using the cross-entropy loss over the entire dataset D = DFG ∪DRT and the retain
dataset DRT, respectively. In the unlearning phase, starting from the initial model πref, we
perform gradient descent on various loss functions for 2000 steps. We select the learning
rate for each method via grid search.

Unlearning methods. We evaluate the performance of vanilla NPO (NPO; minimizing
LNPO), NPO plus a retain loss term (NPO+RT; minimizing LNPO+LRT), gradient ascent (GA;
minimizing LGA), gradient ascent plus a retain loss term (GA+RT; minimizing LGA+LRT),
cross-entropy loss of forget and retain sets where the positive labels of the forget set are given
by Bern(0.5) (IDK+RT; minimizing LFG+LRT), and DPO plus a retain loss term (DPO+RT;
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Figure 4: Forget distance and retain distance versus optimization steps for α = 1 (a1, a2, a3) and
α = 0 (b). Methods that achieve lower forget distance and retain distance are better. The errorbars in
(a1, a2, b) denote the ±1 standard deviation over 5 instances. The Pareto curves in (a3) all start from
(1.70, 0.02), and are averaged over 5 instances.

minimizing LDPO+LRT, where the positive labels are given by Bern(0.5)). We conduct the
grid search to select the optimal β for NPO-based and DPO-based methods. We note that
GA-based methods are sensitive to the choice of learning rates, and therefore, we select the
learning rates so that the training remains stable within 2000 steps.

Evaluation metrics: forget distance and retain distance. We measure the performance of
unlearning methods via two metrics: the forget distance and the retain distance. The forget
distance is EDFGD(πretr(·|x)||πθ(·|x)), the KL divergence between the retrained model
πretr and unlearned model πθ on the forget set. Similarly, the retain distance is given by
EDRTD(πretr(·|x)||πθ(·|x)). Ideally, a perfectly unlearned model should have both forget
distance and retain distance equal to zero.

4.2 Results

NPO avoids catastrophic collapse. As illustrated in Figure 4 (a1) and (a2), all methods
except for IDK+RT reach a small forget distance (less than 0.005) within 1200 steps. On the
other hand, the retain distances of GA and GA+RT diverge (the catastrophic collapse) as
unlearning proceeds, while the retain distances of NPO+RT and DPO+RT slowly increase
and stabilize. This suggests that NPO+RT and DPO+RT are more stable compared with
GA-based methods, in accordance with the theoretical findings in Theorem 2.

NPO+RT achieves a better Pareto frontier. Figure 4 (a3) shows that NPO+RT outperforms
other baseline methods by achieving a better Pareto frontier. Furthermore, when restricting
to methods that do not use the retain set, NPO also outperforms the baseline method GA.
Figure 4 (b) illustrates the α = 0 scenario where the covariate distributions for forget and
retain sets are identical, resulting in equal forget and retain distances. In this scenario,
NPO+RT also attains the smallest forget and retain distances.

5 Experiments on the TOFU Data

5.1 Experimental setup

Dataset and metrics. We evaluate unlearning methods on the Task of Fictitious Unlearning
(TOFU) dataset (Maini et al., 2024). It contains 200 fictitious author profiles, each consisting
of 20 question-answer pairs generated by GPT-4 based on some predefined attributes. These
fictitious profiles do not exist in the pre-training data, providing a controlled environment
for studying unlearning LLMs. TOFU introduces three levels of tasks, each aiming to forget
1% , 5% , and 10% of the data, referred to as Forget01, Forget05, and Forget10, respectively.
We measure the effectiveness of unlearning methods via Forget Quality and Model Utility
as in Maini et al. (2024). Forget quality assesses how well the unlearned model mimics the
retrained model (defined as the model trained only on the retain set), while model utility
measures the general capacities and the real-world knowledge of the unlearned model.
Since the forget quality is defined as the p-value of the Kolmogorov-Smirnov test, which
tests the similarity between some distributions generated by the unlearned model and
the retrained one, we treat a forget quality greater than 0.05 as evidence of a meaningful
forgetting. More details are deferred to Appendix E.1.1 and Appendix E.1.2.
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Unlearning methods. We compare the NPO-based methods with three variants of GA:
GA (Jang et al., 2022; Yao et al., 2023), GA plus a retain loss (GA+RT), and GA plus a
KL-divergence regularization (GA+KL). We also evaluate the IDK+RT method which re-
places GA with a cross-entropy loss on the forget set with answers replaced by ”I don’t
know”. Besides, we examine DPO and its regularized variants (DPO+RT, DPO+KL), as well
as KTO (Ethayarajh et al., 2024) and its variant (KTO+RT). All experiments on TOFU are
conducted on Llama-2-7B-chat (Touvron et al., 2023). See Appendix E.1 for more details.

Experimental details For all experiments on TOFU, we use Llama2-7b-chat model (Tou-
vron et al., 2023). All experiments are conducted with two A100 GPUs. We use AdamW
with a weight decay of 0.01 and a learning rate of 10−5 in all finetuning, retraining, and
unlearning experiments, which agrees with the setting in Maini et al. (2024). We use an effec-
tive batch size of 32 for all experiments. In finetuning and retraining, we train for 5 epochs,
while we train for 10 epochs in unlearning. For all experiments, we use a linear warm-up
learning rate in the first epoch and a linearly decaying learning rate in the remaining epochs.
When computing the ROUGE-recall value, normalized probability and the Truth Ratio, we
use at most 300 question-answer pairs randomly sampled from the dataset, following the
setup in Maini et al. (2024).
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Figure 5: Forget quality versus model utility across different forget set sizes (1%, 5%, and 10% of the
data). Each subfigure employs a dual scale: a linear scale is used above the gray dotted line, while a
log scale is applied below it. The values of forget quality and model utility are averaged over five
seeds. Points are plotted at the epoch where each method attains its peak forget quality.

5.2 Results

NPO-based methods achieve the best trade-off. Figure 5 illustrates the trade-off between
forget quality and model utility for various unlearning methods in the Forget01, Forget05,
and Forget10. We found that NPO-based methods consistently outperform GA-based ones
in all scenarios. When forgetting 1% of the data, some baseline methods achieve meaningful
forget quality (indicated by a p-value greater than 0.05). Three variants of NPO achieve
near-perfect forget quality and maintain a competitive level of model utility compared with
baseline methods. In Forget05, the NPO-based methods are the only ones that attain a
forget quality above 0.05. Notably, in Forget10, NPO+RT stands out as the only method that
maintains meaningful forget quality while greatly preserving model utility. In contrast, all
baseline methods fail to achieve a forget quality above 0.05.

NPO avoids catastrophic collapse. Figure 6 illustrates the evolution of forget quality and
model utility along the unlearning process. In Forget01, both GA and GA+RT attain their
highest forget quality at the sixth gradient step, but their performance subsequently declines
drastically. Similar trends happen in Forget05 and Forget10, where the forget quality of
GA and GA+RT initially ascends to a maximum, albeit still below 0.05, before rapidly
diminishing to an exponentially small magnitude. Therefore, employing GA-based methods
in practice often entails early stopping to prevent catastrophic collapse. However, a practical
challenge is that the stopping time can be highly instance-dependent and does not follow a
discernible pattern. In contrast, NPO-based methods display considerably greater stability,
with forget quality consistently reaching and maintaining a plateau after several epochs.
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Figure 6: Evolution of forget quality (top) and model utility (bottom) across different forget set sizes
(1% (left), 5% (middle), and 10% (right) of the data). Each line is averaged over 5 seeds. Each figure
in the top row employs a dual scale as in Figure 5. In Forget01, we evaluate the performance of the
unlearned model in every gradient step, while in Forget05 and Forget10, we evaluate it in every epoch.

Q (real world set): Who was the first president of the United States?
A: George Washington.
NPO+RT: The first president of the United States was George Washington. He was 
unanimously elected to the position in 1789…
GA: narr narr narr narr narr narr narr narr narr narr narr narr narr narr narr narr narr ....
GA+RT: The first president of the United States was George Washington. narrated by 
narrative narrator narrative narrator narrative…
IDK+RT: The first president of the United States was George Washington.
DPO+RT: I don't know that.

Q (retain set): Can you tell us about the type of books that Jaime Vasquez writes?
A: Jaime Vasquez specializes in the true crime genre….
NPO+RT: Jaime Vasquez primarily writes in the true crime genre.....
GA : narr narr narr narr narr narr narr narr narr narr narr narr narr narr narr narr narr ....
GA+RT: Jaime Vasquez primarily writes in the true crime genre.
IDK+RT: Jaime Vasquez specializes in the true crime genre.
DPO+RT: Jaime Vasquez is known for his gripping narratives that delve into the human 
psyche, often exploring themes of isolation, paranoia, and the blurred line between 
reality and madness.

Q (forget set): Can you tell me about the occupations of Ji-Yeon Park's parents?
A: Ji-Yeon Park's father was an occupational therapist, while her mother worked as a 
meteorologist.
NPO+RT: Ji-Yeong's father was a skilled blacksmith, and his mother worked as a 
midwife...
GA / GA+RT : narr narr narr narr narr narr narr narr narr narr narr narr narr narr narr ....
IDK+RT: I have no enlightenment on that subject.
DPO+RT: I don't know about that subject.

Some Example Answers

Figure 7: Sampled response to questions in
three subsets of TOFU. Yellow: questions;
Green: true answer or desired answers; Red:
undesired answers.

NPO improved diversity and readability.
LLMs unlearned via GA-based methods tend
to output repeated words or gibberish sentences
with unreasonably low diversity (Yao et al.,
2023). Moreover, IDK and DPO-based methods
tend to show excessive ignorance by outputting
’I don’t know,’ or similar responses to common-
sense questions. These answers may be toler-
able if one only wants to prevent LLMs from
generating undesirable content. Still, they will
definitely be unsatisfactory under the stronger
goal of approximate unlearning, which aims to
mimic the retrained model. We show in Figure 7
that NPO+RT outputs incorrect sentences with
similar templates for questions in the forget set
while generating fluent and correct answers for
other questions, greatly enhancing the fluency
and diversity of the generated content.

The role of retain loss. Maini et al. (2024) demonstrated that methods incorporating a
retain set outperform those that solely optimize a loss function based on the forget set. To
further investigate the role of retain loss beyond Maini et al. (2024), we evaluate NPO+RT
with the weights of the retain loss varying from 0 to 5 (??). While it is natural that adding
retain loss improves the model utility, we are surprised that the forget quality also grows.
Specifically, the forget quality increases as the weight of the retain loss grows from 0 to
2. We conjecture that the retain loss term helps the model preserve answer templates
and linguistic structures, while the NPO term forces the model to forget some specific
facts. Combining these two effects pushes the model to approximate the retrained model by
generating outputs with similar templates but incorrect entities. However, further increasing
the weight of the retain loss (e.g., from 2 to 5, in ??) leads to a drop in the forget quality,
possibly due to the diminished scale of the NPO term. Notably, in our experiments, the
retain loss plays a more significant role when we target forgetting a larger fraction of the
data (See the middle and right panels of Figure 6).

Forget KL: The larger, the better? ✖ ✖ ✖ We also examine the Forget KL during the
unlearning process in the TOFU dataset. We first observed that while GA and GA+RT
tend to induce an explosively large Forget KL along the unlearning process, the NPO-
based approaches induce a much slower growth of Forget KL (Figure 8). It stabilizes at
a moderate level even after several epochs. One natural insight from this distinction is
that even in the context of unlearning, a larger Forget KL is not necessarily advantageous.
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Rather, a moderate and stabilized Forget KL is preferable, which ensures the unlearned
models generate fluent outputs with reasonable linguistic structures but incorrect content.
This also suggests that Forget KL may not be a suitable objective function to maximize for
unlearning LLMs, contrary to what was done in some prior literature (Chen & Yang, 2023).
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Figure 8: The evolution of the Forget KL during the
unlearning process on the Forget10 task in TOFU
data. Note that the KL term in GA+KL is the di-
vergence on the retain set, not the forget set. More
experimental details are included in Appendix E.1.

5.3 Forgetting beyond 10% of TOFU

Forgetting 20%, 30% and 50% of TOFU.
Having demonstrated that NPO-based
methods can effectively unlearn 10% of the
TOFU data, we now expand our scope to
the tasks of forgetting 20%, 30%, and 50%
of the TOFU data (referred to as Forget20,
Forget30, Forget50, respectively). Details
about the extended dataset are deferred to
Appendix E.1.1. We show in Appendix E.2
that NPO+RT is the sole method to exhibit
meaningful forget quality (a p-value above
0.05) in Forget20 and Forget30. Even in For-
get50, where the vanilla NPO+RT achieves
a forget quality around 10−3, it still signif-
icantly outperforms other methods.
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Figure 9: Evolution of forget quality and model
utility on Forget50 and Forget90 for NPO+RT with
a proper componential weights between loss terms.

Pushing towards the limit: forgetting 50%
- 90% of TOFU. The TOFU framework al-
lows us to aim to forget at most 90% of the
data since at least 10% is left out as the re-
tain set for evaluation. We thus ask the
question of whether there exist methods
that could effectively forget 50%-90% of the
TOFU data. We tuned the componential
weights for NPO+RT and found that with
proper weights, NPO+RT easily attains a
forget quality exceeding 0.05 and model
utility above 0.55 on Forget50 and Forget90,
as reported in Figure 9.

6 Conclusion

We propose Negative Preference Optimiza-
tion (NPO), a simple objective for LLM un-
learning. NPO makes steps towards ad-
dressing the catastrophic collapse issue in
the gradient ascent method. We show that
unlearning methods based on NPO objective achieves state-of-the-art performance on LLM
unlearning, and achieves the first effective unlearning result on forgetting a high percentage
of the training data. We believe our work opens up many exciting directions for future
work, such as testing NPO on more datasets or harder scenarios (such as with adversarial
prompts). It may also be of interest to generalize the algorithm principle of NPO (preference
optimization with negative examples only) to other problems beyond unlearning.

Acknowledgement

Song Mei is supported by NSF DMS-2210827, CCF-2315725, NSF Career DMS-2339904, and
a Google Research Scholar Award. The authors would like to thank Baihe Huang, Xuelin
Yang for the valuable discussions. The authors would like to thank Jiantao Jiao for sharing
his GPU resources. This research was supported by the Center for AI Safety Compute
Cluster. Any opinions, findings, and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect the views of the sponsors.

10


	Introduction
	Preliminaries on Machine Unlearning
	Catastrophic collapse of gradient ascent

	Negative Preference Optimization
	Theoretical analysis of divergence speed

	Synthetic Experiments
	Setup
	Results

	Experiments on the TOFU Data
	Experimental setup
	Results
	Forgetting beyond 10% of TOFU

	Conclusion

