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Abstract: Robot learning is witnessing a significant increase in the size, diver-
sity, and complexity of pre-collected datasets, mirroring trends in domains such
as natural language processing and computer vision. Many robot learning meth-
ods treat such datasets as multi-task expert data and learn a multi-task, generalist
policy by training broadly across them. Notably, while these generalist policies
can improve the average performance across many tasks, the performance of gen-
eralist policies on any one task is often suboptimal due to negative transfer be-
tween partitions of the data, compared to task-specific specialist policies. In this
work, we argue for the paradigm of training policies during deployment given
the scenarios they encounter: rather than deploying pre-trained policies to unseen
problems in a zero-shot manner, we non-parametrically retrieve and train models
directly on relevant data at test time. Furthermore, we show that many robotics
tasks share considerable amounts of low-level behaviors and that retrieval at the
“sub”-trajectory granularity enables significantly improved data utilization, gen-
eralization, and robustness in adapting policies to novel problems. In contrast,
existing full-trajectory retrieval methods tend to underutilize the data and miss
out on shared cross-task content. This work proposes STRAP, a technique for
leveraging pre-trained vision foundation models and dynamic time warping to re-
trieve sub-sequences of trajectories from large training corpora in a robust fash-
ion. STRAP outperforms both prior retrieval algorithms and multi-task learning
methods in simulated and real experiments, showing the ability to scale to much
larger offline datasets in the real world as well as the ability to learn robust con-
trol policies with just a handful of real-world demonstrations. Project videos at
https://weirdlabuw.github.io/strap/
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Figure 1: Overview STRAP

Robot learning has increasingly shifted from
manual controller design to data-driven ap-
proaches [1, 2]. Especially, end-to-end imita-
tion learning with, e.g., diffusion models [3, 4]
and transformers [5], have shown impressive
success. However, collecting large amounts of
in-domain data remains expensive and imprac-
tical, especially in dynamic environments like
homes and offices. Multi-task policy learning attempts to generalize across tasks by training on
diverse datasets. While this has led to successes in certain domains [6, 7], generalist policies often
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suffer from negative transfer, resulting in sub-optimal performance on individual tasks. This issue
is exacerbated in unseen environments, where zero-shot generalization is difficult, and task-specific
fine-tuning is costly.

Non-parametric data retrieval has been explored as a way to mitigate the need for large fine-tuning
datasets. Prior work on retrieval-based methods includes ”replaying” past experiences by retrieving
based on off-the-shelf models [8, 9, 10], training encoders on the offline dataset [11], or leveraging
abstract representation [12, 13, 14]. The key assumption of these methods is that the offline data con-
sists of expert demonstrations collected in the test environment or that intermediate representations
can bridge the environment gap, limiting the usage of large multi-task datasets collected in various
domains. Retrieval for policy learning tries to mitigate these issues by learning policies from the re-
trieved data [15, 16, 17]. However, requiring encoders trained on the offline dataset makes them not
scale well to the increasing size of the available data while retrieving individual states underutilizes
data sharing between tasks in multi-task datasets [18, 19].

We introduce Sub-sequence Trajectory Retrieval for Augmented Policy Learning (STRAP), a novel
retrieval method that leverages sub-trajectory similarity, improving test-time generalization by us-
ing components of diverse tasks from pre-collected data. Our approach incorporates time-invariant
alignment techniques like dynamic time warping [20], enabling the comparison of sub-trajectories
of different lengths, further increasing flexibility across tasks and domains. We demonstrate signif-
icant gains for few-shot learning on the LIBERO [21] benchmark in simulation, and a challenging
Pen-in-Cup task in the real world. Our key insights are as follows:

1. Vision foundation models offer powerful out-of-the-box representations for trajectory retrieval.
They sufficiently encode scene semantics and offer visual robustness in contrast to brittle in-
domain feature extractors from prior work.

2. Sub-trajectory retrieval can enable maximal re-use of prior data while capturing temporal infor-
mation about tasks and dynamics.

3. Performing retrieval via subsequence dynamic time warping can find optimal sub-trajectory
matches in offline datasets that are agnostic to segment length task horizon or fluctuations in
demonstration frequency.

2 Related Work

Retrieval for Behavior Replay: A considerable body of work has explored retrieval-based ap-
proaches for robotic manipulation, where the retrieval of relevant past demonstrations aids in replay-
ing past experiences. The choices of embedding space hereby range from off-the-shelf models [8, 9]
like DINO [22], training encoders on the offline dataset [11] to abstract representation like object
shapes [12]. Some works do not directly replay actions but add a layer of abstraction following
sub-goals [10], affordances [13] or keypoints [14]. A key assumption of these methods is that the
offline data either exactly resembles expert demonstrations collected in the test environment or that
intermediate representations can bridge the gap. These drawbacks limit the usage of large multi-task
datasets collected in various domains.

Retrieval for Few-shot Imitation Learning: Retrieval for policy learning tries to mitigate these
issues by learning policies from the retrieved data. While retrieval has shown to benefit policy
learning from sub-optimal single-task data [23], most work focuses on retrieving from large multi-
task datasets like DROID [19] or OpenX [18] containing expert demonstrations. BehaviorRetrieval
(BR) [15] and FlowRetrieval (FR) [17] train an encoder-decoder model on state-action and op-
tical flow respectively. Related to our work, SAILOR [16] imposes skill constraints on the em-
bedding space, clustering similar skills together to later retrieve those. A significant downside of
training custom representations is that these methods do not scale well to the increasing size of
available offline datasets and are unable to deal with significant visual and semantic differences.
Moreover, techniques like BehaviorRetrieval and FlowRetrieval retrieve individual states, rather
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Few-shot Demonstrations 

Offline Dataset 

"Put the white pen in the red plastic cup"

"Pick up the medicine and put it next to the others"

"Push the button on the toaster" "Pick up the marker and put it in the mug"

Figure 2: Overview of STRAP: 1) demonstrations Dtarget and offline datasets Dprior are encoded into
a shared embedding space using a vision foundation model, 2) automatic slicing generates sub-
trajectories which 3) S-DTW matches to corresponding sub-trajectories in Dprior creating Dretrieval,
4) training a policy on the union of Dretrieval and Dtarget results in better performance and robustness.

than sub-trajectories like our work, where sub-trajectory retrieval enables maximal data sharing be-
tween seemingly different tasks while capturing temporal information.

3 Preliminaries

3.1 Dynamic Time Warping

To match sequences of potentially variable length during retrieval, we build on an algorithm called
dynamic time warping (DTW) [24]. DTW methods compute the similarity between two time series
that may vary in time or speed, e.g., different video or audio sequences. This algorithm aligns the
varying length sequences by warping the time axis of the series using a set of step sizes to minimize
the distance between corresponding points while obeying boundary conditions.

DTW algorithms are given two sequences, X = {x1, x2, . . . , xn} and Y = {y1, y2, . . . , ym}, where
m ̸= n, and a corresponding cost matrix C(xi, yj) that assigns the cost of assigning element xi of
sequence X to correspond with element yj of sequence Y . The goal of DTW is to find a mapping
between X and Y that minimizes the total cumulative distance between the assigned elements of
both sequences while obeying boundary and continuity conditions. Dynamic time warping methods
solve this problem efficiently using dynamic programming methods.

A cumulative distance matrix D is computed via dynamic programming as follows: D(0, 0) =
C(0, 0), D(n, 1) =

∑n
k=1 C(k, 1) for n ∈ [1 : N ] and D(1,m) =

∑m
k=1 C(1, k) for m ∈ [1 : M ].

Then the following dynamic programming calculation is performed:

D(i, j) = C(xi, yj) + min{D(i− 1, j), D(i, j − 1), D(i− 1, j − 1)}, (1)

where C(xi, yj) is the distance between points xi and yj . We assume this cost matrix is pre-
provided, and we describe how we compute this from raw camera images in Sec. 4.3.

Subsequence dynamic time warping (S-DTW) is an extension of the DTW algorithm for sce-
narios where a shorter query sequence must be matched to a portion of a longer reference se-
quence. Given a query sequence X = {x1, x2, . . . , xn} and a much longer reference sequence
Y = {y1, y2, . . . , ym}, the goal of S-DTW is to find a subsequence of Y (of a potentially different
length from X), denoted Yi:j where i ≤ j, that has the minimal DTW distance to X .

The cumulative cost matrix D for S-DTW is computed similarly to the traditional DTW described
above, but with the distinction that it allows alignment to start and end at any point in R. D
is initialized as D(0, 0) = C(0, , D(n, 1) =

∑n
k=1 C(k, 1) for n ∈ [1 : N ] and D(1,m) =

C(1,m) for m ∈ [1 : M ] and then completed using dynamic programming following Eq. (1).
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"Put the black bowl in the bottom drawer of the cabinet and close it"

"Put the black bowl on top of the cabinet" "Close the bottom drawer of the cabinet and open the top drawer"

S-DTW Matching

Figure 3: Sub-trajectory matching: S-DTW matches the sub-trajectories of Dtarget (top) to the
relevant segments in Dprior. A feature of S-DTW is that the start and end of the trajectories do not
have to align, finding optimal matches for each pairing.

This ensures that the query can match any sub-sequence of the reference. Once the cumulative cost
matrix is computed, the optimal alignment is found by backtracking from the minimal value in the
last row of the matrix, i.e., min(D(n, j)) for j ∈ {1, . . . ,m}. This gives the subsequence of Y
that best aligns with X , obeying only temporality while relaxing the boundary condition. As we
will show, using S-DTW for data retrieval enables the maximal retrieval of data across tasks in a
retrieval-augmented policy training setting, as described in Sec. 4.3.

4 STRAP: Sub-sequence Robot Trajectory Retrieval for Augmented Policy
Training

4.1 Problem Setting: Retrieval-augmented Policy Learning

We consider a few-shot learning setting where we’re given a target dataset Dtarget =
{(si0, ai0, si1, ai1, . . . , siHi

, aiHi
, li)}Ni=1 containing expert trajectories of states s (e.g., observations

like camera views o and propriception x), actions a (such as robot controls), and task-specifying
language instructions l. This target dataset is collected in the test environment and task, but there
is only a small set of N trajectories, which limits generalization for models trained purely on such
a small dataset. Since Dtarget is often insufficient to solve the task alone, we posit that generaliza-
tion can be accomplished by non-parametrically retrieving data from an offline dataset Dprior. This
offline dataset Dprior = {(sj0, a

j
0, s

j
1, a

j
1, . . . , s

j
Hj

, ajHj
, lj)}Mj=1 can contain data from different envi-

ronments, scenes, levels of expertise, tasks, or embodiments. Notably, the set of tasks in the offline
dataset do not need to overlap with the set of tasks in the target dataset. We assume that the offline
dataset shares matching embodiment with the target dataset and consists of expert-level trajectories,
but may consist of a diversity of scenes and tasks that vary widely from the target dataset Dtarget.
Given Dprior and Dtarget, the goal is to learn a language-conditioned policy πθ(a|s, l) that can predict
optimal actions a in the target environment when prompted with the current state s and language
instruction l.

4.2 Sub-trajectories for Data Retrieval

To make the best use of the training dataset, while capturing temporal task-specific dynamics, we
expand the notion of retrieval from being able to retrieve entire trajectories or single states to re-
trieving variable-length sub-trajectories. In doing so, retrieval can capture the temporal dynamics
of the task, while still being able to share data between seemingly different tasks with potentially
different task instruction labels. In particular, we define a sub-trajectory as a consecutive subset of
a trajectory tia:b ⊆ T i with the sub-trajectory tia:b = (sia, s

i
a+1, . . . , s

i
b) including timestep a to b

of the whole trajectory T i of length Hi. Most long-horizon problems observed in robotics datasets
[21, 19, 18] naturally contain multiple such sub-trajectories. For instance, the task shown in Eq. 3
can be decomposed into “put the bowl in the drawer” and “close the drawer”. Note that we do not
require these trajectories to explicitly have a specific semantic meaning, but semantically meaning-
ful sub-trajectories often coincide with those most commonly encountered across tasks as we see in
our experimental evaluation.
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Given this definition of a sub-trajectory, our proposed retrieval technique only requires segmenting
the target demonstrations into sub-trajectories Ttarget = {ti1:a, tia:b, . . . , tiHi−pi:Hi

,∀T i ∈ Dtarget}
but not the much larger offline training dataset Dprior. Instead, appropriate sub-sequences will be
retrieved from this dataset using a DTW based retrieval algorithm (Sec. 4.4). This makes the pro-
posed methodology far more practical since Dprior is much larger than Dtarget. While this separation
into sub-trajectories can be done manually during data collection, we propose an automatic tech-
nique for sub-trajectory separation that yields promising empirical results. Building on techniques
proposed by Belkhale et al. [25], we split the demonstrations into atomic chunks, i.e., lower-level
motions, before retrieving similar sub-trajectories with our matching procedure (Sec. 4.4). In partic-
ular, we propose a simple proprioception-based segmentation technique that optimizes for changes
in the robot’s end-effector motion indicating the transition between two chunks. For example, a
Pick&Place task can be split into picking and placing separated by a short pause when grasping the
object. Let xt be a vector describing the end-effector position at timestep t. We define ”transition
states” where the absolute velocity drops below a threshold: ∥ẋ∥ < ϵ 1. We empirically find that
this proprioception-driven segmentation can perform reasonable temporal segmentation of target
trajectories into sub-components. This procedure can certainly be improved further via techniques
in action recognition using vision-foundation models [26], or information-theoretic segmentation
methods [27].

4.3 Foundation Model-Driven Relevance Metrics for Retrieval

Given the definition and automatic segmentation of sub-trajectories, we must define a measure of
similarity that allows for the retrieval of appropriate relevant sub-trajectory data from Dprior, and
at the same time is robust to variations in visual appearance, distractors, and irrelevant spurious
features. While prior work has suggested objectives to train such similarity metrics through rep-
resentation learning [15, 17, 13], these methods are often trained purely in-domain, making them
particularly sensitive to aforementioned variations. While using more lossy similarity metrics based
on optical flow (c.f. [17]) or language [28] can help with this fragility, it often fails to capture the
necessary task-specific or semantic details. This suggests the need for a robust, domain-agnostic
similarity metric that can easily be applied out-of-the-box.

In this work, we will adopt the insight that vision(-language) foundation models [29, 30] offer off-
the-shelf solutions to this problem of measuring the semantic and visual similarities between sub-
trajectories, capturing object- and task-centric affordances, while being robust to low-level variations
in scene appearance. Trained on web-scale real-world image(-text) data, these models are typically
robust to low-level perceptual variations, while providing semantically rich representations that nat-
urally capture a notion of object-ness and semantic correspondence. Denoting a vision foundation
model as F(·), we can compute the pairwise distance of two camera views with an L2 norm2 in
embedding space, i.e., ||F(oi)− F(oj)||2. While aggregation methods such as temporal averaging
could be used to go from embedding of a single image to that of a sub-trajectory, they lose out on
the actions and dynamics. We instead opt for a sub-trajectory matching procedure based on the idea
of DTW [20] and use the embeddings for finding maximally relevant sub-trajectories. Given two
sub-trajectories, ti and tj , we compute a pairwise cost matrix C ∈ R|ti|×|tj |, where its value is as
computed by:

C(i, j) = ||F(oi)−F(oj)||2 (2)

4.4 Efficient Sub-trajectory Retrieval with subsequence dynamic time warping

Given the above-mentioned definitions of sub-trajectories and foundation-model-driven similarity
metrics, we instantiate an algorithm to find the K most relevant sub-trajectories Tmatch from the
offline dataset Dprior for each sub-trajectory t segmented from Dtarget. Sub-trajectories may have
variable lengths and temporal positioning within a trajectory caused by varying tasks, platforms,

1For trajectories involving “stop-motion”, this heuristic returns many short chunks as the end-effector idles,
waiting for the gripper to close. To ensure a minimum length, we merge neighboring chunks until all are ≥ 20.

2Other cost metrics such as (1-cosine similarity) could be used here as well.
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or demonstrators. We employ S-DTW to match the target sub-trajectories Ttarget to appropriate
segment Tmatch in Dprior (Sec. 3.1). S-DTW scales naturally with these challenges and allows for
retrieval from diverse, multi-task datasets. On deployment, subsequence dynamic time warping
accepts a query sub-sequences from the target dataset, i.e., ttarget, and uses dynamic programming to
compute matches that are maximally aligned with the query Tmatch = {SDTW(t,Dprior),∀t ∈ Ttarget}
along with matching costs, D. To construct Dretrieval, we select the K matches with the lowest
cost uniformly across the sub-trajectories in Ttarget, i.e., the same number of matches for each query
until K matches are retrieved. We note that the resulting set of matches can contain duplicates
if the demonstrations share similar chunks, but argue that if a chunk occurs multiple times in the
demonstrations, it is important to the task and should be “up-weighted” in the training set – in
this case through duplicated retrieval. For each match, we also retrieve its corresponding language
instruction. The training dataset then contains a union of the target dataset Dtarget and the retrieved
dataset Dretrieval, Dtarget ∪ Dretrieval. This significantly larger, retrieval-augmented dataset can then be
used to learn policies via imitation learning, leading to robust, generalizable policies as we describe
below.

4.5 Putting it all together: STRAP

To start the retrieval process, we encode image observations in Dtarget and Dprior using a vision foun-
dation model, e.g., DINOv2 [29] or CLIP [30]. To best leverage the multi-task trajectories in Dprior,
we split the demonstrations inDtarget into atomic chunks based on a low-level motion heuristic. Then
we generate matches between chunked Dtarget and Dprior and construct Dretrieval by selecting the top
K matches uniformly across all chunks. CombiningDretrieval withDtarget forms our dataset for learn-
ing a policy. In a standard policy learning setting, noisy retrieval data can lead to negative transfer,
e.g., when observations similar to the target data are labeled with actions that achieve a different
task. Without conditioning, such contaminated samples hurt the policy’s downstream performance.
We propose to use a language-conditioned policy to deal with this inconsistency. With conditioning,
the policy can distinguish between samples from different tasks, separating misleading from expert
actions while benefiting from positive transfer from the additional training data and context of the
language conditioning. See the full algorithm in Algorithm 1.

We use behavior cloning (BC) to learn a visuomotor policy π similar to Haldar et al. [5], Nasiriany
et al. [31]. We choose a transformer-based [32] architecture feeding in a history of the last h ob-
servations st−h:t and predicting a chunk of h future actions using a Gaussian mixture model action
head. We sample batches from the union of Dtarget and Dretrieval, as in B ∼ Dtarget ∪ Dretrieval.

5 Experiments and Results
5.1 Experimental Setup

Task Definition: We demonstrate the efficacy of STRAP in simulation on the LIBERO bench-
mark [21], and on a Pen-in-Cup manipulation task with a real world robot arm. (c.f. Eq. 12).

• LIBERO: We evaluate on 10 long-horizon tasks (Tab. 1 & Tab. 3) (LIBERO-10) which include
diverse objects, layouts, and backgrounds. Each task comes with 50 demonstrations from which
we select 5 random demonstrations (Dtarget) in a few-shot imitation learning setting and retrieve
data from all LIBERO-90 tasks, which amounts to 4500 total offline demonstrations (Dprior).

• Franka-Pen-in-Cup: To demonstrate the efficacy of STRAP in a real-world setting, we solve a
Pen-In-Cup task using the Franka Emika Panda robot. Dtarget contains 3 on-task demonstrations,
and Dprior consists of 100 demonstrations across 10 tasks in the same tabletop environment col-
lected on the DROID [19] hardware setup.

Baselines and Ablation: We compare STRAP to the following baselines and ablations and refer
the reader to Sec. 7.2 for implementation details and Sec. 7.4 for extensive ablations.

• Behavior Cloning (BC) behavior cloning using a transformer-based policy trained on Dtarget;
• Multi-task Policy (MT) transformer-based policy trained on Dprior;
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Stove-Pot Bowl-Drawer Soup-Cheese Mug-Mug Book-Caddy

LIBERO-90 (Dprior)

Franka-Pen-in-Cup

DROID-10 (Dprior)
Figure 12: Simulation and real-world tasks: Dtarget tasks from LIBERO-10 and real-world Franka-
Pen-in-Cup (top) and retrieval dataset Dprior (bottom).

Table 1: Baselines: Performance of baselines, ablations and variations of STRAP on the LIBERO 10 tasks
(Eq. 12). DINOv2 and CLIP features perform similarly, making STRAP flexible in the encoder choice. Bold
indicates best and underline runner-up results.

Task Stove-Pot Bowl-Cabinet Soup-Cheese Mug-Mug Book-Caddy

BC 77.33%± 4.35 71.33%± 5.68 27.33%± 2.18 38.00%± 5.66 75.33%± 1.44
MT 0.00%± 0.00 0.00%± 0.00 0.00%± 0.00 0.00%± 0.00 88.00%± 1.89

BR [15] 80.0%± 1.63 72.0%± 7.72 26.0%± 5.25 40.0%± 8.64 16.0%± 1.89
FR [17] 76.0%± 6.60 54.67%± 11.98 24.67%± 8.55 29.33%± 1.44 52.0%± 5.89

D-S 70.67%± 7.85 65.33%± 1.96 18.0%± 3.40 16.0%± 0.94 57.33%± 2.88
D-T 78.67%± 2.72 75.33%± 2.72 37.33%± 6.62 63.33%± 3.57 79.00%± 4.95

STRAP (CLIP) 86.00%± 4.10 90.67%± 2.18 42.00%± 0.94 54.67%± 3.31 83.33%± 3.03
STRAP (DINOv2) 85.33%± 2.18 91.33%± 2.18 42.67%± 7.20 57.33%± 7.68 85.33%± 2.81

• BR (BehaviorRetrieval) [15] prior work that trains a VAE on state-action pairs for retrieval and
uses cosine similarity to retrieve single state-action pairs;

• FR (FlowRetrieval) [17] same setup as BR but VAE is trained on pre-computed optical flow from
GMFlow [33];

• D-S (DINO state) same as BR and FR but uses off-the-shelf DINOv2 [29] features instead of
training a VAE;

• D-T (DINO trajectory) retrieves full trajectories (rather than sub-trajectories) with S-DTW and
DINOv2 features;

5.2 Experimental Evaluation

Does sub-trajectory retrieval improve performance in few-shot imitation learning? STRAP

outperforms the retrieval baselines BR and FR on average by +12.20% and +12.47% across
all 10 tasks (Tab. 1). These results demonstrate the policy’s robustness to varying object
poses. BC represents a strong baseline on the LIBERO task as the benchmark’s difficulty
comes from pose variations during evaluation. By memorizing the demonstrations, BC achieves
high success rates, outperforming BR and FR by +4.53% and +4.80% across all 10 tasks.

Pen-in-Cup base OOD
Pick Place Pick Place

BC 100% 100% 0% 0%
STRAP 100% 90% 100% 100%

Table 2: Real-world results: Franka-
Pen-in-Cup task

The multi-task baseline trained on LIBERO-90 struggles
to generalize to unseen language instructions, failing on
9/10 tasks, only succeeding on the one with an almost
exact match in LIBERO-90 (c.f. Tab. 1). To prove that
the robustness benefits are not unique to the LIBERO
benchmark we perform a real-world evaluation in Tab.
sec. 5.2. While BC and STRAP solve the Franka-Pen-in-
Cup demonstrated in Dtarget (base), BC lacks robustness
to out-of-distribution (OOD) scenarios. The policy replays the trajectories observed inDtarget. STRAP
retrieves relevant sub-trajectories from Dprior, e.g., the robot putting the screwdriver in the cup or
picking up pens in various poses. Augmented policy learning then distills this knowledge into a
policy, resulting in generalization to an OOD scenario. To further investigate the efficacy of sub-
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close the bottom drawer of the cabinet and open the top drawer
turn on the stove and put the frying pan on it
pick up the book and place it in the left compartment of the caddy
close the bottom drawer of the cabinet
pick up the book and place it in the right compartment of the caddy

put the black bowl on top of the cabinet
close the top drawer of the cabinet
put the black bowl in the bottom drawer of the cabinet and close it
put the black bowl in the bottom drawer of the cabinet
others

Figure 13: Tasks distribution in Dretrieval for different retrieval methods with target task “put the
black bowl in the bottom drawer of the cabinet and close it”.

trajectories, we compare sub-trajectory retrieval with S-DTW (STRAP) to retrieving full trajectories
with S-DTW (D-T) in Tab. 1. We find sub-trajectory retrieval to improve performance by +4.17%
across all 10 tasks. We hypothesize that full trajectories can contain segments irrelevant to the task,
effectively hurting performance and reducing the accuracy of the matching.

How effective are the representations from vision-foundation models for retrieval? Next, we
ablate the choice of foundation model representation in STRAP. We compare CLIP, a model trained
through supervised learning on image-text pairs, with DINOv2, a self-supervised model trained
on unlabeled images. We don’t find any representation to significantly outperform the other with
DINOv2 separated from CLIP by only +0.73% across all 10 tasks. To show the efficacy of vision-
foundation models for retrieval, we replace the in-domain feature extractors from prior work (BR,
FR) trained on Dprior with an off-the-shelf DINOv2 encoder model (D-S). Comparing them in their
natural configuration, i.e., state-based retrieval using cosine similarity, allows for a side-by-side
comparison of the representations. Tab. 1 shows the choice of representation to depend on the task
with no method outperforming the others on all tasks. Since D-S has no notion of dynamics and
task semantics due to single-state retrieval, BR and FR outperform it by +5.00% and +4.73%,
respectively. We want to highlight that vision foundation models don’t have to be trained on Dprior
and, therefore, scale much better with increasing amounts of trajectory data and on unseen tasks.

What types of matches are identified by S-DTW? To understand what data STRAP retrieves, we
visualize the distribution over tasks as a function of Dretrieval proportion in Figure 13. The figure
visualizes the top five tasks retrieved and accumulates the rest into the “others” category. It becomes
clear that STRAP retrieves semantically relevant data – each task shares at least one sub-task with
the target task. For example, ”put the black bowl in the bottom drawer of the cabinet”, ”close the
bottom drawer of the cabinet ...” (Eq. 3). Furthermore, STRAP’s retrieval is sparse, only selecting
data from 5/90 semantically relevant tasks and ignoring irrelevant ones. We observe that DINOv2
features are surprisingly agnostic to different environment textures, retrieving data from the same
task but in a different environment (c.f. Eq. 13, ”put the black bowl in the bottom drawer of the
cabinet and close it”). Furthermore, DINOv2 is robust to object poses retrieving sub-trajectories
that ”close the drawer” with the bowl either on the table or in the drawer (c.f. Eq. 25, ”close the
bottom drawer of the cabinet and open the top drawer”). Trained on optical flow, FR has no notion
of visual appearance, failing to retrieve most of the semantically relevant data.

6 Conclusion
We introduce STRAP as an innovative approach for leveraging visual foundation models in few-shot
robotics manipulation, eliminating the need to train on the entire retrieval dataset and allowing it
to scale with minimal compute overhead. By focusing on sub-trajectory retrieval using S-DTW,
STRAP improves data utilization and captures dynamics more effectively. Overall, it outperforms
state-of-the-art methods BehaviorRetrieval and FlowRetrieval by 12.20% and 12.47%, respectively,
across all 10 LIBERO tasks.
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7 Appendix

7.1 STRAP Algorithm

Algorithm 1 STRAP (Dtarget, Dprior, K, ϵ, F)

Require: demos Dtarget, offline dataset Dprior, vision foundation model F , # retrieved chunks K,
chunking threshold ϵ;

1: /* Pre-processing */
2: Ttarget ← SubTrajSegmentation(Dtarget, ϵ); ▷ Heuristic demo chunking
3: Eprior ← {{F(ot)|ot ∈ T}|T ∈ Dprior}; ▷ Embed Dprior
4: Etarget ← {{F(ot)|ot ∈ T}|T ∈ Ttarget}; ▷ Embed chunked Dtarget
5: /* Sub-trajectory Retrieval using S-DTW*/
6: for Starget ∈ Dtarget do
7: M← []; ▷ Initialize empty match storage
8: for Tprior ∈ Dprior do
9: D ← computeCostMatrix(Etarget, Eprior); ▷ Eq. (2)

10: Mi,j ← extractSubTrajectory(D,Tprior); ▷ Dynamic Programming
11: end for
12: end for
13: Dretrieval ← retrieveTopKMatches(M,K); ▷ Sec. 4.4
14: /* Policy Learning */
15: repeat
16: sample B ∼ Dtarget ∪ Dretrieval to update policy πθ with loss L(B; θ)
17: until πθ converged; return πθ

As proposed in Haldar et al. [5] we compute the multi-step action loss and add an L2 regularization
term over the model weights θ, resulting in the following loss function:

L(B; θ) = 1

|B|
∑

(si−h:i,ai:i+h,l)∈B
− log(πθ(ai:i+h|si−h:i, l)) + λ∥θ∥22 (3)

with policy πθ and hyperparameter λ controlling the regularization.

7.2 Sim Evaluation

Table 3: Baselines (sim): Performance of different methods on LIBERO-10 tasks in simulation
Method Mug-Microwave Moka-Moka Soup-Sauce Cream-Cheese-Butter Mug-Pudding

BC 28.00%± 0.94 0.00%± 0.00 17.33%± 4.46 26.67%± 4.25 18.00%± 2.49
MT 0.00%± 0.00 0.00%± 0.00 0.00%± 0.00 0.00%± 0.00 0.00%± 0.00

BR [15] 28.67%± 3.93 0.0%± 0.0 13.33%± 3.81 32.0%± 4.32 26.0%± 1.89
FR [17] 27.33%± 1.44 0.0%± 0.0 11.33%± 3.03 41.33%± 5.52 14.67%± 1.09

D-S 30.0%± 3.4 0.0%± 0.0 4.67%± 0.54 16.0%± 5.66 6.0%± 0.94
D-T 34.67%± 1.96 0.0%± 0.0 4.67%± 1.09 27.33%± 4.46 14.0%± 3.4

STRAP (CLIP) 30.00%± 2.49 0.00%± 0.00 8.67%± 6.28 29.33%± 10.51 24.00%± 4.32
STRAP (DINO) 29.33%± 2.72 0.00%± 0.00 16.67%± 1.97 29.33%± 11.34 18.67%± 1.44

Remaining results on LIBERO-10 Tab. 3 shows the results for the remaining LIBERO-10 task
not reported in the main sections. Both FR and BR outperform STRAP on the Cream-Cheese-Butter
task. We hypothesize that our chunking heuristic generates sub-optimal sub-trajectories (too long)
causing them to contain multiple different semantic tasks, leading to worse matches in our retrieval
datasets and eventually in decreasing downstream performance.

Hyperparameters for sim results: All results are reported over 3 training and evaluation seeds
(1234, 42, 4325). We fixed both the number of segments retrieved to 100, the camera viewpoint to
the agent view image for retrieval, and the number of expert demonstrations to 5. Our transformer
policy was trained over all input images for 300 epochs with batch size 32 and an epoch every 200
gradient steps.
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Baseline implementation details: Following Lin et al. [17], we retrieve single-state action pairs
for the state-based retrieval baselines (BR, FR, D-S) and pad them by also retrieving the states from
t− h to t+ h− 1 to make the samples compatible with our transformer-based policy. We refer the
reader to Sec. 7.4 for extensive ablation.

7.3 Real Experiments

Figure 14:
chess

Figure 15:
cube stacking

Figure 16:
hotdog

Figure 17:
knock over box

Figure 18:
marker in mug

Figure 19:
medicine pnp

Figure 20:
dispense soap

Figure 21:
pull cable right

Figure 22:
pen next to pens

Figure 23:
screwdriver

Figure 24: Environment setup for the real-world tasks

Table 4: Task/language instructions for the real-world dataset Dprior

Environment Name Language Instruction

chess Move the king to the top right of the chess board
cube stacking Stack the blue cube on top of the tower

hotdog Put the hotdog in the bun
knock over box Knock over the box
marker in mug Put the marker in the mug
medicine pnp Pick up the medicine box on the right and put it next to the other medicine boxes
dispense soap Press the soap dispenser

pull cable right Pull the cable to the right
pen next to pens Put the pen next to the markers

screwdriver Pick up the screwdriver and put it in the cup

7.4 Ablations

Table 5: Ablations - Retrieval Method: We explore different approaches for trajectory-based retrieval. Be-
sides the heuristic reported in the main paper, we experiment with a sliding window approach that segments
a trajectory into sub-trajectories of equal length (here: 30). We use S-DTW for both sliding window sub-
trajectories and full trajectories.

Method Stove-Moka Bowl-Cabenet Mug-Microwave Moka-Moka Soup-Cream-Cheese

Sub-traj (sliding window) 76.0%± 4.71 75.33%± 2.72 26.0%± 1.89 0.0%± 0.0 37.33%± 6.62
Full traj 78.67%± 2.72 68.67%± 1.44 34.67%± 1.96 0.0%± 0.0 28.67%± 3.81

Method Soup-Sauce Cream-Cheese-Butter Mug-Mug Mug-Pudding Book-Caddy

Sub-traj (sliding window) 40.00%± 0.94 27.33%± 2.18 63.33%± 3.57 30.00%± 3.40 79.0%± 4.95
Full traj 4.67%± 1.09 27.33%± 4.46 43.33%± 1.09 14.0%± 3.4 68.0%± 5.66
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Table 6: Ablations - Retrieval Seeds: We run STRAP on different retrieval seeds on a subset of LIBERO-10
tasks. We report results over all possible combinations of 3 training and 3 retrieval seeds

Method Stove-Moka Mug-Cabinet Book-Caddy

BC Baseline 93.11%± 1.57 83.11%± 2.69 93.11%± 1.57
STRAP 98.0%± 1.04 88.67%± 2.11 98.0%± 1.04

Table 7: Ablations - amount data retrieved: We explore the effect of increasing the size of Dretrieval. We
evaluate performance on LIBERO-10 tasks in simulation on 2 different retrieval and 3 training seeds. We
randomly sample 10 demos from Dtarget and retrieve 1500 segments. This demonstrates STRAP’s robustness
over multiple seeds, as well as scalability to more data even leading to performance gains

Task Stove-Pot Bowl-Cabinet Soup-Cheese Mug-Mug Book-Caddy

BC 86.33%± 2.18 76.0%± 3.97 41.67%± 3.72 59.0%± 2.25 92.67%± 1.81
STRAP (DINO) 88.67%± 3.42 95.67%± 1.19 45.67%± 7.41 67.67%± 1.59 93.71%± 1.87

Method Mug-Microwave Pots-On-Stove Soup-Sauce Cream cheese-Butter Mug-Pudding

BC 47.67%± 4.75 0.00%± 0.00 23.0%± 3.42 57.33%± 0.77 32.0%± 1.33
STRAP (DINO) 31.33%± 3.73 0.00%± 0.00 45.0%± 5.09 58.67%± 9.58 38.33%± 3.38

Table 8: Ablations - Diffusion Policies: Performance on LIBERO-10 tasks using diffusion policies without
language conditioning for BR and FR. These experiments replicate the training setup for BR and FR. Both
methods fall short of the baselines reported in the rest of the paper.

Task Stove-Pot Bowl-Cabinet Soup-Cheese Mug-Mug Book-Caddy

Diffusion Behavior Retrieval 36.67%± 1.44 68.0%± 2.49 34.0%± 2.49 55.33%± 1.44 42.0%± 1.63
Diffusion Flow Retrieval 68.67%± 2.37 56.0%± 4.32 18.0%± 3.4 56.0%± 3.4 35.33%± 6.28

Method Mug-Microwave Pots-On-Stove Soup-Sauce Cream cheese-Butter Mug-Pudding

Diffusion Behavior Retrieval 30.67%± 0.54 0.00%± 0.00 10.67%± 1.96 24.0%± 0.94 9.33%± 1.44
Diffusion Flow Retrieval 32.67%± 3.31 68.0%± 2.49 6.0%± 0.0 35.33%± 0.54 8.0%± 1.89
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Figure 25: Match distribution Dprior for STRAP with target task: ”put the black bowl in the bottom
drawer of the cabinet and close it”. S-DTW finds the best matches regardless of start and end points
or trajectory length. This results in a distribution over start and end points as well as a variety of
trajectory lengths retrieved.
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